uwaisasghar's picture
End of training
c0cb965 verified
|
raw
history blame
34.7 kB
metadata
library_name: transformers
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b1-finetuned-segments-sidewalks-6
    results: []

segformer-b1-finetuned-segments-sidewalks-6

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0400
  • Mean Iou: 0.7845
  • Mean Accuracy: 0.8382
  • Overall Accuracy: 0.9924
  • Accuracy Bkg: 0.9973
  • Accuracy Knife: 0.6791
  • Accuracy Gun: nan
  • Iou Bkg: 0.9924
  • Iou Knife: 0.5766
  • Iou Gun: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Bkg Accuracy Knife Accuracy Gun Iou Bkg Iou Knife Iou Gun
0.0094 0.1613 20 0.0278 0.7697 0.8289 0.9917 0.9968 0.6609 nan 0.9917 0.5477 nan
0.0096 0.3226 40 0.0288 0.7684 0.8181 0.9919 0.9974 0.6389 nan 0.9918 0.5450 nan
0.0086 0.4839 60 0.0289 0.7675 0.8143 0.9920 0.9975 0.6311 nan 0.9919 0.5431 nan
0.0081 0.6452 80 0.0288 0.7694 0.8485 0.9912 0.9957 0.7014 nan 0.9911 0.5477 nan
0.0113 0.8065 100 0.0300 0.7690 0.8309 0.9916 0.9967 0.6652 nan 0.9916 0.5464 nan
0.0083 0.9677 120 0.0325 0.7635 0.8051 0.9919 0.9978 0.6123 nan 0.9919 0.5351 nan
0.0087 1.1290 140 0.0303 0.7704 0.8419 0.9915 0.9961 0.6877 nan 0.9914 0.5494 nan
0.0075 1.2903 160 0.0290 0.7645 0.8333 0.9913 0.9962 0.6703 nan 0.9912 0.5378 nan
0.0129 1.4516 180 0.0327 0.7551 0.7845 0.9920 0.9985 0.5705 nan 0.9919 0.5183 nan
0.0087 1.6129 200 0.0285 0.7708 0.8519 0.9912 0.9956 0.7081 nan 0.9911 0.5505 nan
0.0144 1.7742 220 0.0294 0.7675 0.8220 0.9918 0.9971 0.6470 nan 0.9917 0.5433 nan
0.0073 1.9355 240 0.0323 0.7656 0.8140 0.9918 0.9974 0.6306 nan 0.9918 0.5394 nan
0.0071 2.0968 260 0.0297 0.7685 0.8555 0.9910 0.9952 0.7158 nan 0.9909 0.5462 nan
0.0116 2.2581 280 0.0315 0.7680 0.8353 0.9915 0.9963 0.6742 nan 0.9914 0.5447 nan
0.0084 2.4194 300 0.0322 0.7628 0.8066 0.9919 0.9976 0.6156 nan 0.9918 0.5338 nan
0.0107 2.5806 320 0.0293 0.7722 0.8320 0.9918 0.9968 0.6672 nan 0.9917 0.5527 nan
0.0078 2.7419 340 0.0297 0.7681 0.8578 0.9909 0.9951 0.7204 nan 0.9908 0.5455 nan
0.0065 2.9032 360 0.0287 0.7742 0.8419 0.9917 0.9964 0.6874 nan 0.9916 0.5567 nan
0.009 3.0645 380 0.0300 0.7732 0.8319 0.9919 0.9969 0.6669 nan 0.9918 0.5546 nan
0.008 3.2258 400 0.0303 0.7717 0.8383 0.9916 0.9964 0.6802 nan 0.9915 0.5518 nan
