Spaetzle-v31-7b / README.md
cstr's picture
Update README.md
b6b37d3 verified
|
raw
history blame
6.15 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - yleo/EmertonMonarch-7B
base_model:
  - yleo/EmertonMonarch-7B

Spaetzle-v31-7b

Spaetzle-v31-7b is a merge of the following models using LazyMergekit:

Model AGIEval GPT4All TruthfulQA Bigbench Average
Spaetzle-v31-7b 46.23 76.6 69.58 46.79 59.8

AGIEval

Task Version Metric Value Stderr
agieval_aqua_rat 0 acc 28.74 ± 2.85
acc_norm 27.56 ± 2.81
agieval_logiqa_en 0 acc 39.63 ± 1.92
acc_norm 40.25 ± 1.92
agieval_lsat_ar 0 acc 24.35 ± 2.84
acc_norm 24.35 ± 2.84
agieval_lsat_lr 0 acc 54.31 ± 2.21
acc_norm 54.12 ± 2.21
agieval_lsat_rc 0 acc 65.80 ± 2.90
acc_norm 66.54 ± 2.88
agieval_sat_en 0 acc 79.13 ± 2.84
acc_norm 79.61 ± 2.81
agieval_sat_en_without_passage 0 acc 46.12 ± 3.48
acc_norm 45.15 ± 3.48
agieval_sat_math 0 acc 35.00 ± 3.22
acc_norm 32.27 ± 3.16

Average: 46.23%

GPT4All

Task Version Metric Value Stderr
arc_challenge 0 acc 64.76 ± 1.40
acc_norm 66.89 ± 1.38
arc_easy 0 acc 86.66 ± 0.70
acc_norm 82.83 ± 0.77
boolq 1 acc 87.80 ± 0.57
hellaswag 0 acc 67.43 ± 0.47
acc_norm 85.85 ± 0.35
openbookqa 0 acc 38.00 ± 2.17
acc_norm 48.80 ± 2.24
piqa 0 acc 83.57 ± 0.86
acc_norm 84.71 ± 0.84
winogrande 0 acc 79.32 ± 1.14

Average: 76.6%

TruthfulQA

Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 53.37 ± 1.75
mc2 69.58 ± 1.48

Average: 69.58%

Bigbench

Task Version Metric Value Stderr
bigbench_causal_judgement 0 multiple_choice_grade 56.84 ± 3.60
bigbench_date_understanding 0 multiple_choice_grade 66.94 ± 2.45
bigbench_disambiguation_qa 0 multiple_choice_grade 44.57 ± 3.10
bigbench_geometric_shapes 0 multiple_choice_grade 21.17 ± 2.16
exact_str_match 0.28 ± 0.28
bigbench_logical_deduction_five_objects 0 multiple_choice_grade 31.80 ± 2.08
bigbench_logical_deduction_seven_objects 0 multiple_choice_grade 22.57 ± 1.58
bigbench_logical_deduction_three_objects 0 multiple_choice_grade 56.00 ± 2.87
bigbench_movie_recommendation 0 multiple_choice_grade 45.40 ± 2.23
bigbench_navigate 0 multiple_choice_grade 52.80 ± 1.58
bigbench_reasoning_about_colored_objects 0 multiple_choice_grade 70.65 ± 1.02
bigbench_ruin_names 0 multiple_choice_grade 50.67 ± 2.36
bigbench_salient_translation_error_detection 0 multiple_choice_grade 30.66 ± 1.46
bigbench_snarks 0 multiple_choice_grade 71.27 ± 3.37
bigbench_sports_understanding 0 multiple_choice_grade 74.34 ± 1.39
bigbench_temporal_sequences 0 multiple_choice_grade 49.80 ± 1.58
bigbench_tracking_shuffled_objects_five_objects 0 multiple_choice_grade 22.16 ± 1.18
bigbench_tracking_shuffled_objects_seven_objects 0 multiple_choice_grade 18.57 ± 0.93
bigbench_tracking_shuffled_objects_three_objects 0 multiple_choice_grade 56.00 ± 2.87

Average: 46.79%

Average score: 59.8%

Elapsed time: 02:09:50

🧩 Configuration

models:
  - model: cstr/spaetzle-v8-7b
    # no parameters necessary for base model
  - model: yleo/EmertonMonarch-7B
    parameters:
      density: 0.60
      weight: 0.3
merge_method: dare_ties
base_model: cstr/spaetzle-v8-7b
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/Spaetzle-v31-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])