caliburn-12b / README.md
Xclbr7's picture
Update README.md
45b7bb0 verified
metadata
license: mit
library_name: transformers
model-index:
  - name: caliburn-12b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 35.76
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 35.64
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 9.67
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 11.52
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 13.78
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 29.72
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
          name: Open LLM Leaderboard

caliburn 12b-merged

This model is a 12 billion parameter language model created by merging multiple existing models using the MergeKit library. It is designed for general text generation tasks.

Model Details

Model Description

This is a large language model with 12 billion parameters, created by merging multiple pre-existing models using the MergeKit library. The model is based on the transformer architecture and is fine-tuned for general text generation tasks.

  • Developed by: The user who created this merged model
  • Model type: Transformer-based language model
  • Language(s) (NLP): English
  • License: MIT
  • Finetuned from model: Multiple source models merged using MergeKit

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: N/A
  • Demo [optional]: N/A

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 22.68
IFEval (0-Shot) 35.76
BBH (3-Shot) 35.64
MATH Lvl 5 (4-Shot) 9.67
GPQA (0-shot) 11.52
MuSR (0-shot) 13.78
MMLU-PRO (5-shot) 29.72

Direct Use

This model can be used for various natural language processing tasks, including:

  • Text generation
  • Code completion
  • Question answering
  • Summarization

Downstream Use [optional]

The model can be fine-tuned for specific tasks or domains to improve performance on targeted applications.

Out-of-Scope Use

This model should not be used for generating harmful, biased, or unethical content. It should not be relied upon for critical decision-making without human oversight.

Bias, Risks, and Limitations

  • The model may inherit biases present in its training data or source models.
  • It may generate incorrect or nonsensical information.
  • The model's outputs should be carefully reviewed and fact-checked.

Recommendations

Users should be aware of the model's limitations and potential biases. It's recommended to use the model with appropriate content filtering and human oversight, especially for public-facing applications.

How to Get Started with the Model

Use the following code to get started with the model:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("./models/12b-merged")
model = AutoModelForCausalLM.from_pretrained("./models/12b-merged", torch_dtype=torch.float16).to("cuda")

prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs.to("cuda"), max_new_tokens=100)
result = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(result)