0.0084 3.3871 420 0.0313 0.7670 0.8171 0.9919 0.9973 0.6368 nan 0.9918 0.5423 nan
0.0086 3.5484 440 0.0321 0.7673 0.8119 0.9920 0.9976 0.6261 nan 0.9919 0.5426 nan
0.0061 3.7097 460 0.0292 0.7797 0.8412 0.9921 0.9968 0.6856 nan 0.9920 0.5674 nan
0.0075 3.8710 480 0.0308 0.7751 0.8224 0.9922 0.9975 0.6473 nan 0.9922 0.5580 nan
0.0065 4.0323 500 0.0318 0.7706 0.8140 0.9922 0.9977 0.6302 nan 0.9921 0.5490 nan
0.007 4.1935 520 0.0309 0.7716 0.8269 0.9919 0.9971 0.6567 nan 0.9918 0.5514 nan
0.0107 4.3548 540 0.0315 0.7736 0.8288 0.9920 0.9971 0.6604 nan 0.9919 0.5554 nan
0.0094 4.5161 560 0.0300 0.7736 0.8309 0.9919 0.9970 0.6648 nan 0.9919 0.5553 nan
0.0057 4.6774 580 0.0299 0.7779 0.8386 0.9920 0.9968 0.6804 nan 0.9919 0.5639 nan
0.0084 4.8387 600 0.0304 0.7754 0.8404 0.9918 0.9966 0.6843 nan 0.9917 0.5591 nan
0.0068 5.0 620 0.0307 0.7721 0.8556 0.9912 0.9955 0.7158 nan 0.9911 0.5531 nan
0.0078 5.1613 640 0.0312 0.7733 0.8608 0.9912 0.9953 0.7263 nan 0.9911 0.5555 nan
0.0075 5.3226 660 0.0341 0.7666 0.8081 0.9921 0.9978 0.6185 nan 0.9920 0.5413 nan
0.0053 5.4839 680 0.0309 0.7733 0.8235 0.9921 0.9974 0.6497 nan 0.9920 0.5546 nan
0.0064 5.6452 700 0.0311 0.7772 0.8427 0.9919 0.9965 0.6889 nan 0.9918 0.5625 nan
0.0063 5.8065 720 0.0319 0.7745 0.8226 0.9922 0.9975 0.6477 nan 0.9921 0.5569 nan
0.0065 5.9677 740 0.0365 0.7623 0.7948 0.9921 0.9983 0.5913 nan 0.9921 0.5325 nan
0.0071 6.1290 760 0.0312 0.7757 0.8321 0.9920 0.9970 0.6672 nan 0.9920 0.5594 nan
0.0086 6.2903 780 0.0310 0.7777 0.8462 0.9918 0.9964 0.6960 nan 0.9918 0.5637 nan
0.0054 6.4516 800 0.0301 0.7792 0.8504 0.9918 0.9963 0.7046 nan 0.9917 0.5666 nan
0.0077 6.6129 820 0.0325 0.7760 0.8233 0.9923 0.9975 0.6490 nan 0.9922 0.5598 nan
0.0082 6.7742 840 0.0317 0.7746 0.8343 0.9919 0.9968 0.6717 nan 0.9918 0.5573 nan
0.0064 6.9355 860 0.0326 0.7766 0.8333 0.9921 0.9970 0.6696 nan 0.9920 0.5612 nan
0.0045 7.0968 880 0.0331 0.7733 0.8177 0.9922 0.9977 0.6378 nan 0.9922 0.5545 nan
0.0066 7.2581 900 0.0325 0.7751 0.8288 0.9921 0.9972 0.6605 nan 0.9920 0.5582 nan
0.0115 7.4194 920 0.0324 0.7773 0.8378 0.9920 0.9968 0.6788 nan 0.9919 0.5626 nan
0.0049 7.5806 940 0.0332 0.7743 0.8301 0.9920 0.9971 0.6632 nan 0.9919 0.5567 nan
0.0093 7.7419 960 0.0345 0.7708 0.8081 0.9923 0.9981 0.6181 nan 0.9923 0.5494 nan
0.0082 7.9032 980 0.0326 0.7752 0.8386 0.9919 0.9966 0.6805 nan 0.9918 0.5586 nan
