|
--- |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
- google/fleurs |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-medium-mn-4-bayartsogt |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: mn |
|
split: test |
|
args: |
|
language: mn |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 33.029276818876994 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-medium-mn-4 |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6015 |
|
- Wer: 33.0293 |
|
- Cer: 10.9236 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 15000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| |
|
| 0.0362 | 4.26 | 1000 | 0.4204 | 40.2720 | 13.8389 | |
|
| 0.0087 | 8.51 | 2000 | 0.4712 | 37.4918 | 12.9175 | |
|
| 0.0044 | 12.77 | 3000 | 0.4893 | 36.3393 | 12.4727 | |
|
| 0.0033 | 17.02 | 4000 | 0.5159 | 35.8423 | 12.2933 | |
|
| 0.0017 | 21.28 | 5000 | 0.5183 | 35.2797 | 12.1104 | |
|
| 0.0016 | 25.53 | 6000 | 0.5422 | 35.4326 | 11.7454 | |
|
| 0.0011 | 29.79 | 7000 | 0.5361 | 34.5314 | 11.5196 | |
|
| 0.0004 | 34.04 | 8000 | 0.5406 | 34.0998 | 11.3650 | |
|
| 0.0006 | 38.3 | 9000 | 0.5540 | 33.8650 | 11.2912 | |
|
| 0.0002 | 42.55 | 10000 | 0.5748 | 34.0889 | 11.5333 | |
|
| 0.0003 | 46.81 | 11000 | 0.5771 | 34.5641 | 11.4895 | |
|
| 0.0 | 51.06 | 12000 | 0.5809 | 33.4335 | 11.2070 | |
|
| 0.0 | 55.32 | 13000 | 0.5941 | 33.2095 | 11.0009 | |
|
| 0.0 | 59.57 | 14000 | 0.6015 | 33.0293 | 10.9236 | |
|
| 0.0 | 63.83 | 15000 | 0.6045 | 33.0347 | 10.9125 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|