|
--- |
|
tags: |
|
- image-classification |
|
- timm |
|
- transformers |
|
library_name: timm |
|
license: apache-2.0 |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# Model card for ese_vovnet57b.ra4_e3600_r256_in1k |
|
|
|
A VoVNet-v2 image classification model. Pretrained on ImageNet-1k in `timm` by Ross Wightman using MobileNetV4 inspired RA4 recipe. |
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 38.6 |
|
- GMACs: 11.7 |
|
- Activations (M): 9.8 |
|
- Image size: train = 256 x 256, test = 320 x 320 |
|
- **Papers:** |
|
- An Energy and GPU-Computation Efficient Backbone Network: https://arxiv.org/abs/1904.09730 |
|
- CenterMask : Real-Time Anchor-Free Instance Segmentation: https://arxiv.org/abs/1911.06667 |
|
- ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476 |
|
- MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518 |
|
- **Dataset:** ImageNet-1k |
|
- **Original:** https://github.com/huggingface/pytorch-image-models |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('ese_vovnet57b.ra4_e3600_r256_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'ese_vovnet57b.ra4_e3600_r256_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 64, 128, 128]) |
|
# torch.Size([1, 256, 64, 64]) |
|
# torch.Size([1, 512, 32, 32]) |
|
# torch.Size([1, 768, 16, 16]) |
|
# torch.Size([1, 1024, 8, 8]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'ese_vovnet57b.ra4_e3600_r256_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 1024, 8, 8) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{lee2019energy, |
|
title = {An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection}, |
|
author = {Lee, Youngwan and Hwang, Joong-won and Lee, Sangrok and Bae, Yuseok and Park, Jongyoul}, |
|
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops}, |
|
year = {2019} |
|
} |
|
``` |
|
```bibtex |
|
@article{lee2019centermask, |
|
title={CenterMask: Real-Time Anchor-Free Instance Segmentation}, |
|
author={Lee, Youngwan and Park, Jongyoul}, |
|
booktitle={CVPR}, |
|
year={2020} |
|
} |
|
``` |
|
```bibtex |
|
@inproceedings{wightman2021resnet, |
|
title={ResNet strikes back: An improved training procedure in timm}, |
|
author={Wightman, Ross and Touvron, Hugo and Jegou, Herve}, |
|
booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future} |
|
} |
|
``` |
|
```bibtex |
|
@article{qin2024mobilenetv4, |
|
title={MobileNetV4-Universal Models for the Mobile Ecosystem}, |
|
author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others}, |
|
journal={arXiv preprint arXiv:2404.10518}, |
|
year={2024} |
|
} |
|
``` |
|
|