0.0064 8.0645 1000 0.0332 0.7741 0.8265 0.9921 0.9972 0.6557 nan 0.9920 0.5561 nan
0.0061 8.2258 1020 0.0330 0.7766 0.8306 0.9921 0.9972 0.6640 nan 0.9921 0.5611 nan
0.0065 8.3871 1040 0.0339 0.7748 0.8245 0.9922 0.9974 0.6516 nan 0.9921 0.5575 nan
0.0068 8.5484 1060 0.0327 0.7769 0.8428 0.9919 0.9965 0.6891 nan 0.9918 0.5619 nan
0.0058 8.7097 1080 0.0332 0.7762 0.8383 0.9919 0.9967 0.6798 nan 0.9918 0.5606 nan
0.0074 8.8710 1100 0.0351 0.7732 0.8195 0.9922 0.9976 0.6414 nan 0.9921 0.5543 nan
0.0066 9.0323 1120 0.0339 0.7786 0.8276 0.9923 0.9975 0.6576 nan 0.9923 0.5650 nan
0.004 9.1935 1140 0.0338 0.7771 0.8349 0.9921 0.9970 0.6728 nan 0.9920 0.5621 nan
0.0118 9.3548 1160 0.0349 0.7745 0.8197 0.9923 0.9977 0.6418 nan 0.9922 0.5568 nan
0.0063 9.5161 1180 0.0332 0.7750 0.8336 0.9920 0.9969 0.6702 nan 0.9919 0.5581 nan
0.0061 9.6774 1200 0.0343 0.7768 0.8245 0.9923 0.9975 0.6515 nan 0.9922 0.5614 nan
0.0067 9.8387 1220 0.0336 0.7820 0.8308 0.9925 0.9975 0.6641 nan 0.9924 0.5716 nan
0.0067 10.0 1240 0.0324 0.7794 0.8422 0.9920 0.9967 0.6877 nan 0.9920 0.5669 nan
0.0057 10.1613 1260 0.0333 0.7803 0.8370 0.9922 0.9971 0.6768 nan 0.9921 0.5684 nan
0.0058 10.3226 1280 0.0325 0.7813 0.8451 0.9921 0.9967 0.6936 nan 0.9920 0.5706 nan
0.006 10.4839 1300 0.0331 0.7786 0.8333 0.9922 0.9972 0.6694 nan 0.9921 0.5650 nan
0.0052 10.6452 1320 0.0361 0.7772 0.8246 0.9923 0.9976 0.6516 nan 0.9922 0.5622 nan
0.005 10.8065 1340 0.0345 0.7787 0.8359 0.9921 0.9970 0.6747 nan 0.9921 0.5654 nan
0.0057 10.9677 1360 0.0340 0.7789 0.8376 0.9921 0.9969 0.6782 nan 0.9920 0.5657 nan
0.0048 11.1290 1380 0.0349 0.7794 0.8263 0.9924 0.9976 0.6549 nan 0.9923 0.5665 nan
0.0059 11.2903 1400 0.0326 0.7764 0.8539 0.9916 0.9959 0.7118 nan 0.9915 0.5614 nan
0.0043 11.4516 1420 0.0334 0.7791 0.8406 0.9921 0.9968 0.6845 nan 0.9920 0.5663 nan
0.0044 11.6129 1440 0.0331 0.7829 0.8391 0.9923 0.9971 0.6811 nan 0.9923 0.5735 nan
0.0062 11.7742 1460 0.0339 0.7813 0.8369 0.9923 0.9971 0.6767 nan 0.9922 0.5705 nan
0.0062 11.9355 1480 0.0334 0.7806 0.8417 0.9921 0.9968 0.6865 nan 0.9920 0.5691 nan
0.0052 12.0968 1500 0.0342 0.7802 0.8354 0.9922 0.9971 0.6736 nan 0.9922 0.5682 nan
0.0049 12.2581 1520 0.0337 0.7818 0.8418 0.9922 0.9969 0.6868 nan 0.9921 0.5715 nan
