|
--- |
|
license: mit |
|
base_model: neuralmind/bert-base-portuguese-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: BERTimbau-base_LeNER-Br |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
config: lener_br |
|
split: validation |
|
args: lener_br |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8317805383022774 |
|
- name: Recall |
|
type: recall |
|
value: 0.8839383938393839 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8570666666666666 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9754369390647142 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BERTimbau-base_LeNER-Br |
|
|
|
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Precision: 0.8318 |
|
- Recall: 0.8839 |
|
- F1: 0.8571 |
|
- Accuracy: 0.9754 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2037 | 1.0 | 979 | nan | 0.7910 | 0.8762 | 0.8314 | 0.9721 | |
|
| 0.0308 | 2.0 | 1958 | nan | 0.7747 | 0.8663 | 0.8180 | 0.9698 | |
|
| 0.02 | 3.0 | 2937 | nan | 0.8316 | 0.8911 | 0.8603 | 0.9801 | |
|
| 0.0133 | 4.0 | 3916 | nan | 0.8038 | 0.8812 | 0.8407 | 0.9728 | |
|
| 0.0111 | 5.0 | 4895 | nan | 0.8253 | 0.8707 | 0.8474 | 0.9753 | |
|
| 0.0078 | 6.0 | 5874 | nan | 0.8235 | 0.8779 | 0.8498 | 0.9711 | |
|
| 0.0057 | 7.0 | 6853 | nan | 0.8174 | 0.8768 | 0.8461 | 0.9760 | |
|
| 0.0032 | 8.0 | 7832 | nan | 0.8113 | 0.8845 | 0.8463 | 0.9769 | |
|
| 0.0027 | 9.0 | 8811 | nan | 0.8344 | 0.8867 | 0.8597 | 0.9767 | |
|
| 0.0023 | 10.0 | 9790 | nan | 0.8318 | 0.8839 | 0.8571 | 0.9754 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|