welsachy's picture
End of training
5ff394c verified
|
raw
history blame
2.36 kB
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-base-finetuned-depression
    results: []

roberta-base-finetuned-depression

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6580
  • Precision: 0.8962
  • Recall: 0.9023
  • F1: 0.8983
  • Accuracy: 0.9062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 469 0.4520 0.8637 0.7997 0.8216 0.8635
0.5796 2.0 938 0.6088 0.9063 0.8592 0.8733 0.8849
0.3217 3.0 1407 0.4402 0.8921 0.8964 0.8936 0.9030
0.2159 4.0 1876 0.6420 0.8725 0.8890 0.8789 0.8955
0.1496 5.0 2345 0.6017 0.8875 0.8973 0.8908 0.9019
0.0827 6.0 2814 0.6586 0.8804 0.9009 0.8895 0.9009
0.0504 7.0 3283 0.6580 0.8962 0.9023 0.8983 0.9062
0.05 8.0 3752 0.7374 0.8859 0.9013 0.8925 0.9030
0.0394 9.0 4221 0.7348 0.8746 0.9043 0.8880 0.9019
0.0241 10.0 4690 0.7371 0.8773 0.9027 0.8883 0.9030

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1