0.004 12.4194 1540 0.0347 0.7815 0.8382 0.9923 0.9971 0.6793 nan 0.9922 0.5709 nan
0.0054 12.5806 1560 0.0346 0.7790 0.8379 0.9921 0.9969 0.6788 nan 0.9920 0.5659 nan
0.0076 12.7419 1580 0.0332 0.7821 0.8499 0.9920 0.9965 0.7033 nan 0.9920 0.5723 nan
0.0046 12.9032 1600 0.0346 0.7826 0.8398 0.9923 0.9971 0.6825 nan 0.9922 0.5731 nan
0.0069 13.0645 1620 0.0324 0.7842 0.8507 0.9922 0.9966 0.7048 nan 0.9921 0.5762 nan
0.0064 13.2258 1640 0.0342 0.7808 0.8430 0.9921 0.9968 0.6892 nan 0.9920 0.5695 nan
0.0056 13.3871 1660 0.0336 0.7839 0.8444 0.9923 0.9969 0.6918 nan 0.9922 0.5755 nan
0.0048 13.5484 1680 0.0352 0.7817 0.8335 0.9924 0.9973 0.6697 nan 0.9923 0.5711 nan
0.0059 13.7097 1700 0.0345 0.7817 0.8419 0.9922 0.9969 0.6870 nan 0.9921 0.5713 nan
0.0077 13.8710 1720 0.0353 0.7808 0.8370 0.9923 0.9971 0.6768 nan 0.9922 0.5695 nan
0.0043 14.0323 1740 0.0355 0.7790 0.8344 0.9922 0.9971 0.6717 nan 0.9921 0.5659 nan
0.0044 14.1935 1760 0.0362 0.7800 0.8330 0.9923 0.9973 0.6687 nan 0.9922 0.5678 nan
0.0064 14.3548 1780 0.0355 0.7803 0.8452 0.9920 0.9966 0.6938 nan 0.9919 0.5687 nan
0.0043 14.5161 1800 0.0364 0.7800 0.8390 0.9922 0.9969 0.6811 nan 0.9921 0.5680 nan
0.0065 14.6774 1820 0.0368 0.7806 0.8396 0.9922 0.9969 0.6822 nan 0.9921 0.5692 nan
0.0054 14.8387 1840 0.0359 0.7820 0.8424 0.9922 0.9969 0.6879 nan 0.9921 0.5719 nan
0.0058 15.0 1860 0.0388 0.7790 0.8286 0.9923 0.9974 0.6598 nan 0.9923 0.5657 nan
0.005 15.1613 1880 0.0349 0.7816 0.8490 0.9920 0.9965 0.7016 nan 0.9919 0.5712 nan
0.0039 15.3226 1900 0.0355 0.7807 0.8342 0.9923 0.9972 0.6711 nan 0.9922 0.5692 nan
0.0052 15.4839 1920 0.0353 0.7797 0.8386 0.9921 0.9969 0.6803 nan 0.9921 0.5673 nan
0.0065 15.6452 1940 0.0360 0.7820 0.8371 0.9923 0.9972 0.6771 nan 0.9922 0.5717 nan
0.0052 15.8065 1960 0.0359 0.7797 0.8418 0.9921 0.9968 0.6869 nan 0.9920 0.5674 nan
0.006 15.9677 1980 0.0354 0.7811 0.8412 0.9922 0.9969 0.6855 nan 0.9921 0.5700 nan
0.0044 16.1290 2000 0.0375 0.7800 0.8310 0.9923 0.9974 0.6647 nan 0.9923 0.5678 nan
0.0052 16.2903 2020 0.0376 0.7797 0.8318 0.9923 0.9973 0.6662 nan 0.9922 0.5671 nan
0.0038 16.4516 2040 0.0368 0.7808 0.8399 0.9922 0.9969 0.6829 nan 0.9921 0.5695 nan
0.0067 16.6129 2060 0.0373 0.7803 0.8311 0.9924 0.9974 0.6649 nan 0.9923 0.5684 nan
0.0056 16.7742 2080 0.0370 0.7794 0.8291 0.9923 0.9974 0.6608 nan 0.9923 0.5666 nan
