Spaetzle-v31-7b / README.md
cstr's picture
Update README.md
b6b37d3 verified
|
raw
history blame
6.15 kB
---
tags:
- merge
- mergekit
- lazymergekit
- yleo/EmertonMonarch-7B
base_model:
- yleo/EmertonMonarch-7B
---
# Spaetzle-v31-7b
Spaetzle-v31-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [yleo/EmertonMonarch-7B](https://huggingface.co/yleo/EmertonMonarch-7B)
* [cstr/spaetzle-v8-7b](https://huggingface.co/cstr/spaetzle-v8-7b)
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|--------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Spaetzle-v31-7b](https://huggingface.co/cstr/Spaetzle-v31-7b)| 46.23| 76.6| 69.58| 46.79| 59.8|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |28.74|± | 2.85|
| | |acc_norm|27.56|± | 2.81|
|agieval_logiqa_en | 0|acc |39.63|± | 1.92|
| | |acc_norm|40.25|± | 1.92|
|agieval_lsat_ar | 0|acc |24.35|± | 2.84|
| | |acc_norm|24.35|± | 2.84|
|agieval_lsat_lr | 0|acc |54.31|± | 2.21|
| | |acc_norm|54.12|± | 2.21|
|agieval_lsat_rc | 0|acc |65.80|± | 2.90|
| | |acc_norm|66.54|± | 2.88|
|agieval_sat_en | 0|acc |79.13|± | 2.84|
| | |acc_norm|79.61|± | 2.81|
|agieval_sat_en_without_passage| 0|acc |46.12|± | 3.48|
| | |acc_norm|45.15|± | 3.48|
|agieval_sat_math | 0|acc |35.00|± | 3.22|
| | |acc_norm|32.27|± | 3.16|
Average: 46.23%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |64.76|± | 1.40|
| | |acc_norm|66.89|± | 1.38|
|arc_easy | 0|acc |86.66|± | 0.70|
| | |acc_norm|82.83|± | 0.77|
|boolq | 1|acc |87.80|± | 0.57|
|hellaswag | 0|acc |67.43|± | 0.47|
| | |acc_norm|85.85|± | 0.35|
|openbookqa | 0|acc |38.00|± | 2.17|
| | |acc_norm|48.80|± | 2.24|
|piqa | 0|acc |83.57|± | 0.86|
| | |acc_norm|84.71|± | 0.84|
|winogrande | 0|acc |79.32|± | 1.14|
Average: 76.6%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |53.37|± | 1.75|
| | |mc2 |69.58|± | 1.48|
Average: 69.58%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|56.84|± | 3.60|
|bigbench_date_understanding | 0|multiple_choice_grade|66.94|± | 2.45|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|44.57|± | 3.10|
|bigbench_geometric_shapes | 0|multiple_choice_grade|21.17|± | 2.16|
| | |exact_str_match | 0.28|± | 0.28|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|31.80|± | 2.08|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|22.57|± | 1.58|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|56.00|± | 2.87|
|bigbench_movie_recommendation | 0|multiple_choice_grade|45.40|± | 2.23|
|bigbench_navigate | 0|multiple_choice_grade|52.80|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|70.65|± | 1.02|
|bigbench_ruin_names | 0|multiple_choice_grade|50.67|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|30.66|± | 1.46|
|bigbench_snarks | 0|multiple_choice_grade|71.27|± | 3.37|
|bigbench_sports_understanding | 0|multiple_choice_grade|74.34|± | 1.39|
|bigbench_temporal_sequences | 0|multiple_choice_grade|49.80|± | 1.58|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.16|± | 1.18|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.57|± | 0.93|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|56.00|± | 2.87|
Average: 46.79%
Average score: 59.8%
Elapsed time: 02:09:50
## 🧩 Configuration
```yaml
models:
- model: cstr/spaetzle-v8-7b
# no parameters necessary for base model
- model: yleo/EmertonMonarch-7B
parameters:
density: 0.60
weight: 0.3
merge_method: dare_ties
base_model: cstr/spaetzle-v8-7b
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/Spaetzle-v31-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```