metadata
language:
- fr
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- facebook/voxpopuli
metrics:
- wer
model-index:
- name: whisper-large-v2-french
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: VOXPOPULI
type: facebook/voxpopuli
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 0.10414829788606697
whisper-large-v2-french
This model is a fine-tuned version of openai/whisper-large-v2 on the VOXPOPULI dataset. It achieves the following results on the evaluation set:
- Loss: 0.2468
- Wer Ortho: 0.1405
- Wer: 0.1041
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.1851 | 1.0 | 2207 | 0.2349 | 0.1399 | 0.1044 |
0.1318 | 2.0 | 4415 | 0.2312 | 0.1377 | 0.1015 |
0.0921 | 3.0 | 6621 | 0.2468 | 0.1405 | 0.1041 |
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3