0.0064 16.9355 2100 0.0371 0.7809 0.8365 0.9923 0.9971 0.6759 nan 0.9922 0.5695 nan
0.0038 17.0968 2120 0.0367 0.7818 0.8483 0.9921 0.9965 0.7000 nan 0.9920 0.5716 nan
0.0041 17.2581 2140 0.0366 0.7837 0.8423 0.9923 0.9970 0.6876 nan 0.9922 0.5752 nan
0.0039 17.4194 2160 0.0370 0.7819 0.8394 0.9923 0.9970 0.6818 nan 0.9922 0.5716 nan
0.0046 17.5806 2180 0.0366 0.7822 0.8406 0.9923 0.9970 0.6843 nan 0.9922 0.5722 nan
0.0053 17.7419 2200 0.0376 0.7810 0.8327 0.9924 0.9973 0.6681 nan 0.9923 0.5697 nan
0.0046 17.9032 2220 0.0374 0.7836 0.8376 0.9924 0.9972 0.6780 nan 0.9923 0.5748 nan
0.0045 18.0645 2240 0.0385 0.7812 0.8324 0.9924 0.9974 0.6675 nan 0.9923 0.5701 nan
0.0043 18.2258 2260 0.0380 0.7811 0.8298 0.9924 0.9975 0.6621 nan 0.9924 0.5699 nan
0.0057 18.3871 2280 0.0355 0.7845 0.8481 0.9922 0.9967 0.6995 nan 0.9921 0.5768 nan
0.0037 18.5484 2300 0.0377 0.7808 0.8358 0.9923 0.9972 0.6745 nan 0.9922 0.5694 nan
0.0054 18.7097 2320 0.0361 0.7831 0.8470 0.9922 0.9967 0.6973 nan 0.9921 0.5742 nan
0.0076 18.8710 2340 0.0376 0.7831 0.8354 0.9924 0.9973 0.6734 nan 0.9923 0.5738 nan
0.0057 19.0323 2360 0.0370 0.7837 0.8409 0.9923 0.9971 0.6848 nan 0.9923 0.5752 nan
0.0039 19.1935 2380 0.0371 0.7837 0.8424 0.9923 0.9970 0.6878 nan 0.9922 0.5752 nan
0.0053 19.3548 2400 0.0380 0.7819 0.8385 0.9923 0.9971 0.6799 nan 0.9922 0.5717 nan
0.0028 19.5161 2420 0.0373 0.7820 0.8422 0.9922 0.9969 0.6875 nan 0.9921 0.5720 nan
0.0064 19.6774 2440 0.0377 0.7814 0.8324 0.9924 0.9974 0.6674 nan 0.9923 0.5705 nan
0.0048 19.8387 2460 0.0383 0.7816 0.8280 0.9925 0.9976 0.6583 nan 0.9924 0.5707 nan
0.0036 20.0 2480 0.0381 0.7829 0.8347 0.9924 0.9974 0.6721 nan 0.9924 0.5734 nan
0.0039 20.1613 2500 0.0386 0.7816 0.8336 0.9924 0.9973 0.6699 nan 0.9923 0.5710 nan
0.0051 20.3226 2520 0.0380 0.7825 0.8378 0.9923 0.9972 0.6784 nan 0.9923 0.5727 nan
0.0051 20.4839 2540 0.0404 0.7802 0.8272 0.9924 0.9976 0.6569 nan 0.9924 0.5681 nan
0.0056 20.6452 2560 0.0398 0.7803 0.8258 0.9925 0.9977 0.6540 nan 0.9924 0.5682 nan
0.005 20.8065 2580 0.0393 0.7803 0.8266 0.9925 0.9976 0.6555 nan 0.9924 0.5682 nan
0.0044 20.9677 2600 0.0383 0.7806 0.8333 0.9923 0.9973 0.6694 nan 0.9922 0.5690 nan
0.0056 21.1290 2620 0.0394 0.7807 0.8308 0.9924 0.9974 0.6641 nan 0.9923 0.5692 nan
0.0039 21.2903 2640 0.0391 0.7821 0.8340 0.9924 0.9973 0.6707 nan 0.9923 0.5718 nan
