ammumadhu's picture
Add new SentenceTransformer model.
cca29bf verified
metadata
language:
  - en
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:10K<n<100K
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: l3cube-pune/indic-sentence-similarity-sbert
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: Excuse me.
    sentences:
      - um pardon me
      - A man is opening mail.
      - The girls are indoors.
  - source_sentence: Double pig.
    sentences:
      - Ah, triple pig!
      - a girl poses for camera
      - Girls dance together.
  - source_sentence: People pose.
    sentences:
      - People are smiling.
      - I know a few old ones.
      - The boy fell off his bike.
  - source_sentence: A man sings.
    sentences:
      - People singing
      - A man is playing golf.
      - The women are eating bread.
  - source_sentence: Then he ran.
    sentences:
      - He then started to run.
      - A man plays the flute.
      - A couple sit on the couch
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 768
          type: sts-dev-768
        metrics:
          - type: pearson_cosine
            value: 0.8608857207512975
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8662860178080238
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.858692209351004
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8612472945208892
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.858472048314985
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8611276457994067
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.8258747949887901
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8259736371824636
            name: Spearman Dot
          - type: pearson_max
            value: 0.8608857207512975
            name: Pearson Max
          - type: spearman_max
            value: 0.8662860178080238
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 512
          type: sts-dev-512
        metrics:
          - type: pearson_cosine
            value: 0.8594405198312016
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8648571300070264
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8574291650964095
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8598780673781499
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8574540367546871
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8600722932569861
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.822340474813523
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8226609928783558
            name: Spearman Dot
          - type: pearson_max
            value: 0.8594405198312016
            name: Pearson Max
          - type: spearman_max
            value: 0.8648571300070264
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 256
          type: sts-dev-256
        metrics:
          - type: pearson_cosine
            value: 0.8506120561071212
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8575982860981437
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.852829777566948
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8552667517015687
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8526934293405145
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8551077930316164
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7943956137623474
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7963976287579885
            name: Spearman Dot
          - type: pearson_max
            value: 0.852829777566948
            name: Pearson Max
          - type: spearman_max
            value: 0.8575982860981437
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 128
          type: sts-dev-128
        metrics:
          - type: pearson_cosine
            value: 0.8410977354989039
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.850480817077266
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8461619224798919
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8490393633313068
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8458138708136093
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.848719989437845
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7755878071062363
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7755629190322909
            name: Spearman Dot
          - type: pearson_max
            value: 0.8461619224798919
            name: Pearson Max
          - type: spearman_max
            value: 0.850480817077266
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev 64
          type: sts-dev-64
        metrics:
          - type: pearson_cosine
            value: 0.8176550213032908
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8307913870285043
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8291830276998975
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8320477651805375
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8311109004860973
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8333955109708812
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7153413665605783
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7181274999679498
            name: Spearman Dot
          - type: pearson_max
            value: 0.8311109004860973
            name: Pearson Max
          - type: spearman_max
            value: 0.8333955109708812
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 768
          type: sts-test-768
        metrics:
          - type: pearson_cosine
            value: 0.8491592809545866
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8568871215102605
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8572052385387118
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.856617432589014
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8568623186549655
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8567096295439565
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7968828934121807
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7879173370882538
            name: Spearman Dot
          - type: pearson_max
            value: 0.8572052385387118
            name: Pearson Max
          - type: spearman_max
            value: 0.8568871215102605
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 512
          type: sts-test-512
        metrics:
          - type: pearson_cosine
            value: 0.8507070298067174
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8575370129160172
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8564033014649287
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8560352984315738
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8561906595447021
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8560701630452845
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7973312469719326
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7873345752731498
            name: Spearman Dot
          - type: pearson_max
            value: 0.8564033014649287
            name: Pearson Max
          - type: spearman_max
            value: 0.8575370129160172
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 256
          type: sts-test-256
        metrics:
          - type: pearson_cosine
            value: 0.8467375811334358
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8523459221020806
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8515524299355154
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8516309696270962
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8505975029491393
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8504082169041302
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7756647219222156
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7687165011432322
            name: Spearman Dot
          - type: pearson_max
            value: 0.8515524299355154
            name: Pearson Max
          - type: spearman_max
            value: 0.8523459221020806
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 128
          type: sts-test-128
        metrics:
          - type: pearson_cosine
            value: 0.8377317518267889
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.84715184876888
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.846568244977152
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8487991796570058
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8456229087328332
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.847227591472
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7502527212449147
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7415962106597614
            name: Spearman Dot
          - type: pearson_max
            value: 0.846568244977152
            name: Pearson Max
          - type: spearman_max
            value: 0.8487991796570058
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test 64
          type: sts-test-64
        metrics:
          - type: pearson_cosine
            value: 0.8173604263806156
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8315612974155435
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8319781289166863
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8347311175148256
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8334921243463637
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8350960592133633
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.6935445265890855
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6843746062699552
            name: Spearman Dot
          - type: pearson_max
            value: 0.8334921243463637
            name: Pearson Max
          - type: spearman_max
            value: 0.8350960592133633
            name: Spearman Max

SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert

This is a sentence-transformers model finetuned from l3cube-pune/indic-sentence-similarity-sbert on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ammumadhu/indic-bert-nli-matryoshka")
# Run inference
sentences = [
    'Then he ran.',
    'He then started to run.',
    'A man plays the flute.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8609
spearman_cosine 0.8663
pearson_manhattan 0.8587
spearman_manhattan 0.8612
pearson_euclidean 0.8585
spearman_euclidean 0.8611
pearson_dot 0.8259
spearman_dot 0.826
pearson_max 0.8609
spearman_max 0.8663

Semantic Similarity

Metric Value
pearson_cosine 0.8594
spearman_cosine 0.8649
pearson_manhattan 0.8574
spearman_manhattan 0.8599
pearson_euclidean 0.8575
spearman_euclidean 0.8601
pearson_dot 0.8223
spearman_dot 0.8227
pearson_max 0.8594
spearman_max 0.8649

Semantic Similarity

Metric Value
pearson_cosine 0.8506
spearman_cosine 0.8576
pearson_manhattan 0.8528
spearman_manhattan 0.8553
pearson_euclidean 0.8527
spearman_euclidean 0.8551
pearson_dot 0.7944
spearman_dot 0.7964
pearson_max 0.8528
spearman_max 0.8576

Semantic Similarity

Metric Value
pearson_cosine 0.8411
spearman_cosine 0.8505
pearson_manhattan 0.8462
spearman_manhattan 0.849
pearson_euclidean 0.8458
spearman_euclidean 0.8487
pearson_dot 0.7756
spearman_dot 0.7756
pearson_max 0.8462
spearman_max 0.8505

Semantic Similarity

Metric Value
pearson_cosine 0.8177
spearman_cosine 0.8308
pearson_manhattan 0.8292
spearman_manhattan 0.832
pearson_euclidean 0.8311
spearman_euclidean 0.8334
pearson_dot 0.7153
spearman_dot 0.7181
pearson_max 0.8311
spearman_max 0.8334

Semantic Similarity

Metric Value
pearson_cosine 0.8492
spearman_cosine 0.8569
pearson_manhattan 0.8572
spearman_manhattan 0.8566
pearson_euclidean 0.8569
spearman_euclidean 0.8567
pearson_dot 0.7969
spearman_dot 0.7879
pearson_max 0.8572
spearman_max 0.8569

Semantic Similarity

Metric Value
pearson_cosine 0.8507
spearman_cosine 0.8575
pearson_manhattan 0.8564
spearman_manhattan 0.856
pearson_euclidean 0.8562
spearman_euclidean 0.8561
pearson_dot 0.7973
spearman_dot 0.7873
pearson_max 0.8564
spearman_max 0.8575

Semantic Similarity

Metric Value
pearson_cosine 0.8467
spearman_cosine 0.8523
pearson_manhattan 0.8516
spearman_manhattan 0.8516
pearson_euclidean 0.8506
spearman_euclidean 0.8504
pearson_dot 0.7757
spearman_dot 0.7687
pearson_max 0.8516
spearman_max 0.8523

Semantic Similarity

Metric Value
pearson_cosine 0.8377
spearman_cosine 0.8472
pearson_manhattan 0.8466
spearman_manhattan 0.8488
pearson_euclidean 0.8456
spearman_euclidean 0.8472
pearson_dot 0.7503
spearman_dot 0.7416
pearson_max 0.8466
spearman_max 0.8488

Semantic Similarity

Metric Value
pearson_cosine 0.8174
spearman_cosine 0.8316
pearson_manhattan 0.832
spearman_manhattan 0.8347
pearson_euclidean 0.8335
spearman_euclidean 0.8351
pearson_dot 0.6935
spearman_dot 0.6844
pearson_max 0.8335
spearman_max 0.8351

Training Details

Training Dataset

sentence-transformers/all-nli

  • Dataset: sentence-transformers/all-nli at d482672
  • Size: 10,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 18.8 tokens
    • max: 89 tokens
    • min: 4 tokens
    • mean: 11.84 tokens
    • max: 36 tokens
    • min: 4 tokens
    • mean: 12.39 tokens
    • max: 38 tokens
  • Samples:
    anchor positive negative
    Side view of a female triathlete during the run. A woman runs A man sits
    Confused person standing in the middle of the trolley tracks trying to figure out the signs. A person is on the tracks. A man sits in an airplane.
    A woman in a black shirt, jean shorts and white tennis shoes is bowling. A woman is bowling in casual clothes A woman bowling wins an outfit of clothes
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

sentence-transformers/all-nli

  • Dataset: sentence-transformers/all-nli at d482672
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 18.54 tokens
    • max: 74 tokens
    • min: 4 tokens
    • mean: 9.97 tokens
    • max: 30 tokens
    • min: 5 tokens
    • mean: 10.59 tokens
    • max: 29 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss sts-dev-128_spearman_cosine sts-dev-256_spearman_cosine sts-dev-512_spearman_cosine sts-dev-64_spearman_cosine sts-dev-768_spearman_cosine sts-test-128_spearman_cosine sts-test-256_spearman_cosine sts-test-512_spearman_cosine sts-test-64_spearman_cosine sts-test-768_spearman_cosine
0.3797 30 7.9432 4.2806 0.8509 0.8570 0.8633 0.8311 0.8644 - - - - -
0.7595 60 6.1701 3.9498 0.8505 0.8576 0.8649 0.8308 0.8663 - - - - -
1.0 79 - - - - - - - 0.8472 0.8523 0.8575 0.8316 0.8569

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.1
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}