|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:10K<n<100K |
|
- loss:CoSENTLoss |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Driving or commuting to work feels draining, even if it's a short |
|
distance. |
|
sentences: |
|
- Symptoms during a manic episode include decreased need for sleep, more talkative |
|
than usual, flight of ideas, distractibility |
|
- I feel like I have lost a part of myself since the traumatic event, and I struggle |
|
to connect with others on a deeper level. |
|
- Diagnosis requires at least one hypomanic episode and one major depressive episode. |
|
- source_sentence: I felt like my thoughts were disconnected and chaotic during a |
|
manic episode. |
|
sentences: |
|
- Diagnosis requires one or more manic episodes, which may be preceded or followed |
|
by hypomanic or major depressive episodes. |
|
- I feel like I have lost a part of myself since the traumatic event, and I struggle |
|
to connect with others on a deeper level. |
|
- Depressed mood for most of the day, for more days than not, as indicated by subjective |
|
account or observation, for at least 2 years. |
|
- source_sentence: My insomnia has caused me to experience frequent headaches and |
|
muscle soreness. |
|
sentences: |
|
- Insomnia or hypersomnia nearly every day. |
|
- I have difficulty standing in long lines at the grocery store or the bank due |
|
to the fear of feeling trapped or overwhelmed. |
|
- Diagnosis requires at least one hypomanic episode and one major depressive episode. |
|
- source_sentence: The phobic object or situation almost always provokes immediate |
|
fear or anxiety. |
|
sentences: |
|
- The agoraphobic situations almost always provoke fear or anxiety. |
|
- I have difficulty standing in long lines at the grocery store or the bank due |
|
to the fear of feeling trapped or overwhelmed. |
|
- Exclusion of schizoaffective disorder and depressive or bipolar disorder with |
|
psychotic features, based on the absence of concurrent depressive or manic episodes |
|
during the active-phase symptoms, or these mood episodes being present for a minority |
|
of the total duration of the active and residual phases. |
|
- source_sentence: I engage in risky behaviors like reckless driving or reckless sexual |
|
encounters. |
|
sentences: |
|
- Symptoms during a manic episode include inflated self-esteem or grandiosity,increased |
|
goal-directed activity, or excessive involvement in risky activities. |
|
- Marked decrease in functioning in areas like work, interpersonal relations, or |
|
self-care since the onset of the disturbance. |
|
- During the specified period, symptoms from Criterion A are present at least half |
|
the time with no symptom-free interval lasting longer than 2 months. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: FT label |
|
type: FT_label |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.4627701543833943 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.4076356119364853 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.48164714740150605 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.406731043246377 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.4840582172096936 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.407636256115058 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.46277015122653486 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.4076359510487126 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.4840582172096936 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.407636256115058 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision e4ce9877abf3edfe10b0d82785e83bdcb973e22e --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Hgkang00/FT-label-consent-20") |
|
# Run inference |
|
sentences = [ |
|
'I engage in risky behaviors like reckless driving or reckless sexual encounters.', |
|
'Symptoms during a manic episode include inflated self-esteem or grandiosity,increased goal-directed activity, or excessive involvement in risky activities.', |
|
'Marked decrease in functioning in areas like work, interpersonal relations, or self-care since the onset of the disturbance.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `FT_label` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.4628 | |
|
| **spearman_cosine** | **0.4076** | |
|
| pearson_manhattan | 0.4816 | |
|
| spearman_manhattan | 0.4067 | |
|
| pearson_euclidean | 0.4841 | |
|
| spearman_euclidean | 0.4076 | |
|
| pearson_dot | 0.4628 | |
|
| spearman_dot | 0.4076 | |
|
| pearson_max | 0.4841 | |
|
| spearman_max | 0.4076 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 33,800 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 31.63 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 25.22 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.87</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------| |
|
| <code>Presence of one or more of the following intrusion symptoms associated with the traumatic event: recurrent distressing memories, dreams, flashbacks, psychological distress, or physiological reactions to cues of the traumatic event.</code> | <code>I avoid making phone calls, even to close friends or family, because I'm afraid of saying something wrong or sounding awkward.</code> | <code>0.0</code> | |
|
| <code>The phobic object or situation almost always provokes immediate fear or anxiety.</code> | <code>I find it hard to stick to a consistent eating schedule, sometimes going days without feeling the need to eat at all.</code> | <code>-1.0</code> | |
|
| <code>The fear or anxiety is out of proportion to the actual danger posed by the specific object or situation and to the sociocultural context.</code> | <code>I have difficulty going to places where I feel there are no immediate exits, such as cinemas or auditoriums, as the fear of being stuck or unable to escape escalates my anxiety.</code> | <code>-1.0</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 4,225 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 31.24 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 24.86 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.87</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|:------------------| |
|
| <code>Excessive anxiety and worry occurring more days than not for at least 6 months, about a number of events or activities such as work or school performance.</code> | <code>Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels.</code> | <code>-1.0</code> | |
|
| <code>The individual fears acting in a way or showing anxiety symptoms that will be negatively evaluated, leading to humiliation, embarrassment, rejection, or offense to others.</code> | <code>I often find myself mindlessly snacking throughout the day due to changes in my appetite.</code> | <code>-1.0</code> | |
|
| <code>Persistent avoidance of stimuli associated with the trauma, evidenced by avoiding distressing memories, thoughts, or feelings, or external reminders of the event.</code> | <code>Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels.</code> | <code>-1.0</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `num_train_epochs`: 20 |
|
- `warmup_ratio`: 0.1 |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 20 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | FT_label_spearman_cosine | |
|
|:-----:|:----:|:-------------:|:-------:|:------------------------:| |
|
| 1.0 | 265 | - | 6.9529 | 0.3450 | |
|
| 2.0 | 530 | 7.5663 | 7.1002 | 0.4103 | |
|
| 3.0 | 795 | - | 7.4786 | 0.4155 | |
|
| 4.0 | 1060 | 5.5492 | 8.6710 | 0.4115 | |
|
| 5.0 | 1325 | - | 10.3786 | 0.4056 | |
|
| 6.0 | 1590 | 4.3991 | 10.4239 | 0.3987 | |
|
| 7.0 | 1855 | - | 11.8681 | 0.4238 | |
|
| 8.0 | 2120 | 3.5916 | 13.0752 | 0.4030 | |
|
| 9.0 | 2385 | - | 12.8567 | 0.4240 | |
|
| 10.0 | 2650 | 3.1139 | 12.4373 | 0.4270 | |
|
| 11.0 | 2915 | - | 13.6725 | 0.4212 | |
|
| 12.0 | 3180 | 2.6658 | 15.0521 | 0.4134 | |
|
| 13.0 | 3445 | - | 15.4305 | 0.4114 | |
|
| 14.0 | 3710 | 2.2024 | 15.5511 | 0.4060 | |
|
| 15.0 | 3975 | - | 14.9427 | 0.4165 | |
|
| 16.0 | 4240 | 1.8955 | 14.8399 | 0.4162 | |
|
| 17.0 | 4505 | - | 15.0070 | 0.4170 | |
|
| 18.0 | 4770 | 1.712 | 15.4417 | 0.4105 | |
|
| 19.0 | 5035 | - | 15.6241 | 0.4086 | |
|
| 20.0 | 5300 | 1.5088 | 15.6818 | 0.4076 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |