cuad_qa_model / README.md
Francois2511's picture
End of training
4abdc15 verified
|
raw
history blame
3.76 kB
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
datasets:
  - cuad-qa
model-index:
  - name: cuad_qa_model
    results: []

cuad_qa_model

This model is a fine-tuned version of answerdotai/ModernBERT-base on the cuad-qa dataset. It achieves the following results on the evaluation set:

  • Loss: 56.3253
  • Jaccard: 0.1325

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 12
  • optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Jaccard
2931.2947 0.1075 100 125.3868 0.0261
114.0476 0.2149 200 98.0385 0.0225
92.3046 0.3224 300 86.1094 0.0279
83.4547 0.4299 400 80.0709 0.0403
80.4591 0.5373 500 75.2658 0.0433
76.238 0.6448 600 71.9617 0.0445
73.2576 0.7523 700 68.1718 0.0463
70.5061 0.8598 800 64.2118 0.0536
72.0594 0.9672 900 82.5902 0.0243
65.2249 1.0742 1000 59.8434 0.0647
63.2437 1.1816 1100 60.3719 0.0932
67.1502 1.2891 1200 63.5264 0.1114
65.1003 1.3966 1300 60.7845 0.1243
64.7538 1.5040 1400 66.3558 0.1200
66.7688 1.6115 1500 69.2212 0.1149
76.4721 1.7190 1600 69.5449 0.1458
82.2733 1.8264 1700 82.1182 0.0449
78.7475 1.9339 1800 62.4942 0.1581
69.5967 2.0408 1900 63.3104 0.1507
67.6753 2.1483 2000 56.4553 0.2238
64.0365 2.2558 2100 60.3552 0.1978
62.561 2.3632 2200 55.5222 0.2238
62.0848 2.4707 2300 51.5148 0.2239
59.3192 2.5782 2400 56.1338 0.1939
63.3072 2.6857 2500 55.3624 0.2385
63.0132 2.7931 2600 48.8478 0.2614
61.0742 2.9006 2700 57.2687 0.2574
63.7064 3.0075 2800 58.7552 0.2569
61.3371 3.1150 2900 62.7214 0.2473
66.2795 3.2225 3000 60.0179 0.2640
65.9729 3.3299 3100 59.7260 0.2879
67.5846 3.4374 3200 63.1864 0.2627
65.6924 3.5449 3300 58.8332 0.2743
64.2456 3.6523 3400 59.7355 0.1667
64.9793 3.7598 3500 57.0126 0.1622
63.8452 3.8673 3600 56.8423 0.1332
65.2058 3.9747 3700 56.3253 0.1325

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0