caliburn-12b / README.md
Xclbr7's picture
Update README.md
45b7bb0 verified
---
license: mit
library_name: transformers
model-index:
- name: caliburn-12b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 35.76
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 35.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 9.67
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.52
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.78
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.72
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
---
# caliburn 12b-merged
<!-- Provide a quick summary of what the model is/does. -->
This model is a 12 billion parameter language model created by merging multiple existing models using the MergeKit library. It is designed for general text generation tasks.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is a large language model with 12 billion parameters, created by merging multiple pre-existing models using the MergeKit library. The model is based on the transformer architecture and is fine-tuned for general text generation tasks.
- **Developed by:** The user who created this merged model
- **Model type:** Transformer-based language model
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** Multiple source models merged using MergeKit
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** N/A
- **Demo [optional]:** N/A
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Xclbr7__caliburn-12b)
| Metric |Value|
|-------------------|----:|
|Avg. |22.68|
|IFEval (0-Shot) |35.76|
|BBH (3-Shot) |35.64|
|MATH Lvl 5 (4-Shot)| 9.67|
|GPQA (0-shot) |11.52|
|MuSR (0-shot) |13.78|
|MMLU-PRO (5-shot) |29.72|
### Direct Use
This model can be used for various natural language processing tasks, including:
- Text generation
- Code completion
- Question answering
- Summarization
### Downstream Use [optional]
The model can be fine-tuned for specific tasks or domains to improve performance on targeted applications.
### Out-of-Scope Use
This model should not be used for generating harmful, biased, or unethical content. It should not be relied upon for critical decision-making without human oversight.
## Bias, Risks, and Limitations
- The model may inherit biases present in its training data or source models.
- It may generate incorrect or nonsensical information.
- The model's outputs should be carefully reviewed and fact-checked.
### Recommendations
Users should be aware of the model's limitations and potential biases. It's recommended to use the model with appropriate content filtering and human oversight, especially for public-facing applications.
## How to Get Started with the Model
Use the following code to get started with the model:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("./models/12b-merged")
model = AutoModelForCausalLM.from_pretrained("./models/12b-merged", torch_dtype=torch.float16).to("cuda")
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs.to("cuda"), max_new_tokens=100)
result = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(result)