|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:10K<n<100K |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: l3cube-pune/indic-sentence-similarity-sbert |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Excuse me. |
|
sentences: |
|
- um pardon me |
|
- A man is opening mail. |
|
- The girls are indoors. |
|
- source_sentence: Double pig. |
|
sentences: |
|
- Ah, triple pig! |
|
- a girl poses for camera |
|
- Girls dance together. |
|
- source_sentence: People pose. |
|
sentences: |
|
- People are smiling. |
|
- I know a few old ones. |
|
- The boy fell off his bike. |
|
- source_sentence: A man sings. |
|
sentences: |
|
- People singing |
|
- A man is playing golf. |
|
- The women are eating bread. |
|
- source_sentence: Then he ran. |
|
sentences: |
|
- He then started to run. |
|
- A man plays the flute. |
|
- A couple sit on the couch |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 768 |
|
type: sts-dev-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8608857207512975 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8662860178080238 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.858692209351004 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8612472945208892 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.858472048314985 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8611276457994067 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8258747949887901 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8259736371824636 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8608857207512975 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8662860178080238 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 512 |
|
type: sts-dev-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8594405198312016 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8648571300070264 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8574291650964095 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8598780673781499 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8574540367546871 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8600722932569861 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.822340474813523 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8226609928783558 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8594405198312016 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8648571300070264 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 256 |
|
type: sts-dev-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8506120561071212 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8575982860981437 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.852829777566948 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8552667517015687 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8526934293405145 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8551077930316164 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7943956137623474 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7963976287579885 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.852829777566948 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8575982860981437 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 128 |
|
type: sts-dev-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8410977354989039 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.850480817077266 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8461619224798919 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8490393633313068 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8458138708136093 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.848719989437845 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7755878071062363 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7755629190322909 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8461619224798919 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.850480817077266 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 64 |
|
type: sts-dev-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8176550213032908 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8307913870285043 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8291830276998975 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8320477651805375 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8311109004860973 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8333955109708812 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7153413665605783 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7181274999679498 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8311109004860973 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8333955109708812 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8491592809545866 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8568871215102605 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8572052385387118 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.856617432589014 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8568623186549655 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8567096295439565 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7968828934121807 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7879173370882538 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8572052385387118 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8568871215102605 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8507070298067174 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8575370129160172 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8564033014649287 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8560352984315738 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8561906595447021 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8560701630452845 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7973312469719326 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7873345752731498 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8564033014649287 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8575370129160172 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8467375811334358 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8523459221020806 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8515524299355154 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8516309696270962 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8505975029491393 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8504082169041302 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7756647219222156 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7687165011432322 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8515524299355154 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8523459221020806 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8377317518267889 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.84715184876888 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.846568244977152 