VALERIE22 / README.md
khagn's picture
Update README.md
dd25cf4
|
raw
history blame
4.52 kB
metadata
license: cc0-1.0
task_categories:
  - image-segmentation
  - object-detection
task_ids:
  - semantic-segmentation
  - instance-segmentation
tags:
  - automotive
  - autonomous driving
  - synthetic
  - safe ai
  - validation
  - pedestrian detection
  - 2d object-detection
  - 3d object-detection
  - semantic-segmentation
  - instance-segmentation
pretty_name: VALERIE22
size_categories:
  - 1K<n<10K

VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments

Dataset Description

Dataset Summary

The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.

Supported Tasks and Leaderboards

  • pedestrian detection
  • 2d object-detection
  • 3d object-detection
  • semantic-segmentation
  • instance-segmentation
  • ai-validation

Dataset Structure

  • VALERIE22
    • intel_results_sequence_0050
      • ground-truth
        • 2d-bounding-box_json
          • car-camera000-0000-{UUID}-0000.json
        • 3d-bounding-box_json
          • car-camera000-0000-{UUID}-0000.json
        • class-id_png
          • car-camera000-0000-{UUID}-0000.png
        • general-globally-per-frame-analysis_json
          • car-camera000-0000-{UUID}-0000.json
          • car-camera000-0000-{UUID}-0000.csv
        • semantic-group-segmentation_png
          • car-camera000-0000-{UUID}-0000.png
        • semantic-instance-segmentation_png
          • car-camera000-0000-{UUID}-0000.png
        • car-camera000-0000-{UUID}-0000
          • {Entity-ID}
      • metadata
        • car-camera000-0000-{UUID}-0000.json
      • sensor
        • camera
          • left
            • png
              • car-camera000-0000-{UUID}-0000.png
            • png_distorted
              • car-camera000-0000-{UUID}-0000.png
    • intel_results_sequence_0052
    • intel_results_sequence_0054
    • intel_results_sequence_0057
    • intel_results_sequence_0058
    • intel_results_sequence_0059
    • intel_results_sequence_0060
    • intel_results_sequence_0062

Data Splits

Train/Validation/Test splits are provided

Licensing Information

Creative Commons Zero v1.0 Universal

Citation Information

Relevant publications:

@misc{grau2023valerie22,
    title={VALERIE22 -- A photorealistic, richly metadata annotated dataset of urban environments},
    author={Oliver Grau and Korbinian Hagn},
    year={2023},
    eprint={2308.09632},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

@inproceedings{hagn2022increasing,
  title={Increasing pedestrian detection performance through weighting of detection impairing factors},
  author={Hagn, Korbinian and Grau, Oliver},
  booktitle={Proceedings of the 6th ACM Computer Science in Cars Symposium},
  pages={1--10},
  year={2022}
}

@inproceedings{hagn2022validation,
  title={Validation of Pedestrian Detectors by Classification of Visual Detection Impairing Factors},
  author={Hagn, Korbinian and Grau, Oliver},
  booktitle={European Conference on Computer Vision},
  pages={476--491},
  year={2022},
  organization={Springer}
}

@incollection{grau2022variational,
  title={A variational deep synthesis approach for perception validation},
  author={Grau, Oliver and Hagn, Korbinian and Syed Sha, Qutub},
  booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
  pages={359--381},
  year={2022},
  publisher={Springer International Publishing Cham}
}

@incollection{hagn2022optimized,
  title={Optimized data synthesis for DNN training and validation by sensor artifact simulation},
  author={Hagn, Korbinian and Grau, Oliver},
  booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
  pages={127--147},
  year={2022},
  publisher={Springer International Publishing Cham}
}

@inproceedings{syed2020dnn,
  title={DNN analysis through synthetic data variation},
  author={Syed Sha, Qutub and Grau, Oliver and Hagn, Korbinian},
  booktitle={Proceedings of the 4th ACM Computer Science in Cars Symposium},
  pages={1--10},
  year={2020}
}