0.0042 21.4516 2660 0.0373 0.7824 0.8439 0.9922 0.9968 0.6911 nan 0.9921 0.5727 nan
0.0039 21.6129 2680 0.0384 0.7816 0.8405 0.9922 0.9970 0.6840 nan 0.9921 0.5712 nan
0.0052 21.7742 2700 0.0375 0.7837 0.8396 0.9924 0.9971 0.6820 nan 0.9923 0.5751 nan
0.0066 21.9355 2720 0.0388 0.7812 0.8371 0.9923 0.9971 0.6770 nan 0.9922 0.5703 nan
0.0042 22.0968 2740 0.0385 0.7818 0.8379 0.9923 0.9971 0.6786 nan 0.9922 0.5715 nan
0.0057 22.2581 2760 0.0386 0.7828 0.8402 0.9923 0.9971 0.6833 nan 0.9922 0.5735 nan
0.0048 22.4194 2780 0.0383 0.7823 0.8435 0.9922 0.9968 0.6901 nan 0.9921 0.5724 nan
0.0042 22.5806 2800 0.0395 0.7798 0.8350 0.9922 0.9971 0.6729 nan 0.9922 0.5675 nan
0.0068 22.7419 2820 0.0387 0.7820 0.8360 0.9923 0.9972 0.6748 nan 0.9923 0.5717 nan
0.0067 22.9032 2840 0.0386 0.7837 0.8391 0.9924 0.9972 0.6810 nan 0.9923 0.5750 nan
0.0053 23.0645 2860 0.0386 0.7835 0.8421 0.9923 0.9970 0.6872 nan 0.9922 0.5748 nan
0.0047 23.2258 2880 0.0408 0.7802 0.8263 0.9925 0.9976 0.6550 nan 0.9924 0.5680 nan
0.0053 23.3871 2900 0.0387 0.7826 0.8338 0.9924 0.9974 0.6701 nan 0.9924 0.5729 nan
0.0034 23.5484 2920 0.0380 0.7831 0.8375 0.9924 0.9972 0.6778 nan 0.9923 0.5739 nan
0.0059 23.7097 2940 0.0380 0.7831 0.8406 0.9923 0.9970 0.6842 nan 0.9922 0.5740 nan
0.0041 23.8710 2960 0.0384 0.7829 0.8386 0.9923 0.9971 0.6801 nan 0.9923 0.5736 nan
0.0036 24.0323 2980 0.0387 0.7829 0.8351 0.9924 0.9973 0.6729 nan 0.9923 0.5735 nan
0.004 24.1935 3000 0.0391 0.7814 0.8342 0.9924 0.9973 0.6711 nan 0.9923 0.5706 nan
0.0037 24.3548 3020 0.0405 0.7793 0.8286 0.9923 0.9975 0.6598 nan 0.9923 0.5662 nan
0.0037 24.5161 3040 0.0394 0.7822 0.8410 0.9922 0.9970 0.6850 nan 0.9922 0.5722 nan
0.0043 24.6774 3060 0.0398 0.7820 0.8364 0.9923 0.9972 0.6757 nan 0.9923 0.5718 nan
0.0039 24.8387 3080 0.0394 0.7814 0.8366 0.9923 0.9972 0.6760 nan 0.9922 0.5706 nan
0.0036 25.0 3100 0.0395 0.7818 0.8387 0.9923 0.9971 0.6803 nan 0.9922 0.5713 nan
0.0034 25.1613 3120 0.0401 0.7802 0.8319 0.9923 0.9973 0.6664 nan 0.9923 0.5681 nan
0.0041 25.3226 3140 0.0382 0.7830 0.8439 0.9922 0.9969 0.6910 nan 0.9921 0.5738 nan
0.005 25.4839 3160 0.0395 0.7825 0.8360 0.9924 0.9973 0.6748 nan 0.9923 0.5726 nan
0.0052 25.6452 3180 0.0388 0.7832 0.8371 0.9924 0.9972 0.6770 nan 0.9923 0.5741 nan