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8487991796570058 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8456229087328332 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.847227591472 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7502527212449147 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7415962106597614 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.846568244977152 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8487991796570058 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8173604263806156 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8315612974155435 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8319781289166863 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8347311175148256 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8334921243463637 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8350960592133633 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6935445265890855 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6843746062699552 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8334921243463637 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8350960592133633 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [l3cube-pune/indic-sentence-similarity-sbert](https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert) <!-- at revision b07ef91a96390f3e35ce94ddb42340861519bf07 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("ammumadhu/indic-bert-nli-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'Then he ran.', |
|
'He then started to run.', |
|
'A man plays the flute.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8609 | |
|
| **spearman_cosine** | **0.8663** | |
|
| pearson_manhattan | 0.8587 | |
|
| spearman_manhattan | 0.8612 | |
|
| pearson_euclidean | 0.8585 | |
|
| spearman_euclidean | 0.8611 | |
|
| pearson_dot | 0.8259 | |
|
| spearman_dot | 0.826 | |
|
| pearson_max | 0.8609 | |
|
| spearman_max | 0.8663 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8594 | |
|
| **spearman_cosine** | **0.8649** | |
|
| pearson_manhattan | 0.8574 | |
|
| spearman_manhattan | 0.8599 | |
|
| pearson_euclidean | 0.8575 | |
|
| spearman_euclidean | 0.8601 | |
|
| pearson_dot | 0.8223 | |
|
| spearman_dot | 0.8227 | |
|
| pearson_max | 0.8594 | |
|
| spearman_max | 0.8649 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8506 | |
|
| **spearman_cosine** | **0.8576** | |
|
| pearson_manhattan | 0.8528 | |
|
| spearman_manhattan | 0.8553 | |
|
| pearson_euclidean | 0.8527 | |
|
| spearman_euclidean | 0.8551 | |
|
| pearson_dot | 0.7944 | |
|
| spearman_dot | 0.7964 | |
|
| pearson_max | 0.8528 | |
|
| spearman_max | 0.8576 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8411 | |
|
| **spearman_cosine** | **0.8505** | |
|
| pearson_manhattan | 0.8462 | |
|
| spearman_manhattan | 0.849 | |
|
| pearson_euclidean | 0.8458 | |
|
| spearman_euclidean | 0.8487 | |
|
| pearson_dot | 0.7756 | |
|
| spearman_dot | 0.7756 | |
|
| pearson_max | 0.8462 | |
|
| spearman_max | 0.8505 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8177 | |
|
| **spearman_cosine** | **0.8308** | |
|
| pearson_manhattan | 0.8292 | |
|
| spearman_manhattan | 0.832 | |
|
| pearson_euclidean | 0.8311 | |
|
| spearman_euclidean | 0.8334 | |
|
| pearson_dot | 0.7153 | |
|
| spearman_dot | 0.7181 | |
|
| pearson_max | 0.8311 | |
|
| spearman_max | 0.8334 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8492 | |
|
| **spearman_cosine** | **0.8569** | |
|
| pearson_manhattan | 0.8572 | |
|
| spearman_manhattan | 0.8566 | |
|
| pearson_euclidean | 0.8569 | |
|
| spearman_euclidean | 0.8567 | |
|
| pearson_dot | 0.7969 | |
|
| spearman_dot | 0.7879 | |
|
| pearson_max | 0.8572 | |
|
| spearman_max | 0.8569 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8507 | |
|
| **spearman_cosine** | **0.8575** | |
|
| pearson_manhattan | 0.8564 | |
|
| spearman_manhattan | 0.856 | |
|
| pearson_euclidean | 0.8562 | |
|
| spearman_euclidean | 0.8561 | |
|
| pearson_dot | 0.7973 | |
|
| spearman_dot | 0.7873 | |
|
| pearson_max | 0.8564 | |
|
| spearman_max | 0.8575 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8467 | |
|
| **spearman_cosine** | **0.8523** | |
|
| pearson_manhattan | 0.8516 | |
|
| spearman_manhattan | 0.8516 | |
|
| pearson_euclidean | 0.8506 | |
|
| spearman_euclidean | 0.8504 | |
|
| pearson_dot | 0.7757 | |
|
| spearman_dot | 0.7687 | |
|
| pearson_max | 0.8516 | |
|
| spearman_max | 0.8523 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8377 | |
|
| **spearman_cosine** | **0.8472** | |
|
| pearson_manhattan | 0.8466 | |
|
| spearman_manhattan | 0.8488 | |
|
| pearson_euclidean | 0.8456 | |
|
| spearman_euclidean | 0.8472 | |
|
| pearson_dot | 0.7503 | |
|
| spearman_dot | 0.7416 | |
|
| pearson_max | 0.8466 | |
|
| spearman_max | 0.8488 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8174 | |
|
| **spearman_cosine** | **0.8316** | |
|
| pearson_manhattan | 0.832 | |
|
| spearman_manhattan | 0.8347 | |
|
| pearson_euclidean | 0.8335 | |
|
| spearman_euclidean | 0.8351 | |
|
| pearson_dot | 0.6935 | |
|
| spearman_dot | 0.6844 | |
|
| pearson_max | 0.8335 | |
|
| spearman_max | 0.8351 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/all-nli |
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) |
|
* Size: 10,000 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 18.8 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.84 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.39 tokens</li><li>max: 38 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------------------| |
|
| <code>Side view of a female triathlete during the run.</code> | <code>A woman runs</code> | <code>A man sits</code> | |
|
| <code>Confused person standing in the middle of the trolley tracks trying to figure out the signs.</code> | <code>A person is on the tracks.</code> | <code>A man sits in an airplane.</code> | |
|
| <code>A woman in a black shirt, jean shorts and white tennis shoes is bowling.</code> | <code>A woman is bowling in casual clothes</code> | <code>A woman bowling wins an outfit of clothes</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/all-nli |
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) |
|
* Size: 6,584 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.97 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.59 tokens</li><li>max: 29 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> | |
|
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> | |
|
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:----:|:-------------:|:------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.3797 | 30 | 7.9432 | 4.2806 | 0.8509 | 0.8570 | 0.8633 | 0.8311 | 0.8644 | - | - | - | - | - | |
|
| 0.7595 | 60 | 6.1701 | 3.9498 | 0.8505 | 0.8576 | 0.8649 | 0.8308 | 0.8663 | - | - | - | - | - | |
|
| 1.0 | 79 | - | - | - | - | - | - | - | 0.8472 | 0.8523 | 0.8575 | 0.8316 | 0.8569 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |