results / README.md
zijuncheng's picture
update model card README.md
ae13e33
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: results
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.9133333333333333
- name: F1
type: f1
value: 0.9161290322580645
- name: Precision
type: precision
value: 0.8875
- name: Recall
type: recall
value: 0.9466666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2250
- Accuracy: 0.9133
- F1: 0.9161
- Precision: 0.8875
- Recall: 0.9467
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6922 | 0.98 | 46 | 0.6867 | 0.7433 | 0.6778 | 0.9101 | 0.54 |
| 0.2634 | 1.98 | 93 | 0.3428 | 0.8833 | 0.8736 | 0.9528 | 0.8067 |
| 0.1736 | 2.94 | 138 | 0.2250 | 0.9133 | 0.9161 | 0.8875 | 0.9467 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3