0.0043 25.8065 3200 0.0382 0.7837 0.8427 0.9923 0.9970 0.6885 nan 0.9922 0.5752 nan
0.0058 25.9677 3220 0.0381 0.7833 0.8434 0.9923 0.9969 0.6900 nan 0.9922 0.5745 nan
0.0081 26.1290 3240 0.0395 0.7823 0.8343 0.9924 0.9973 0.6712 nan 0.9923 0.5722 nan
0.0047 26.2903 3260 0.0401 0.7822 0.8322 0.9924 0.9975 0.6669 nan 0.9924 0.5721 nan
0.005 26.4516 3280 0.0395 0.7829 0.8346 0.9924 0.9974 0.6718 nan 0.9924 0.5735 nan
0.0035 26.6129 3300 0.0391 0.7840 0.8406 0.9924 0.9971 0.6842 nan 0.9923 0.5757 nan
0.0048 26.7742 3320 0.0393 0.7835 0.8379 0.9924 0.9972 0.6786 nan 0.9923 0.5746 nan
0.0044 26.9355 3340 0.0400 0.7831 0.8354 0.9924 0.9973 0.6734 nan 0.9923 0.5738 nan
0.0031 27.0968 3360 0.0401 0.7834 0.8378 0.9924 0.9972 0.6783 nan 0.9923 0.5745 nan
0.0042 27.2581 3380 0.0403 0.7830 0.8370 0.9924 0.9972 0.6768 nan 0.9923 0.5736 nan
0.0045 27.4194 3400 0.0400 0.7838 0.8361 0.9925 0.9973 0.6749 nan 0.9924 0.5753 nan
0.0039 27.5806 3420 0.0390 0.7844 0.8415 0.9924 0.9971 0.6860 nan 0.9923 0.5765 nan
0.004 27.7419 3440 0.0385 0.7842 0.8387 0.9924 0.9972 0.6801 nan 0.9923 0.5760 nan
0.0042 27.9032 3460 0.0390 0.7841 0.8391 0.9924 0.9972 0.6810 nan 0.9923 0.5759 nan
0.0042 28.0645 3480 0.0403 0.7835 0.8359 0.9924 0.9973 0.6745 nan 0.9924 0.5747 nan
0.0051 28.2258 3500 0.0397 0.7840 0.8402 0.9924 0.9971 0.6834 nan 0.9923 0.5758 nan
0.0037 28.3871 3520 0.0400 0.7838 0.8381 0.9924 0.9972 0.6790 nan 0.9923 0.5752 nan
0.0046 28.5484 3540 0.0395 0.7837 0.8367 0.9924 0.9973 0.6760 nan 0.9924 0.5751 nan
0.0062 28.7097 3560 0.0402 0.7837 0.8382 0.9924 0.9972 0.6793 nan 0.9923 0.5751 nan
0.0049 28.8710 3580 0.0390 0.7841 0.8386 0.9924 0.9972 0.6799 nan 0.9923 0.5759 nan
0.004 29.0323 3600 0.0395 0.7837 0.8353 0.9925 0.9974 0.6733 nan 0.9924 0.5751 nan
0.004 29.1935 3620 0.0394 0.7842 0.8383 0.9924 0.9972 0.6794 nan 0.9924 0.5761 nan
0.0038 29.3548 3640 0.0395 0.7844 0.8377 0.9925 0.9973 0.6782 nan 0.9924 0.5764 nan
0.0046 29.5161 3660 0.0398 0.7841 0.8359 0.9925 0.9974 0.6745 nan 0.9924 0.5757 nan
0.0034 29.6774 3680 0.0398 0.7841 0.8367 0.9925 0.9973 0.6760 nan 0.9924 0.5759 nan
0.0041 29.8387 3700 0.0397 0.7845 0.8381 0.9924 0.9973 0.6790 nan 0.9924 0.5766 nan
0.0039 30.0 3720 0.0400 0.7845 0.8382 0.9924 0.9973 0.6791 nan 0.9924 0.5766 nan

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1