|
--- |
|
license: mit |
|
language: |
|
- ja |
|
base_model: microsoft/mdeberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
- bert |
|
- zero-shot-classification |
|
- text-classification |
|
datasets: |
|
- MoritzLaurer/multilingual-NLI-26lang-2mil7 |
|
- shunk031/JGLUE |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: mDeBERTa-v3-base-finetuned-nli-jnli |
|
results: [] |
|
pipeline_tag: zero-shot-classification |
|
widget: |
|
- text: 今日の予定を教えて |
|
candidate_labels: 天気,ニュース,金融,予定 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mDeBERTa-v3-base-finetuned-nli-jnli |
|
|
|
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7739 |
|
- Accuracy: 0.6808 |
|
- F1: 0.6742 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
#### zero-shot classification |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli" |
|
classifier = pipeline("zero-shot-classification", model=model_name) |
|
|
|
text = ["今日の天気を教えて", "ニュースある?", "予定をチェックして", "ドル円は?"] |
|
labels = ["天気", "ニュース", "金融", "予定"] |
|
|
|
for t in text: |
|
output = classifier(t, labels, multi_label=False) |
|
print(output) |
|
``` |
|
|
|
#### NLI use-case |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") |
|
model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
premise = "NY Yankees is the professional baseball team in America." |
|
hypothesis = "メジャーリーグのチームは、日本ではニューヨークヤンキースが有名だ。" |
|
|
|
inputs = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs) |
|
|
|
preds = torch.softmax(output["logits"][0], -1).tolist() |
|
label_names = ["entailment", "neutral", "contradiction"] |
|
result = {name: round(float(pred) * 100, 1) for pred, name in zip(preds, label_names)} |
|
print(result) |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 0.753 | 0.53 | 5000 | 0.8758 | 0.6105 | 0.6192 | |
|
| 0.5947 | 1.07 | 10000 | 0.6619 | 0.7054 | 0.7035 | |
|
| 0.5791 | 1.6 | 15000 | 0.7739 | 0.6808 | 0.6742 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |