text
stringlengths
7
328k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
459
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Speed up inference There are several ways to optimize 🤗 Diffusers for inference speed. As a general rule of thumb, we recommend using either [xFormers](xformers) or `torch.nn.functional.scaled_dot_product_attention` in PyTorch 2.0 for their memory-efficient attention. <Tip> In many cases, optimizing for speed or memory leads to improved performance in the other, so you should try to optimize for both whenever you can. This guide focuses on inference speed, but you can learn more about preserving memory in the [Reduce memory usage](memory) guide. </Tip> The results below are obtained from generating a single 512x512 image from the prompt `a photo of an astronaut riding a horse on mars` with 50 DDIM steps on a Nvidia Titan RTX, demonstrating the speed-up you can expect. | | latency | speed-up | | ---------------- | ------- | ------- | | original | 9.50s | x1 | | fp16 | 3.61s | x2.63 | | channels last | 3.30s | x2.88 | | traced UNet | 3.21s | x2.96 | | memory efficient attention | 2.63s | x3.61 | ## Use TensorFloat-32 On Ampere and later CUDA devices, matrix multiplications and convolutions can use the [TensorFloat-32 (TF32)](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/) mode for faster, but slightly less accurate computations. By default, PyTorch enables TF32 mode for convolutions but not matrix multiplications. Unless your network requires full float32 precision, we recommend enabling TF32 for matrix multiplications. It can significantly speeds up computations with typically negligible loss in numerical accuracy. ```python import torch torch.backends.cuda.matmul.allow_tf32 = True ``` You can learn more about TF32 in the [Mixed precision training](https://huggingface.co/docs/transformers/en/perf_train_gpu_one#tf32) guide. ## Half-precision weights To save GPU memory and get more speed, try loading and running the model weights directly in half-precision or float16: ```Python import torch from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] ``` <Tip warning={true}> Don't use [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast) in any of the pipelines as it can lead to black images and is always slower than pure float16 precision. </Tip> ## Distilled model You could also use a distilled Stable Diffusion model and autoencoder to speed up inference. During distillation, many of the UNet's residual and attention blocks are shed to reduce the model size. The distilled model is faster and uses less memory while generating images of comparable quality to the full Stable Diffusion model. Learn more about in the [Distilled Stable Diffusion inference](../using-diffusers/distilled_sd) guide!
diffusers/docs/source/en/optimization/fp16.md/0
{ "file_path": "diffusers/docs/source/en/optimization/fp16.md", "repo_id": "diffusers", "token_count": 1046 }
100
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Reinforcement learning training with DDPO You can fine-tune Stable Diffusion on a reward function via reinforcement learning with the 🤗 TRL library and 🤗 Diffusers. This is done with the Denoising Diffusion Policy Optimization (DDPO) algorithm introduced by Black et al. in [Training Diffusion Models with Reinforcement Learning](https://arxiv.org/abs/2305.13301), which is implemented in 🤗 TRL with the [`~trl.DDPOTrainer`]. For more information, check out the [`~trl.DDPOTrainer`] API reference and the [Finetune Stable Diffusion Models with DDPO via TRL](https://huggingface.co/blog/trl-ddpo) blog post.
diffusers/docs/source/en/training/ddpo.md/0
{ "file_path": "diffusers/docs/source/en/training/ddpo.md", "repo_id": "diffusers", "token_count": 321 }
101
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Accelerate inference of text-to-image diffusion models Diffusion models are slower than their GAN counterparts because of the iterative and sequential reverse diffusion process. There are several techniques that can address this limitation such as progressive timestep distillation ([LCM LoRA](../using-diffusers/inference_with_lcm_lora)), model compression ([SSD-1B](https://huggingface.co/segmind/SSD-1B)), and reusing adjacent features of the denoiser ([DeepCache](../optimization/deepcache)). However, you don't necessarily need to use these techniques to speed up inference. With PyTorch 2 alone, you can accelerate the inference latency of text-to-image diffusion pipelines by up to 3x. This tutorial will show you how to progressively apply the optimizations found in PyTorch 2 to reduce inference latency. You'll use the [Stable Diffusion XL (SDXL)](../using-diffusers/sdxl) pipeline in this tutorial, but these techniques are applicable to other text-to-image diffusion pipelines too. Make sure you're using the latest version of Diffusers: ```bash pip install -U diffusers ``` Then upgrade the other required libraries too: ```bash pip install -U transformers accelerate peft ``` Install [PyTorch nightly](https://pytorch.org/) to benefit from the latest and fastest kernels: ```bash pip3 install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu121 ``` <Tip> The results reported below are from a 80GB 400W A100 with its clock rate set to the maximum. <br> If you're interested in the full benchmarking code, take a look at [huggingface/diffusion-fast](https://github.com/huggingface/diffusion-fast). </Tip> ## Baseline Let's start with a baseline. Disable reduced precision and the [`scaled_dot_product_attention` (SDPA)](../optimization/torch2.0#scaled-dot-product-attention) function which is automatically used by Diffusers: ```python from diffusers import StableDiffusionXLPipeline # Load the pipeline in full-precision and place its model components on CUDA. pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0" ).to("cuda") # Run the attention ops without SDPA. pipe.unet.set_default_attn_processor() pipe.vae.set_default_attn_processor() prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" image = pipe(prompt, num_inference_steps=30).images[0] ``` This default setup takes 7.36 seconds. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_0.png" width=500> </div> ## bfloat16 Enable the first optimization, reduced precision or more specifically bfloat16. There are several benefits of using reduced precision: * Using a reduced numerical precision (such as float16 or bfloat16) for inference doesn’t affect the generation quality but significantly improves latency. * The benefits of using bfloat16 compared to float16 are hardware dependent, but modern GPUs tend to favor bfloat16. * bfloat16 is much more resilient when used with quantization compared to float16, but more recent versions of the quantization library ([torchao](https://github.com/pytorch-labs/ao)) we used don't have numerical issues with float16. ```python from diffusers import StableDiffusionXLPipeline import torch pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16 ).to("cuda") # Run the attention ops without SDPA. pipe.unet.set_default_attn_processor() pipe.vae.set_default_attn_processor() prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" image = pipe(prompt, num_inference_steps=30).images[0] ``` bfloat16 reduces the latency from 7.36 seconds to 4.63 seconds. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_1.png" width=500> </div> <Tip> In our later experiments with float16, recent versions of torchao do not incur numerical problems from float16. </Tip> Take a look at the [Speed up inference](../optimization/fp16) guide to learn more about running inference with reduced precision. ## SDPA Attention blocks are intensive to run. But with PyTorch's [`scaled_dot_product_attention`](../optimization/torch2.0#scaled-dot-product-attention) function, it is a lot more efficient. This function is used by default in Diffusers so you don't need to make any changes to the code. ```python from diffusers import StableDiffusionXLPipeline import torch pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16 ).to("cuda") prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" image = pipe(prompt, num_inference_steps=30).images[0] ``` Scaled dot product attention improves the latency from 4.63 seconds to 3.31 seconds. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_2.png" width=500> </div> ## torch.compile PyTorch 2 includes `torch.compile` which uses fast and optimized kernels. In Diffusers, the UNet and VAE are usually compiled because these are the most compute-intensive modules. First, configure a few compiler flags (refer to the [full list](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/config.py) for more options): ```python from diffusers import StableDiffusionXLPipeline import torch torch._inductor.config.conv_1x1_as_mm = True torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.epilogue_fusion = False torch._inductor.config.coordinate_descent_check_all_directions = True ``` It is also important to change the UNet and VAE's memory layout to "channels_last" when compiling them to ensure maximum speed. ```python pipe.unet.to(memory_format=torch.channels_last) pipe.vae.to(memory_format=torch.channels_last) ``` Now compile and perform inference: ```python # Compile the UNet and VAE. pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True) pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # First call to `pipe` is slow, subsequent ones are faster. image = pipe(prompt, num_inference_steps=30).images[0] ``` `torch.compile` offers different backends and modes. For maximum inference speed, use "max-autotune" for the inductor backend. “max-autotune” uses CUDA graphs and optimizes the compilation graph specifically for latency. CUDA graphs greatly reduces the overhead of launching GPU operations by using a mechanism to launch multiple GPU operations through a single CPU operation. Using SDPA attention and compiling both the UNet and VAE cuts the latency from 3.31 seconds to 2.54 seconds. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_3.png" width=500> </div> ### Prevent graph breaks Specifying `fullgraph=True` ensures there are no graph breaks in the underlying model to take full advantage of `torch.compile` without any performance degradation. For the UNet and VAE, this means changing how you access the return variables. ```diff - latents = unet( - latents, timestep=timestep, encoder_hidden_states=prompt_embeds -).sample + latents = unet( + latents, timestep=timestep, encoder_hidden_states=prompt_embeds, return_dict=False +)[0] ``` ### Remove GPU sync after compilation During the iterative reverse diffusion process, the `step()` function is [called](https://github.com/huggingface/diffusers/blob/1d686bac8146037e97f3fd8c56e4063230f71751/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L1228) on the scheduler each time after the denoiser predicts the less noisy latent embeddings. Inside `step()`, the `sigmas` variable is [indexed](https://github.com/huggingface/diffusers/blob/1d686bac8146037e97f3fd8c56e4063230f71751/src/diffusers/schedulers/scheduling_euler_discrete.py#L476) which when placed on the GPU, causes a communication sync between the CPU and GPU. This introduces latency and it becomes more evident when the denoiser has already been compiled. But if the `sigmas` array always [stays on the CPU](https://github.com/huggingface/diffusers/blob/35a969d297cba69110d175ee79c59312b9f49e1e/src/diffusers/schedulers/scheduling_euler_discrete.py#L240), the CPU and GPU sync doesn’t occur and you don't get any latency. In general, any CPU and GPU communication sync should be none or be kept to a bare minimum because it can impact inference latency. ## Combine the attention block's projection matrices The UNet and VAE in SDXL use Transformer-like blocks which consists of attention blocks and feed-forward blocks. In an attention block, the input is projected into three sub-spaces using three different projection matrices – Q, K, and V. These projections are performed separately on the input. But we can horizontally combine the projection matrices into a single matrix and perform the projection in one step. This increases the size of the matrix multiplications of the input projections and improves the impact of quantization. You can combine the projection matrices with just a single line of code: ```python pipe.fuse_qkv_projections() ``` This provides a minor improvement from 2.54 seconds to 2.52 seconds. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_4.png" width=500> </div> <Tip warning={true}> Support for [`~StableDiffusionXLPipeline.fuse_qkv_projections`] is limited and experimental. It's not available for many non-Stable Diffusion pipelines such as [Kandinsky](../using-diffusers/kandinsky). You can refer to this [PR](https://github.com/huggingface/diffusers/pull/6179) to get an idea about how to enable this for the other pipelines. </Tip> ## Dynamic quantization You can also use the ultra-lightweight PyTorch quantization library, [torchao](https://github.com/pytorch-labs/ao) (commit SHA `54bcd5a10d0abbe7b0c045052029257099f83fd9`), to apply [dynamic int8 quantization](https://pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html) to the UNet and VAE. Quantization adds additional conversion overhead to the model that is hopefully made up for by faster matmuls (dynamic quantization). If the matmuls are too small, these techniques may degrade performance. First, configure all the compiler tags: ```python from diffusers import StableDiffusionXLPipeline import torch # Notice the two new flags at the end. torch._inductor.config.conv_1x1_as_mm = True torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.epilogue_fusion = False torch._inductor.config.coordinate_descent_check_all_directions = True torch._inductor.config.force_fuse_int_mm_with_mul = True torch._inductor.config.use_mixed_mm = True ``` Certain linear layers in the UNet and VAE don’t benefit from dynamic int8 quantization. You can filter out those layers with the [`dynamic_quant_filter_fn`](https://github.com/huggingface/diffusion-fast/blob/0f169640b1db106fe6a479f78c1ed3bfaeba3386/utils/pipeline_utils.py#L16) shown below. ```python def dynamic_quant_filter_fn(mod, *args): return ( isinstance(mod, torch.nn.Linear) and mod.in_features > 16 and (mod.in_features, mod.out_features) not in [ (1280, 640), (1920, 1280), (1920, 640), (2048, 1280), (2048, 2560), (2560, 1280), (256, 128), (2816, 1280), (320, 640), (512, 1536), (512, 256), (512, 512), (640, 1280), (640, 1920), (640, 320), (640, 5120), (640, 640), (960, 320), (960, 640), ] ) def conv_filter_fn(mod, *args): return ( isinstance(mod, torch.nn.Conv2d) and mod.kernel_size == (1, 1) and 128 in [mod.in_channels, mod.out_channels] ) ``` Finally, apply all the optimizations discussed so far: ```python # SDPA + bfloat16. pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16 ).to("cuda") # Combine attention projection matrices. pipe.fuse_qkv_projections() # Change the memory layout. pipe.unet.to(memory_format=torch.channels_last) pipe.vae.to(memory_format=torch.channels_last) ``` Since dynamic quantization is only limited to the linear layers, convert the appropriate pointwise convolution layers into linear layers to maximize its benefit. ```python from torchao import swap_conv2d_1x1_to_linear swap_conv2d_1x1_to_linear(pipe.unet, conv_filter_fn) swap_conv2d_1x1_to_linear(pipe.vae, conv_filter_fn) ``` Apply dynamic quantization: ```python from torchao import apply_dynamic_quant apply_dynamic_quant(pipe.unet, dynamic_quant_filter_fn) apply_dynamic_quant(pipe.vae, dynamic_quant_filter_fn) ``` Finally, compile and perform inference: ```python pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True) pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" image = pipe(prompt, num_inference_steps=30).images[0] ``` Applying dynamic quantization improves the latency from 2.52 seconds to 2.43 seconds. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_5.png" width=500> </div>
diffusers/docs/source/en/tutorials/fast_diffusion.md/0
{ "file_path": "diffusers/docs/source/en/tutorials/fast_diffusion.md", "repo_id": "diffusers", "token_count": 4863 }
102
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> [[open-in-colab]] # Latent Consistency Model Latent Consistency Models (LCM) enable quality image generation in typically 2-4 steps making it possible to use diffusion models in almost real-time settings. From the [official website](https://latent-consistency-models.github.io/): > LCMs can be distilled from any pre-trained Stable Diffusion (SD) in only 4,000 training steps (~32 A100 GPU Hours) for generating high quality 768 x 768 resolution images in 2~4 steps or even one step, significantly accelerating text-to-image generation. We employ LCM to distill the Dreamshaper-V7 version of SD in just 4,000 training iterations. For a more technical overview of LCMs, refer to [the paper](https://huggingface.co/papers/2310.04378). LCM distilled models are available for [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5), [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), and the [SSD-1B](https://huggingface.co/segmind/SSD-1B) model. All the checkpoints can be found in this [collection](https://huggingface.co/collections/latent-consistency/latent-consistency-models-weights-654ce61a95edd6dffccef6a8). This guide shows how to perform inference with LCMs for - text-to-image - image-to-image - combined with style LoRAs - ControlNet/T2I-Adapter ## Text-to-image You'll use the [`StableDiffusionXLPipeline`] pipeline with the [`LCMScheduler`] and then load the LCM-LoRA. Together with the LCM-LoRA and the scheduler, the pipeline enables a fast inference workflow, overcoming the slow iterative nature of diffusion models. ```python from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, LCMScheduler import torch unet = UNet2DConditionModel.from_pretrained( "latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16", ) pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16", ).to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k" generator = torch.manual_seed(0) image = pipe( prompt=prompt, num_inference_steps=4, generator=generator, guidance_scale=8.0 ).images[0] ``` ![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_full_sdxl_t2i.png) Notice that we use only 4 steps for generation which is way less than what's typically used for standard SDXL. Some details to keep in mind: * To perform classifier-free guidance, batch size is usually doubled inside the pipeline. LCM, however, applies guidance using guidance embeddings, so the batch size does not have to be doubled in this case. This leads to a faster inference time, with the drawback that negative prompts don't have any effect on the denoising process. * The UNet was trained using the [3., 13.] guidance scale range. So, that is the ideal range for `guidance_scale`. However, disabling `guidance_scale` using a value of 1.0 is also effective in most cases. ## Image-to-image LCMs can be applied to image-to-image tasks too. For this example, we'll use the [LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) model, but the same steps can be applied to other LCM models as well. ```python import torch from diffusers import AutoPipelineForImage2Image, UNet2DConditionModel, LCMScheduler from diffusers.utils import make_image_grid, load_image unet = UNet2DConditionModel.from_pretrained( "SimianLuo/LCM_Dreamshaper_v7", subfolder="unet", torch_dtype=torch.float16, ) pipe = AutoPipelineForImage2Image.from_pretrained( "Lykon/dreamshaper-7", unet=unet, torch_dtype=torch.float16, variant="fp16", ).to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) # prepare image url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png" init_image = load_image(url) prompt = "Astronauts in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline generator = torch.manual_seed(0) image = pipe( prompt, image=init_image, num_inference_steps=4, guidance_scale=7.5, strength=0.5, generator=generator ).images[0] make_image_grid([init_image, image], rows=1, cols=2) ``` ![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_full_sdv1-5_i2i.png) <Tip> You can get different results based on your prompt and the image you provide. To get the best results, we recommend trying different values for `num_inference_steps`, `strength`, and `guidance_scale` parameters and choose the best one. </Tip> ## Combine with style LoRAs LCMs can be used with other styled LoRAs to generate styled-images in very few steps (4-8). In the following example, we'll use the [papercut LoRA](TheLastBen/Papercut_SDXL). ```python from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, LCMScheduler import torch unet = UNet2DConditionModel.from_pretrained( "latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16", ) pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16", ).to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("TheLastBen/Papercut_SDXL", weight_name="papercut.safetensors", adapter_name="papercut") prompt = "papercut, a cute fox" generator = torch.manual_seed(0) image = pipe( prompt=prompt, num_inference_steps=4, generator=generator, guidance_scale=8.0 ).images[0] image ``` ![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_full_sdx_lora_mix.png) ## ControlNet/T2I-Adapter Let's look at how we can perform inference with ControlNet/T2I-Adapter and a LCM. ### ControlNet For this example, we'll use the [LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) model with canny ControlNet, but the same steps can be applied to other LCM models as well. ```python import torch import cv2 import numpy as np from PIL import Image from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, LCMScheduler from diffusers.utils import load_image, make_image_grid image = load_image( "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" ).resize((512, 512)) image = np.array(image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "SimianLuo/LCM_Dreamshaper_v7", controlnet=controlnet, torch_dtype=torch.float16, safety_checker=None, ).to("cuda") # set scheduler pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) generator = torch.manual_seed(0) image = pipe( "the mona lisa", image=canny_image, num_inference_steps=4, generator=generator, ).images[0] make_image_grid([canny_image, image], rows=1, cols=2) ``` ![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_full_sdv1-5_controlnet.png) <Tip> The inference parameters in this example might not work for all examples, so we recommend trying different values for the `num_inference_steps`, `guidance_scale`, `controlnet_conditioning_scale`, and `cross_attention_kwargs` parameters and choosing the best one. </Tip> ### T2I-Adapter This example shows how to use the `lcm-sdxl` with the [Canny T2I-Adapter](TencentARC/t2i-adapter-canny-sdxl-1.0). ```python import torch import cv2 import numpy as np from PIL import Image from diffusers import StableDiffusionXLAdapterPipeline, UNet2DConditionModel, T2IAdapter, LCMScheduler from diffusers.utils import load_image, make_image_grid # Prepare image # Detect the canny map in low resolution to avoid high-frequency details image = load_image( "https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_canny.jpg" ).resize((384, 384)) image = np.array(image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image).resize((1024, 1216)) # load adapter adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16, varient="fp16").to("cuda") unet = UNet2DConditionModel.from_pretrained( "latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16", ) pipe = StableDiffusionXLAdapterPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", unet=unet, adapter=adapter, torch_dtype=torch.float16, variant="fp16", ).to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) prompt = "Mystical fairy in real, magic, 4k picture, high quality" negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured" generator = torch.manual_seed(0) image = pipe( prompt=prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=4, guidance_scale=5, adapter_conditioning_scale=0.8, adapter_conditioning_factor=1, generator=generator, ).images[0] grid = make_image_grid([canny_image, image], rows=1, cols=2) ``` ![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lcm/lcm_full_sdxl_t2iadapter.png)
diffusers/docs/source/en/using-diffusers/inference_with_lcm.md/0
{ "file_path": "diffusers/docs/source/en/using-diffusers/inference_with_lcm.md", "repo_id": "diffusers", "token_count": 3677 }
103
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Schedulers [[open-in-colab]] Diffusion pipelines are inherently a collection of diffusion models and schedulers that are partly independent from each other. This means that one is able to switch out parts of the pipeline to better customize a pipeline to one's use case. The best example of this is the [Schedulers](../api/schedulers/overview). Whereas diffusion models usually simply define the forward pass from noise to a less noisy sample, schedulers define the whole denoising process, *i.e.*: - How many denoising steps? - Stochastic or deterministic? - What algorithm to use to find the denoised sample? They can be quite complex and often define a trade-off between **denoising speed** and **denoising quality**. It is extremely difficult to measure quantitatively which scheduler works best for a given diffusion pipeline, so it is often recommended to simply try out which works best. The following paragraphs show how to do so with the 🧨 Diffusers library. ## Load pipeline Let's start by loading the [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) model in the [`DiffusionPipeline`]: ```python from huggingface_hub import login from diffusers import DiffusionPipeline import torch login() pipeline = DiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True ) ``` Next, we move it to GPU: ```python pipeline.to("cuda") ``` ## Access the scheduler The scheduler is always one of the components of the pipeline and is usually called `"scheduler"`. So it can be accessed via the `"scheduler"` property. ```python pipeline.scheduler ``` **Output**: ``` PNDMScheduler { "_class_name": "PNDMScheduler", "_diffusers_version": "0.21.4", "beta_end": 0.012, "beta_schedule": "scaled_linear", "beta_start": 0.00085, "clip_sample": false, "num_train_timesteps": 1000, "set_alpha_to_one": false, "skip_prk_steps": true, "steps_offset": 1, "timestep_spacing": "leading", "trained_betas": null } ``` We can see that the scheduler is of type [`PNDMScheduler`]. Cool, now let's compare the scheduler in its performance to other schedulers. First we define a prompt on which we will test all the different schedulers: ```python prompt = "A photograph of an astronaut riding a horse on Mars, high resolution, high definition." ``` Next, we create a generator from a random seed that will ensure that we can generate similar images as well as run the pipeline: ```python generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator).images[0] image ``` <p align="center"> <br> <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_pndm.png" width="400"/> <br> </p> ## Changing the scheduler Now we show how easy it is to change the scheduler of a pipeline. Every scheduler has a property [`~SchedulerMixin.compatibles`] which defines all compatible schedulers. You can take a look at all available, compatible schedulers for the Stable Diffusion pipeline as follows. ```python pipeline.scheduler.compatibles ``` **Output**: ``` [diffusers.utils.dummy_torch_and_torchsde_objects.DPMSolverSDEScheduler, diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler, diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler, diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler, diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler, diffusers.schedulers.scheduling_deis_multistep.DEISMultistepScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler, diffusers.schedulers.scheduling_unipc_multistep.UniPCMultistepScheduler, diffusers.schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_singlestep.DPMSolverSinglestepScheduler, diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteScheduler] ``` Cool, lots of schedulers to look at. Feel free to have a look at their respective class definitions: - [`EulerDiscreteScheduler`], - [`LMSDiscreteScheduler`], - [`DDIMScheduler`], - [`DDPMScheduler`], - [`HeunDiscreteScheduler`], - [`DPMSolverMultistepScheduler`], - [`DEISMultistepScheduler`], - [`PNDMScheduler`], - [`EulerAncestralDiscreteScheduler`], - [`UniPCMultistepScheduler`], - [`KDPM2DiscreteScheduler`], - [`DPMSolverSinglestepScheduler`], - [`KDPM2AncestralDiscreteScheduler`]. We will now compare the input prompt with all other schedulers. To change the scheduler of the pipeline you can make use of the convenient [`~ConfigMixin.config`] property in combination with the [`~ConfigMixin.from_config`] function. ```python pipeline.scheduler.config ``` returns a dictionary of the configuration of the scheduler: **Output**: ```py FrozenDict([('num_train_timesteps', 1000), ('beta_start', 0.00085), ('beta_end', 0.012), ('beta_schedule', 'scaled_linear'), ('trained_betas', None), ('skip_prk_steps', True), ('set_alpha_to_one', False), ('prediction_type', 'epsilon'), ('timestep_spacing', 'leading'), ('steps_offset', 1), ('_use_default_values', ['timestep_spacing', 'prediction_type']), ('_class_name', 'PNDMScheduler'), ('_diffusers_version', '0.21.4'), ('clip_sample', False)]) ``` This configuration can then be used to instantiate a scheduler of a different class that is compatible with the pipeline. Here, we change the scheduler to the [`DDIMScheduler`]. ```python from diffusers import DDIMScheduler pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) ``` Cool, now we can run the pipeline again to compare the generation quality. ```python generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator).images[0] image ``` <p align="center"> <br> <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_ddim.png" width="400"/> <br> </p> If you are a JAX/Flax user, please check [this section](#changing-the-scheduler-in-flax) instead. ## Compare schedulers So far we have tried running the stable diffusion pipeline with two schedulers: [`PNDMScheduler`] and [`DDIMScheduler`]. A number of better schedulers have been released that can be run with much fewer steps; let's compare them here: [`LMSDiscreteScheduler`] usually leads to better results: ```python from diffusers import LMSDiscreteScheduler pipeline.scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config) generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator).images[0] image ``` <p align="center"> <br> <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_lms.png" width="400"/> <br> </p> [`EulerDiscreteScheduler`] and [`EulerAncestralDiscreteScheduler`] can generate high quality results with as little as 30 steps. ```python from diffusers import EulerDiscreteScheduler pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config) generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator, num_inference_steps=30).images[0] image ``` <p align="center"> <br> <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_euler_discrete.png" width="400"/> <br> </p> and: ```python from diffusers import EulerAncestralDiscreteScheduler pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config) generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator, num_inference_steps=30).images[0] image ``` <p align="center"> <br> <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_euler_ancestral.png" width="400"/> <br> </p> [`DPMSolverMultistepScheduler`] gives a reasonable speed/quality trade-off and can be run with as little as 20 steps. ```python from diffusers import DPMSolverMultistepScheduler pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0] image ``` <p align="center"> <br> <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_dpm.png" width="400"/> <br> </p> As you can see, most images look very similar and are arguably of very similar quality. It often really depends on the specific use case which scheduler to choose. A good approach is always to run multiple different schedulers to compare results. ## Changing the Scheduler in Flax If you are a JAX/Flax user, you can also change the default pipeline scheduler. This is a complete example of how to run inference using the Flax Stable Diffusion pipeline and the super-fast [DPM-Solver++ scheduler](../api/schedulers/multistep_dpm_solver): ```Python import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxStableDiffusionPipeline, FlaxDPMSolverMultistepScheduler model_id = "runwayml/stable-diffusion-v1-5" scheduler, scheduler_state = FlaxDPMSolverMultistepScheduler.from_pretrained( model_id, subfolder="scheduler" ) pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( model_id, scheduler=scheduler, revision="bf16", dtype=jax.numpy.bfloat16, ) params["scheduler"] = scheduler_state # Generate 1 image per parallel device (8 on TPUv2-8 or TPUv3-8) prompt = "a photo of an astronaut riding a horse on mars" num_samples = jax.device_count() prompt_ids = pipeline.prepare_inputs([prompt] * num_samples) prng_seed = jax.random.PRNGKey(0) num_inference_steps = 25 # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) ``` <Tip warning={true}> The following Flax schedulers are _not yet compatible_ with the Flax Stable Diffusion Pipeline: - `FlaxLMSDiscreteScheduler` - `FlaxDDPMScheduler` </Tip>
diffusers/docs/source/en/using-diffusers/schedulers.md/0
{ "file_path": "diffusers/docs/source/en/using-diffusers/schedulers.md", "repo_id": "diffusers", "token_count": 3997 }
104
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # 効果的で効率的な拡散モデル [[open-in-colab]] [`DiffusionPipeline`]を使って特定のスタイルで画像を生成したり、希望する画像を生成したりするのは難しいことです。多くの場合、[`DiffusionPipeline`]を何度か実行してからでないと満足のいく画像は得られません。しかし、何もないところから何かを生成するにはたくさんの計算が必要です。生成を何度も何度も実行する場合、特にたくさんの計算量が必要になります。 そのため、パイプラインから*計算*(速度)と*メモリ*(GPU RAM)の効率を最大限に引き出し、生成サイクル間の時間を短縮することで、より高速な反復処理を行えるようにすることが重要です。 このチュートリアルでは、[`DiffusionPipeline`]を用いて、より速く、より良い計算を行う方法を説明します。 まず、[`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)モデルをロードします: ```python from diffusers import DiffusionPipeline model_id = "runwayml/stable-diffusion-v1-5" pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True) ``` ここで使用するプロンプトの例は年老いた戦士の長の肖像画ですが、ご自由に変更してください: ```python prompt = "portrait photo of a old warrior chief" ``` ## Speed <Tip> 💡 GPUを利用できない場合は、[Colab](https://colab.research.google.com/)のようなGPUプロバイダーから無料で利用できます! </Tip> 画像生成を高速化する最も簡単な方法の1つは、PyTorchモジュールと同じようにGPU上にパイプラインを配置することです: ```python pipeline = pipeline.to("cuda") ``` 同じイメージを使って改良できるようにするには、[`Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html)を使い、[reproducibility](./using-diffusers/reproducibility)の種を設定します: ```python import torch generator = torch.Generator("cuda").manual_seed(0) ``` これで画像を生成できます: ```python image = pipeline(prompt, generator=generator).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_1.png"> </div> この処理にはT4 GPUで~30秒かかりました(割り当てられているGPUがT4より優れている場合はもっと速いかもしれません)。デフォルトでは、[`DiffusionPipeline`]は完全な`float32`精度で生成を50ステップ実行します。float16`のような低い精度に変更するか、推論ステップ数を減らすことで高速化することができます。 まずは `float16` でモデルをロードして画像を生成してみましょう: ```python import torch pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safetensors=True) pipeline = pipeline.to("cuda") generator = torch.Generator("cuda").manual_seed(0) image = pipeline(prompt, generator=generator).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_2.png"> </div> 今回、画像生成にかかった時間はわずか11秒で、以前より3倍近く速くなりました! <Tip> 💡 パイプラインは常に `float16` で実行することを強くお勧めします。 </Tip> 生成ステップ数を減らすという方法もあります。より効率的なスケジューラを選択することで、出力品質を犠牲にすることなくステップ数を減らすことができます。`compatibles`メソッドを呼び出すことで、[`DiffusionPipeline`]の現在のモデルと互換性のあるスケジューラを見つけることができます: ```python pipeline.scheduler.compatibles [ diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler, diffusers.schedulers.scheduling_unipc_multistep.UniPCMultistepScheduler, diffusers.schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteScheduler, diffusers.schedulers.scheduling_deis_multistep.DEISMultistepScheduler, diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler, diffusers.schedulers.scheduling_dpmsolver_singlestep.DPMSolverSinglestepScheduler, diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteScheduler, diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler, diffusers.schedulers.scheduling_ddim.DDIMScheduler, ] ``` Stable Diffusionモデルはデフォルトで[`PNDMScheduler`]を使用します。このスケジューラは通常~50の推論ステップを必要としますが、[`DPMSolverMultistepScheduler`]のような高性能なスケジューラでは~20または25の推論ステップで済みます。[`ConfigMixin.from_config`]メソッドを使用すると、新しいスケジューラをロードすることができます: ```python from diffusers import DPMSolverMultistepScheduler pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) ``` ここで `num_inference_steps` を20に設定します: ```python generator = torch.Generator("cuda").manual_seed(0) image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_3.png"> </div> 推論時間をわずか4秒に短縮することに成功した!⚡️ ## メモリー パイプラインのパフォーマンスを向上させるもう1つの鍵は、消費メモリを少なくすることです。一度に生成できる画像の数を確認する最も簡単な方法は、`OutOfMemoryError`(OOM)が発生するまで、さまざまなバッチサイズを試してみることです。 文章と `Generators` のリストから画像のバッチを生成する関数を作成します。各 `Generator` にシードを割り当てて、良い結果が得られた場合に再利用できるようにします。 ```python def get_inputs(batch_size=1): generator = [torch.Generator("cuda").manual_seed(i) for i in range(batch_size)] prompts = batch_size * [prompt] num_inference_steps = 20 return {"prompt": prompts, "generator": generator, "num_inference_steps": num_inference_steps} ``` `batch_size=4`で開始し、どれだけメモリを消費したかを確認します: ```python from diffusers.utils import make_image_grid images = pipeline(**get_inputs(batch_size=4)).images make_image_grid(images, 2, 2) ``` 大容量のRAMを搭載したGPUでない限り、上記のコードはおそらく`OOM`エラーを返したはずです!メモリの大半はクロスアテンションレイヤーが占めています。この処理をバッチで実行する代わりに、逐次実行することでメモリを大幅に節約できます。必要なのは、[`~DiffusionPipeline.enable_attention_slicing`]関数を使用することだけです: ```python pipeline.enable_attention_slicing() ``` 今度は`batch_size`を8にしてみてください! ```python images = pipeline(**get_inputs(batch_size=8)).images make_image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_5.png"> </div> 以前は4枚の画像のバッチを生成することさえできませんでしたが、今では8枚の画像のバッチを1枚あたり~3.5秒で生成できます!これはおそらく、品質を犠牲にすることなくT4 GPUでできる最速の処理速度です。 ## 品質 前の2つのセクションでは、`fp16` を使ってパイプラインの速度を最適化する方法、よりパフォーマン スなスケジューラーを使って生成ステップ数を減らす方法、アテンションスライスを有効 にしてメモリ消費量を減らす方法について学びました。今度は、生成される画像の品質を向上させる方法に焦点を当てます。 ### より良いチェックポイント 最も単純なステップは、より良いチェックポイントを使うことです。Stable Diffusionモデルは良い出発点であり、公式発表以来、いくつかの改良版もリリースされています。しかし、新しいバージョンを使ったからといって、自動的に良い結果が得られるわけではありません。最良の結果を得るためには、自分でさまざまなチェックポイントを試してみたり、ちょっとした研究([ネガティブプロンプト](https://minimaxir.com/2022/11/stable-diffusion-negative-prompt/)の使用など)をしたりする必要があります。 この分野が成長するにつれて、特定のスタイルを生み出すために微調整された、より質の高いチェックポイントが増えています。[Hub](https://huggingface.co/models?library=diffusers&sort=downloads)や[Diffusers Gallery](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery)を探索して、興味のあるものを見つけてみてください! ### より良いパイプラインコンポーネント 現在のパイプラインコンポーネントを新しいバージョンに置き換えてみることもできます。Stability AIが提供する最新の[autodecoder](https://huggingface.co/stabilityai/stable-diffusion-2-1/tree/main/vae)をパイプラインにロードし、画像を生成してみましょう: ```python from diffusers import AutoencoderKL vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda") pipeline.vae = vae images = pipeline(**get_inputs(batch_size=8)).images make_image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_6.png"> </div> ### より良いプロンプト・エンジニアリング 画像を生成するために使用する文章は、*プロンプトエンジニアリング*と呼ばれる分野を作られるほど、非常に重要です。プロンプト・エンジニアリングで考慮すべき点は以下の通りです: - 生成したい画像やその類似画像は、インターネット上にどのように保存されているか? - 私が望むスタイルにモデルを誘導するために、どのような追加詳細を与えるべきか? このことを念頭に置いて、プロンプトに色やより質の高いディテールを含めるように改良してみましょう: ```python prompt += ", tribal panther make up, blue on red, side profile, looking away, serious eyes" prompt += " 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta" ``` 新しいプロンプトで画像のバッチを生成しましょう: ```python images = pipeline(**get_inputs(batch_size=8)).images make_image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_7.png"> </div> かなりいいです!種が`1`の`Generator`に対応する2番目の画像に、被写体の年齢に関するテキストを追加して、もう少し手を加えてみましょう: ```python prompts = [ "portrait photo of the oldest warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a young warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", ] generator = [torch.Generator("cuda").manual_seed(1) for _ in range(len(prompts))] images = pipeline(prompt=prompts, generator=generator, num_inference_steps=25).images make_image_grid(images, 2, 2) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_8.png"> </div> ## 次のステップ このチュートリアルでは、[`DiffusionPipeline`]を最適化して計算効率とメモリ効率を向上させ、生成される出力の品質を向上させる方法を学びました。パイプラインをさらに高速化することに興味があれば、以下のリソースを参照してください: - [PyTorch 2.0](./optimization/torch2.0)と[`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html)がどのように生成速度を5-300%高速化できるかを学んでください。A100 GPUの場合、画像生成は最大50%速くなります! - PyTorch 2が使えない場合は、[xFormers](./optimization/xformers)をインストールすることをお勧めします。このライブラリのメモリ効率の良いアテンションメカニズムは PyTorch 1.13.1 と相性が良く、高速化とメモリ消費量の削減を同時に実現します。 - モデルのオフロードなど、その他の最適化テクニックは [this guide](./optimization/fp16) でカバーされています。
diffusers/docs/source/ja/stable_diffusion.md/0
{ "file_path": "diffusers/docs/source/ja/stable_diffusion.md", "repo_id": "diffusers", "token_count": 6241 }
105
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Diffusers에서의 PyTorch 2.0 가속화 지원 `0.13.0` 버전부터 Diffusers는 [PyTorch 2.0](https://pytorch.org/get-started/pytorch-2.0/)에서의 최신 최적화를 지원합니다. 이는 다음을 포함됩니다. 1. momory-efficient attention을 사용한 가속화된 트랜스포머 지원 - `xformers`같은 추가적인 dependencies 필요 없음 2. 추가 성능 향상을 위한 개별 모델에 대한 컴파일 기능 [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) 지원 ## 설치 가속화된 어텐션 구현과 및 `torch.compile()`을 사용하기 위해, pip에서 최신 버전의 PyTorch 2.0을 설치되어 있고 diffusers 0.13.0. 버전 이상인지 확인하세요. 아래 설명된 바와 같이, PyTorch 2.0이 활성화되어 있을 때 diffusers는 최적화된 어텐션 프로세서([`AttnProcessor2_0`](https://github.com/huggingface/diffusers/blob/1a5797c6d4491a879ea5285c4efc377664e0332d/src/diffusers/models/attention_processor.py#L798))를 사용합니다. ```bash pip install --upgrade torch diffusers ``` ## 가속화된 트랜스포머와 `torch.compile` 사용하기. 1. **가속화된 트랜스포머 구현** PyTorch 2.0에는 [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) 함수를 통해 최적화된 memory-efficient attention의 구현이 포함되어 있습니다. 이는 입력 및 GPU 유형에 따라 여러 최적화를 자동으로 활성화합니다. 이는 [xFormers](https://github.com/facebookresearch/xformers)의 `memory_efficient_attention`과 유사하지만 기본적으로 PyTorch에 내장되어 있습니다. 이러한 최적화는 PyTorch 2.0이 설치되어 있고 `torch.nn.functional.scaled_dot_product_attention`을 사용할 수 있는 경우 Diffusers에서 기본적으로 활성화됩니다. 이를 사용하려면 `torch 2.0`을 설치하고 파이프라인을 사용하기만 하면 됩니다. 예를 들어: ```Python import torch from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] ``` 이를 명시적으로 활성화하려면(필수는 아님) 아래와 같이 수행할 수 있습니다. ```diff import torch from diffusers import DiffusionPipeline + from diffusers.models.attention_processor import AttnProcessor2_0 pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda") + pipe.unet.set_attn_processor(AttnProcessor2_0()) prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] ``` 이 실행 과정은 `xFormers`만큼 빠르고 메모리적으로 효율적이어야 합니다. 자세한 내용은 [벤치마크](#benchmark)에서 확인하세요. 파이프라인을 보다 deterministic으로 만들거나 파인 튜닝된 모델을 [Core ML](https://huggingface.co/docs/diffusers/v0.16.0/en/optimization/coreml#how-to-run-stable-diffusion-with-core-ml)과 같은 다른 형식으로 변환해야 하는 경우 바닐라 어텐션 프로세서 ([`AttnProcessor`](https://github.com/huggingface/diffusers/blob/1a5797c6d4491a879ea5285c4efc377664e0332d/src/diffusers/models/attention_processor.py#L402))로 되돌릴 수 있습니다. 일반 어텐션 프로세서를 사용하려면 [`~diffusers.UNet2DConditionModel.set_default_attn_processor`] 함수를 사용할 수 있습니다: ```Python import torch from diffusers import DiffusionPipeline from diffusers.models.attention_processor import AttnProcessor pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda") pipe.unet.set_default_attn_processor() prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] ``` 2. **torch.compile** 추가적인 속도 향상을 위해 새로운 `torch.compile` 기능을 사용할 수 있습니다. 파이프라인의 UNet은 일반적으로 계산 비용이 가장 크기 때문에 나머지 하위 모델(텍스트 인코더와 VAE)은 그대로 두고 `unet`을 `torch.compile`로 래핑합니다. 자세한 내용과 다른 옵션은 [torch 컴파일 문서](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html)를 참조하세요. ```python pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images ``` GPU 유형에 따라 `compile()`은 가속화된 트랜스포머 최적화를 통해 **5% - 300%**의 _추가 성능 향상_을 얻을 수 있습니다. 그러나 컴파일은 Ampere(A100, 3090), Ada(4090) 및 Hopper(H100)와 같은 최신 GPU 아키텍처에서 더 많은 성능 향상을 가져올 수 있음을 참고하세요. 컴파일은 완료하는 데 약간의 시간이 걸리므로, 파이프라인을 한 번 준비한 다음 동일한 유형의 추론 작업을 여러 번 수행해야 하는 상황에 가장 적합합니다. 다른 이미지 크기에서 컴파일된 파이프라인을 호출하면 시간적 비용이 많이 들 수 있는 컴파일 작업이 다시 트리거됩니다. ## 벤치마크 PyTorch 2.0의 효율적인 어텐션 구현과 `torch.compile`을 사용하여 가장 많이 사용되는 5개의 파이프라인에 대해 다양한 GPU와 배치 크기에 걸쳐 포괄적인 벤치마크를 수행했습니다. 여기서는 [`torch.compile()`이 최적으로 활용되도록 하는](https://github.com/huggingface/diffusers/pull/3313) `diffusers 0.17.0.dev0`을 사용했습니다. ### 벤치마킹 코드 #### Stable Diffusion text-to-image ```python from diffusers import DiffusionPipeline import torch path = "runwayml/stable-diffusion-v1-5" run_compile = True # Set True / False pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe = pipe.to("cuda") pipe.unet.to(memory_format=torch.channels_last) if run_compile: print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) prompt = "ghibli style, a fantasy landscape with castles" for _ in range(3): images = pipe(prompt=prompt).images ``` #### Stable Diffusion image-to-image ```python from diffusers import StableDiffusionImg2ImgPipeline import requests import torch from PIL import Image from io import BytesIO url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((512, 512)) path = "runwayml/stable-diffusion-v1-5" run_compile = True # Set True / False pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe = pipe.to("cuda") pipe.unet.to(memory_format=torch.channels_last) if run_compile: print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) prompt = "ghibli style, a fantasy landscape with castles" for _ in range(3): image = pipe(prompt=prompt, image=init_image).images[0] ``` #### Stable Diffusion - inpainting ```python from diffusers import StableDiffusionInpaintPipeline import requests import torch from PIL import Image from io import BytesIO url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" def download_image(url): response = requests.get(url) return Image.open(BytesIO(response.content)).convert("RGB") img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((512, 512)) mask_image = download_image(mask_url).resize((512, 512)) path = "runwayml/stable-diffusion-inpainting" run_compile = True # Set True / False pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe = pipe.to("cuda") pipe.unet.to(memory_format=torch.channels_last) if run_compile: print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) prompt = "ghibli style, a fantasy landscape with castles" for _ in range(3): image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] ``` #### ControlNet ```python from diffusers import StableDiffusionControlNetPipeline, ControlNetModel import requests import torch from PIL import Image from io import BytesIO url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((512, 512)) path = "runwayml/stable-diffusion-v1-5" run_compile = True # Set True / False controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( path, controlnet=controlnet, torch_dtype=torch.float16 ) pipe = pipe.to("cuda") pipe.unet.to(memory_format=torch.channels_last) pipe.controlnet.to(memory_format=torch.channels_last) if run_compile: print("Run torch compile") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True) prompt = "ghibli style, a fantasy landscape with castles" for _ in range(3): image = pipe(prompt=prompt, image=init_image).images[0] ``` #### IF text-to-image + upscaling ```python from diffusers import DiffusionPipeline import torch run_compile = True # Set True / False pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16) pipe.to("cuda") pipe_2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16) pipe_2.to("cuda") pipe_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16) pipe_3.to("cuda") pipe.unet.to(memory_format=torch.channels_last) pipe_2.unet.to(memory_format=torch.channels_last) pipe_3.unet.to(memory_format=torch.channels_last) if run_compile: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe_2.unet = torch.compile(pipe_2.unet, mode="reduce-overhead", fullgraph=True) pipe_3.unet = torch.compile(pipe_3.unet, mode="reduce-overhead", fullgraph=True) prompt = "the blue hulk" prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16) neg_prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16) for _ in range(3): image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images image_2 = pipe_2(image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images image_3 = pipe_3(prompt=prompt, image=image, noise_level=100).images ``` PyTorch 2.0 및 `torch.compile()`로 얻을 수 있는 가능한 속도 향상에 대해, [Stable Diffusion text-to-image pipeline](StableDiffusionPipeline)에 대한 상대적인 속도 향상을 보여주는 차트를 5개의 서로 다른 GPU 제품군(배치 크기 4)에 대해 나타냅니다: ![t2i_speedup](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/pt2_benchmarks/t2i_speedup.png) To give you an even better idea of how this speed-up holds for the other pipelines presented above, consider the following plot that shows the benchmarking numbers from an A100 across three different batch sizes (with PyTorch 2.0 nightly and `torch.compile()`): 이 속도 향상이 위에 제시된 다른 파이프라인에 대해서도 어떻게 유지되는지 더 잘 이해하기 위해, 세 가지의 다른 배치 크기에 걸쳐 A100의 벤치마킹(PyTorch 2.0 nightly 및 `torch.compile() 사용) 수치를 보여주는 차트를 보입니다: ![a100_numbers](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/pt2_benchmarks/a100_numbers.png) _(위 차트의 벤치마크 메트릭은 **초당 iteration 수(iterations/second)**입니다)_ 그러나 투명성을 위해 모든 벤치마킹 수치를 공개합니다! 다음 표들에서는, **_초당 처리되는 iteration_** 수 측면에서의 결과를 보여줍니다. ### A100 (batch size: 1) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 21.66 | 23.13 | 44.03 | 49.74 | | SD - img2img | 21.81 | 22.40 | 43.92 | 46.32 | | SD - inpaint | 22.24 | 23.23 | 43.76 | 49.25 | | SD - controlnet | 15.02 | 15.82 | 32.13 | 36.08 | | IF | 20.21 / <br>13.84 / <br>24.00 | 20.12 / <br>13.70 / <br>24.03 | ❌ | 97.34 / <br>27.23 / <br>111.66 | ### A100 (batch size: 4) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 11.6 | 13.12 | 14.62 | 17.27 | | SD - img2img | 11.47 | 13.06 | 14.66 | 17.25 | | SD - inpaint | 11.67 | 13.31 | 14.88 | 17.48 | | SD - controlnet | 8.28 | 9.38 | 10.51 | 12.41 | | IF | 25.02 | 18.04 | ❌ | 48.47 | ### A100 (batch size: 16) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 3.04 | 3.6 | 3.83 | 4.68 | | SD - img2img | 2.98 | 3.58 | 3.83 | 4.67 | | SD - inpaint | 3.04 | 3.66 | 3.9 | 4.76 | | SD - controlnet | 2.15 | 2.58 | 2.74 | 3.35 | | IF | 8.78 | 9.82 | ❌ | 16.77 | ### V100 (batch size: 1) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 18.99 | 19.14 | 20.95 | 22.17 | | SD - img2img | 18.56 | 19.18 | 20.95 | 22.11 | | SD - inpaint | 19.14 | 19.06 | 21.08 | 22.20 | | SD - controlnet | 13.48 | 13.93 | 15.18 | 15.88 | | IF | 20.01 / <br>9.08 / <br>23.34 | 19.79 / <br>8.98 / <br>24.10 | ❌ | 55.75 / <br>11.57 / <br>57.67 | ### V100 (batch size: 4) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 5.96 | 5.89 | 6.83 | 6.86 | | SD - img2img | 5.90 | 5.91 | 6.81 | 6.82 | | SD - inpaint | 5.99 | 6.03 | 6.93 | 6.95 | | SD - controlnet | 4.26 | 4.29 | 4.92 | 4.93 | | IF | 15.41 | 14.76 | ❌ | 22.95 | ### V100 (batch size: 16) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 1.66 | 1.66 | 1.92 | 1.90 | | SD - img2img | 1.65 | 1.65 | 1.91 | 1.89 | | SD - inpaint | 1.69 | 1.69 | 1.95 | 1.93 | | SD - controlnet | 1.19 | 1.19 | OOM after warmup | 1.36 | | IF | 5.43 | 5.29 | ❌ | 7.06 | ### T4 (batch size: 1) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 6.9 | 6.95 | 7.3 | 7.56 | | SD - img2img | 6.84 | 6.99 | 7.04 | 7.55 | | SD - inpaint | 6.91 | 6.7 | 7.01 | 7.37 | | SD - controlnet | 4.89 | 4.86 | 5.35 | 5.48 | | IF | 17.42 / <br>2.47 / <br>18.52 | 16.96 / <br>2.45 / <br>18.69 | ❌ | 24.63 / <br>2.47 / <br>23.39 | ### T4 (batch size: 4) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 1.79 | 1.79 | 2.03 | 1.99 | | SD - img2img | 1.77 | 1.77 | 2.05 | 2.04 | | SD - inpaint | 1.81 | 1.82 | 2.09 | 2.09 | | SD - controlnet | 1.34 | 1.27 | 1.47 | 1.46 | | IF | 5.79 | 5.61 | ❌ | 7.39 | ### T4 (batch size: 16) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 2.34s | 2.30s | OOM after 2nd iteration | 1.99s | | SD - img2img | 2.35s | 2.31s | OOM after warmup | 2.00s | | SD - inpaint | 2.30s | 2.26s | OOM after 2nd iteration | 1.95s | | SD - controlnet | OOM after 2nd iteration | OOM after 2nd iteration | OOM after warmup | OOM after warmup | | IF * | 1.44 | 1.44 | ❌ | 1.94 | ### RTX 3090 (batch size: 1) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 22.56 | 22.84 | 23.84 | 25.69 | | SD - img2img | 22.25 | 22.61 | 24.1 | 25.83 | | SD - inpaint | 22.22 | 22.54 | 24.26 | 26.02 | | SD - controlnet | 16.03 | 16.33 | 17.38 | 18.56 | | IF | 27.08 / <br>9.07 / <br>31.23 | 26.75 / <br>8.92 / <br>31.47 | ❌ | 68.08 / <br>11.16 / <br>65.29 | ### RTX 3090 (batch size: 4) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 6.46 | 6.35 | 7.29 | 7.3 | | SD - img2img | 6.33 | 6.27 | 7.31 | 7.26 | | SD - inpaint | 6.47 | 6.4 | 7.44 | 7.39 | | SD - controlnet | 4.59 | 4.54 | 5.27 | 5.26 | | IF | 16.81 | 16.62 | ❌ | 21.57 | ### RTX 3090 (batch size: 16) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 1.7 | 1.69 | 1.93 | 1.91 | | SD - img2img | 1.68 | 1.67 | 1.93 | 1.9 | | SD - inpaint | 1.72 | 1.71 | 1.97 | 1.94 | | SD - controlnet | 1.23 | 1.22 | 1.4 | 1.38 | | IF | 5.01 | 5.00 | ❌ | 6.33 | ### RTX 4090 (batch size: 1) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 40.5 | 41.89 | 44.65 | 49.81 | | SD - img2img | 40.39 | 41.95 | 44.46 | 49.8 | | SD - inpaint | 40.51 | 41.88 | 44.58 | 49.72 | | SD - controlnet | 29.27 | 30.29 | 32.26 | 36.03 | | IF | 69.71 / <br>18.78 / <br>85.49 | 69.13 / <br>18.80 / <br>85.56 | ❌ | 124.60 / <br>26.37 / <br>138.79 | ### RTX 4090 (batch size: 4) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 12.62 | 12.84 | 15.32 | 15.59 | | SD - img2img | 12.61 | 12,.79 | 15.35 | 15.66 | | SD - inpaint | 12.65 | 12.81 | 15.3 | 15.58 | | SD - controlnet | 9.1 | 9.25 | 11.03 | 11.22 | | IF | 31.88 | 31.14 | ❌ | 43.92 | ### RTX 4090 (batch size: 16) | **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** | |:---:|:---:|:---:|:---:|:---:| | SD - txt2img | 3.17 | 3.2 | 3.84 | 3.85 | | SD - img2img | 3.16 | 3.2 | 3.84 | 3.85 | | SD - inpaint | 3.17 | 3.2 | 3.85 | 3.85 | | SD - controlnet | 2.23 | 2.3 | 2.7 | 2.75 | | IF | 9.26 | 9.2 | ❌ | 13.31 | ## 참고 * Follow [this PR](https://github.com/huggingface/diffusers/pull/3313) for more details on the environment used for conducting the benchmarks. * For the IF pipeline and batch sizes > 1, we only used a batch size of >1 in the first IF pipeline for text-to-image generation and NOT for upscaling. So, that means the two upscaling pipelines received a batch size of 1. *Thanks to [Horace He](https://github.com/Chillee) from the PyTorch team for their support in improving our support of `torch.compile()` in Diffusers.* * 벤치마크 수행에 사용된 환경에 대한 자세한 내용은 [이 PR](https://github.com/huggingface/diffusers/pull/3313)을 참조하세요. * IF 파이프라인와 배치 크기 > 1의 경우 첫 번째 IF 파이프라인에서 text-to-image 생성을 위한 배치 크기 > 1만 사용했으며 업스케일링에는 사용하지 않았습니다. 즉, 두 개의 업스케일링 파이프라인이 배치 크기 1임을 의미합니다. *Diffusers에서 `torch.compile()` 지원을 개선하는 데 도움을 준 PyTorch 팀의 [Horace He](https://github.com/Chillee)에게 감사드립니다.*
diffusers/docs/source/ko/optimization/torch2.0.md/0
{ "file_path": "diffusers/docs/source/ko/optimization/torch2.0.md", "repo_id": "diffusers", "token_count": 10790 }
106
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> [[open-in-colab]] # Diffusion 모델을 학습하기 Unconditional 이미지 생성은 학습에 사용된 데이터셋과 유사한 이미지를 생성하는 diffusion 모델에서 인기 있는 어플리케이션입니다. 일반적으로, 가장 좋은 결과는 특정 데이터셋에 사전 훈련된 모델을 파인튜닝하는 것으로 얻을 수 있습니다. 이 [허브](https://huggingface.co/search/full-text?q=unconditional-image-generation&type=model)에서 이러한 많은 체크포인트를 찾을 수 있지만, 만약 마음에 드는 체크포인트를 찾지 못했다면, 언제든지 스스로 학습할 수 있습니다! 이 튜토리얼은 나만의 🦋 나비 🦋를 생성하기 위해 [Smithsonian Butterflies](https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset) 데이터셋의 하위 집합에서 [`UNet2DModel`] 모델을 학습하는 방법을 가르쳐줄 것입니다. <Tip> 💡 이 학습 튜토리얼은 [Training with 🧨 Diffusers](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) 노트북 기반으로 합니다. Diffusion 모델의 작동 방식 및 자세한 내용은 노트북을 확인하세요! </Tip> 시작 전에, 🤗 Datasets을 불러오고 전처리하기 위해 데이터셋이 설치되어 있는지 다수 GPU에서 학습을 간소화하기 위해 🤗 Accelerate 가 설치되어 있는지 확인하세요. 그 후 학습 메트릭을 시각화하기 위해 [TensorBoard](https://www.tensorflow.org/tensorboard)를 또한 설치하세요. (또한 학습 추적을 위해 [Weights & Biases](https://docs.wandb.ai/)를 사용할 수 있습니다.) ```bash !pip install diffusers[training] ``` 커뮤니티에 모델을 공유할 것을 권장하며, 이를 위해서 Hugging Face 계정에 로그인을 해야 합니다. (계정이 없다면 [여기](https://hf.co/join)에서 만들 수 있습니다.) 노트북에서 로그인할 수 있으며 메시지가 표시되면 토큰을 입력할 수 있습니다. ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` 또는 터미널로 로그인할 수 있습니다: ```bash huggingface-cli login ``` 모델 체크포인트가 상당히 크기 때문에 [Git-LFS](https://git-lfs.com/)에서 대용량 파일의 버전 관리를 할 수 있습니다. ```bash !sudo apt -qq install git-lfs !git config --global credential.helper store ``` ## 학습 구성 편의를 위해 학습 파라미터들을 포함한 `TrainingConfig` 클래스를 생성합니다 (자유롭게 조정 가능): ```py >>> from dataclasses import dataclass >>> @dataclass ... class TrainingConfig: ... image_size = 128 # 생성되는 이미지 해상도 ... train_batch_size = 16 ... eval_batch_size = 16 # 평가 동안에 샘플링할 이미지 수 ... num_epochs = 50 ... gradient_accumulation_steps = 1 ... learning_rate = 1e-4 ... lr_warmup_steps = 500 ... save_image_epochs = 10 ... save_model_epochs = 30 ... mixed_precision = "fp16" # `no`는 float32, 자동 혼합 정밀도를 위한 `fp16` ... output_dir = "ddpm-butterflies-128" # 로컬 및 HF Hub에 저장되는 모델명 ... push_to_hub = True # 저장된 모델을 HF Hub에 업로드할지 여부 ... hub_private_repo = False ... overwrite_output_dir = True # 노트북을 다시 실행할 때 이전 모델에 덮어씌울지 ... seed = 0 >>> config = TrainingConfig() ``` ## 데이터셋 불러오기 🤗 Datasets 라이브러리와 [Smithsonian Butterflies](https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset) 데이터셋을 쉽게 불러올 수 있습니다. ```py >>> from datasets import load_dataset >>> config.dataset_name = "huggan/smithsonian_butterflies_subset" >>> dataset = load_dataset(config.dataset_name, split="train") ``` 💡[HugGan Community Event](https://huggingface.co/huggan) 에서 추가의 데이터셋을 찾거나 로컬의 [`ImageFolder`](https://huggingface.co/docs/datasets/image_dataset#imagefolder)를 만듦으로써 나만의 데이터셋을 사용할 수 있습니다. HugGan Community Event 에 가져온 데이터셋의 경우 리포지토리의 id로 `config.dataset_name` 을 설정하고, 나만의 이미지를 사용하는 경우 `imagefolder` 를 설정합니다. 🤗 Datasets은 [`~datasets.Image`] 기능을 사용해 자동으로 이미지 데이터를 디코딩하고 [`PIL.Image`](https://pillow.readthedocs.io/en/stable/reference/Image.html)로 불러옵니다. 이를 시각화 해보면: ```py >>> import matplotlib.pyplot as plt >>> fig, axs = plt.subplots(1, 4, figsize=(16, 4)) >>> for i, image in enumerate(dataset[:4]["image"]): ... axs[i].imshow(image) ... axs[i].set_axis_off() >>> fig.show() ``` ![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/butterflies_ds.png) 이미지는 모두 다른 사이즈이기 때문에, 우선 전처리가 필요합니다: - `Resize` 는 `config.image_size` 에 정의된 이미지 사이즈로 변경합니다. - `RandomHorizontalFlip` 은 랜덤적으로 이미지를 미러링하여 데이터셋을 보강합니다. - `Normalize` 는 모델이 예상하는 [-1, 1] 범위로 픽셀 값을 재조정 하는데 중요합니다. ```py >>> from torchvision import transforms >>> preprocess = transforms.Compose( ... [ ... transforms.Resize((config.image_size, config.image_size)), ... transforms.RandomHorizontalFlip(), ... transforms.ToTensor(), ... transforms.Normalize([0.5], [0.5]), ... ] ... ) ``` 학습 도중에 `preprocess` 함수를 적용하려면 🤗 Datasets의 [`~datasets.Dataset.set_transform`] 방법이 사용됩니다. ```py >>> def transform(examples): ... images = [preprocess(image.convert("RGB")) for image in examples["image"]] ... return {"images": images} >>> dataset.set_transform(transform) ``` 이미지의 크기가 조정되었는지 확인하기 위해 이미지를 다시 시각화해보세요. 이제 [DataLoader](https://pytorch.org/docs/stable/data#torch.utils.data.DataLoader)에 데이터셋을 포함해 학습할 준비가 되었습니다! ```py >>> import torch >>> train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True) ``` ## UNet2DModel 생성하기 🧨 Diffusers에 사전학습된 모델들은 모델 클래스에서 원하는 파라미터로 쉽게 생성할 수 있습니다. 예를 들어, [`UNet2DModel`]를 생성하려면: ```py >>> from diffusers import UNet2DModel >>> model = UNet2DModel( ... sample_size=config.image_size, # 타겟 이미지 해상도 ... in_channels=3, # 입력 채널 수, RGB 이미지에서 3 ... out_channels=3, # 출력 채널 수 ... layers_per_block=2, # UNet 블럭당 몇 개의 ResNet 레이어가 사용되는지 ... block_out_channels=(128, 128, 256, 256, 512, 512), # 각 UNet 블럭을 위한 출력 채널 수 ... down_block_types=( ... "DownBlock2D", # 일반적인 ResNet 다운샘플링 블럭 ... "DownBlock2D", ... "DownBlock2D", ... "DownBlock2D", ... "AttnDownBlock2D", # spatial self-attention이 포함된 일반적인 ResNet 다운샘플링 블럭 ... "DownBlock2D", ... ), ... up_block_types=( ... "UpBlock2D", # 일반적인 ResNet 업샘플링 블럭 ... "AttnUpBlock2D", # spatial self-attention이 포함된 일반적인 ResNet 업샘플링 블럭 ... "UpBlock2D", ... "UpBlock2D", ... "UpBlock2D", ... "UpBlock2D", ... ), ... ) ``` 샘플의 이미지 크기와 모델 출력 크기가 맞는지 빠르게 확인하기 위한 좋은 아이디어가 있습니다: ```py >>> sample_image = dataset[0]["images"].unsqueeze(0) >>> print("Input shape:", sample_image.shape) Input shape: torch.Size([1, 3, 128, 128]) >>> print("Output shape:", model(sample_image, timestep=0).sample.shape) Output shape: torch.Size([1, 3, 128, 128]) ``` 훌륭해요! 다음, 이미지에 약간의 노이즈를 더하기 위해 스케줄러가 필요합니다. ## 스케줄러 생성하기 스케줄러는 모델을 학습 또는 추론에 사용하는지에 따라 다르게 작동합니다. 추론시에, 스케줄러는 노이즈로부터 이미지를 생성합니다. 학습시 스케줄러는 diffusion 과정에서의 특정 포인트로부터 모델의 출력 또는 샘플을 가져와 *노이즈 스케줄* 과 *업데이트 규칙*에 따라 이미지에 노이즈를 적용합니다. `DDPMScheduler`를 보면 이전으로부터 `sample_image`에 랜덤한 노이즈를 더하는 `add_noise` 메서드를 사용합니다: ```py >>> import torch >>> from PIL import Image >>> from diffusers import DDPMScheduler >>> noise_scheduler = DDPMScheduler(num_train_timesteps=1000) >>> noise = torch.randn(sample_image.shape) >>> timesteps = torch.LongTensor([50]) >>> noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps) >>> Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0]) ``` ![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/noisy_butterfly.png) 모델의 학습 목적은 이미지에 더해진 노이즈를 예측하는 것입니다. 이 단계에서 손실은 다음과 같이 계산될 수 있습니다: ```py >>> import torch.nn.functional as F >>> noise_pred = model(noisy_image, timesteps).sample >>> loss = F.mse_loss(noise_pred, noise) ``` ## 모델 학습하기 지금까지, 모델 학습을 시작하기 위해 많은 부분을 갖추었으며 이제 남은 것은 모든 것을 조합하는 것입니다. 우선 옵티마이저(optimizer)와 학습률 스케줄러(learning rate scheduler)가 필요할 것입니다: ```py >>> from diffusers.optimization import get_cosine_schedule_with_warmup >>> optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate) >>> lr_scheduler = get_cosine_schedule_with_warmup( ... optimizer=optimizer, ... num_warmup_steps=config.lr_warmup_steps, ... num_training_steps=(len(train_dataloader) * config.num_epochs), ... ) ``` 그 후, 모델을 평가하는 방법이 필요합니다. 평가를 위해, `DDPMPipeline`을 사용해 배치의 이미지 샘플들을 생성하고 그리드 형태로 저장할 수 있습니다: ```py >>> from diffusers import DDPMPipeline >>> import math >>> import os >>> def make_grid(images, rows, cols): ... w, h = images[0].size ... grid = Image.new("RGB", size=(cols * w, rows * h)) ... for i, image in enumerate(images): ... grid.paste(image, box=(i % cols * w, i // cols * h)) ... return grid >>> def evaluate(config, epoch, pipeline): ... # 랜덤한 노이즈로 부터 이미지를 추출합니다.(이는 역전파 diffusion 과정입니다.) ... # 기본 파이프라인 출력 형태는 `List[PIL.Image]` 입니다. ... images = pipeline( ... batch_size=config.eval_batch_size, ... generator=torch.manual_seed(config.seed), ... ).images ... # 이미지들을 그리드로 만들어줍니다. ... image_grid = make_grid(images, rows=4, cols=4) ... # 이미지들을 저장합니다. ... test_dir = os.path.join(config.output_dir, "samples") ... os.makedirs(test_dir, exist_ok=True) ... image_grid.save(f"{test_dir}/{epoch:04d}.png") ``` TensorBoard에 로깅, 그래디언트 누적 및 혼합 정밀도 학습을 쉽게 수행하기 위해 🤗 Accelerate를 학습 루프에 함께 앞서 말한 모든 구성 정보들을 묶어 진행할 수 있습니다. 허브에 모델을 업로드 하기 위해 리포지토리 이름 및 정보를 가져오기 위한 함수를 작성하고 허브에 업로드할 수 있습니다. 💡아래의 학습 루프는 어렵고 길어 보일 수 있지만, 나중에 한 줄의 코드로 학습을 한다면 그만한 가치가 있을 것입니다! 만약 기다리지 못하고 이미지를 생성하고 싶다면, 아래 코드를 자유롭게 붙여넣고 작동시키면 됩니다. 🤗 ```py >>> from accelerate import Accelerator >>> from huggingface_hub import create_repo, upload_folder >>> from tqdm.auto import tqdm >>> from pathlib import Path >>> import os >>> def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler): ... # Initialize accelerator and tensorboard logging ... accelerator = Accelerator( ... mixed_precision=config.mixed_precision, ... gradient_accumulation_steps=config.gradient_accumulation_steps, ... log_with="tensorboard", ... project_dir=os.path.join(config.output_dir, "logs"), ... ) ... if accelerator.is_main_process: ... if config.output_dir is not None: ... os.makedirs(config.output_dir, exist_ok=True) ... if config.push_to_hub: ... repo_id = create_repo( ... repo_id=config.hub_model_id or Path(config.output_dir).name, exist_ok=True ... ).repo_id ... accelerator.init_trackers("train_example") ... # 모든 것이 준비되었습니다. ... # 기억해야 할 특정한 순서는 없으며 준비한 방법에 제공한 것과 동일한 순서로 객체의 압축을 풀면 됩니다. ... model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( ... model, optimizer, train_dataloader, lr_scheduler ... ) ... global_step = 0 ... # 이제 모델을 학습합니다. ... for epoch in range(config.num_epochs): ... progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process) ... progress_bar.set_description(f"Epoch {epoch}") ... for step, batch in enumerate(train_dataloader): ... clean_images = batch["images"] ... # 이미지에 더할 노이즈를 샘플링합니다. ... noise = torch.randn(clean_images.shape, device=clean_images.device) ... bs = clean_images.shape[0] ... # 각 이미지를 위한 랜덤한 타임스텝(timestep)을 샘플링합니다. ... timesteps = torch.randint( ... 0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device, ... dtype=torch.int64 ... ) ... # 각 타임스텝의 노이즈 크기에 따라 깨끗한 이미지에 노이즈를 추가합니다. ... # (이는 foward diffusion 과정입니다.) ... noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) ... with accelerator.accumulate(model): ... # 노이즈를 반복적으로 예측합니다. ... noise_pred = model(noisy_images, timesteps, return_dict=False)[0] ... loss = F.mse_loss(noise_pred, noise) ... accelerator.backward(loss) ... accelerator.clip_grad_norm_(model.parameters(), 1.0) ... optimizer.step() ... lr_scheduler.step() ... optimizer.zero_grad() ... progress_bar.update(1) ... logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} ... progress_bar.set_postfix(**logs) ... accelerator.log(logs, step=global_step) ... global_step += 1 ... # 각 에포크가 끝난 후 evaluate()와 몇 가지 데모 이미지를 선택적으로 샘플링하고 모델을 저장합니다. ... if accelerator.is_main_process: ... pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler) ... if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1: ... evaluate(config, epoch, pipeline) ... if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1: ... if config.push_to_hub: ... upload_folder( ... repo_id=repo_id, ... folder_path=config.output_dir, ... commit_message=f"Epoch {epoch}", ... ignore_patterns=["step_*", "epoch_*"], ... ) ... else: ... pipeline.save_pretrained(config.output_dir) ``` 휴, 코드가 꽤 많았네요! 하지만 🤗 Accelerate의 [`~accelerate.notebook_launcher`] 함수와 학습을 시작할 준비가 되었습니다. 함수에 학습 루프, 모든 학습 인수, 학습에 사용할 프로세스 수(사용 가능한 GPU의 수를 변경할 수 있음)를 전달합니다: ```py >>> from accelerate import notebook_launcher >>> args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler) >>> notebook_launcher(train_loop, args, num_processes=1) ``` 한번 학습이 완료되면, diffusion 모델로 생성된 최종 🦋이미지🦋를 확인해보길 바랍니다! ```py >>> import glob >>> sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png")) >>> Image.open(sample_images[-1]) ``` ![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/butterflies_final.png) ## 다음 단계 Unconditional 이미지 생성은 학습될 수 있는 작업 중 하나의 예시입니다. 다른 작업과 학습 방법은 [🧨 Diffusers 학습 예시](../training/overview) 페이지에서 확인할 수 있습니다. 다음은 학습할 수 있는 몇 가지 예시입니다: - [Textual Inversion](../training/text_inversion), 특정 시각적 개념을 학습시켜 생성된 이미지에 통합시키는 알고리즘입니다. - [DreamBooth](../training/dreambooth), 주제에 대한 몇 가지 입력 이미지들이 주어지면 주제에 대한 개인화된 이미지를 생성하기 위한 기술입니다. - [Guide](../training/text2image) 데이터셋에 Stable Diffusion 모델을 파인튜닝하는 방법입니다. - [Guide](../training/lora) LoRA를 사용해 매우 큰 모델을 빠르게 파인튜닝하기 위한 메모리 효율적인 기술입니다.
diffusers/docs/source/ko/tutorials/basic_training.md/0
{ "file_path": "diffusers/docs/source/ko/tutorials/basic_training.md", "repo_id": "diffusers", "token_count": 11285 }
107
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Deterministic(결정적) 생성을 통한 이미지 품질 개선 생성된 이미지의 품질을 개선하는 일반적인 방법은 *결정적 batch(배치) 생성*을 사용하는 것입니다. 이 방법은 이미지 batch(배치)를 생성하고 두 번째 추론 라운드에서 더 자세한 프롬프트와 함께 개선할 이미지 하나를 선택하는 것입니다. 핵심은 일괄 이미지 생성을 위해 파이프라인에 [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html#generator) 목록을 전달하고, 각 `Generator`를 시드에 연결하여 이미지에 재사용할 수 있도록 하는 것입니다. 예를 들어 [`runwayml/stable-diffusion-v1-5`](runwayml/stable-diffusion-v1-5)를 사용하여 다음 프롬프트의 여러 버전을 생성해 봅시다. ```py prompt = "Labrador in the style of Vermeer" ``` (가능하다면) 파이프라인을 [`DiffusionPipeline.from_pretrained`]로 인스턴스화하여 GPU에 배치합니다. ```python >>> from diffusers import DiffusionPipeline >>> pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) >>> pipe = pipe.to("cuda") ``` 이제 네 개의 서로 다른 `Generator`를 정의하고 각 `Generator`에 시드(`0` ~ `3`)를 할당하여 나중에 특정 이미지에 대해 `Generator`를 재사용할 수 있도록 합니다. ```python >>> import torch >>> generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(4)] ``` 이미지를 생성하고 살펴봅니다. ```python >>> images = pipe(prompt, generator=generator, num_images_per_prompt=4).images >>> images ``` ![img](https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/reusabe_seeds.jpg) 이 예제에서는 첫 번째 이미지를 개선했지만 실제로는 원하는 모든 이미지를 사용할 수 있습니다(심지어 두 개의 눈이 있는 이미지도!). 첫 번째 이미지에서는 시드가 '0'인 '생성기'를 사용했기 때문에 두 번째 추론 라운드에서는 이 '생성기'를 재사용할 것입니다. 이미지의 품질을 개선하려면 프롬프트에 몇 가지 텍스트를 추가합니다: ```python prompt = [prompt + t for t in [", highly realistic", ", artsy", ", trending", ", colorful"]] generator = [torch.Generator(device="cuda").manual_seed(0) for i in range(4)] ``` 시드가 `0`인 제너레이터 4개를 생성하고, 이전 라운드의 첫 번째 이미지처럼 보이는 다른 이미지 batch(배치)를 생성합니다! ```python >>> images = pipe(prompt, generator=generator).images >>> images ``` ![img](https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/reusabe_seeds_2.jpg)
diffusers/docs/source/ko/using-diffusers/reusing_seeds.md/0
{ "file_path": "diffusers/docs/source/ko/using-diffusers/reusing_seeds.md", "repo_id": "diffusers", "token_count": 1922 }
108
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # 有效且高效的扩散 [[open-in-colab]] 让 [`DiffusionPipeline`] 生成特定风格或包含你所想要的内容的图像可能会有些棘手。 通常情况下,你需要多次运行 [`DiffusionPipeline`] 才能得到满意的图像。但是从无到有生成图像是一个计算密集的过程,特别是如果你要一遍又一遍地进行推理运算。 这就是为什么从pipeline中获得最高的 *computational* (speed) 和 *memory* (GPU RAM) 非常重要 ,以减少推理周期之间的时间,从而使迭代速度更快。 本教程将指导您如何通过 [`DiffusionPipeline`] 更快、更好地生成图像。 首先,加载 [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) 模型: ```python from diffusers import DiffusionPipeline model_id = "runwayml/stable-diffusion-v1-5" pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True) ``` 本教程将使用的提示词是 [`portrait photo of a old warrior chief`] ,但是你可以随心所欲的想象和构造自己的提示词: ```python prompt = "portrait photo of a old warrior chief" ``` ## 速度 <Tip> 💡 如果你没有 GPU, 你可以从像 [Colab](https://colab.research.google.com/) 这样的 GPU 提供商获取免费的 GPU ! </Tip> 加速推理的最简单方法之一是将 pipeline 放在 GPU 上 ,就像使用任何 PyTorch 模块一样: ```python pipeline = pipeline.to("cuda") ``` 为了确保您可以使用相同的图像并对其进行改进,使用 [`Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) 方法,然后设置一个随机数种子 以确保其 [复现性](./using-diffusers/reproducibility): ```python import torch generator = torch.Generator("cuda").manual_seed(0) ``` 现在,你可以生成一个图像: ```python image = pipeline(prompt, generator=generator).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_1.png"> </div> 在 T4 GPU 上,这个过程大概要30秒(如果你的 GPU 比 T4 好,可能会更快)。在默认情况下,[`DiffusionPipeline`] 使用完整的 `float32` 精度进行 50 步推理。你可以通过降低精度(如 `float16` )或者减少推理步数来加速整个过程 让我们把模型的精度降低至 `float16` ,然后生成一张图像: ```python import torch pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safetensors=True) pipeline = pipeline.to("cuda") generator = torch.Generator("cuda").manual_seed(0) image = pipeline(prompt, generator=generator).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_2.png"> </div> 这一次,生成图像只花了约 11 秒,比之前快了近 3 倍! <Tip> 💡 我们强烈建议把 pipeline 精度降低至 `float16` , 到目前为止, 我们很少看到输出质量有任何下降。 </Tip> 另一个选择是减少推理步数。 你可以选择一个更高效的调度器 (*scheduler*) 可以减少推理步数同时保证输出质量。您可以在 [DiffusionPipeline] 中通过调用compatibles方法找到与当前模型兼容的调度器 (*scheduler*)。 ```python pipeline.scheduler.compatibles [ diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler, diffusers.schedulers.scheduling_unipc_multistep.UniPCMultistepScheduler, diffusers.schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteScheduler, diffusers.schedulers.scheduling_deis_multistep.DEISMultistepScheduler, diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler, diffusers.schedulers.scheduling_dpmsolver_singlestep.DPMSolverSinglestepScheduler, diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteScheduler, diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler, diffusers.schedulers.scheduling_ddim.DDIMScheduler, ] ``` Stable Diffusion 模型默认使用的是 [`PNDMScheduler`] ,通常要大概50步推理, 但是像 [`DPMSolverMultistepScheduler`] 这样更高效的调度器只要大概 20 或 25 步推理. 使用 [`ConfigMixin.from_config`] 方法加载新的调度器: ```python from diffusers import DPMSolverMultistepScheduler pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) ``` 现在将 `num_inference_steps` 设置为 20: ```python generator = torch.Generator("cuda").manual_seed(0) image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_3.png"> </div> 太棒了!你成功把推理时间缩短到 4 秒!⚡️ ## 内存 改善 pipeline 性能的另一个关键是减少内存的使用量,这间接意味着速度更快,因为你经常试图最大化每秒生成的图像数量。要想知道你一次可以生成多少张图片,最简单的方法是尝试不同的batch size,直到出现`OutOfMemoryError` (OOM)。 创建一个函数,为每一批要生成的图像分配提示词和 `Generators` 。请务必为每个`Generator` 分配一个种子,以便于复现良好的结果。 ```python def get_inputs(batch_size=1): generator = [torch.Generator("cuda").manual_seed(i) for i in range(batch_size)] prompts = batch_size * [prompt] num_inference_steps = 20 return {"prompt": prompts, "generator": generator, "num_inference_steps": num_inference_steps} ``` 设置 `batch_size=4` ,然后看一看我们消耗了多少内存: ```python from diffusers.utils import make_image_grid images = pipeline(**get_inputs(batch_size=4)).images make_image_grid(images, 2, 2) ``` 除非你有一个更大内存的GPU, 否则上述代码会返回 `OOM` 错误! 大部分内存被 cross-attention 层使用。按顺序运行可以节省大量内存,而不是在批处理中进行。你可以为 pipeline 配置 [`~DiffusionPipeline.enable_attention_slicing`] 函数: ```python pipeline.enable_attention_slicing() ``` 现在尝试把 `batch_size` 增加到 8! ```python images = pipeline(**get_inputs(batch_size=8)).images make_image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_5.png"> </div> 以前你不能一批生成 4 张图片,而现在你可以在一张图片里面生成八张图片而只需要大概3.5秒!这可能是 T4 GPU 在不牺牲质量的情况运行速度最快的一种方法。 ## 质量 在最后两节中, 你要学习如何通过 `fp16` 来优化 pipeline 的速度, 通过使用性能更高的调度器来减少推理步数, 使用注意力切片(*enabling attention slicing*)方法来节省内存。现在,你将关注的是如何提高图像的质量。 ### 更好的 checkpoints 有个显而易见的方法是使用更好的 checkpoints。 Stable Diffusion 模型是一个很好的起点, 自正式发布以来,还发布了几个改进版本。然而, 使用更新的版本并不意味着你会得到更好的结果。你仍然需要尝试不同的 checkpoints ,并做一些研究 (例如使用 [negative prompts](https://minimaxir.com/2022/11/stable-diffusion-negative-prompt/)) 来获得更好的结果。 随着该领域的发展, 有越来越多经过微调的高质量的 checkpoints 用来生成不一样的风格. 在 [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) 和 [Diffusers Gallery](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery) 寻找你感兴趣的一种! ### 更好的 pipeline 组件 也可以尝试用新版本替换当前 pipeline 组件。让我们加载最新的 [autodecoder](https://huggingface.co/stabilityai/stable-diffusion-2-1/tree/main/vae) 从 Stability AI 加载到 pipeline, 并生成一些图像: ```python from diffusers import AutoencoderKL vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda") pipeline.vae = vae images = pipeline(**get_inputs(batch_size=8)).images make_image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_6.png"> </div> ### 更好的提示词工程 用于生成图像的文本非常重要, 因此被称为 *提示词工程*。 在设计提示词工程应注意如下事项: - 我想生成的图像或类似图像如何存储在互联网上? - 我可以提供哪些额外的细节来引导模型朝着我想要的风格生成? 考虑到这一点,让我们改进提示词,以包含颜色和更高质量的细节: ```python prompt += ", tribal panther make up, blue on red, side profile, looking away, serious eyes" prompt += " 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta" ``` 使用新的提示词生成一批图像: ```python images = pipeline(**get_inputs(batch_size=8)).images make_image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_7.png"> </div> 非常的令人印象深刻! Let's tweak the second image - 把 `Generator` 的种子设置为 `1` - 添加一些关于年龄的主题文本: ```python prompts = [ "portrait photo of the oldest warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a young warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", ] generator = [torch.Generator("cuda").manual_seed(1) for _ in range(len(prompts))] images = pipeline(prompt=prompts, generator=generator, num_inference_steps=25).images make_image_grid(images, 2, 2) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_8.png"> </div> ## 最后 在本教程中, 您学习了如何优化[`DiffusionPipeline`]以提高计算和内存效率,以及提高生成输出的质量. 如果你有兴趣让你的 pipeline 更快, 可以看一看以下资源: - 学习 [PyTorch 2.0](./optimization/torch2.0) 和 [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html) 可以让推理速度提高 5 - 300% . 在 A100 GPU 上, 推理速度可以提高 50% ! - 如果你没法用 PyTorch 2, 我们建议你安装 [xFormers](./optimization/xformers)。它的内存高效注意力机制(*memory-efficient attention mechanism*)与PyTorch 1.13.1配合使用,速度更快,内存消耗更少。 - 其他的优化技术, 如:模型卸载(*model offloading*), 包含在 [这份指南](./optimization/fp16).
diffusers/docs/source/zh/stable_diffusion.md/0
{ "file_path": "diffusers/docs/source/zh/stable_diffusion.md", "repo_id": "diffusers", "token_count": 6188 }
109
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import pi from typing import Callable, List, Optional, Tuple, Union import numpy as np import torch from PIL import Image from diffusers import DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNet2DModel from diffusers.utils.torch_utils import randn_tensor class DPSPipeline(DiffusionPipeline): r""" Pipeline for Diffusion Posterior Sampling. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: unet ([`UNet2DModel`]): A `UNet2DModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ model_cpu_offload_seq = "unet" def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, measurement: torch.Tensor, operator: torch.nn.Module, loss_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor], batch_size: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, num_inference_steps: int = 1000, output_type: Optional[str] = "pil", return_dict: bool = True, zeta: float = 0.3, ) -> Union[ImagePipelineOutput, Tuple]: r""" The call function to the pipeline for generation. Args: measurement (`torch.Tensor`, *required*): A 'torch.Tensor', the corrupted image operator (`torch.nn.Module`, *required*): A 'torch.nn.Module', the operator generating the corrupted image loss_fn (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *required*): A 'Callable[[torch.Tensor, torch.Tensor], torch.Tensor]', the loss function used between the measurements, for most of the cases using RMSE is fine. batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 1000): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Example: ```py >>> from diffusers import DDPMPipeline >>> # load model and scheduler >>> pipe = DDPMPipeline.from_pretrained("google/ddpm-cat-256") >>> # run pipeline in inference (sample random noise and denoise) >>> image = pipe().images[0] >>> # save image >>> image.save("ddpm_generated_image.png") ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size, int): image_shape = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if self.device.type == "mps": # randn does not work reproducibly on mps image = randn_tensor(image_shape, generator=generator) image = image.to(self.device) else: image = randn_tensor(image_shape, generator=generator, device=self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): with torch.enable_grad(): # 1. predict noise model_output image = image.requires_grad_() model_output = self.unet(image, t).sample # 2. compute previous image x'_{t-1} and original prediction x0_{t} scheduler_out = self.scheduler.step(model_output, t, image, generator=generator) image_pred, origi_pred = scheduler_out.prev_sample, scheduler_out.pred_original_sample # 3. compute y'_t = f(x0_{t}) measurement_pred = operator(origi_pred) # 4. compute loss = d(y, y'_t-1) loss = loss_fn(measurement, measurement_pred) loss.backward() print("distance: {0:.4f}".format(loss.item())) with torch.no_grad(): image_pred = image_pred - zeta * image.grad image = image_pred.detach() image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image) if __name__ == "__main__": import scipy from torch import nn from torchvision.utils import save_image # defining the operators f(.) of y = f(x) # super-resolution operator class SuperResolutionOperator(nn.Module): def __init__(self, in_shape, scale_factor): super().__init__() # Resizer local class, do not use outiside the SR operator class class Resizer(nn.Module): def __init__(self, in_shape, scale_factor=None, output_shape=None, kernel=None, antialiasing=True): super(Resizer, self).__init__() # First standardize values and fill missing arguments (if needed) by deriving scale from output shape or vice versa scale_factor, output_shape = self.fix_scale_and_size(in_shape, output_shape, scale_factor) # Choose interpolation method, each method has the matching kernel size def cubic(x): absx = np.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5 * absx3 - 2.5 * absx2 + 1) * (absx <= 1) + ( -0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2 ) * ((1 < absx) & (absx <= 2)) def lanczos2(x): return ( (np.sin(pi * x) * np.sin(pi * x / 2) + np.finfo(np.float32).eps) / ((pi**2 * x**2 / 2) + np.finfo(np.float32).eps) ) * (abs(x) < 2) def box(x): return ((-0.5 <= x) & (x < 0.5)) * 1.0 def lanczos3(x): return ( (np.sin(pi * x) * np.sin(pi * x / 3) + np.finfo(np.float32).eps) / ((pi**2 * x**2 / 3) + np.finfo(np.float32).eps) ) * (abs(x) < 3) def linear(x): return (x + 1) * ((-1 <= x) & (x < 0)) + (1 - x) * ((0 <= x) & (x <= 1)) method, kernel_width = { "cubic": (cubic, 4.0), "lanczos2": (lanczos2, 4.0), "lanczos3": (lanczos3, 6.0), "box": (box, 1.0), "linear": (linear, 2.0), None: (cubic, 4.0), # set default interpolation method as cubic }.get(kernel) # Antialiasing is only used when downscaling antialiasing *= np.any(np.array(scale_factor) < 1) # Sort indices of dimensions according to scale of each dimension. since we are going dim by dim this is efficient sorted_dims = np.argsort(np.array(scale_factor)) self.sorted_dims = [int(dim) for dim in sorted_dims if scale_factor[dim] != 1] # Iterate over dimensions to calculate local weights for resizing and resize each time in one direction field_of_view_list = [] weights_list = [] for dim in self.sorted_dims: # for each coordinate (along 1 dim), calculate which coordinates in the input image affect its result and the # weights that multiply the values there to get its result. weights, field_of_view = self.contributions( in_shape[dim], output_shape[dim], scale_factor[dim], method, kernel_width, antialiasing ) # convert to torch tensor weights = torch.tensor(weights.T, dtype=torch.float32) # We add singleton dimensions to the weight matrix so we can multiply it with the big tensor we get for # tmp_im[field_of_view.T], (bsxfun style) weights_list.append( nn.Parameter( torch.reshape(weights, list(weights.shape) + (len(scale_factor) - 1) * [1]), requires_grad=False, ) ) field_of_view_list.append( nn.Parameter( torch.tensor(field_of_view.T.astype(np.int32), dtype=torch.long), requires_grad=False ) ) self.field_of_view = nn.ParameterList(field_of_view_list) self.weights = nn.ParameterList(weights_list) def forward(self, in_tensor): x = in_tensor # Use the affecting position values and the set of weights to calculate the result of resizing along this 1 dim for dim, fov, w in zip(self.sorted_dims, self.field_of_view, self.weights): # To be able to act on each dim, we swap so that dim 0 is the wanted dim to resize x = torch.transpose(x, dim, 0) # This is a bit of a complicated multiplication: x[field_of_view.T] is a tensor of order image_dims+1. # for each pixel in the output-image it matches the positions the influence it from the input image (along 1 dim # only, this is why it only adds 1 dim to 5the shape). We then multiply, for each pixel, its set of positions with # the matching set of weights. we do this by this big tensor element-wise multiplication (MATLAB bsxfun style: # matching dims are multiplied element-wise while singletons mean that the matching dim is all multiplied by the # same number x = torch.sum(x[fov] * w, dim=0) # Finally we swap back the axes to the original order x = torch.transpose(x, dim, 0) return x def fix_scale_and_size(self, input_shape, output_shape, scale_factor): # First fixing the scale-factor (if given) to be standardized the function expects (a list of scale factors in the # same size as the number of input dimensions) if scale_factor is not None: # By default, if scale-factor is a scalar we assume 2d resizing and duplicate it. if np.isscalar(scale_factor) and len(input_shape) > 1: scale_factor = [scale_factor, scale_factor] # We extend the size of scale-factor list to the size of the input by assigning 1 to all the unspecified scales scale_factor = list(scale_factor) scale_factor = [1] * (len(input_shape) - len(scale_factor)) + scale_factor # Fixing output-shape (if given): extending it to the size of the input-shape, by assigning the original input-size # to all the unspecified dimensions if output_shape is not None: output_shape = list(input_shape[len(output_shape) :]) + list(np.uint(np.array(output_shape))) # Dealing with the case of non-give scale-factor, calculating according to output-shape. note that this is # sub-optimal, because there can be different scales to the same output-shape. if scale_factor is None: scale_factor = 1.0 * np.array(output_shape) / np.array(input_shape) # Dealing with missing output-shape. calculating according to scale-factor if output_shape is None: output_shape = np.uint(np.ceil(np.array(input_shape) * np.array(scale_factor))) return scale_factor, output_shape def contributions(self, in_length, out_length, scale, kernel, kernel_width, antialiasing): # This function calculates a set of 'filters' and a set of field_of_view that will later on be applied # such that each position from the field_of_view will be multiplied with a matching filter from the # 'weights' based on the interpolation method and the distance of the sub-pixel location from the pixel centers # around it. This is only done for one dimension of the image. # When anti-aliasing is activated (default and only for downscaling) the receptive field is stretched to size of # 1/sf. this means filtering is more 'low-pass filter'. fixed_kernel = (lambda arg: scale * kernel(scale * arg)) if antialiasing else kernel kernel_width *= 1.0 / scale if antialiasing else 1.0 # These are the coordinates of the output image out_coordinates = np.arange(1, out_length + 1) # since both scale-factor and output size can be provided simulatneously, perserving the center of the image requires shifting # the output coordinates. the deviation is because out_length doesn't necesary equal in_length*scale. # to keep the center we need to subtract half of this deivation so that we get equal margins for boths sides and center is preserved. shifted_out_coordinates = out_coordinates - (out_length - in_length * scale) / 2 # These are the matching positions of the output-coordinates on the input image coordinates. # Best explained by example: say we have 4 horizontal pixels for HR and we downscale by SF=2 and get 2 pixels: # [1,2,3,4] -> [1,2]. Remember each pixel number is the middle of the pixel. # The scaling is done between the distances and not pixel numbers (the right boundary of pixel 4 is transformed to # the right boundary of pixel 2. pixel 1 in the small image matches the boundary between pixels 1 and 2 in the big # one and not to pixel 2. This means the position is not just multiplication of the old pos by scale-factor). # So if we measure distance from the left border, middle of pixel 1 is at distance d=0.5, border between 1 and 2 is # at d=1, and so on (d = p - 0.5). we calculate (d_new = d_old / sf) which means: # (p_new-0.5 = (p_old-0.5) / sf) -> p_new = p_old/sf + 0.5 * (1-1/sf) match_coordinates = shifted_out_coordinates / scale + 0.5 * (1 - 1 / scale) # This is the left boundary to start multiplying the filter from, it depends on the size of the filter left_boundary = np.floor(match_coordinates - kernel_width / 2) # Kernel width needs to be enlarged because when covering has sub-pixel borders, it must 'see' the pixel centers # of the pixels it only covered a part from. So we add one pixel at each side to consider (weights can zeroize them) expanded_kernel_width = np.ceil(kernel_width) + 2 # Determine a set of field_of_view for each each output position, these are the pixels in the input image # that the pixel in the output image 'sees'. We get a matrix whos horizontal dim is the output pixels (big) and the # vertical dim is the pixels it 'sees' (kernel_size + 2) field_of_view = np.squeeze( np.int16(np.expand_dims(left_boundary, axis=1) + np.arange(expanded_kernel_width) - 1) ) # Assign weight to each pixel in the field of view. A matrix whos horizontal dim is the output pixels and the # vertical dim is a list of weights matching to the pixel in the field of view (that are specified in # 'field_of_view') weights = fixed_kernel(1.0 * np.expand_dims(match_coordinates, axis=1) - field_of_view - 1) # Normalize weights to sum up to 1. be careful from dividing by 0 sum_weights = np.sum(weights, axis=1) sum_weights[sum_weights == 0] = 1.0 weights = 1.0 * weights / np.expand_dims(sum_weights, axis=1) # We use this mirror structure as a trick for reflection padding at the boundaries mirror = np.uint(np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1)))) field_of_view = mirror[np.mod(field_of_view, mirror.shape[0])] # Get rid of weights and pixel positions that are of zero weight non_zero_out_pixels = np.nonzero(np.any(weights, axis=0)) weights = np.squeeze(weights[:, non_zero_out_pixels]) field_of_view = np.squeeze(field_of_view[:, non_zero_out_pixels]) # Final products are the relative positions and the matching weights, both are output_size X fixed_kernel_size return weights, field_of_view self.down_sample = Resizer(in_shape, 1 / scale_factor) for param in self.parameters(): param.requires_grad = False def forward(self, data, **kwargs): return self.down_sample(data) # Gaussian blurring operator class GaussialBlurOperator(nn.Module): def __init__(self, kernel_size, intensity): super().__init__() class Blurkernel(nn.Module): def __init__(self, blur_type="gaussian", kernel_size=31, std=3.0): super().__init__() self.blur_type = blur_type self.kernel_size = kernel_size self.std = std self.seq = nn.Sequential( nn.ReflectionPad2d(self.kernel_size // 2), nn.Conv2d(3, 3, self.kernel_size, stride=1, padding=0, bias=False, groups=3), ) self.weights_init() def forward(self, x): return self.seq(x) def weights_init(self): if self.blur_type == "gaussian": n = np.zeros((self.kernel_size, self.kernel_size)) n[self.kernel_size // 2, self.kernel_size // 2] = 1 k = scipy.ndimage.gaussian_filter(n, sigma=self.std) k = torch.from_numpy(k) self.k = k for name, f in self.named_parameters(): f.data.copy_(k) def update_weights(self, k): if not torch.is_tensor(k): k = torch.from_numpy(k) for name, f in self.named_parameters(): f.data.copy_(k) def get_kernel(self): return self.k self.kernel_size = kernel_size self.conv = Blurkernel(blur_type="gaussian", kernel_size=kernel_size, std=intensity) self.kernel = self.conv.get_kernel() self.conv.update_weights(self.kernel.type(torch.float32)) for param in self.parameters(): param.requires_grad = False def forward(self, data, **kwargs): return self.conv(data) def transpose(self, data, **kwargs): return data def get_kernel(self): return self.kernel.view(1, 1, self.kernel_size, self.kernel_size) # assuming the forward process y = f(x) is polluted by Gaussian noise, use l2 norm def RMSELoss(yhat, y): return torch.sqrt(torch.sum((yhat - y) ** 2)) # set up source image src = Image.open("sample.png") # read image into [1,3,H,W] src = torch.from_numpy(np.array(src, dtype=np.float32)).permute(2, 0, 1)[None] # normalize image to [-1,1] src = (src / 127.5) - 1.0 src = src.to("cuda") # set up operator and measurement # operator = SuperResolutionOperator(in_shape=src.shape, scale_factor=4).to("cuda") operator = GaussialBlurOperator(kernel_size=61, intensity=3.0).to("cuda") measurement = operator(src) # set up scheduler scheduler = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256") scheduler.set_timesteps(1000) # set up model model = UNet2DModel.from_pretrained("google/ddpm-celebahq-256").to("cuda") save_image((src + 1.0) / 2.0, "dps_src.png") save_image((measurement + 1.0) / 2.0, "dps_mea.png") # finally, the pipeline dpspipe = DPSPipeline(model, scheduler) image = dpspipe( measurement=measurement, operator=operator, loss_fn=RMSELoss, zeta=1.0, ).images[0] image.save("dps_generated_image.png")
diffusers/examples/community/dps_pipeline.py/0
{ "file_path": "diffusers/examples/community/dps_pipeline.py", "repo_id": "diffusers", "token_count": 11140 }
110
from typing import Union import torch from PIL import Image from torchvision import transforms as tfms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel, ) class MagicMixPipeline(DiffusionPipeline): def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler], ): super().__init__() self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) # convert PIL image to latents def encode(self, img): with torch.no_grad(): latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1) latent = 0.18215 * latent.latent_dist.sample() return latent # convert latents to PIL image def decode(self, latent): latent = (1 / 0.18215) * latent with torch.no_grad(): img = self.vae.decode(latent).sample img = (img / 2 + 0.5).clamp(0, 1) img = img.detach().cpu().permute(0, 2, 3, 1).numpy() img = (img * 255).round().astype("uint8") return Image.fromarray(img[0]) # convert prompt into text embeddings, also unconditional embeddings def prep_text(self, prompt): text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0] uncond_input = self.tokenizer( "", padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0] return torch.cat([uncond_embedding, text_embedding]) def __call__( self, img: Image.Image, prompt: str, kmin: float = 0.3, kmax: float = 0.6, mix_factor: float = 0.5, seed: int = 42, steps: int = 50, guidance_scale: float = 7.5, ) -> Image.Image: tmin = steps - int(kmin * steps) tmax = steps - int(kmax * steps) text_embeddings = self.prep_text(prompt) self.scheduler.set_timesteps(steps) width, height = img.size encoded = self.encode(img) torch.manual_seed(seed) noise = torch.randn( (1, self.unet.config.in_channels, height // 8, width // 8), ).to(self.device) latents = self.scheduler.add_noise( encoded, noise, timesteps=self.scheduler.timesteps[tmax], ) input = torch.cat([latents] * 2) input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax]) with torch.no_grad(): pred = self.unet( input, self.scheduler.timesteps[tmax], encoder_hidden_states=text_embeddings, ).sample pred_uncond, pred_text = pred.chunk(2) pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample for i, t in enumerate(tqdm(self.scheduler.timesteps)): if i > tmax: if i < tmin: # layout generation phase orig_latents = self.scheduler.add_noise( encoded, noise, timesteps=t, ) input = ( (mix_factor * latents) + (1 - mix_factor) * orig_latents ) # interpolating between layout noise and conditionally generated noise to preserve layout sematics input = torch.cat([input] * 2) else: # content generation phase input = torch.cat([latents] * 2) input = self.scheduler.scale_model_input(input, t) with torch.no_grad(): pred = self.unet( input, t, encoder_hidden_states=text_embeddings, ).sample pred_uncond, pred_text = pred.chunk(2) pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) latents = self.scheduler.step(pred, t, latents).prev_sample return self.decode(latents)
diffusers/examples/community/magic_mix.py/0
{ "file_path": "diffusers/examples/community/magic_mix.py", "repo_id": "diffusers", "token_count": 2446 }
111
# Copyright 2024 Jake Babbidge, TencentARC and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ignore the entire file for precommit # type: ignore import inspect from collections.abc import Callable from typing import Any, List, Optional, Union import numpy as np import PIL import torch import torch.nn.functional as F from transformers import ( CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.loaders import ( FromSingleFileMixin, LoraLoaderMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, ) from diffusers.models import ( AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter, UNet2DConditionModel, ) from diffusers.models.attention_processor import ( AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel from diffusers.pipelines.pipeline_utils import StableDiffusionMixin from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import ( PIL_INTERPOLATION, USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import is_compiled_module, randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import DiffusionPipeline, T2IAdapter >>> from diffusers.utils import load_image >>> from PIL import Image >>> from controlnet_aux.midas import MidasDetector >>> adapter = T2IAdapter.from_pretrained( ... "TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" ... ).to("cuda") >>> controlnet = ControlNetModel.from_pretrained( ... "diffusers/controlnet-depth-sdxl-1.0", ... torch_dtype=torch.float16, ... variant="fp16", ... use_safetensors=True ... ).to("cuda") >>> pipe = DiffusionPipeline.from_pretrained( ... "diffusers/stable-diffusion-xl-1.0-inpainting-0.1", ... torch_dtype=torch.float16, ... variant="fp16", ... use_safetensors=True, ... custom_pipeline="stable_diffusion_xl_adapter_controlnet_inpaint", ... adapter=adapter, ... controlnet=controlnet, ... ).to("cuda") >>> prompt = "a tiger sitting on a park bench" >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" >>> image = load_image(img_url).resize((1024, 1024)) >>> mask_image = load_image(mask_url).resize((1024, 1024)) >>> midas_depth = MidasDetector.from_pretrained( ... "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large" ... ).to("cuda") >>> depth_image = midas_depth( ... image, detect_resolution=512, image_resolution=1024 ... ) >>> strength = 0.4 >>> generator = torch.manual_seed(42) >>> result_image = pipe( ... image=image, ... mask_image=mask, ... adapter_image=depth_image, ... control_image=depth_image, ... controlnet_conditioning_scale=strength, ... adapter_conditioning_scale=strength, ... strength=0.7, ... generator=generator, ... prompt=prompt, ... negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality", ... num_inference_steps=50 ... ).images[0] ``` """ def _preprocess_adapter_image(image, height, width): if isinstance(image, torch.Tensor): return image elif isinstance(image, PIL.Image.Image): image = [image] if isinstance(image[0], PIL.Image.Image): image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image] image = [ i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image ] # expand [h, w] or [h, w, c] to [b, h, w, c] image = np.concatenate(image, axis=0) image = np.array(image).astype(np.float32) / 255.0 image = image.transpose(0, 3, 1, 2) image = torch.from_numpy(image) elif isinstance(image[0], torch.Tensor): if image[0].ndim == 3: image = torch.stack(image, dim=0) elif image[0].ndim == 4: image = torch.cat(image, dim=0) else: raise ValueError( f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}" ) return image def mask_pil_to_torch(mask, height, width): # preprocess mask if isinstance(mask, Union[PIL.Image.Image, np.ndarray]): mask = [mask] if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) mask = mask.astype(np.float32) / 255.0 elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): mask = np.concatenate([m[None, None, :] for m in mask], axis=0) mask = torch.from_numpy(mask) return mask def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False): """ Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the ``image`` and ``1`` for the ``mask``. The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be binarized (``mask > 0.5``) and cast to ``torch.float32`` too. Args: image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. mask (_type_): The mask to apply to the image, i.e. regions to inpaint. It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. Raises: ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not (ot the other way around). Returns: tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4 dimensions: ``batch x channels x height x width``. """ # checkpoint. #TODO(Yiyi) - need to clean this up later if image is None: raise ValueError("`image` input cannot be undefined.") if mask is None: raise ValueError("`mask_image` input cannot be undefined.") if isinstance(image, torch.Tensor): if not isinstance(mask, torch.Tensor): mask = mask_pil_to_torch(mask, height, width) if image.ndim == 3: image = image.unsqueeze(0) # Batch and add channel dim for single mask if mask.ndim == 2: mask = mask.unsqueeze(0).unsqueeze(0) # Batch single mask or add channel dim if mask.ndim == 3: # Single batched mask, no channel dim or single mask not batched but channel dim if mask.shape[0] == 1: mask = mask.unsqueeze(0) # Batched masks no channel dim else: mask = mask.unsqueeze(1) assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" # assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" # Check image is in [-1, 1] # if image.min() < -1 or image.max() > 1: # raise ValueError("Image should be in [-1, 1] range") # Check mask is in [0, 1] if mask.min() < 0 or mask.max() > 1: raise ValueError("Mask should be in [0, 1] range") # Binarize mask mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 # Image as float32 image = image.to(dtype=torch.float32) elif isinstance(mask, torch.Tensor): raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") else: # preprocess image if isinstance(image, Union[PIL.Image.Image, np.ndarray]): image = [image] if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): # resize all images w.r.t passed height an width image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image] image = [np.array(i.convert("RGB"))[None, :] for i in image] image = np.concatenate(image, axis=0) elif isinstance(image, list) and isinstance(image[0], np.ndarray): image = np.concatenate([i[None, :] for i in image], axis=0) image = image.transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 mask = mask_pil_to_torch(mask, height, width) mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 if image.shape[1] == 4: # images are in latent space and thus can't # be masked set masked_image to None # we assume that the checkpoint is not an inpainting # checkpoint. #TODO(Yiyi) - need to clean this up later masked_image = None else: masked_image = image * (mask < 0.5) # n.b. ensure backwards compatibility as old function does not return image if return_image: return mask, masked_image, image return mask, masked_image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg class StableDiffusionXLControlNetAdapterInpaintPipeline( DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin, LoraLoaderMixin ): r""" Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter https://arxiv.org/abs/2302.08453 This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: adapter ([`T2IAdapter`] or [`MultiAdapter`] or `List[T2IAdapter]`): Provides additional conditioning to the unet during the denoising process. If you set multiple Adapter as a list, the outputs from each Adapter are added together to create one combined additional conditioning. adapter_weights (`List[float]`, *optional*, defaults to None): List of floats representing the weight which will be multiply to each adapter's output before adding them together. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`): Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config of `stabilityai/stable-diffusion-xl-refiner-1-0`. force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of `stabilityai/stable-diffusion-xl-base-1-0`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, adapter: Union[T2IAdapter, MultiAdapter], controlnet: Union[ControlNetModel, MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, requires_aesthetics_score: bool = False, force_zeros_for_empty_prompt: bool = True, ): super().__init__() if isinstance(controlnet, (list, tuple)): controlnet = MultiControlNetModel(controlnet) self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, adapter=adapter, controlnet=controlnet, scheduler=scheduler, ) self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.control_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False ) self.default_sample_size = self.unet.config.sample_size # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt def encode_prompt( self, prompt: str, prompt_2: Optional[str] = None, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[str] = None, negative_prompt_2: Optional[str] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ device = device or self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) else: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # Define tokenizers and text encoders tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] text_encoders = ( [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] ) if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 # textual inversion: process multi-vector tokens if necessary prompt_embeds_list = [] prompts = [prompt, prompt_2] for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, tokenizer) text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] if clip_skip is None: prompt_embeds = prompt_embeds.hidden_states[-2] else: # "2" because SDXL always indexes from the penultimate layer. prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) # get unconditional embeddings for classifier free guidance zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) elif do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt # normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) uncond_tokens: List[str] if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = [negative_prompt, negative_prompt_2] negative_prompt_embeds_list = [] for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) max_length = prompt_embeds.shape[1] uncond_input = tokenizer( negative_prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder negative_pooled_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] negative_prompt_embeds_list.append(negative_prompt_embeds) negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) if self.text_encoder_2 is not None: prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) else: prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] if self.text_encoder_2 is not None: negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) else: negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if do_classifier_free_guidance: negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if self.text_encoder is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image def check_image(self, image, prompt, prompt_embeds): image_is_pil = isinstance(image, PIL.Image.Image) image_is_tensor = isinstance(image, torch.Tensor) image_is_np = isinstance(image, np.ndarray) image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) if ( not image_is_pil and not image_is_tensor and not image_is_np and not image_is_pil_list and not image_is_tensor_list and not image_is_np_list ): raise TypeError( f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" ) if image_is_pil: image_batch_size = 1 else: image_batch_size = len(image) if prompt is not None and isinstance(prompt, str): prompt_batch_size = 1 elif prompt is not None and isinstance(prompt, list): prompt_batch_size = len(prompt) elif prompt_embeds is not None: prompt_batch_size = prompt_embeds.shape[0] if image_batch_size != 1 and image_batch_size != prompt_batch_size: raise ValueError( f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" ) # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.check_inputs def check_inputs( self, prompt, prompt_2, height, width, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) def check_conditions( self, prompt, prompt_embeds, adapter_image, control_image, adapter_conditioning_scale, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, ): # controlnet checks if not isinstance(control_guidance_start, (tuple, list)): control_guidance_start = [control_guidance_start] if not isinstance(control_guidance_end, (tuple, list)): control_guidance_end = [control_guidance_end] if len(control_guidance_start) != len(control_guidance_end): raise ValueError( f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." ) if isinstance(self.controlnet, MultiControlNetModel): if len(control_guidance_start) != len(self.controlnet.nets): raise ValueError( f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." ) for start, end in zip(control_guidance_start, control_guidance_end): if start >= end: raise ValueError( f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." ) if start < 0.0: raise ValueError(f"control guidance start: {start} can't be smaller than 0.") if end > 1.0: raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") # Check controlnet `image` is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( self.controlnet, torch._dynamo.eval_frame.OptimizedModule ) if ( isinstance(self.controlnet, ControlNetModel) or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel) ): self.check_image(control_image, prompt, prompt_embeds) elif ( isinstance(self.controlnet, MultiControlNetModel) or is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel) ): if not isinstance(control_image, list): raise TypeError("For multiple controlnets: `control_image` must be type `list`") # When `image` is a nested list: # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) elif any(isinstance(i, list) for i in control_image): raise ValueError("A single batch of multiple conditionings are supported at the moment.") elif len(control_image) != len(self.controlnet.nets): raise ValueError( f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(control_image)} images and {len(self.controlnet.nets)} ControlNets." ) for image_ in control_image: self.check_image(image_, prompt, prompt_embeds) else: assert False # Check `controlnet_conditioning_scale` if ( isinstance(self.controlnet, ControlNetModel) or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel) ): if not isinstance(controlnet_conditioning_scale, float): raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") elif ( isinstance(self.controlnet, MultiControlNetModel) or is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel) ): if isinstance(controlnet_conditioning_scale, list): if any(isinstance(i, list) for i in controlnet_conditioning_scale): raise ValueError("A single batch of multiple conditionings are supported at the moment.") elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( self.controlnet.nets ): raise ValueError( "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" " the same length as the number of controlnets" ) else: assert False # adapter checks if isinstance(self.adapter, T2IAdapter) or is_compiled and isinstance(self.adapter._orig_mod, T2IAdapter): self.check_image(adapter_image, prompt, prompt_embeds) elif ( isinstance(self.adapter, MultiAdapter) or is_compiled and isinstance(self.adapter._orig_mod, MultiAdapter) ): if not isinstance(adapter_image, list): raise TypeError("For multiple adapters: `adapter_image` must be type `list`") # When `image` is a nested list: # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) elif any(isinstance(i, list) for i in adapter_image): raise ValueError("A single batch of multiple conditionings are supported at the moment.") elif len(adapter_image) != len(self.adapter.adapters): raise ValueError( f"For multiple adapters: `image` must have the same length as the number of adapters, but got {len(adapter_image)} images and {len(self.adapters.nets)} Adapters." ) for image_ in adapter_image: self.check_image(image_, prompt, prompt_embeds) else: assert False # Check `adapter_conditioning_scale` if isinstance(self.adapter, T2IAdapter) or is_compiled and isinstance(self.adapter._orig_mod, T2IAdapter): if not isinstance(adapter_conditioning_scale, float): raise TypeError("For single adapter: `adapter_conditioning_scale` must be type `float`.") elif ( isinstance(self.adapter, MultiAdapter) or is_compiled and isinstance(self.adapter._orig_mod, MultiAdapter) ): if isinstance(adapter_conditioning_scale, list): if any(isinstance(i, list) for i in adapter_conditioning_scale): raise ValueError("A single batch of multiple conditionings are supported at the moment.") elif isinstance(adapter_conditioning_scale, list) and len(adapter_conditioning_scale) != len( self.adapter.adapters ): raise ValueError( "For multiple adapters: When `adapter_conditioning_scale` is specified as `list`, it must have" " the same length as the number of adapters" ) else: assert False def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None, timestep=None, is_strength_max=True, add_noise=True, return_noise=False, return_image_latents=False, ): shape = ( batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if (image is None or timestep is None) and not is_strength_max: raise ValueError( "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." "However, either the image or the noise timestep has not been provided." ) if image.shape[1] == 4: image_latents = image.to(device=device, dtype=dtype) elif return_image_latents or (latents is None and not is_strength_max): image = image.to(device=device, dtype=dtype) image_latents = self._encode_vae_image(image=image, generator=generator) image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) if latents is None and add_noise: noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # if strength is 1. then initialise the latents to noise, else initial to image + noise latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) # if pure noise then scale the initial latents by the Scheduler's init sigma latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents elif add_noise: noise = latents.to(device) latents = noise * self.scheduler.init_noise_sigma else: noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = image_latents.to(device) outputs = (latents,) if return_noise: outputs += (noise,) if return_image_latents: outputs += (image_latents,) return outputs def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): dtype = image.dtype if self.vae.config.force_upcast: image = image.float() self.vae.to(dtype=torch.float32) if isinstance(generator, list): image_latents = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i]) for i in range(image.shape[0]) ] image_latents = torch.cat(image_latents, dim=0) else: image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) if self.vae.config.force_upcast: self.vae.to(dtype) image_latents = image_latents.to(dtype) image_latents = self.vae.config.scaling_factor * image_latents return image_latents def prepare_mask_latents( self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance, ): # resize the mask to latents shape as we concatenate the mask to the latents # we do that before converting to dtype to avoid breaking in case we're using cpu_offload # and half precision mask = torch.nn.functional.interpolate( mask, size=( height // self.vae_scale_factor, width // self.vae_scale_factor, ), ) mask = mask.to(device=device, dtype=dtype) # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method if mask.shape[0] < batch_size: if not batch_size % mask.shape[0] == 0: raise ValueError( "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" " of masks that you pass is divisible by the total requested batch size." ) mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask masked_image_latents = None if masked_image is not None: masked_image = masked_image.to(device=device, dtype=dtype) masked_image_latents = self._encode_vae_image(masked_image, generator=generator) if masked_image_latents.shape[0] < batch_size: if not batch_size % masked_image_latents.shape[0] == 0: raise ValueError( "The passed images and the required batch size don't match. Images are supposed to be duplicated" f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." " Make sure the number of images that you pass is divisible by the total requested batch size." ) masked_image_latents = masked_image_latents.repeat( batch_size // masked_image_latents.shape[0], 1, 1, 1 ) masked_image_latents = ( torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents ) # aligning device to prevent device errors when concating it with the latent model input masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) return mask, masked_image_latents # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): # get the original timestep using init_timestep if denoising_start is None: init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) else: t_start = 0 timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] # Strength is irrelevant if we directly request a timestep to start at; # that is, strength is determined by the denoising_start instead. if denoising_start is not None: discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (denoising_start * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() if self.scheduler.order == 2 and num_inference_steps % 2 == 0: # if the scheduler is a 2nd order scheduler we might have to do +1 # because `num_inference_steps` might be even given that every timestep # (except the highest one) is duplicated. If `num_inference_steps` is even it would # mean that we cut the timesteps in the middle of the denoising step # (between 1st and 2nd devirative) which leads to incorrect results. By adding 1 # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler num_inference_steps = num_inference_steps + 1 # because t_n+1 >= t_n, we slice the timesteps starting from the end timesteps = timesteps[-num_inference_steps:] return timesteps, num_inference_steps return timesteps, num_inference_steps - t_start def _get_add_time_ids( self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, dtype, text_encoder_projection_dim=None, ): if self.config.requires_aesthetics_score: add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) add_neg_time_ids = list(original_size + crops_coords_top_left + (negative_aesthetic_score,)) else: add_time_ids = list(original_size + crops_coords_top_left + target_size) add_neg_time_ids = list(original_size + crops_coords_top_left + target_size) passed_add_embed_dim = ( self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim ) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if ( expected_add_embed_dim > passed_add_embed_dim and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim ): raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model." ) elif ( expected_add_embed_dim < passed_add_embed_dim and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim ): raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model." ) elif expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) return add_time_ids, add_neg_time_ids # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, LoRAXFormersAttnProcessor, LoRAAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype) # Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width def _default_height_width(self, height, width, image): # NOTE: It is possible that a list of images have different # dimensions for each image, so just checking the first image # is not _exactly_ correct, but it is simple. while isinstance(image, list): image = image[0] if height is None: if isinstance(image, PIL.Image.Image): height = image.height elif isinstance(image, torch.Tensor): height = image.shape[-2] # round down to nearest multiple of `self.adapter.downscale_factor` height = (height // self.adapter.downscale_factor) * self.adapter.downscale_factor if width is None: if isinstance(image, PIL.Image.Image): width = image.width elif isinstance(image, torch.Tensor): width = image.shape[-1] # round down to nearest multiple of `self.adapter.downscale_factor` width = (width // self.adapter.downscale_factor) * self.adapter.downscale_factor return height, width def prepare_control_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False, ): image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance and not guess_mode: image = torch.cat([image] * 2) return image @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, list[str]]] = None, prompt_2: Optional[Union[str, list[str]]] = None, image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None, mask_image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None, adapter_image: PipelineImageInput = None, control_image: PipelineImageInput = None, height: Optional[int] = None, width: Optional[int] = None, strength: float = 0.9999, num_inference_steps: int = 50, denoising_start: Optional[float] = None, denoising_end: Optional[float] = None, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, list[str]]] = None, negative_prompt_2: Optional[Union[str, list[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, list[torch.Generator]]] = None, latents: Optional[Union[torch.FloatTensor]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Optional[tuple[int, int]] = None, crops_coords_top_left: Optional[tuple[int, int]] = (0, 0), target_size: Optional[tuple[int, int]] = None, adapter_conditioning_scale: Optional[Union[float, list[float]]] = 1.0, cond_tau: float = 1.0, aesthetic_score: float = 6.0, negative_aesthetic_score: float = 2.5, controlnet_conditioning_scale=1.0, guess_mode: bool = False, control_guidance_start=0.0, control_guidance_end=1.0, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders image (`PIL.Image.Image`): `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will be masked out with `mask_image` and repainted according to `prompt`. mask_image (`PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. adapter_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`): The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the type is specified as `Torch.FloatTensor`, it is passed to Adapter as is. PIL.Image.Image` can also be accepted as an image. The control image is automatically resized to fit the output image. control_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): The ControlNet input condition to provide guidance to the `unet` for generation. If the type is specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. strength (`float`, *optional*, defaults to 1.0): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. denoising_start (`float`, *optional*): When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output). denoising_end (`float`, *optional*): When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionAdapterPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.7): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): For most cases, `target_size` should be set to the desired height and width of the generated image. If not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original unet. If multiple adapters are specified in init, you can set the corresponding scale as a list. adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the residual in the original unet. If multiple adapters are specified in init, you can set the corresponding scale as a list. aesthetic_score (`float`, *optional*, defaults to 6.0): Used to simulate an aesthetic score of the generated image by influencing the positive text condition. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). negative_aesthetic_score (`float`, *optional*, defaults to 2.5): Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to simulate an aesthetic score of the generated image by influencing the negative text condition. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ # 0. Default height and width to unet controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet adapter = self.adapter._orig_mod if is_compiled_module(self.adapter) else self.adapter height, width = self._default_height_width(height, width, adapter_image) device = self._execution_device if isinstance(adapter, MultiAdapter): adapter_input = [] for one_image in adapter_image: one_image = _preprocess_adapter_image(one_image, height, width) one_image = one_image.to(device=device, dtype=adapter.dtype) adapter_input.append(one_image) else: adapter_input = _preprocess_adapter_image(adapter_image, height, width) adapter_input = adapter_input.to(device=device, dtype=adapter.dtype) original_size = original_size or (height, width) target_size = target_size or (height, width) # 0.1 align format for control guidance if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): control_guidance_start = len(control_guidance_end) * [control_guidance_start] elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): control_guidance_end = len(control_guidance_start) * [control_guidance_end] elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 control_guidance_start, control_guidance_end = ( mult * [control_guidance_start], mult * [control_guidance_end], ) if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) if isinstance(adapter, MultiAdapter) and isinstance(adapter_conditioning_scale, float): adapter_conditioning_scale = [adapter_conditioning_scale] * len(adapter.nets) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, callback_steps, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) self.check_conditions( prompt, prompt_embeds, adapter_image, control_image, adapter_conditioning_scale, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) # 4. set timesteps def denoising_value_valid(dnv): return isinstance(dnv, float) and 0 < dnv < 1 self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps( num_inference_steps, strength, device, denoising_start=denoising_start if denoising_value_valid(denoising_start) else None, ) # check that number of inference steps is not < 1 - as this doesn't make sense if num_inference_steps < 1: raise ValueError( f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." ) # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise is_strength_max = strength == 1.0 # 5. Preprocess mask and image - resizes image and mask w.r.t height and width mask, masked_image, init_image = prepare_mask_and_masked_image( image, mask_image, height, width, return_image=True ) # 6. Prepare latent variables num_channels_latents = self.vae.config.latent_channels num_channels_unet = self.unet.config.in_channels return_image_latents = num_channels_unet == 4 add_noise = denoising_start is None latents_outputs = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, add_noise=add_noise, return_noise=True, return_image_latents=return_image_latents, ) if return_image_latents: latents, noise, image_latents = latents_outputs else: latents, noise = latents_outputs # 7. Prepare mask latent variables mask, masked_image_latents = self.prepare_mask_latents( mask, masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, do_classifier_free_guidance, ) # 8. Check that sizes of mask, masked image and latents match if num_channels_unet == 9: # default case for runwayml/stable-diffusion-inpainting num_channels_mask = mask.shape[1] num_channels_masked_image = masked_image_latents.shape[1] if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.unet` or your `mask_image` or `image` input." ) elif num_channels_unet != 4: raise ValueError( f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." ) # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 10. Prepare added time ids & embeddings & adapter features if isinstance(adapter, MultiAdapter): adapter_state = adapter(adapter_input, adapter_conditioning_scale) for k, v in enumerate(adapter_state): adapter_state[k] = v else: adapter_state = adapter(adapter_input) for k, v in enumerate(adapter_state): adapter_state[k] = v * adapter_conditioning_scale if num_images_per_prompt > 1: for k, v in enumerate(adapter_state): adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1) if do_classifier_free_guidance: for k, v in enumerate(adapter_state): adapter_state[k] = torch.cat([v] * 2, dim=0) # 10.2 Prepare control images if isinstance(controlnet, ControlNetModel): control_image = self.prepare_control_image( image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=do_classifier_free_guidance, guess_mode=guess_mode, ) elif isinstance(controlnet, MultiControlNetModel): control_images = [] for control_image_ in control_image: control_image_ = self.prepare_control_image( image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=do_classifier_free_guidance, guess_mode=guess_mode, ) control_images.append(control_image_) control_image = control_images else: raise ValueError(f"{controlnet.__class__} is not supported.") # 8.2 Create tensor stating which controlnets to keep controlnet_keep = [] for i in range(len(timesteps)): keeps = [ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for s, e in zip(control_guidance_start, control_guidance_end) ] if isinstance(self.controlnet, MultiControlNetModel): controlnet_keep.append(keeps) else: controlnet_keep.append(keeps[0]) # ---------------------------------------------------------------- add_text_embeds = pooled_prompt_embeds if self.text_encoder_2 is None: text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) else: text_encoder_projection_dim = self.text_encoder_2.config.projection_dim add_time_ids, add_neg_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device) # 11. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) # 11.1 Apply denoising_end if ( denoising_end is not None and denoising_start is not None and denoising_value_valid(denoising_end) and denoising_value_valid(denoising_start) and denoising_start >= denoising_end ): raise ValueError( f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: " + f" {denoising_end} when using type float." ) elif denoising_end is not None and denoising_value_valid(denoising_end): discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (denoising_end * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) timesteps = timesteps[:num_inference_steps] with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) if num_channels_unet == 9: latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) # predict the noise residual added_cond_kwargs = { "text_embeds": add_text_embeds, "time_ids": add_time_ids, } if i < int(num_inference_steps * cond_tau): down_block_additional_residuals = [state.clone() for state in adapter_state] else: down_block_additional_residuals = None # ----------- ControlNet # expand the latents if we are doing classifier free guidance latent_model_input_controlnet = torch.cat([latents] * 2) if do_classifier_free_guidance else latents # concat latents, mask, masked_image_latents in the channel dimension latent_model_input_controlnet = self.scheduler.scale_model_input(latent_model_input_controlnet, t) # controlnet(s) inference if guess_mode and do_classifier_free_guidance: # Infer ControlNet only for the conditional batch. control_model_input = latents control_model_input = self.scheduler.scale_model_input(control_model_input, t) controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] controlnet_added_cond_kwargs = { "text_embeds": add_text_embeds.chunk(2)[1], "time_ids": add_time_ids.chunk(2)[1], } else: control_model_input = latent_model_input_controlnet controlnet_prompt_embeds = prompt_embeds controlnet_added_cond_kwargs = added_cond_kwargs if isinstance(controlnet_keep[i], list): cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] else: controlnet_cond_scale = controlnet_conditioning_scale if isinstance(controlnet_cond_scale, list): controlnet_cond_scale = controlnet_cond_scale[0] cond_scale = controlnet_cond_scale * controlnet_keep[i] down_block_res_samples, mid_block_res_sample = self.controlnet( control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=control_image, conditioning_scale=cond_scale, guess_mode=guess_mode, added_cond_kwargs=controlnet_added_cond_kwargs, return_dict=False, ) noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, down_intrablock_additional_residuals=down_block_additional_residuals, # t2iadapter down_block_additional_residuals=down_block_res_samples, # controlnet mid_block_additional_residual=mid_block_res_sample, # controlnet )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg( noise_pred, noise_pred_text, guidance_rescale=guidance_rescale, ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs, return_dict=False, )[0] if num_channels_unet == 4: init_latents_proper = image_latents if do_classifier_free_guidance: init_mask, _ = mask.chunk(2) else: init_mask = mask if i < len(timesteps) - 1: noise_timestep = timesteps[i + 1] init_latents_proper = self.scheduler.add_noise( init_latents_proper, noise, torch.tensor([noise_timestep]), ) latents = (1 - init_mask) * init_latents_proper + init_mask * latents # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) # make sure the VAE is in float32 mode, as it overflows in float16 if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) if output_type != "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents return StableDiffusionXLPipelineOutput(images=image) image = self.image_processor.postprocess(image, output_type=output_type) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image,) return StableDiffusionXLPipelineOutput(images=image)
diffusers/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py/0
{ "file_path": "diffusers/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py", "repo_id": "diffusers", "token_count": 41923 }
112
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/ import inspect from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import PIL.Image import torch import torch.nn.functional as F from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, ControlNetModel, UNet2DConditionModel, logging from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import ( PIL_INTERPOLATION, replace_example_docstring, ) from diffusers.utils.torch_utils import randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import numpy as np >>> import torch >>> from PIL import Image >>> from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNetInpaintImg2ImgPipeline >>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation >>> from diffusers import ControlNetModel, UniPCMultistepScheduler >>> from diffusers.utils import load_image >>> def ade_palette(): return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]] >>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small") >>> image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small") >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16) >>> pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16 ) >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) >>> pipe.enable_xformers_memory_efficient_attention() >>> pipe.enable_model_cpu_offload() >>> def image_to_seg(image): pixel_values = image_processor(image, return_tensors="pt").pixel_values with torch.no_grad(): outputs = image_segmentor(pixel_values) seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3 palette = np.array(ade_palette()) for label, color in enumerate(palette): color_seg[seg == label, :] = color color_seg = color_seg.astype(np.uint8) seg_image = Image.fromarray(color_seg) return seg_image >>> image = load_image( "https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" ) >>> mask_image = load_image( "https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" ) >>> controlnet_conditioning_image = image_to_seg(image) >>> image = pipe( "Face of a yellow cat, high resolution, sitting on a park bench", image, mask_image, controlnet_conditioning_image, num_inference_steps=20, ).images[0] >>> image.save("out.png") ``` """ def prepare_image(image): if isinstance(image, torch.Tensor): # Batch single image if image.ndim == 3: image = image.unsqueeze(0) image = image.to(dtype=torch.float32) else: # preprocess image if isinstance(image, (PIL.Image.Image, np.ndarray)): image = [image] if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): image = [np.array(i.convert("RGB"))[None, :] for i in image] image = np.concatenate(image, axis=0) elif isinstance(image, list) and isinstance(image[0], np.ndarray): image = np.concatenate([i[None, :] for i in image], axis=0) image = image.transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 return image def prepare_mask_image(mask_image): if isinstance(mask_image, torch.Tensor): if mask_image.ndim == 2: # Batch and add channel dim for single mask mask_image = mask_image.unsqueeze(0).unsqueeze(0) elif mask_image.ndim == 3 and mask_image.shape[0] == 1: # Single mask, the 0'th dimension is considered to be # the existing batch size of 1 mask_image = mask_image.unsqueeze(0) elif mask_image.ndim == 3 and mask_image.shape[0] != 1: # Batch of mask, the 0'th dimension is considered to be # the batching dimension mask_image = mask_image.unsqueeze(1) # Binarize mask mask_image[mask_image < 0.5] = 0 mask_image[mask_image >= 0.5] = 1 else: # preprocess mask if isinstance(mask_image, (PIL.Image.Image, np.ndarray)): mask_image = [mask_image] if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image): mask_image = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0) mask_image = mask_image.astype(np.float32) / 255.0 elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray): mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0) mask_image[mask_image < 0.5] = 0 mask_image[mask_image >= 0.5] = 1 mask_image = torch.from_numpy(mask_image) return mask_image def prepare_controlnet_conditioning_image( controlnet_conditioning_image, width, height, batch_size, num_images_per_prompt, device, dtype ): if not isinstance(controlnet_conditioning_image, torch.Tensor): if isinstance(controlnet_conditioning_image, PIL.Image.Image): controlnet_conditioning_image = [controlnet_conditioning_image] if isinstance(controlnet_conditioning_image[0], PIL.Image.Image): controlnet_conditioning_image = [ np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in controlnet_conditioning_image ] controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0) controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0 controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2) controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image) elif isinstance(controlnet_conditioning_image[0], torch.Tensor): controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0) image_batch_size = controlnet_conditioning_image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0) controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype) return controlnet_conditioning_image class StableDiffusionControlNetInpaintImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin): """ Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/ """ _optional_components = ["safety_checker", "feature_extractor"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: ControlNetModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.register_to_config(requires_safety_checker=requires_safety_checker) def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def run_safety_checker(self, image, device, dtype): if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) else: has_nsfw_concept = None return image, has_nsfw_concept def decode_latents(self, latents): latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, image, mask_image, controlnet_conditioning_image, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, strength=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) controlnet_cond_image_is_pil = isinstance(controlnet_conditioning_image, PIL.Image.Image) controlnet_cond_image_is_tensor = isinstance(controlnet_conditioning_image, torch.Tensor) controlnet_cond_image_is_pil_list = isinstance(controlnet_conditioning_image, list) and isinstance( controlnet_conditioning_image[0], PIL.Image.Image ) controlnet_cond_image_is_tensor_list = isinstance(controlnet_conditioning_image, list) and isinstance( controlnet_conditioning_image[0], torch.Tensor ) if ( not controlnet_cond_image_is_pil and not controlnet_cond_image_is_tensor and not controlnet_cond_image_is_pil_list and not controlnet_cond_image_is_tensor_list ): raise TypeError( "image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors" ) if controlnet_cond_image_is_pil: controlnet_cond_image_batch_size = 1 elif controlnet_cond_image_is_tensor: controlnet_cond_image_batch_size = controlnet_conditioning_image.shape[0] elif controlnet_cond_image_is_pil_list: controlnet_cond_image_batch_size = len(controlnet_conditioning_image) elif controlnet_cond_image_is_tensor_list: controlnet_cond_image_batch_size = len(controlnet_conditioning_image) if prompt is not None and isinstance(prompt, str): prompt_batch_size = 1 elif prompt is not None and isinstance(prompt, list): prompt_batch_size = len(prompt) elif prompt_embeds is not None: prompt_batch_size = prompt_embeds.shape[0] if controlnet_cond_image_batch_size != 1 and controlnet_cond_image_batch_size != prompt_batch_size: raise ValueError( f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {controlnet_cond_image_batch_size}, prompt batch size: {prompt_batch_size}" ) if isinstance(image, torch.Tensor) and not isinstance(mask_image, torch.Tensor): raise TypeError("if `image` is a tensor, `mask_image` must also be a tensor") if isinstance(image, PIL.Image.Image) and not isinstance(mask_image, PIL.Image.Image): raise TypeError("if `image` is a PIL image, `mask_image` must also be a PIL image") if isinstance(image, torch.Tensor): if image.ndim != 3 and image.ndim != 4: raise ValueError("`image` must have 3 or 4 dimensions") if mask_image.ndim != 2 and mask_image.ndim != 3 and mask_image.ndim != 4: raise ValueError("`mask_image` must have 2, 3, or 4 dimensions") if image.ndim == 3: image_batch_size = 1 image_channels, image_height, image_width = image.shape elif image.ndim == 4: image_batch_size, image_channels, image_height, image_width = image.shape if mask_image.ndim == 2: mask_image_batch_size = 1 mask_image_channels = 1 mask_image_height, mask_image_width = mask_image.shape elif mask_image.ndim == 3: mask_image_channels = 1 mask_image_batch_size, mask_image_height, mask_image_width = mask_image.shape elif mask_image.ndim == 4: mask_image_batch_size, mask_image_channels, mask_image_height, mask_image_width = mask_image.shape if image_channels != 3: raise ValueError("`image` must have 3 channels") if mask_image_channels != 1: raise ValueError("`mask_image` must have 1 channel") if image_batch_size != mask_image_batch_size: raise ValueError("`image` and `mask_image` mush have the same batch sizes") if image_height != mask_image_height or image_width != mask_image_width: raise ValueError("`image` and `mask_image` must have the same height and width dimensions") if image.min() < -1 or image.max() > 1: raise ValueError("`image` should be in range [-1, 1]") if mask_image.min() < 0 or mask_image.max() > 1: raise ValueError("`mask_image` should be in range [0, 1]") else: mask_image_channels = 1 image_channels = 3 single_image_latent_channels = self.vae.config.latent_channels total_latent_channels = single_image_latent_channels * 2 + mask_image_channels if total_latent_channels != self.unet.config.in_channels: raise ValueError( f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received" f" non inpainting latent channels: {single_image_latent_channels}," f" mask channels: {mask_image_channels}, and masked image channels: {single_image_latent_channels}." f" Please verify the config of `pipeline.unet` and the `mask_image` and `image` inputs." ) if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if isinstance(generator, list): init_latents = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = self.vae.encode(image).latent_dist.sample(generator) init_latents = self.vae.config.scaling_factor * init_latents if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents def prepare_mask_latents(self, mask_image, batch_size, height, width, dtype, device, do_classifier_free_guidance): # resize the mask to latents shape as we concatenate the mask to the latents # we do that before converting to dtype to avoid breaking in case we're using cpu_offload # and half precision mask_image = F.interpolate(mask_image, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) mask_image = mask_image.to(device=device, dtype=dtype) # duplicate mask for each generation per prompt, using mps friendly method if mask_image.shape[0] < batch_size: if not batch_size % mask_image.shape[0] == 0: raise ValueError( "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" f" a total batch size of {batch_size}, but {mask_image.shape[0]} masks were passed. Make sure the number" " of masks that you pass is divisible by the total requested batch size." ) mask_image = mask_image.repeat(batch_size // mask_image.shape[0], 1, 1, 1) mask_image = torch.cat([mask_image] * 2) if do_classifier_free_guidance else mask_image mask_image_latents = mask_image return mask_image_latents def prepare_masked_image_latents( self, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance ): masked_image = masked_image.to(device=device, dtype=dtype) # encode the mask image into latents space so we can concatenate it to the latents if isinstance(generator, list): masked_image_latents = [ self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i]) for i in range(batch_size) ] masked_image_latents = torch.cat(masked_image_latents, dim=0) else: masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator) masked_image_latents = self.vae.config.scaling_factor * masked_image_latents # duplicate masked_image_latents for each generation per prompt, using mps friendly method if masked_image_latents.shape[0] < batch_size: if not batch_size % masked_image_latents.shape[0] == 0: raise ValueError( "The passed images and the required batch size don't match. Images are supposed to be duplicated" f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." " Make sure the number of images that you pass is divisible by the total requested batch size." ) masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) masked_image_latents = ( torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents ) # aligning device to prevent device errors when concating it with the latent model input masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) return masked_image_latents def _default_height_width(self, height, width, image): if isinstance(image, list): image = image[0] if height is None: if isinstance(image, PIL.Image.Image): height = image.height elif isinstance(image, torch.Tensor): height = image.shape[3] height = (height // 8) * 8 # round down to nearest multiple of 8 if width is None: if isinstance(image, PIL.Image.Image): width = image.width elif isinstance(image, torch.Tensor): width = image.shape[2] width = (width // 8) * 8 # round down to nearest multiple of 8 return height, width @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, image: Union[torch.Tensor, PIL.Image.Image] = None, mask_image: Union[torch.Tensor, PIL.Image.Image] = None, controlnet_conditioning_image: Union[ torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image] ] = None, strength: float = 0.8, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_conditioning_scale: float = 1.0, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`torch.Tensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will be masked out with `mask_image` and repainted according to `prompt`. mask_image (`torch.Tensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. controlnet_conditioning_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`): The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can also be accepted as an image. The control image is automatically resized to fit the output image. strength (`float`, *optional*): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0): The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original unet. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 0. Default height and width to unet height, width = self._default_height_width(height, width, controlnet_conditioning_image) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, image, mask_image, controlnet_conditioning_image, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, strength, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # 4. Prepare mask, image, and controlnet_conditioning_image image = prepare_image(image) mask_image = prepare_mask_image(mask_image) controlnet_conditioning_image = prepare_controlnet_conditioning_image( controlnet_conditioning_image, width, height, batch_size * num_images_per_prompt, num_images_per_prompt, device, self.controlnet.dtype, ) masked_image = image * (mask_image < 0.5) # 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # 6. Prepare latent variables latents = self.prepare_latents( image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, ) mask_image_latents = self.prepare_mask_latents( mask_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, do_classifier_free_guidance, ) masked_image_latents = self.prepare_masked_image_latents( masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, do_classifier_free_guidance, ) if do_classifier_free_guidance: controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2) # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance non_inpainting_latent_model_input = ( torch.cat([latents] * 2) if do_classifier_free_guidance else latents ) non_inpainting_latent_model_input = self.scheduler.scale_model_input( non_inpainting_latent_model_input, t ) inpainting_latent_model_input = torch.cat( [non_inpainting_latent_model_input, mask_image_latents, masked_image_latents], dim=1 ) down_block_res_samples, mid_block_res_sample = self.controlnet( non_inpainting_latent_model_input, t, encoder_hidden_states=prompt_embeds, controlnet_cond=controlnet_conditioning_image, return_dict=False, ) down_block_res_samples = [ down_block_res_sample * controlnet_conditioning_scale for down_block_res_sample in down_block_res_samples ] mid_block_res_sample *= controlnet_conditioning_scale # predict the noise residual noise_pred = self.unet( inpainting_latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # If we do sequential model offloading, let's offload unet and controlnet # manually for max memory savings if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.unet.to("cpu") self.controlnet.to("cpu") torch.cuda.empty_cache() if output_type == "latent": image = latents has_nsfw_concept = None elif output_type == "pil": # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) # 10. Convert to PIL image = self.numpy_to_pil(image) else: # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers/examples/community/stable_diffusion_controlnet_inpaint_img2img.py/0
{ "file_path": "diffusers/examples/community/stable_diffusion_controlnet_inpaint_img2img.py", "repo_id": "diffusers", "token_count": 23359 }
113
#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import contextlib import gc import logging import math import os import random import shutil from pathlib import Path import accelerate import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from PIL import Image from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, ControlNetModel, DDPMScheduler, StableDiffusionControlNetPipeline, UNet2DConditionModel, UniPCMultistepScheduler, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.torch_utils import is_compiled_module if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.28.0.dev0") logger = get_logger(__name__) def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def log_validation( vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, step, is_final_validation=False ): logger.info("Running validation... ") if not is_final_validation: controlnet = accelerator.unwrap_model(controlnet) else: controlnet = ControlNetModel.from_pretrained(args.output_dir, torch_dtype=weight_dtype) pipeline = StableDiffusionControlNetPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, safety_checker=None, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) if args.enable_xformers_memory_efficient_attention: pipeline.enable_xformers_memory_efficient_attention() if args.seed is None: generator = None else: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if len(args.validation_image) == len(args.validation_prompt): validation_images = args.validation_image validation_prompts = args.validation_prompt elif len(args.validation_image) == 1: validation_images = args.validation_image * len(args.validation_prompt) validation_prompts = args.validation_prompt elif len(args.validation_prompt) == 1: validation_images = args.validation_image validation_prompts = args.validation_prompt * len(args.validation_image) else: raise ValueError( "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" ) image_logs = [] inference_ctx = contextlib.nullcontext() if is_final_validation else torch.autocast("cuda") for validation_prompt, validation_image in zip(validation_prompts, validation_images): validation_image = Image.open(validation_image).convert("RGB") images = [] for _ in range(args.num_validation_images): with inference_ctx: image = pipeline( validation_prompt, validation_image, num_inference_steps=20, generator=generator ).images[0] images.append(image) image_logs.append( {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} ) tracker_key = "test" if is_final_validation else "validation" for tracker in accelerator.trackers: if tracker.name == "tensorboard": for log in image_logs: images = log["images"] validation_prompt = log["validation_prompt"] validation_image = log["validation_image"] formatted_images = [] formatted_images.append(np.asarray(validation_image)) for image in images: formatted_images.append(np.asarray(image)) formatted_images = np.stack(formatted_images) tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC") elif tracker.name == "wandb": formatted_images = [] for log in image_logs: images = log["images"] validation_prompt = log["validation_prompt"] validation_image = log["validation_image"] formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) for image in images: image = wandb.Image(image, caption=validation_prompt) formatted_images.append(image) tracker.log({tracker_key: formatted_images}) else: logger.warning(f"image logging not implemented for {tracker.name}") del pipeline gc.collect() torch.cuda.empty_cache() return image_logs def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation else: raise ValueError(f"{model_class} is not supported.") def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): img_str = "" if image_logs is not None: img_str = "You can find some example images below.\n\n" for i, log in enumerate(image_logs): images = log["images"] validation_prompt = log["validation_prompt"] validation_image = log["validation_image"] validation_image.save(os.path.join(repo_folder, "image_control.png")) img_str += f"prompt: {validation_prompt}\n" images = [validation_image] + images image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) img_str += f"![images_{i})](./images_{i}.png)\n" model_description = f""" # controlnet-{repo_id} These are controlnet weights trained on {base_model} with new type of conditioning. {img_str} """ model_card = load_or_create_model_card( repo_id_or_path=repo_id, from_training=True, license="creativeml-openrail-m", base_model=base_model, model_description=model_description, inference=True, ) tags = [ "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers", "controlnet", "diffusers-training", ] model_card = populate_model_card(model_card, tags=tags) model_card.save(os.path.join(repo_folder, "README.md")) def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--controlnet_model_name_or_path", type=str, default=None, help="Path to pretrained controlnet model or model identifier from huggingface.co/models." " If not specified controlnet weights are initialized from unet.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--output_dir", type=str, default="controlnet-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" "instructions." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--set_grads_to_none", action="store_true", help=( "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" " behaviors, so disable this argument if it causes any problems. More info:" " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" ), ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing the target image." ) parser.add_argument( "--conditioning_image_column", type=str, default="conditioning_image", help="The column of the dataset containing the controlnet conditioning image.", ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--proportion_empty_prompts", type=float, default=0, help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", ) parser.add_argument( "--validation_prompt", type=str, default=None, nargs="+", help=( "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." " Provide either a matching number of `--validation_image`s, a single `--validation_image`" " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." ), ) parser.add_argument( "--validation_image", type=str, default=None, nargs="+", help=( "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" " a single `--validation_prompt` to be used with all `--validation_image`s, or a single" " `--validation_image` that will be used with all `--validation_prompt`s." ), ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", ) parser.add_argument( "--validation_steps", type=int, default=100, help=( "Run validation every X steps. Validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`" " and logging the images." ), ) parser.add_argument( "--tracker_project_name", type=str, default="train_controlnet", help=( "The `project_name` argument passed to Accelerator.init_trackers for" " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" ), ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Specify either `--dataset_name` or `--train_data_dir`") if args.dataset_name is not None and args.train_data_dir is not None: raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") if args.validation_prompt is not None and args.validation_image is None: raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") if args.validation_prompt is None and args.validation_image is not None: raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") if ( args.validation_image is not None and args.validation_prompt is not None and len(args.validation_image) != 1 and len(args.validation_prompt) != 1 and len(args.validation_image) != len(args.validation_prompt) ): raise ValueError( "Must provide either 1 `--validation_image`, 1 `--validation_prompt`," " or the same number of `--validation_prompt`s and `--validation_image`s" ) if args.resolution % 8 != 0: raise ValueError( "`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder." ) return args def make_train_dataset(args, tokenizer, accelerator): # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: if args.train_data_dir is not None: dataset = load_dataset( args.train_data_dir, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. if args.image_column is None: image_column = column_names[0] logger.info(f"image column defaulting to {image_column}") else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = column_names[1] logger.info(f"caption column defaulting to {caption_column}") else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) if args.conditioning_image_column is None: conditioning_image_column = column_names[2] logger.info(f"conditioning image column defaulting to {conditioning_image_column}") else: conditioning_image_column = args.conditioning_image_column if conditioning_image_column not in column_names: raise ValueError( f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if random.random() < args.proportion_empty_prompts: captions.append("") elif isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) return inputs.input_ids image_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) conditioning_image_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution), transforms.ToTensor(), ] ) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] images = [image_transforms(image) for image in images] conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]] conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images] examples["pixel_values"] = images examples["conditioning_pixel_values"] = conditioning_images examples["input_ids"] = tokenize_captions(examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) return train_dataset def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples]) conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.stack([example["input_ids"] for example in examples]) return { "pixel_values": pixel_values, "conditioning_pixel_values": conditioning_pixel_values, "input_ids": input_ids, } def main(args): if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) if args.controlnet_model_name_or_path: logger.info("Loading existing controlnet weights") controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path) else: logger.info("Initializing controlnet weights from unet") controlnet = ControlNetModel.from_unet(unet) # Taken from [Sayak Paul's Diffusers PR #6511](https://github.com/huggingface/diffusers/pull/6511/files) def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: i = len(weights) - 1 while len(weights) > 0: weights.pop() model = models[i] sub_dir = "controlnet" model.save_pretrained(os.path.join(output_dir, sub_dir)) i -= 1 def load_model_hook(models, input_dir): while len(models) > 0: # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) vae.requires_grad_(False) unet.requires_grad_(False) text_encoder.requires_grad_(False) controlnet.train() if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warning( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() controlnet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: controlnet.enable_gradient_checkpointing() # Check that all trainable models are in full precision low_precision_error_string = ( " Please make sure to always have all model weights in full float32 precision when starting training - even if" " doing mixed precision training, copy of the weights should still be float32." ) if unwrap_model(controlnet).dtype != torch.float32: raise ValueError( f"Controlnet loaded as datatype {unwrap_model(controlnet).dtype}. {low_precision_error_string}" ) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = controlnet.parameters() optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) train_dataset = make_train_dataset(args, tokenizer, accelerator) train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( controlnet, optimizer, train_dataloader, lr_scheduler ) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae, unet and text_encoder to device and cast to weight_dtype vae.to(accelerator.device, dtype=weight_dtype) unet.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = dict(vars(args)) # tensorboard cannot handle list types for config tracker_config.pop("validation_prompt") tracker_config.pop("validation_image") accelerator.init_trackers(args.tracker_project_name, config=tracker_config) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) image_logs = None for epoch in range(first_epoch, args.num_train_epochs): for step, batch in enumerate(train_dataloader): with accelerator.accumulate(controlnet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0] controlnet_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype) down_block_res_samples, mid_block_res_sample = controlnet( noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states, controlnet_cond=controlnet_image, return_dict=False, ) # Predict the noise residual model_pred = unet( noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states, down_block_additional_residuals=[ sample.to(dtype=weight_dtype) for sample in down_block_res_samples ], mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype), return_dict=False, )[0] # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = controlnet.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=args.set_grads_to_none) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") if args.validation_prompt is not None and global_step % args.validation_steps == 0: image_logs = log_validation( vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, global_step, ) logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break # Create the pipeline using using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: controlnet = unwrap_model(controlnet) controlnet.save_pretrained(args.output_dir) # Run a final round of validation. image_logs = None if args.validation_prompt is not None: image_logs = log_validation( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=None, args=args, accelerator=accelerator, weight_dtype=weight_dtype, step=global_step, is_final_validation=True, ) if args.push_to_hub: save_model_card( repo_id, image_logs=image_logs, base_model=args.pretrained_model_name_or_path, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
diffusers/examples/controlnet/train_controlnet.py/0
{ "file_path": "diffusers/examples/controlnet/train_controlnet.py", "repo_id": "diffusers", "token_count": 20469 }
114
#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import copy import gc import importlib import itertools import logging import math import os import shutil import warnings from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, model_info, upload_folder from huggingface_hub.utils import insecure_hashlib from packaging import version from PIL import Image from PIL.ImageOps import exif_transpose from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.training_utils import compute_snr from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.torch_utils import is_compiled_module if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.28.0.dev0") logger = get_logger(__name__) def save_model_card( repo_id: str, images: list = None, base_model: str = None, train_text_encoder=False, prompt: str = None, repo_folder: str = None, pipeline: DiffusionPipeline = None, ): img_str = "" if images is not None: for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" model_description = f""" # DreamBooth - {repo_id} This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n {img_str} DreamBooth for the text encoder was enabled: {train_text_encoder}. """ model_card = load_or_create_model_card( repo_id_or_path=repo_id, from_training=True, license="creativeml-openrail-m", base_model=base_model, prompt=prompt, model_description=model_description, inference=True, ) tags = ["text-to-image", "dreambooth", "diffusers-training"] if isinstance(pipeline, StableDiffusionPipeline): tags.extend(["stable-diffusion", "stable-diffusion-diffusers"]) else: tags.extend(["if", "if-diffusers"]) model_card = populate_model_card(model_card, tags=tags) model_card.save(os.path.join(repo_folder, "README.md")) def log_validation( text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, global_step, prompt_embeds, negative_prompt_embeds, ): logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) pipeline_args = {} if vae is not None: pipeline_args["vae"] = vae # create pipeline (note: unet and vae are loaded again in float32) pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, **pipeline_args, ) # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it scheduler_args = {} if "variance_type" in pipeline.scheduler.config: variance_type = pipeline.scheduler.config.variance_type if variance_type in ["learned", "learned_range"]: variance_type = "fixed_small" scheduler_args["variance_type"] = variance_type module = importlib.import_module("diffusers") scheduler_class = getattr(module, args.validation_scheduler) pipeline.scheduler = scheduler_class.from_config(pipeline.scheduler.config, **scheduler_args) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) if args.pre_compute_text_embeddings: pipeline_args = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, } else: pipeline_args = {"prompt": args.validation_prompt} # run inference generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [] if args.validation_images is None: for _ in range(args.num_validation_images): with torch.autocast("cuda"): image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0] images.append(image) else: for image in args.validation_images: image = Image.open(image) image = pipeline(**pipeline_args, image=image, generator=generator).images[0] images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() return images def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation elif model_class == "T5EncoderModel": from transformers import T5EncoderModel return T5EncoderModel else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, required=True, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="dreambooth-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--train_text_encoder", action="store_true", help="Whether to train the text encoder. If set, the text encoder should be float32 precision.", ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" "instructions." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more details" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_steps", type=int, default=100, help=( "Run validation every X steps. Validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`" " and logging the images." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--set_grads_to_none", action="store_true", help=( "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" " behaviors, so disable this argument if it causes any problems. More info:" " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" ), ) parser.add_argument( "--offset_noise", action="store_true", default=False, help=( "Fine-tuning against a modified noise" " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information." ), ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--pre_compute_text_embeddings", action="store_true", help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.", ) parser.add_argument( "--tokenizer_max_length", type=int, default=None, required=False, help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.", ) parser.add_argument( "--text_encoder_use_attention_mask", action="store_true", required=False, help="Whether to use attention mask for the text encoder", ) parser.add_argument( "--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder" ) parser.add_argument( "--validation_images", required=False, default=None, nargs="+", help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.", ) parser.add_argument( "--class_labels_conditioning", required=False, default=None, help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.", ) parser.add_argument( "--validation_scheduler", type=str, default="DPMSolverMultistepScheduler", choices=["DPMSolverMultistepScheduler", "DDPMScheduler"], help="Select which scheduler to use for validation. DDPMScheduler is recommended for DeepFloyd IF.", ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") else: # logger is not available yet if args.class_data_dir is not None: warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") if args.class_prompt is not None: warnings.warn("You need not use --class_prompt without --with_prior_preservation.") if args.train_text_encoder and args.pre_compute_text_embeddings: raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`") return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, class_num=None, size=512, center_crop=False, encoder_hidden_states=None, class_prompt_encoder_hidden_states=None, tokenizer_max_length=None, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.encoder_hidden_states = encoder_hidden_states self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states self.tokenizer_max_length = tokenizer_max_length self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) if class_num is not None: self.num_class_images = min(len(self.class_images_path), class_num) else: self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) instance_image = exif_transpose(instance_image) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) if self.encoder_hidden_states is not None: example["instance_prompt_ids"] = self.encoder_hidden_states else: text_inputs = tokenize_prompt( self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length ) example["instance_prompt_ids"] = text_inputs.input_ids example["instance_attention_mask"] = text_inputs.attention_mask if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) class_image = exif_transpose(class_image) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) if self.class_prompt_encoder_hidden_states is not None: example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states else: class_text_inputs = tokenize_prompt( self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length ) example["class_prompt_ids"] = class_text_inputs.input_ids example["class_attention_mask"] = class_text_inputs.attention_mask return example def collate_fn(examples, with_prior_preservation=False): has_attention_mask = "instance_attention_mask" in examples[0] input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] if has_attention_mask: attention_mask = [example["instance_attention_mask"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] if has_attention_mask: attention_mask += [example["class_attention_mask"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.cat(input_ids, dim=0) batch = { "input_ids": input_ids, "pixel_values": pixel_values, } if has_attention_mask: attention_mask = torch.cat(attention_mask, dim=0) batch["attention_mask"] = attention_mask return batch class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example def model_has_vae(args): config_file_name = os.path.join("vae", AutoencoderKL.config_name) if os.path.isdir(args.pretrained_model_name_or_path): config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name) return os.path.isfile(config_file_name) else: files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings return any(file.rfilename == config_file_name for file in files_in_repo) def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None): if tokenizer_max_length is not None: max_length = tokenizer_max_length else: max_length = tokenizer.model_max_length text_inputs = tokenizer( prompt, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt", ) return text_inputs def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None): text_input_ids = input_ids.to(text_encoder.device) if text_encoder_use_attention_mask: attention_mask = attention_mask.to(text_encoder.device) else: attention_mask = None prompt_embeds = text_encoder( text_input_ids, attention_mask=attention_mask, return_dict=False, ) prompt_embeds = prompt_embeds[0] return prompt_embeds def main(args): if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Generate class images if prior preservation is enabled. if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 if args.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif args.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif args.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None, revision=args.revision, variant=args.variant, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) if model_has_vae(args): vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant ) else: vae = None unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: for model in models: sub_dir = "unet" if isinstance(model, type(unwrap_model(unet))) else "text_encoder" model.save_pretrained(os.path.join(output_dir, sub_dir)) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): while len(models) > 0: # pop models so that they are not loaded again model = models.pop() if isinstance(model, type(unwrap_model(text_encoder))): # load transformers style into model load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder") model.config = load_model.config else: # load diffusers style into model load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if vae is not None: vae.requires_grad_(False) if not args.train_text_encoder: text_encoder.requires_grad_(False) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warning( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.train_text_encoder: text_encoder.gradient_checkpointing_enable() # Check that all trainable models are in full precision low_precision_error_string = ( "Please make sure to always have all model weights in full float32 precision when starting training - even if" " doing mixed precision training. copy of the weights should still be float32." ) if unwrap_model(unet).dtype != torch.float32: raise ValueError(f"Unet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}") if args.train_text_encoder and unwrap_model(text_encoder).dtype != torch.float32: raise ValueError( f"Text encoder loaded as datatype {unwrap_model(text_encoder).dtype}." f" {low_precision_error_string}" ) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) if args.pre_compute_text_embeddings: def compute_text_embeddings(prompt): with torch.no_grad(): text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length) prompt_embeds = encode_prompt( text_encoder, text_inputs.input_ids, text_inputs.attention_mask, text_encoder_use_attention_mask=args.text_encoder_use_attention_mask, ) return prompt_embeds pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt) validation_prompt_negative_prompt_embeds = compute_text_embeddings("") if args.validation_prompt is not None: validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt) else: validation_prompt_encoder_hidden_states = None if args.class_prompt is not None: pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt) else: pre_computed_class_prompt_encoder_hidden_states = None text_encoder = None tokenizer = None gc.collect() torch.cuda.empty_cache() else: pre_computed_encoder_hidden_states = None validation_prompt_encoder_hidden_states = None validation_prompt_negative_prompt_embeds = None pre_computed_class_prompt_encoder_hidden_states = None # Dataset and DataLoaders creation: train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, class_num=args.num_class_images, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, encoder_hidden_states=pre_computed_encoder_hidden_states, class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states, tokenizer_max_length=args.tokenizer_max_length, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae and text_encoder to device and cast to weight_dtype if vae is not None: vae.to(accelerator.device, dtype=weight_dtype) if not args.train_text_encoder and text_encoder is not None: text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = vars(copy.deepcopy(args)) tracker_config.pop("validation_images") accelerator.init_trackers("dreambooth", config=tracker_config) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): unet.train() if args.train_text_encoder: text_encoder.train() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): pixel_values = batch["pixel_values"].to(dtype=weight_dtype) if vae is not None: # Convert images to latent space model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() model_input = model_input * vae.config.scaling_factor else: model_input = pixel_values # Sample noise that we'll add to the model input if args.offset_noise: noise = torch.randn_like(model_input) + 0.1 * torch.randn( model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device ) else: noise = torch.randn_like(model_input) bsz, channels, height, width = model_input.shape # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device ) timesteps = timesteps.long() # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) # Get the text embedding for conditioning if args.pre_compute_text_embeddings: encoder_hidden_states = batch["input_ids"] else: encoder_hidden_states = encode_prompt( text_encoder, batch["input_ids"], batch["attention_mask"], text_encoder_use_attention_mask=args.text_encoder_use_attention_mask, ) if unwrap_model(unet).config.in_channels == channels * 2: noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1) if args.class_labels_conditioning == "timesteps": class_labels = timesteps else: class_labels = None # Predict the noise residual model_pred = unet( noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels, return_dict=False )[0] if model_pred.shape[1] == 6: model_pred, _ = torch.chunk(model_pred, 2, dim=1) # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(model_input, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Compute instance loss if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(noise_scheduler, timesteps) base_weight = ( torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr ) if noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective needs to be floored to an SNR weight of one. mse_loss_weights = base_weight + 1 else: # Epsilon and sample both use the same loss weights. mse_loss_weights = base_weight loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() if args.with_prior_preservation: # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=args.set_grads_to_none) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") images = [] if args.validation_prompt is not None and global_step % args.validation_steps == 0: images = log_validation( unwrap_model(text_encoder) if text_encoder is not None else text_encoder, tokenizer, unwrap_model(unet), vae, args, accelerator, weight_dtype, global_step, validation_prompt_encoder_hidden_states, validation_prompt_negative_prompt_embeds, ) logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: pipeline_args = {} if text_encoder is not None: pipeline_args["text_encoder"] = unwrap_model(text_encoder) if args.skip_save_text_encoder: pipeline_args["text_encoder"] = None pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unwrap_model(unet), revision=args.revision, variant=args.variant, **pipeline_args, ) # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it scheduler_args = {} if "variance_type" in pipeline.scheduler.config: variance_type = pipeline.scheduler.config.variance_type if variance_type in ["learned", "learned_range"]: variance_type = "fixed_small" scheduler_args["variance_type"] = variance_type pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) pipeline.save_pretrained(args.output_dir) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, train_text_encoder=args.train_text_encoder, prompt=args.instance_prompt, repo_folder=args.output_dir, pipeline=pipeline, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
diffusers/examples/dreambooth/train_dreambooth.py/0
{ "file_path": "diffusers/examples/dreambooth/train_dreambooth.py", "repo_id": "diffusers", "token_count": 25337 }
115
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning script for Kandinsky with support for LoRA.""" import argparse import logging import math import os import shutil from pathlib import Path import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from PIL import Image from tqdm import tqdm from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection import diffusers from diffusers import AutoPipelineForText2Image, DDPMScheduler, UNet2DConditionModel, VQModel from diffusers.loaders import AttnProcsLayers from diffusers.models.attention_processor import LoRAAttnAddedKVProcessor from diffusers.optimization import get_scheduler from diffusers.training_utils import compute_snr from diffusers.utils import check_min_version, is_wandb_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.28.0.dev0") logger = get_logger(__name__, log_level="INFO") def save_model_card(repo_id: str, images=None, base_model=str, dataset_name=str, repo_folder=None): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" yaml = f""" --- license: creativeml-openrail-m base_model: {base_model} tags: - kandinsky - text-to-image - diffusers - diffusers-training - lora inference: true --- """ model_card = f""" # LoRA text2image fine-tuning - {repo_id} These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n {img_str} """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of finetuning Kandinsky 2.2 with LoRA.") parser.add_argument( "--pretrained_decoder_model_name_or_path", type=str, default="kandinsky-community/kandinsky-2-2-decoder", required=False, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_prior_model_name_or_path", type=str, default="kandinsky-community/kandinsky-2-2-prior", required=False, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=1, help=( "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--output_dir", type=str, default="kandi_2_2-model-finetuned-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") return args def main(): args = parse_args() if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_decoder_model_name_or_path, subfolder="scheduler") image_processor = CLIPImageProcessor.from_pretrained( args.pretrained_prior_model_name_or_path, subfolder="image_processor" ) image_encoder = CLIPVisionModelWithProjection.from_pretrained( args.pretrained_prior_model_name_or_path, subfolder="image_encoder" ) vae = VQModel.from_pretrained(args.pretrained_decoder_model_name_or_path, subfolder="movq") unet = UNet2DConditionModel.from_pretrained(args.pretrained_decoder_model_name_or_path, subfolder="unet") # freeze parameters of models to save more memory unet.requires_grad_(False) vae.requires_grad_(False) image_encoder.requires_grad_(False) # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) image_encoder.to(accelerator.device, dtype=weight_dtype) lora_attn_procs = {} for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] lora_attn_procs[name] = LoRAAttnAddedKVProcessor( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=args.rank, ) unet.set_attn_processor(lora_attn_procs) lora_layers = AttnProcsLayers(unet.attn_processors) if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW optimizer = optimizer_cls( lora_layers.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names image_column = args.image_column if image_column not in column_names: raise ValueError(f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}") def center_crop(image): width, height = image.size new_size = min(width, height) left = (width - new_size) / 2 top = (height - new_size) / 2 right = (width + new_size) / 2 bottom = (height + new_size) / 2 return image.crop((left, top, right, bottom)) def train_transforms(img): img = center_crop(img) img = img.resize((args.resolution, args.resolution), resample=Image.BICUBIC, reducing_gap=1) img = np.array(img).astype(np.float32) / 127.5 - 1 img = torch.from_numpy(np.transpose(img, [2, 0, 1])) return img def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["pixel_values"] = [train_transforms(image) for image in images] examples["clip_pixel_values"] = image_processor(images, return_tensors="pt").pixel_values return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() clip_pixel_values = torch.stack([example["clip_pixel_values"] for example in examples]) clip_pixel_values = clip_pixel_values.to(memory_format=torch.contiguous_format).float() return {"pixel_values": pixel_values, "clip_pixel_values": clip_pixel_values} train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) # Prepare everything with our `accelerator`. lora_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( lora_layers, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("text2image-fine-tune", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): unet.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # Convert images to latent space images = batch["pixel_values"].to(weight_dtype) clip_images = batch["clip_pixel_values"].to(weight_dtype) latents = vae.encode(images).latents image_embeds = image_encoder(clip_images).image_embeds # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) target = noise # Predict the noise residual and compute loss added_cond_kwargs = {"image_embeds": image_embeds} model_pred = unet(noisy_latents, timesteps, None, added_cond_kwargs=added_cond_kwargs).sample[:, :4] if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(noise_scheduler, timesteps) mse_loss_weights = torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min( dim=1 )[0] if noise_scheduler.config.prediction_type == "epsilon": mse_loss_weights = mse_loss_weights / snr elif noise_scheduler.config.prediction_type == "v_prediction": mse_loss_weights = mse_loss_weights / (snr + 1) loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = lora_layers.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline pipeline = AutoPipelineForText2Image.from_pretrained( args.pretrained_decoder_model_name_or_path, unet=accelerator.unwrap_model(unet), torch_dtype=weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device) if args.seed is not None: generator = generator.manual_seed(args.seed) images = [] for _ in range(args.num_validation_images): images.append( pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0] ) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: unet = unet.to(torch.float32) unet.save_attn_procs(args.output_dir) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_decoder_model_name_or_path, dataset_name=args.dataset_name, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) # Final inference # Load previous pipeline pipeline = AutoPipelineForText2Image.from_pretrained( args.pretrained_decoder_model_name_or_path, torch_dtype=weight_dtype ) pipeline = pipeline.to(accelerator.device) # load attention processors pipeline.unet.load_attn_procs(args.output_dir) # run inference generator = torch.Generator(device=accelerator.device) if args.seed is not None: generator = generator.manual_seed(args.seed) images = [] for _ in range(args.num_validation_images): images.append(pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0]) if accelerator.is_main_process: for tracker in accelerator.trackers: if len(images) != 0: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) accelerator.end_training() if __name__ == "__main__": main()
diffusers/examples/kandinsky2_2/text_to_image/train_text_to_image_lora_decoder.py/0
{ "file_path": "diffusers/examples/kandinsky2_2/text_to_image/train_text_to_image_lora_decoder.py", "repo_id": "diffusers", "token_count": 14877 }
116
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F from torch.nn.modules.normalization import GroupNorm from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.attention_processor import USE_PEFT_BACKEND, AttentionProcessor from diffusers.models.autoencoders import AutoencoderKL from diffusers.models.lora import LoRACompatibleConv from diffusers.models.modeling_utils import ModelMixin from diffusers.models.unets.unet_2d_blocks import ( CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, Downsample2D, ResnetBlock2D, Transformer2DModel, UpBlock2D, Upsample2D, ) from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel from diffusers.utils import BaseOutput, logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class ControlNetXSOutput(BaseOutput): """ The output of [`ControlNetXSModel`]. Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): The output of the `ControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base model output, but is already the final output. """ sample: torch.FloatTensor = None # copied from diffusers.models.controlnet.ControlNetConditioningEmbedding class ControlNetConditioningEmbedding(nn.Module): """ Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full model) to encode image-space conditions ... into feature maps ..." """ def __init__( self, conditioning_embedding_channels: int, conditioning_channels: int = 3, block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), ): super().__init__() self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) self.blocks = nn.ModuleList([]) for i in range(len(block_out_channels) - 1): channel_in = block_out_channels[i] channel_out = block_out_channels[i + 1] self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) self.conv_out = zero_module( nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) ) def forward(self, conditioning): embedding = self.conv_in(conditioning) embedding = F.silu(embedding) for block in self.blocks: embedding = block(embedding) embedding = F.silu(embedding) embedding = self.conv_out(embedding) return embedding class ControlNetXSModel(ModelMixin, ConfigMixin): r""" A ControlNet-XS model This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Most of parameters for this model are passed into the [`UNet2DConditionModel`] it creates. Check the documentation of [`UNet2DConditionModel`] for them. Parameters: conditioning_channels (`int`, defaults to 3): Number of channels of conditioning input (e.g. an image) controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): The channel order of conditional image. Will convert to `rgb` if it's `bgr`. conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`): The tuple of output channel for each block in the `controlnet_cond_embedding` layer. time_embedding_input_dim (`int`, defaults to 320): Dimension of input into time embedding. Needs to be same as in the base model. time_embedding_dim (`int`, defaults to 1280): Dimension of output from time embedding. Needs to be same as in the base model. learn_embedding (`bool`, defaults to `False`): Whether to use time embedding of the control model. If yes, the time embedding is a linear interpolation of the time embeddings of the control and base model with interpolation parameter `time_embedding_mix**3`. time_embedding_mix (`float`, defaults to 1.0): Linear interpolation parameter used if `learn_embedding` is `True`. A value of 1.0 means only the control model's time embedding will be used. A value of 0.0 means only the base model's time embedding will be used. base_model_channel_sizes (`Dict[str, List[Tuple[int]]]`): Channel sizes of each subblock of base model. Use `gather_subblock_sizes` on your base model to compute it. """ @classmethod def init_original(cls, base_model: UNet2DConditionModel, is_sdxl=True): """ Create a ControlNetXS model with the same parameters as in the original paper (https://github.com/vislearn/ControlNet-XS). Parameters: base_model (`UNet2DConditionModel`): Base UNet model. Needs to be either StableDiffusion or StableDiffusion-XL. is_sdxl (`bool`, defaults to `True`): Whether passed `base_model` is a StableDiffusion-XL model. """ def get_dim_attn_heads(base_model: UNet2DConditionModel, size_ratio: float, num_attn_heads: int): """ Currently, diffusers can only set the dimension of attention heads (see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why). The original ControlNet-XS model, however, define the number of attention heads. That's why compute the dimensions needed to get the correct number of attention heads. """ block_out_channels = [int(size_ratio * c) for c in base_model.config.block_out_channels] dim_attn_heads = [math.ceil(c / num_attn_heads) for c in block_out_channels] return dim_attn_heads if is_sdxl: return ControlNetXSModel.from_unet( base_model, time_embedding_mix=0.95, learn_embedding=True, size_ratio=0.1, conditioning_embedding_out_channels=(16, 32, 96, 256), num_attention_heads=get_dim_attn_heads(base_model, 0.1, 64), ) else: return ControlNetXSModel.from_unet( base_model, time_embedding_mix=1.0, learn_embedding=True, size_ratio=0.0125, conditioning_embedding_out_channels=(16, 32, 96, 256), num_attention_heads=get_dim_attn_heads(base_model, 0.0125, 8), ) @classmethod def _gather_subblock_sizes(cls, unet: UNet2DConditionModel, base_or_control: str): """To create correctly sized connections between base and control model, we need to know the input and output channels of each subblock. Parameters: unet (`UNet2DConditionModel`): Unet of which the subblock channels sizes are to be gathered. base_or_control (`str`): Needs to be either "base" or "control". If "base", decoder is also considered. """ if base_or_control not in ["base", "control"]: raise ValueError("`base_or_control` needs to be either `base` or `control`") channel_sizes = {"down": [], "mid": [], "up": []} # input convolution channel_sizes["down"].append((unet.conv_in.in_channels, unet.conv_in.out_channels)) # encoder blocks for module in unet.down_blocks: if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): for r in module.resnets: channel_sizes["down"].append((r.in_channels, r.out_channels)) if module.downsamplers: channel_sizes["down"].append( (module.downsamplers[0].channels, module.downsamplers[0].out_channels) ) else: raise ValueError(f"Encountered unknown module of type {type(module)} while creating ControlNet-XS.") # middle block channel_sizes["mid"].append((unet.mid_block.resnets[0].in_channels, unet.mid_block.resnets[0].out_channels)) # decoder blocks if base_or_control == "base": for module in unet.up_blocks: if isinstance(module, (CrossAttnUpBlock2D, UpBlock2D)): for r in module.resnets: channel_sizes["up"].append((r.in_channels, r.out_channels)) else: raise ValueError( f"Encountered unknown module of type {type(module)} while creating ControlNet-XS." ) return channel_sizes @register_to_config def __init__( self, conditioning_channels: int = 3, conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), controlnet_conditioning_channel_order: str = "rgb", time_embedding_input_dim: int = 320, time_embedding_dim: int = 1280, time_embedding_mix: float = 1.0, learn_embedding: bool = False, base_model_channel_sizes: Dict[str, List[Tuple[int]]] = { "down": [ (4, 320), (320, 320), (320, 320), (320, 320), (320, 640), (640, 640), (640, 640), (640, 1280), (1280, 1280), ], "mid": [(1280, 1280)], "up": [ (2560, 1280), (2560, 1280), (1920, 1280), (1920, 640), (1280, 640), (960, 640), (960, 320), (640, 320), (640, 320), ], }, sample_size: Optional[int] = None, down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), block_out_channels: Tuple[int] = (320, 640, 1280, 1280), norm_num_groups: Optional[int] = 32, cross_attention_dim: Union[int, Tuple[int]] = 1280, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, num_attention_heads: Optional[Union[int, Tuple[int]]] = 8, upcast_attention: bool = False, ): super().__init__() # 1 - Create control unet self.control_model = UNet2DConditionModel( sample_size=sample_size, down_block_types=down_block_types, up_block_types=up_block_types, block_out_channels=block_out_channels, norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, transformer_layers_per_block=transformer_layers_per_block, attention_head_dim=num_attention_heads, use_linear_projection=True, upcast_attention=upcast_attention, time_embedding_dim=time_embedding_dim, ) # 2 - Do model surgery on control model # 2.1 - Allow to use the same time information as the base model adjust_time_dims(self.control_model, time_embedding_input_dim, time_embedding_dim) # 2.2 - Allow for information infusion from base model # We concat the output of each base encoder subblocks to the input of the next control encoder subblock # (We ignore the 1st element, as it represents the `conv_in`.) extra_input_channels = [input_channels for input_channels, _ in base_model_channel_sizes["down"][1:]] it_extra_input_channels = iter(extra_input_channels) for b, block in enumerate(self.control_model.down_blocks): for r in range(len(block.resnets)): increase_block_input_in_encoder_resnet( self.control_model, block_no=b, resnet_idx=r, by=next(it_extra_input_channels) ) if block.downsamplers: increase_block_input_in_encoder_downsampler( self.control_model, block_no=b, by=next(it_extra_input_channels) ) increase_block_input_in_mid_resnet(self.control_model, by=extra_input_channels[-1]) # 2.3 - Make group norms work with modified channel sizes adjust_group_norms(self.control_model) # 3 - Gather Channel Sizes self.ch_inout_ctrl = ControlNetXSModel._gather_subblock_sizes(self.control_model, base_or_control="control") self.ch_inout_base = base_model_channel_sizes # 4 - Build connections between base and control model self.down_zero_convs_out = nn.ModuleList([]) self.down_zero_convs_in = nn.ModuleList([]) self.middle_block_out = nn.ModuleList([]) self.middle_block_in = nn.ModuleList([]) self.up_zero_convs_out = nn.ModuleList([]) self.up_zero_convs_in = nn.ModuleList([]) for ch_io_base in self.ch_inout_base["down"]: self.down_zero_convs_in.append(self._make_zero_conv(in_channels=ch_io_base[1], out_channels=ch_io_base[1])) for i in range(len(self.ch_inout_ctrl["down"])): self.down_zero_convs_out.append( self._make_zero_conv(self.ch_inout_ctrl["down"][i][1], self.ch_inout_base["down"][i][1]) ) self.middle_block_out = self._make_zero_conv( self.ch_inout_ctrl["mid"][-1][1], self.ch_inout_base["mid"][-1][1] ) self.up_zero_convs_out.append( self._make_zero_conv(self.ch_inout_ctrl["down"][-1][1], self.ch_inout_base["mid"][-1][1]) ) for i in range(1, len(self.ch_inout_ctrl["down"])): self.up_zero_convs_out.append( self._make_zero_conv(self.ch_inout_ctrl["down"][-(i + 1)][1], self.ch_inout_base["up"][i - 1][1]) ) # 5 - Create conditioning hint embedding self.controlnet_cond_embedding = ControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=conditioning_embedding_out_channels, conditioning_channels=conditioning_channels, ) # In the mininal implementation setting, we only need the control model up to the mid block del self.control_model.up_blocks del self.control_model.conv_norm_out del self.control_model.conv_out @classmethod def from_unet( cls, unet: UNet2DConditionModel, conditioning_channels: int = 3, conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), controlnet_conditioning_channel_order: str = "rgb", learn_embedding: bool = False, time_embedding_mix: float = 1.0, block_out_channels: Optional[Tuple[int]] = None, size_ratio: Optional[float] = None, num_attention_heads: Optional[Union[int, Tuple[int]]] = 8, norm_num_groups: Optional[int] = None, ): r""" Instantiate a [`ControlNetXSModel`] from [`UNet2DConditionModel`]. Parameters: unet (`UNet2DConditionModel`): The UNet model we want to control. The dimensions of the ControlNetXSModel will be adapted to it. conditioning_channels (`int`, defaults to 3): Number of channels of conditioning input (e.g. an image) conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`): The tuple of output channel for each block in the `controlnet_cond_embedding` layer. controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): The channel order of conditional image. Will convert to `rgb` if it's `bgr`. learn_embedding (`bool`, defaults to `False`): Wether to use time embedding of the control model. If yes, the time embedding is a linear interpolation of the time embeddings of the control and base model with interpolation parameter `time_embedding_mix**3`. time_embedding_mix (`float`, defaults to 1.0): Linear interpolation parameter used if `learn_embedding` is `True`. block_out_channels (`Tuple[int]`, *optional*): Down blocks output channels in control model. Either this or `size_ratio` must be given. size_ratio (float, *optional*): When given, block_out_channels is set to a relative fraction of the base model's block_out_channels. Either this or `block_out_channels` must be given. num_attention_heads (`Union[int, Tuple[int]]`, *optional*): The dimension of the attention heads. The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why. norm_num_groups (int, *optional*, defaults to `None`): The number of groups to use for the normalization of the control unet. If `None`, `int(unet.config.norm_num_groups * size_ratio)` is taken. """ # Check input fixed_size = block_out_channels is not None relative_size = size_ratio is not None if not (fixed_size ^ relative_size): raise ValueError( "Pass exactly one of `block_out_channels` (for absolute sizing) or `control_model_ratio` (for relative sizing)." ) # Create model if block_out_channels is None: block_out_channels = [int(size_ratio * c) for c in unet.config.block_out_channels] # Check that attention heads and group norms match channel sizes # - attention heads def attn_heads_match_channel_sizes(attn_heads, channel_sizes): if isinstance(attn_heads, (tuple, list)): return all(c % a == 0 for a, c in zip(attn_heads, channel_sizes)) else: return all(c % attn_heads == 0 for c in channel_sizes) num_attention_heads = num_attention_heads or unet.config.attention_head_dim if not attn_heads_match_channel_sizes(num_attention_heads, block_out_channels): raise ValueError( f"The dimension of attention heads ({num_attention_heads}) must divide `block_out_channels` ({block_out_channels}). If you didn't set `num_attention_heads` the default settings don't match your model. Set `num_attention_heads` manually." ) # - group norms def group_norms_match_channel_sizes(num_groups, channel_sizes): return all(c % num_groups == 0 for c in channel_sizes) if norm_num_groups is None: if group_norms_match_channel_sizes(unet.config.norm_num_groups, block_out_channels): norm_num_groups = unet.config.norm_num_groups else: norm_num_groups = min(block_out_channels) if group_norms_match_channel_sizes(norm_num_groups, block_out_channels): print( f"`norm_num_groups` was set to `min(block_out_channels)` (={norm_num_groups}) so it divides all block_out_channels` ({block_out_channels}). Set it explicitly to remove this information." ) else: raise ValueError( f"`block_out_channels` ({block_out_channels}) don't match the base models `norm_num_groups` ({unet.config.norm_num_groups}). Setting `norm_num_groups` to `min(block_out_channels)` ({norm_num_groups}) didn't fix this. Pass `norm_num_groups` explicitly so it divides all block_out_channels." ) def get_time_emb_input_dim(unet: UNet2DConditionModel): return unet.time_embedding.linear_1.in_features def get_time_emb_dim(unet: UNet2DConditionModel): return unet.time_embedding.linear_2.out_features # Clone params from base unet if # (i) it's required to build SD or SDXL, and # (ii) it's not used for the time embedding (as time embedding of control model is never used), and # (iii) it's not set further below anyway to_keep = [ "cross_attention_dim", "down_block_types", "sample_size", "transformer_layers_per_block", "up_block_types", "upcast_attention", ] kwargs = {k: v for k, v in dict(unet.config).items() if k in to_keep} kwargs.update(block_out_channels=block_out_channels) kwargs.update(num_attention_heads=num_attention_heads) kwargs.update(norm_num_groups=norm_num_groups) # Add controlnetxs-specific params kwargs.update( conditioning_channels=conditioning_channels, controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, time_embedding_input_dim=get_time_emb_input_dim(unet), time_embedding_dim=get_time_emb_dim(unet), time_embedding_mix=time_embedding_mix, learn_embedding=learn_embedding, base_model_channel_sizes=ControlNetXSModel._gather_subblock_sizes(unet, base_or_control="base"), conditioning_embedding_out_channels=conditioning_embedding_out_channels, ) return cls(**kwargs) @property def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ return self.control_model.attn_processors def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ self.control_model.set_attn_processor(processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ self.control_model.set_default_attn_processor() def set_attention_slice(self, slice_size): r""" Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful for saving some memory in exchange for a small decrease in speed. Args: slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ self.control_model.set_attention_slice(slice_size) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (UNet2DConditionModel)): if value: module.enable_gradient_checkpointing() else: module.disable_gradient_checkpointing() def forward( self, base_model: UNet2DConditionModel, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, controlnet_cond: torch.Tensor, conditioning_scale: float = 1.0, class_labels: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, return_dict: bool = True, ) -> Union[ControlNetXSOutput, Tuple]: """ The [`ControlNetModel`] forward method. Args: base_model (`UNet2DConditionModel`): The base unet model we want to control. sample (`torch.FloatTensor`): The noisy input tensor. timestep (`Union[torch.Tensor, float, int]`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.Tensor`): The encoder hidden states. controlnet_cond (`torch.FloatTensor`): The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. conditioning_scale (`float`, defaults to `1.0`): How much the control model affects the base model outputs. class_labels (`torch.Tensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep embeddings. attention_mask (`torch.Tensor`, *optional*, defaults to `None`): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. added_cond_kwargs (`dict`): Additional conditions for the Stable Diffusion XL UNet. cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): A kwargs dictionary that if specified is passed along to the `AttnProcessor`. return_dict (`bool`, defaults to `True`): Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. Returns: [`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`: If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ # check channel order channel_order = self.config.controlnet_conditioning_channel_order if channel_order == "rgb": # in rgb order by default ... elif channel_order == "bgr": controlnet_cond = torch.flip(controlnet_cond, dims=[1]) else: raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") # scale control strength n_connections = len(self.down_zero_convs_out) + 1 + len(self.up_zero_convs_out) scale_list = torch.full((n_connections,), conditioning_scale) # prepare attention_mask if attention_mask is not None: attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = base_model.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) if self.config.learn_embedding: ctrl_temb = self.control_model.time_embedding(t_emb, timestep_cond) base_temb = base_model.time_embedding(t_emb, timestep_cond) interpolation_param = self.config.time_embedding_mix**0.3 temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param) else: temb = base_model.time_embedding(t_emb) # added time & text embeddings aug_emb = None if base_model.class_embedding is not None: if class_labels is None: raise ValueError("class_labels should be provided when num_class_embeds > 0") if base_model.config.class_embed_type == "timestep": class_labels = base_model.time_proj(class_labels) class_emb = base_model.class_embedding(class_labels).to(dtype=self.dtype) temb = temb + class_emb if base_model.config.addition_embed_type is not None: if base_model.config.addition_embed_type == "text": aug_emb = base_model.add_embedding(encoder_hidden_states) elif base_model.config.addition_embed_type == "text_image": raise NotImplementedError() elif base_model.config.addition_embed_type == "text_time": # SDXL - style if "text_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" ) text_embeds = added_cond_kwargs.get("text_embeds") if "time_ids" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" ) time_ids = added_cond_kwargs.get("time_ids") time_embeds = base_model.add_time_proj(time_ids.flatten()) time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) add_embeds = add_embeds.to(temb.dtype) aug_emb = base_model.add_embedding(add_embeds) elif base_model.config.addition_embed_type == "image": raise NotImplementedError() elif base_model.config.addition_embed_type == "image_hint": raise NotImplementedError() temb = temb + aug_emb if aug_emb is not None else temb # text embeddings cemb = encoder_hidden_states # Preparation guided_hint = self.controlnet_cond_embedding(controlnet_cond) h_ctrl = h_base = sample hs_base, hs_ctrl = [], [] it_down_convs_in, it_down_convs_out, it_dec_convs_in, it_up_convs_out = map( iter, (self.down_zero_convs_in, self.down_zero_convs_out, self.up_zero_convs_in, self.up_zero_convs_out) ) scales = iter(scale_list) base_down_subblocks = to_sub_blocks(base_model.down_blocks) ctrl_down_subblocks = to_sub_blocks(self.control_model.down_blocks) base_mid_subblocks = to_sub_blocks([base_model.mid_block]) ctrl_mid_subblocks = to_sub_blocks([self.control_model.mid_block]) base_up_subblocks = to_sub_blocks(base_model.up_blocks) # Cross Control # 0 - conv in h_base = base_model.conv_in(h_base) h_ctrl = self.control_model.conv_in(h_ctrl) if guided_hint is not None: h_ctrl += guided_hint h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base hs_base.append(h_base) hs_ctrl.append(h_ctrl) # 1 - down for m_base, m_ctrl in zip(base_down_subblocks, ctrl_down_subblocks): h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base hs_base.append(h_base) hs_ctrl.append(h_ctrl) # 2 - mid h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl for m_base, m_ctrl in zip(base_mid_subblocks, ctrl_mid_subblocks): h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock h_base = h_base + self.middle_block_out(h_ctrl) * next(scales) # D - add ctrl -> base # 3 - up for i, m_base in enumerate(base_up_subblocks): h_base = h_base + next(it_up_convs_out)(hs_ctrl.pop()) * next(scales) # add info from ctrl encoder h_base = torch.cat([h_base, hs_base.pop()], dim=1) # concat info from base encoder+ctrl encoder h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) h_base = base_model.conv_norm_out(h_base) h_base = base_model.conv_act(h_base) h_base = base_model.conv_out(h_base) if not return_dict: return h_base return ControlNetXSOutput(sample=h_base) def _make_zero_conv(self, in_channels, out_channels=None): # keep running track of channels sizes self.in_channels = in_channels self.out_channels = out_channels or in_channels return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0)) @torch.no_grad() def _check_if_vae_compatible(self, vae: AutoencoderKL): condition_downscale_factor = 2 ** (len(self.config.conditioning_embedding_out_channels) - 1) vae_downscale_factor = 2 ** (len(vae.config.block_out_channels) - 1) compatible = condition_downscale_factor == vae_downscale_factor return compatible, condition_downscale_factor, vae_downscale_factor class SubBlock(nn.ModuleList): """A SubBlock is the largest piece of either base or control model, that is executed independently of the other model respectively. Before each subblock, information is concatted from base to control. And after each subblock, information is added from control to base. """ def __init__(self, ms, *args, **kwargs): if not is_iterable(ms): ms = [ms] super().__init__(ms, *args, **kwargs) def forward( self, x: torch.Tensor, temb: torch.Tensor, cemb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): """Iterate through children and pass correct information to each.""" for m in self: if isinstance(m, ResnetBlock2D): x = m(x, temb) elif isinstance(m, Transformer2DModel): x = m(x, cemb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs).sample elif isinstance(m, Downsample2D): x = m(x) elif isinstance(m, Upsample2D): x = m(x) else: raise ValueError( f"Type of m is {type(m)} but should be `ResnetBlock2D`, `Transformer2DModel`, `Downsample2D` or `Upsample2D`" ) return x def adjust_time_dims(unet: UNet2DConditionModel, in_dim: int, out_dim: int): unet.time_embedding.linear_1 = nn.Linear(in_dim, out_dim) def increase_block_input_in_encoder_resnet(unet: UNet2DConditionModel, block_no, resnet_idx, by): """Increase channels sizes to allow for additional concatted information from base model""" r = unet.down_blocks[block_no].resnets[resnet_idx] old_norm1, old_conv1 = r.norm1, r.conv1 # norm norm_args = "num_groups num_channels eps affine".split(" ") for a in norm_args: assert hasattr(old_norm1, a) norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args} norm_kwargs["num_channels"] += by # surgery done here # conv1 conv1_args = [ "in_channels", "out_channels", "kernel_size", "stride", "padding", "dilation", "groups", "bias", "padding_mode", ] if not USE_PEFT_BACKEND: conv1_args.append("lora_layer") for a in conv1_args: assert hasattr(old_conv1, a) conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args} conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor. conv1_kwargs["in_channels"] += by # surgery done here # conv_shortcut # as we changed the input size of the block, the input and output sizes are likely different, # therefore we need a conv_shortcut (simply adding won't work) conv_shortcut_args_kwargs = { "in_channels": conv1_kwargs["in_channels"], "out_channels": conv1_kwargs["out_channels"], # default arguments from resnet.__init__ "kernel_size": 1, "stride": 1, "padding": 0, "bias": True, } # swap old with new modules unet.down_blocks[block_no].resnets[resnet_idx].norm1 = GroupNorm(**norm_kwargs) unet.down_blocks[block_no].resnets[resnet_idx].conv1 = ( nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs) ) unet.down_blocks[block_no].resnets[resnet_idx].conv_shortcut = ( nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs) ) unet.down_blocks[block_no].resnets[resnet_idx].in_channels += by # surgery done here def increase_block_input_in_encoder_downsampler(unet: UNet2DConditionModel, block_no, by): """Increase channels sizes to allow for additional concatted information from base model""" old_down = unet.down_blocks[block_no].downsamplers[0].conv args = [ "in_channels", "out_channels", "kernel_size", "stride", "padding", "dilation", "groups", "bias", "padding_mode", ] if not USE_PEFT_BACKEND: args.append("lora_layer") for a in args: assert hasattr(old_down, a) kwargs = {a: getattr(old_down, a) for a in args} kwargs["bias"] = "bias" in kwargs # as param, bias is a boolean, but as attr, it's a tensor. kwargs["in_channels"] += by # surgery done here # swap old with new modules unet.down_blocks[block_no].downsamplers[0].conv = ( nn.Conv2d(**kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**kwargs) ) unet.down_blocks[block_no].downsamplers[0].channels += by # surgery done here def increase_block_input_in_mid_resnet(unet: UNet2DConditionModel, by): """Increase channels sizes to allow for additional concatted information from base model""" m = unet.mid_block.resnets[0] old_norm1, old_conv1 = m.norm1, m.conv1 # norm norm_args = "num_groups num_channels eps affine".split(" ") for a in norm_args: assert hasattr(old_norm1, a) norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args} norm_kwargs["num_channels"] += by # surgery done here conv1_args = [ "in_channels", "out_channels", "kernel_size", "stride", "padding", "dilation", "groups", "bias", "padding_mode", ] if not USE_PEFT_BACKEND: conv1_args.append("lora_layer") conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args} conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor. conv1_kwargs["in_channels"] += by # surgery done here # conv_shortcut # as we changed the input size of the block, the input and output sizes are likely different, # therefore we need a conv_shortcut (simply adding won't work) conv_shortcut_args_kwargs = { "in_channels": conv1_kwargs["in_channels"], "out_channels": conv1_kwargs["out_channels"], # default arguments from resnet.__init__ "kernel_size": 1, "stride": 1, "padding": 0, "bias": True, } # swap old with new modules unet.mid_block.resnets[0].norm1 = GroupNorm(**norm_kwargs) unet.mid_block.resnets[0].conv1 = ( nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs) ) unet.mid_block.resnets[0].conv_shortcut = ( nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs) ) unet.mid_block.resnets[0].in_channels += by # surgery done here def adjust_group_norms(unet: UNet2DConditionModel, max_num_group: int = 32): def find_denominator(number, start): if start >= number: return number while start != 0: residual = number % start if residual == 0: return start start -= 1 for block in [*unet.down_blocks, unet.mid_block]: # resnets for r in block.resnets: if r.norm1.num_groups < max_num_group: r.norm1.num_groups = find_denominator(r.norm1.num_channels, start=max_num_group) if r.norm2.num_groups < max_num_group: r.norm2.num_groups = find_denominator(r.norm2.num_channels, start=max_num_group) # transformers if hasattr(block, "attentions"): for a in block.attentions: if a.norm.num_groups < max_num_group: a.norm.num_groups = find_denominator(a.norm.num_channels, start=max_num_group) def is_iterable(o): if isinstance(o, str): return False try: iter(o) return True except TypeError: return False def to_sub_blocks(blocks): if not is_iterable(blocks): blocks = [blocks] sub_blocks = [] for b in blocks: if hasattr(b, "resnets"): if hasattr(b, "attentions") and b.attentions is not None: for r, a in zip(b.resnets, b.attentions): sub_blocks.append([r, a]) num_resnets = len(b.resnets) num_attns = len(b.attentions) if num_resnets > num_attns: # we can have more resnets than attentions, so add each resnet as separate subblock for i in range(num_attns, num_resnets): sub_blocks.append([b.resnets[i]]) else: for r in b.resnets: sub_blocks.append([r]) # upsamplers are part of the same subblock if hasattr(b, "upsamplers") and b.upsamplers is not None: for u in b.upsamplers: sub_blocks[-1].extend([u]) # downsamplers are own subblock if hasattr(b, "downsamplers") and b.downsamplers is not None: for d in b.downsamplers: sub_blocks.append([d]) return list(map(SubBlock, sub_blocks)) def zero_module(module): for p in module.parameters(): nn.init.zeros_(p) return module
diffusers/examples/research_projects/controlnetxs/controlnetxs.py/0
{ "file_path": "diffusers/examples/research_projects/controlnetxs/controlnetxs.py", "repo_id": "diffusers", "token_count": 20494 }
117
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline parser = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") args = parser.parse_args() device = "cpu" prompt = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" model_id = "path-to-your-trained-model" pipe = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(device) # to channels last pipe.unet = pipe.unet.to(memory_format=torch.channels_last) pipe.vae = pipe.vae.to(memory_format=torch.channels_last) pipe.text_encoder = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: pipe.safety_checker = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex sample = torch.randn(2, 4, 64, 64) timestep = torch.rand(1) * 999 encoder_hidden_status = torch.randn(2, 77, 768) input_example = (sample, timestep, encoder_hidden_status) try: pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True, sample_input=input_example) except Exception: pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True) pipe.vae = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloat16, inplace=True) pipe.text_encoder = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloat16, inplace=True) if pipe.requires_safety_checker: pipe.safety_checker = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloat16, inplace=True) # compute seed = 666 generator = torch.Generator(device).manual_seed(seed) generate_kwargs = {"generator": generator} if args.steps is not None: generate_kwargs["num_inference_steps"] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16): image = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
diffusers/examples/research_projects/intel_opts/inference_bf16.py/0
{ "file_path": "diffusers/examples/research_projects/intel_opts/inference_bf16.py", "repo_id": "diffusers", "token_count": 798 }
118
import argparse import copy import itertools import logging import math import os import random from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import concatenate_datasets, load_dataset from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDPMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.13.0.dev0") logger = get_logger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument("--instance_data_dir", nargs="+", help="Instance data directories") parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_text_encoder", default=False, action="store_true", help="Whether to train the text encoder" ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument( "--checkpointing_steps", type=int, default=1000, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint and are suitable for resuming training" " using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpointing_from", type=int, default=1000, help=("Start to checkpoint from step"), ) parser.add_argument( "--validation_steps", type=int, default=50, help=( "Run validation every X steps. Validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`" " and logging the images." ), ) parser.add_argument( "--validation_from", type=int, default=0, help=("Start to validate from step"), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--validation_project_name", type=str, default=None, help="The w&b name.", ) parser.add_argument( "--report_to_wandb", default=False, action="store_true", help="Whether to report to weights and biases" ) args = parser.parse_args() return args def prepare_mask_and_masked_image(image, mask): image = np.array(image.convert("RGB")) image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 mask = np.array(mask.convert("L")) mask = mask.astype(np.float32) / 255.0 mask = mask[None, None] mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) masked_image = image * (mask < 0.5) return mask, masked_image class DreamBoothDataset(Dataset): def __init__( self, tokenizer, datasets_paths, ): self.tokenizer = tokenizer self.datasets_paths = (datasets_paths,) self.datasets = [load_dataset(dataset_path) for dataset_path in self.datasets_paths[0]] self.train_data = concatenate_datasets([dataset["train"] for dataset in self.datasets]) self.test_data = concatenate_datasets([dataset["test"] for dataset in self.datasets]) self.image_normalize = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def set_image(self, img, switch): if img.mode not in ["RGB", "L"]: img = img.convert("RGB") if switch: img = img.transpose(Image.FLIP_LEFT_RIGHT) img = img.resize((512, 512), Image.BILINEAR) return img def __len__(self): return len(self.train_data) def __getitem__(self, index): # Lettings example = {} img_idx = index % len(self.train_data) switch = random.choice([True, False]) # Load image image = self.set_image(self.train_data[img_idx]["image"], switch) # Normalize image image_norm = self.image_normalize(image) # Tokenise prompt tokenized_prompt = self.tokenizer( self.train_data[img_idx]["prompt"], padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids # Load masks for image masks = [ self.set_image(self.train_data[img_idx][key], switch) for key in self.train_data[img_idx] if "mask" in key ] # Build example example["PIL_image"] = image example["instance_image"] = image_norm example["instance_prompt_id"] = tokenized_prompt example["instance_masks"] = masks return example def weighted_mask(masks): # Convert each mask to a NumPy array and ensure it's binary mask_arrays = [np.array(mask) / 255 for mask in masks] # Normalizing to 0-1 range # Generate random weights and apply them to each mask weights = [random.random() for _ in masks] weights = [weight / sum(weights) for weight in weights] weighted_masks = [mask * weight for mask, weight in zip(mask_arrays, weights)] # Sum the weighted masks summed_mask = np.sum(weighted_masks, axis=0) # Apply a threshold to create the final mask threshold = 0.5 # This threshold can be adjusted result_mask = summed_mask >= threshold # Convert the result back to a PIL image return Image.fromarray(result_mask.astype(np.uint8) * 255) def collate_fn(examples, tokenizer): input_ids = [example["instance_prompt_id"] for example in examples] pixel_values = [example["instance_image"] for example in examples] masks, masked_images = [], [] for example in examples: # generate a random mask mask = weighted_mask(example["instance_masks"]) # prepare mask and masked image mask, masked_image = prepare_mask_and_masked_image(example["PIL_image"], mask) masks.append(mask) masked_images.append(masked_image) pixel_values = torch.stack(pixel_values).to(memory_format=torch.contiguous_format).float() masks = torch.stack(masks) masked_images = torch.stack(masked_images) input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images} return batch def log_validation(pipeline, text_encoder, unet, val_pairs, accelerator): # update pipeline (note: unet and vae are loaded again in float32) pipeline.text_encoder = accelerator.unwrap_model(text_encoder) pipeline.unet = accelerator.unwrap_model(unet) with torch.autocast("cuda"): val_results = [{"data_or_path": pipeline(**pair).images[0], "caption": pair["prompt"]} for pair in val_pairs] torch.cuda.empty_cache() wandb.log({"validation": [wandb.Image(**val_result) for val_result in val_results]}) def checkpoint(args, global_step, accelerator): save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") def main(): args = parse_args() project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=Path(args.output_dir, args.logging_dir), ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, project_config=project_config, log_with="wandb" if args.report_to_wandb else None, ) if args.report_to_wandb and not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") if args.seed is not None: set_seed(args.seed) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) # Load the tokenizer & models and create wrapper for stable diffusion tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder" ).requires_grad_(args.train_text_encoder) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae").requires_grad_(False) unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) optimizer = torch.optim.AdamW( params=itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") train_dataset = DreamBoothDataset( tokenizer=tokenizer, datasets_paths=args.instance_data_dir, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, tokenizer), ) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) accelerator.register_for_checkpointing(lr_scheduler) if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 else: weight_dtype = torch.float32 # Move text_encode and vae to gpu. # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. vae.to(accelerator.device, dtype=weight_dtype) if not args.train_text_encoder: text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) # Afterwards we calculate our number of training epochs num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_config = vars(copy.deepcopy(args)) accelerator.init_trackers(args.validation_project_name, config=tracker_config) # create validation pipeline (note: unet and vae are loaded again in float32) val_pipeline = StableDiffusionInpaintPipeline.from_pretrained( args.pretrained_model_name_or_path, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, vae=vae, torch_dtype=weight_dtype, safety_checker=None, ) val_pipeline.set_progress_bar_config(disable=True) # prepare validation dataset val_pairs = [ { "image": example["image"], "mask_image": mask, "prompt": example["prompt"], } for example in train_dataset.test_data for mask in [example[key] for key in example if "mask" in key] ] # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: for model in models: sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder" model.save_pretrained(os.path.join(output_dir, sub_dir)) # make sure to pop weight so that corresponding model is not saved again weights.pop() accelerator.register_save_state_pre_hook(save_model_hook) print() # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, num_train_epochs): unet.train() for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Convert masked images to latent space masked_latents = vae.encode( batch["masked_images"].reshape(batch["pixel_values"].shape).to(dtype=weight_dtype) ).latent_dist.sample() masked_latents = masked_latents * vae.config.scaling_factor masks = batch["masks"] # resize the mask to latents shape as we concatenate the mask to the latents mask = torch.stack( [ torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8)) for mask in masks ] ) mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8) # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # concatenate the noised latents with the mask and the masked latents latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if ( global_step % args.validation_steps == 0 and global_step >= args.validation_from and args.report_to_wandb ): log_validation( val_pipeline, text_encoder, unet, val_pairs, accelerator, ) if global_step % args.checkpointing_steps == 0 and global_step >= args.checkpointing_from: checkpoint( args, global_step, accelerator, ) # Step logging logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() # Terminate training accelerator.end_training() if __name__ == "__main__": main()
diffusers/examples/research_projects/multi_subject_dreambooth_inpainting/train_multi_subject_dreambooth_inpainting.py/0
{ "file_path": "diffusers/examples/research_projects/multi_subject_dreambooth_inpainting/train_multi_subject_dreambooth_inpainting.py", "repo_id": "diffusers", "token_count": 10829 }
119
import argparse import inspect import logging import math import os from pathlib import Path import accelerate import datasets import torch import torch.nn.functional as F from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from onnxruntime.training.optim.fp16_optimizer import FP16_Optimizer as ORT_FP16_Optimizer from onnxruntime.training.ortmodule import ORTModule from packaging import version from torchvision import transforms from tqdm.auto import tqdm import diffusers from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.17.0.dev0") logger = get_logger(__name__, log_level="INFO") def _extract_into_tensor(arr, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ if not isinstance(arr, torch.Tensor): arr = torch.from_numpy(arr) res = arr[timesteps].float().to(timesteps.device) while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that HF Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--model_config_name_or_path", type=str, default=None, help="The config of the UNet model to train, leave as None to use standard DDPM configuration.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--output_dir", type=str, default="ddpm-model-64", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--overwrite_output_dir", action="store_true") parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--resolution", type=int, default=64, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", default=False, action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation." ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" " process." ), ) parser.add_argument("--num_epochs", type=int, default=100) parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.") parser.add_argument( "--save_model_epochs", type=int, default=10, help="How often to save the model during training." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--lr_scheduler", type=str, default="cosine", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument( "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer." ) parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.") parser.add_argument( "--use_ema", action="store_true", help="Whether to use Exponential Moving Average for the final model weights.", ) parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.") parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.") parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--hub_private_repo", action="store_true", help="Whether or not to create a private repository." ) parser.add_argument( "--logger", type=str, default="tensorboard", choices=["tensorboard", "wandb"], help=( "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)" " for experiment tracking and logging of model metrics and model checkpoints" ), ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument( "--prediction_type", type=str, default="epsilon", choices=["epsilon", "sample"], help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.", ) parser.add_argument("--ddpm_num_steps", type=int, default=1000) parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000) parser.add_argument("--ddpm_beta_schedule", type=str, default="linear") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.dataset_name is None and args.train_data_dir is None: raise ValueError("You must specify either a dataset name from the hub or a train data directory.") return args def main(args): if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.logger == "tensorboard": if not is_tensorboard_available(): raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.") elif args.logger == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: if args.use_ema: ema_model.save_pretrained(os.path.join(output_dir, "unet_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel) ema_model.load_state_dict(load_model.state_dict()) ema_model.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Initialize the model if args.model_config_name_or_path is None: model = UNet2DModel( sample_size=args.resolution, in_channels=3, out_channels=3, layers_per_block=2, block_out_channels=(128, 128, 256, 256, 512, 512), down_block_types=( "DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D", ), up_block_types=( "UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", ), ) else: config = UNet2DModel.load_config(args.model_config_name_or_path) model = UNet2DModel.from_config(config) # Create EMA for the model. if args.use_ema: ema_model = EMAModel( model.parameters(), decay=args.ema_max_decay, use_ema_warmup=True, inv_gamma=args.ema_inv_gamma, power=args.ema_power, model_cls=UNet2DModel, model_config=model.config, ) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warning( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) model.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # Initialize the scheduler accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys()) if accepts_prediction_type: noise_scheduler = DDPMScheduler( num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule, prediction_type=args.prediction_type, ) else: noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule) # Initialize the optimizer optimizer = torch.optim.AdamW( model.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) optimizer = ORT_FP16_Optimizer(optimizer) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, split="train", ) else: dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets and DataLoaders creation. augmentations = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def transform_images(examples): images = [augmentations(image.convert("RGB")) for image in examples["image"]] return {"input": images} logger.info(f"Dataset size: {len(dataset)}") dataset.set_transform(transform_images) train_dataloader = torch.utils.data.DataLoader( dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers ) # Initialize the learning rate scheduler lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=(len(train_dataloader) * args.num_epochs), ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler ) if args.use_ema: ema_model.to(accelerator.device) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: run = os.path.split(__file__)[-1].split(".")[0] accelerator.init_trackers(run) model = ORTModule(model) total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) max_train_steps = args.num_epochs * num_update_steps_per_epoch logger.info("***** Running training *****") logger.info(f" Num examples = {len(dataset)}") logger.info(f" Num Epochs = {args.num_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Train! for epoch in range(first_epoch, args.num_epochs): model.train() progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) progress_bar.set_description(f"Epoch {epoch}") for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue clean_images = batch["input"] # Sample noise that we'll add to the images noise = torch.randn( clean_images.shape, dtype=(torch.float32 if args.mixed_precision == "no" else torch.float16) ).to(clean_images.device) bsz = clean_images.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device ).long() # Add noise to the clean images according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) with accelerator.accumulate(model): # Predict the noise residual model_output = model(noisy_images, timesteps, return_dict=False)[0] if args.prediction_type == "epsilon": loss = F.mse_loss(model_output, noise) # this could have different weights! elif args.prediction_type == "sample": alpha_t = _extract_into_tensor( noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1) ) snr_weights = alpha_t / (1 - alpha_t) loss = snr_weights * F.mse_loss( model_output, clean_images, reduction="none" ) # use SNR weighting from distillation paper loss = loss.mean() else: raise ValueError(f"Unsupported prediction type: {args.prediction_type}") accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_model.step(model.parameters()) progress_bar.update(1) global_step += 1 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} if args.use_ema: logs["ema_decay"] = ema_model.cur_decay_value progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) progress_bar.close() accelerator.wait_for_everyone() # Generate sample images for visual inspection if accelerator.is_main_process: if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: unet = accelerator.unwrap_model(model) if args.use_ema: ema_model.store(unet.parameters()) ema_model.copy_to(unet.parameters()) pipeline = DDPMPipeline( unet=unet, scheduler=noise_scheduler, ) generator = torch.Generator(device=pipeline.device).manual_seed(0) # run pipeline in inference (sample random noise and denoise) images = pipeline( generator=generator, batch_size=args.eval_batch_size, num_inference_steps=args.ddpm_num_inference_steps, output_type="np", ).images if args.use_ema: ema_model.restore(unet.parameters()) # denormalize the images and save to tensorboard images_processed = (images * 255).round().astype("uint8") if args.logger == "tensorboard": if is_accelerate_version(">=", "0.17.0.dev0"): tracker = accelerator.get_tracker("tensorboard", unwrap=True) else: tracker = accelerator.get_tracker("tensorboard") tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch) elif args.logger == "wandb": # Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files accelerator.get_tracker("wandb").log( {"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch}, step=global_step, ) if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: # save the model unet = accelerator.unwrap_model(model) if args.use_ema: ema_model.store(unet.parameters()) ema_model.copy_to(unet.parameters()) pipeline = DDPMPipeline( unet=unet, scheduler=noise_scheduler, ) pipeline.save_pretrained(args.output_dir) if args.use_ema: ema_model.restore(unet.parameters()) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message=f"Epoch {epoch}", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
diffusers/examples/research_projects/onnxruntime/unconditional_image_generation/train_unconditional.py/0
{ "file_path": "diffusers/examples/research_projects/onnxruntime/unconditional_image_generation/train_unconditional.py", "repo_id": "diffusers", "token_count": 12739 }
120
# T2I-Adapter training example for Stable Diffusion XL (SDXL) The `train_t2i_adapter_sdxl.py` script shows how to implement the [T2I-Adapter training procedure](https://hf.co/papers/2302.08453) for [Stable Diffusion XL](https://huggingface.co/papers/2307.01952). ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install -e . ``` Then cd in the `examples/t2i_adapter` folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell (e.g., a notebook) ```python from accelerate.utils import write_basic_config write_basic_config() ``` When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups. ## Circle filling dataset The original dataset is hosted in the [ControlNet repo](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip). We re-uploaded it to be compatible with `datasets` [here](https://huggingface.co/datasets/fusing/fill50k). Note that `datasets` handles dataloading within the training script. ## Training Our training examples use two test conditioning images. They can be downloaded by running ```sh wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png ``` Then run `huggingface-cli login` to log into your Hugging Face account. This is needed to be able to push the trained T2IAdapter parameters to Hugging Face Hub. ```bash export MODEL_DIR="stabilityai/stable-diffusion-xl-base-1.0" export OUTPUT_DIR="path to save model" accelerate launch train_t2i_adapter_sdxl.py \ --pretrained_model_name_or_path=$MODEL_DIR \ --output_dir=$OUTPUT_DIR \ --dataset_name=fusing/fill50k \ --mixed_precision="fp16" \ --resolution=1024 \ --learning_rate=1e-5 \ --max_train_steps=15000 \ --validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ --validation_steps=100 \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --report_to="wandb" \ --seed=42 \ --push_to_hub ``` To better track our training experiments, we're using the following flags in the command above: * `report_to="wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`. * `validation_image`, `validation_prompt`, and `validation_steps` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected. Our experiments were conducted on a single 40GB A100 GPU. ### Inference Once training is done, we can perform inference like so: ```python from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteSchedulerTest from diffusers.utils import load_image import torch base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" adapter_path = "path to adapter" adapter = T2IAdapter.from_pretrained(adapter_path, torch_dtype=torch.float16) pipe = StableDiffusionXLAdapterPipeline.from_pretrained( base_model_path, adapter=adapter, torch_dtype=torch.float16 ) # speed up diffusion process with faster scheduler and memory optimization pipe.scheduler = EulerAncestralDiscreteSchedulerTest.from_config(pipe.scheduler.config) # remove following line if xformers is not installed or when using Torch 2.0. pipe.enable_xformers_memory_efficient_attention() # memory optimization. pipe.enable_model_cpu_offload() control_image = load_image("./conditioning_image_1.png") prompt = "pale golden rod circle with old lace background" # generate image generator = torch.manual_seed(0) image = pipe( prompt, num_inference_steps=20, generator=generator, image=control_image ).images[0] image.save("./output.png") ``` ## Notes ### Specifying a better VAE SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
diffusers/examples/t2i_adapter/README_sdxl.md/0
{ "file_path": "diffusers/examples/t2i_adapter/README_sdxl.md", "repo_id": "diffusers", "token_count": 1551 }
121
#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning script for Stable Diffusion XL for text2image.""" import argparse import functools import gc import logging import math import os import random import shutil from pathlib import Path import accelerate import datasets import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import concatenate_datasets, load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from torchvision import transforms from torchvision.transforms.functional import crop from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel, compute_snr from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.torch_utils import is_compiled_module # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.28.0.dev0") logger = get_logger(__name__) DATASET_NAME_MAPPING = { "lambdalabs/pokemon-blip-captions": ("image", "text"), } def save_model_card( repo_id: str, images: list = None, validation_prompt: str = None, base_model: str = None, dataset_name: str = None, repo_folder: str = None, vae_path: str = None, ): img_str = "" if images is not None: for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" model_description = f""" # Text-to-image finetuning - {repo_id} This pipeline was finetuned from **{base_model}** on the **{dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: {validation_prompt}: \n {img_str} Special VAE used for training: {vae_path}. """ model_card = load_or_create_model_card( repo_id_or_path=repo_id, from_training=True, license="creativeml-openrail-m", base_model=base_model, model_description=model_description, inference=True, ) tags = [ "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers-training", "diffusers", ] model_card = populate_model_card(model_card, tags=tags) model_card.save(os.path.join(repo_folder, "README.md")) def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_vae_model_name_or_path", type=str, default=None, help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing an image." ) parser.add_argument( "--caption_column", type=str, default="text", help="The column of the dataset containing a caption or a list of captions.", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=1, help=( "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--proportion_empty_prompts", type=float, default=0, help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", ) parser.add_argument( "--output_dir", type=str, default="sdxl-model-finetuned", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=1024, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--timestep_bias_strategy", type=str, default="none", choices=["earlier", "later", "range", "none"], help=( "The timestep bias strategy, which may help direct the model toward learning low or high frequency details." " Choices: ['earlier', 'later', 'range', 'none']." " The default is 'none', which means no bias is applied, and training proceeds normally." " The value of 'later' will increase the frequency of the model's final training timesteps." ), ) parser.add_argument( "--timestep_bias_multiplier", type=float, default=1.0, help=( "The multiplier for the bias. Defaults to 1.0, which means no bias is applied." " A value of 2.0 will double the weight of the bias, and a value of 0.5 will halve it." ), ) parser.add_argument( "--timestep_bias_begin", type=int, default=0, help=( "When using `--timestep_bias_strategy=range`, the beginning (inclusive) timestep to bias." " Defaults to zero, which equates to having no specific bias." ), ) parser.add_argument( "--timestep_bias_end", type=int, default=1000, help=( "When using `--timestep_bias_strategy=range`, the final timestep (inclusive) to bias." " Defaults to 1000, which is the number of timesteps that Stable Diffusion is trained on." ), ) parser.add_argument( "--timestep_bias_portion", type=float, default=0.25, help=( "The portion of timesteps to bias. Defaults to 0.25, which 25% of timesteps will be biased." " A value of 0.5 will bias one half of the timesteps. The value provided for `--timestep_bias_strategy` determines" " whether the biased portions are in the earlier or later timesteps." ), ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--prediction_type", type=str, default=None, help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediction_type` is chosen.", ) parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") return args # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt def encode_prompt(batch, text_encoders, tokenizers, proportion_empty_prompts, caption_column, is_train=True): prompt_embeds_list = [] prompt_batch = batch[caption_column] captions = [] for caption in prompt_batch: if random.random() < proportion_empty_prompts: captions.append("") elif isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) with torch.no_grad(): for tokenizer, text_encoder in zip(tokenizers, text_encoders): text_inputs = tokenizer( captions, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, return_dict=False, ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds[-1][-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) return {"prompt_embeds": prompt_embeds.cpu(), "pooled_prompt_embeds": pooled_prompt_embeds.cpu()} def compute_vae_encodings(batch, vae): images = batch.pop("pixel_values") pixel_values = torch.stack(list(images)) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() pixel_values = pixel_values.to(vae.device, dtype=vae.dtype) with torch.no_grad(): model_input = vae.encode(pixel_values).latent_dist.sample() model_input = model_input * vae.config.scaling_factor return {"model_input": model_input.cpu()} def generate_timestep_weights(args, num_timesteps): weights = torch.ones(num_timesteps) # Determine the indices to bias num_to_bias = int(args.timestep_bias_portion * num_timesteps) if args.timestep_bias_strategy == "later": bias_indices = slice(-num_to_bias, None) elif args.timestep_bias_strategy == "earlier": bias_indices = slice(0, num_to_bias) elif args.timestep_bias_strategy == "range": # Out of the possible 1000 timesteps, we might want to focus on eg. 200-500. range_begin = args.timestep_bias_begin range_end = args.timestep_bias_end if range_begin < 0: raise ValueError( "When using the range strategy for timestep bias, you must provide a beginning timestep greater or equal to zero." ) if range_end > num_timesteps: raise ValueError( "When using the range strategy for timestep bias, you must provide an ending timestep smaller than the number of timesteps." ) bias_indices = slice(range_begin, range_end) else: # 'none' or any other string return weights if args.timestep_bias_multiplier <= 0: return ValueError( "The parameter --timestep_bias_multiplier is not intended to be used to disable the training of specific timesteps." " If it was intended to disable timestep bias, use `--timestep_bias_strategy none` instead." " A timestep bias multiplier less than or equal to 0 is not allowed." ) # Apply the bias weights[bias_indices] *= args.timestep_bias_multiplier # Normalize weights /= weights.sum() return weights def main(args): if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizers tokenizer_one = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) tokenizer_two = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False, ) # import correct text encoder classes text_encoder_cls_one = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision ) text_encoder_cls_two = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" ) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") # Check for terminal SNR in combination with SNR Gamma text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) text_encoder_two = text_encoder_cls_two.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant ) vae_path = ( args.pretrained_model_name_or_path if args.pretrained_vae_model_name_or_path is None else args.pretrained_vae_model_name_or_path ) vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) # Freeze vae and text encoders. vae.requires_grad_(False) text_encoder_one.requires_grad_(False) text_encoder_two.requires_grad_(False) # Set unet as trainable. unet.train() # For mixed precision training we cast all non-trainable weights to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype # The VAE is in float32 to avoid NaN losses. vae.to(accelerator.device, dtype=torch.float32) text_encoder_one.to(accelerator.device, dtype=weight_dtype) text_encoder_two.to(accelerator.device, dtype=weight_dtype) # Create EMA for the unet. if args.use_ema: ema_unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warning( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: if args.use_ema: ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) ema_unet.load_state_dict(load_model.state_dict()) ema_unet.to(accelerator.device) del load_model for _ in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = unet.parameters() optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. train_resize = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR) train_crop = transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution) train_flip = transforms.RandomHorizontalFlip(p=1.0) train_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] # image aug original_sizes = [] all_images = [] crop_top_lefts = [] for image in images: original_sizes.append((image.height, image.width)) image = train_resize(image) if args.random_flip and random.random() < 0.5: # flip image = train_flip(image) if args.center_crop: y1 = max(0, int(round((image.height - args.resolution) / 2.0))) x1 = max(0, int(round((image.width - args.resolution) / 2.0))) image = train_crop(image) else: y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) image = crop(image, y1, x1, h, w) crop_top_left = (y1, x1) crop_top_lefts.append(crop_top_left) image = train_transforms(image) all_images.append(image) examples["original_sizes"] = original_sizes examples["crop_top_lefts"] = crop_top_lefts examples["pixel_values"] = all_images return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) # Let's first compute all the embeddings so that we can free up the text encoders # from memory. We will pre-compute the VAE encodings too. text_encoders = [text_encoder_one, text_encoder_two] tokenizers = [tokenizer_one, tokenizer_two] compute_embeddings_fn = functools.partial( encode_prompt, text_encoders=text_encoders, tokenizers=tokenizers, proportion_empty_prompts=args.proportion_empty_prompts, caption_column=args.caption_column, ) compute_vae_encodings_fn = functools.partial(compute_vae_encodings, vae=vae) with accelerator.main_process_first(): from datasets.fingerprint import Hasher # fingerprint used by the cache for the other processes to load the result # details: https://github.com/huggingface/diffusers/pull/4038#discussion_r1266078401 new_fingerprint = Hasher.hash(args) new_fingerprint_for_vae = Hasher.hash(vae_path) train_dataset_with_embeddings = train_dataset.map( compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint ) train_dataset_with_vae = train_dataset.map( compute_vae_encodings_fn, batched=True, batch_size=args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps, new_fingerprint=new_fingerprint_for_vae, ) precomputed_dataset = concatenate_datasets( [train_dataset_with_embeddings, train_dataset_with_vae.remove_columns(["image", "text"])], axis=1 ) precomputed_dataset = precomputed_dataset.with_transform(preprocess_train) del compute_vae_encodings_fn, compute_embeddings_fn, text_encoder_one, text_encoder_two del text_encoders, tokenizers, vae gc.collect() torch.cuda.empty_cache() def collate_fn(examples): model_input = torch.stack([torch.tensor(example["model_input"]) for example in examples]) original_sizes = [example["original_sizes"] for example in examples] crop_top_lefts = [example["crop_top_lefts"] for example in examples] prompt_embeds = torch.stack([torch.tensor(example["prompt_embeds"]) for example in examples]) pooled_prompt_embeds = torch.stack([torch.tensor(example["pooled_prompt_embeds"]) for example in examples]) return { "model_input": model_input, "prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, "original_sizes": original_sizes, "crop_top_lefts": crop_top_lefts, } # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( precomputed_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) # Prepare everything with our `accelerator`. unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) if args.use_ema: ema_unet.to(accelerator.device) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("text2image-fine-tune-sdxl", config=vars(args)) # Function for unwrapping if torch.compile() was used in accelerate. def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(precomputed_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): # Sample noise that we'll add to the latents model_input = batch["model_input"].to(accelerator.device) noise = torch.randn_like(model_input) if args.noise_offset: # https://www.crosslabs.org//blog/diffusion-with-offset-noise noise += args.noise_offset * torch.randn( (model_input.shape[0], model_input.shape[1], 1, 1), device=model_input.device ) bsz = model_input.shape[0] if args.timestep_bias_strategy == "none": # Sample a random timestep for each image without bias. timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device ) else: # Sample a random timestep for each image, potentially biased by the timestep weights. # Biasing the timestep weights allows us to spend less time training irrelevant timesteps. weights = generate_timestep_weights(args, noise_scheduler.config.num_train_timesteps).to( model_input.device ) timesteps = torch.multinomial(weights, bsz, replacement=True).long() # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) # time ids def compute_time_ids(original_size, crops_coords_top_left): # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids target_size = (args.resolution, args.resolution) add_time_ids = list(original_size + crops_coords_top_left + target_size) add_time_ids = torch.tensor([add_time_ids]) add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) return add_time_ids add_time_ids = torch.cat( [compute_time_ids(s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])] ) # Predict the noise residual unet_added_conditions = {"time_ids": add_time_ids} prompt_embeds = batch["prompt_embeds"].to(accelerator.device) pooled_prompt_embeds = batch["pooled_prompt_embeds"].to(accelerator.device) unet_added_conditions.update({"text_embeds": pooled_prompt_embeds}) model_pred = unet( noisy_model_input, timesteps, prompt_embeds, added_cond_kwargs=unet_added_conditions, return_dict=False, )[0] # Get the target for loss depending on the prediction type if args.prediction_type is not None: # set prediction_type of scheduler if defined noise_scheduler.register_to_config(prediction_type=args.prediction_type) if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(model_input, noise, timesteps) elif noise_scheduler.config.prediction_type == "sample": # We set the target to latents here, but the model_pred will return the noise sample prediction. target = model_input # We will have to subtract the noise residual from the prediction to get the target sample. model_pred = model_pred - noise else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(noise_scheduler, timesteps) mse_loss_weights = torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min( dim=1 )[0] if noise_scheduler.config.prediction_type == "epsilon": mse_loss_weights = mse_loss_weights / snr elif noise_scheduler.config.prediction_type == "v_prediction": mse_loss_weights = mse_loss_weights / (snr + 1) loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = unet.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_unet.step(unet.parameters()) progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) if args.use_ema: # Store the UNet parameters temporarily and load the EMA parameters to perform inference. ema_unet.store(unet.parameters()) ema_unet.copy_to(unet.parameters()) # create pipeline vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, ) pipeline = StableDiffusionXLPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, unet=accelerator.unwrap_model(unet), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) if args.prediction_type is not None: scheduler_args = {"prediction_type": args.prediction_type} pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None pipeline_args = {"prompt": args.validation_prompt} with torch.cuda.amp.autocast(): images = [ pipeline(**pipeline_args, generator=generator, num_inference_steps=25).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() accelerator.wait_for_everyone() if accelerator.is_main_process: unet = unwrap_model(unet) if args.use_ema: ema_unet.copy_to(unet.parameters()) # Serialize pipeline. vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = StableDiffusionXLPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unet, vae=vae, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) if args.prediction_type is not None: scheduler_args = {"prediction_type": args.prediction_type} pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) pipeline.save_pretrained(args.output_dir) # run inference images = [] if args.validation_prompt and args.num_validation_images > 0: pipeline = pipeline.to(accelerator.device) generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None with torch.cuda.amp.autocast(): images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) if args.push_to_hub: save_model_card( repo_id=repo_id, images=images, validation_prompt=args.validation_prompt, base_model=args.pretrained_model_name_or_path, dataset_name=args.dataset_name, repo_folder=args.output_dir, vae_path=args.pretrained_vae_model_name_or_path, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
diffusers/examples/text_to_image/train_text_to_image_sdxl.py/0
{ "file_path": "diffusers/examples/text_to_image/train_text_to_image_sdxl.py", "repo_id": "diffusers", "token_count": 24853 }
122
import torch.nn as nn from torchvision.models import efficientnet_v2_l, efficientnet_v2_s from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin class EfficientNetEncoder(ModelMixin, ConfigMixin): @register_to_config def __init__(self, c_latent=16, c_cond=1280, effnet="efficientnet_v2_s"): super().__init__() if effnet == "efficientnet_v2_s": self.backbone = efficientnet_v2_s(weights="DEFAULT").features else: self.backbone = efficientnet_v2_l(weights="DEFAULT").features self.mapper = nn.Sequential( nn.Conv2d(c_cond, c_latent, kernel_size=1, bias=False), nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1 ) def forward(self, x): return self.mapper(self.backbone(x))
diffusers/examples/wuerstchen/text_to_image/modeling_efficient_net_encoder.py/0
{ "file_path": "diffusers/examples/wuerstchen/text_to_image/modeling_efficient_net_encoder.py", "repo_id": "diffusers", "token_count": 374 }
123
import argparse import json import torch from diffusers import AutoencoderKL, DDPMPipeline, DDPMScheduler, UNet2DModel, VQModel def shave_segments(path, n_shave_prefix_segments=1): """ Removes segments. Positive values shave the first segments, negative shave the last segments. """ if n_shave_prefix_segments >= 0: return ".".join(path.split(".")[n_shave_prefix_segments:]) else: return ".".join(path.split(".")[:n_shave_prefix_segments]) def renew_resnet_paths(old_list, n_shave_prefix_segments=0): mapping = [] for old_item in old_list: new_item = old_item new_item = new_item.replace("block.", "resnets.") new_item = new_item.replace("conv_shorcut", "conv1") new_item = new_item.replace("in_shortcut", "conv_shortcut") new_item = new_item.replace("temb_proj", "time_emb_proj") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_attention_paths(old_list, n_shave_prefix_segments=0, in_mid=False): mapping = [] for old_item in old_list: new_item = old_item # In `model.mid`, the layer is called `attn`. if not in_mid: new_item = new_item.replace("attn", "attentions") new_item = new_item.replace(".k.", ".key.") new_item = new_item.replace(".v.", ".value.") new_item = new_item.replace(".q.", ".query.") new_item = new_item.replace("proj_out", "proj_attn") new_item = new_item.replace("norm", "group_norm") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def assign_to_checkpoint( paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None ): assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." if attention_paths_to_split is not None: if config is None: raise ValueError("Please specify the config if setting 'attention_paths_to_split' to 'True'.") for path, path_map in attention_paths_to_split.items(): old_tensor = old_checkpoint[path] channels = old_tensor.shape[0] // 3 target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) num_heads = old_tensor.shape[0] // config.get("num_head_channels", 1) // 3 old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) query, key, value = old_tensor.split(channels // num_heads, dim=1) checkpoint[path_map["query"]] = query.reshape(target_shape).squeeze() checkpoint[path_map["key"]] = key.reshape(target_shape).squeeze() checkpoint[path_map["value"]] = value.reshape(target_shape).squeeze() for path in paths: new_path = path["new"] if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue new_path = new_path.replace("down.", "down_blocks.") new_path = new_path.replace("up.", "up_blocks.") if additional_replacements is not None: for replacement in additional_replacements: new_path = new_path.replace(replacement["old"], replacement["new"]) if "attentions" in new_path: checkpoint[new_path] = old_checkpoint[path["old"]].squeeze() else: checkpoint[new_path] = old_checkpoint[path["old"]] def convert_ddpm_checkpoint(checkpoint, config): """ Takes a state dict and a config, and returns a converted checkpoint. """ new_checkpoint = {} new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["temb.dense.0.weight"] new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["temb.dense.0.bias"] new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["temb.dense.1.weight"] new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["temb.dense.1.bias"] new_checkpoint["conv_norm_out.weight"] = checkpoint["norm_out.weight"] new_checkpoint["conv_norm_out.bias"] = checkpoint["norm_out.bias"] new_checkpoint["conv_in.weight"] = checkpoint["conv_in.weight"] new_checkpoint["conv_in.bias"] = checkpoint["conv_in.bias"] new_checkpoint["conv_out.weight"] = checkpoint["conv_out.weight"] new_checkpoint["conv_out.bias"] = checkpoint["conv_out.bias"] num_down_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "down" in layer}) down_blocks = { layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) } num_up_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "up" in layer}) up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} for i in range(num_down_blocks): block_id = (i - 1) // (config["layers_per_block"] + 1) if any("downsample" in layer for layer in down_blocks[i]): new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ f"down.{i}.downsample.op.weight" ] new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[f"down.{i}.downsample.op.bias"] # new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.weight'] = checkpoint[f'down.{i}.downsample.conv.weight'] # new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.bias'] = checkpoint[f'down.{i}.downsample.conv.bias'] if any("block" in layer for layer in down_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"]): paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint) if any("attn" in layer for layer in down_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"]): paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] # Mid new 2 paths = renew_resnet_paths(mid_block_1_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], ) paths = renew_resnet_paths(mid_block_2_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], ) paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], ) for i in range(num_up_blocks): block_id = num_up_blocks - 1 - i if any("upsample" in layer for layer in up_blocks[i]): new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ f"up.{i}.upsample.conv.weight" ] new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[f"up.{i}.upsample.conv.bias"] if any("block" in layer for layer in up_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) if any("attn" in layer for layer in up_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} return new_checkpoint def convert_vq_autoenc_checkpoint(checkpoint, config): """ Takes a state dict and a config, and returns a converted checkpoint. """ new_checkpoint = {} new_checkpoint["encoder.conv_norm_out.weight"] = checkpoint["encoder.norm_out.weight"] new_checkpoint["encoder.conv_norm_out.bias"] = checkpoint["encoder.norm_out.bias"] new_checkpoint["encoder.conv_in.weight"] = checkpoint["encoder.conv_in.weight"] new_checkpoint["encoder.conv_in.bias"] = checkpoint["encoder.conv_in.bias"] new_checkpoint["encoder.conv_out.weight"] = checkpoint["encoder.conv_out.weight"] new_checkpoint["encoder.conv_out.bias"] = checkpoint["encoder.conv_out.bias"] new_checkpoint["decoder.conv_norm_out.weight"] = checkpoint["decoder.norm_out.weight"] new_checkpoint["decoder.conv_norm_out.bias"] = checkpoint["decoder.norm_out.bias"] new_checkpoint["decoder.conv_in.weight"] = checkpoint["decoder.conv_in.weight"] new_checkpoint["decoder.conv_in.bias"] = checkpoint["decoder.conv_in.bias"] new_checkpoint["decoder.conv_out.weight"] = checkpoint["decoder.conv_out.weight"] new_checkpoint["decoder.conv_out.bias"] = checkpoint["decoder.conv_out.bias"] num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "down" in layer}) down_blocks = { layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) } num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "up" in layer}) up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} for i in range(num_down_blocks): block_id = (i - 1) // (config["layers_per_block"] + 1) if any("downsample" in layer for layer in down_blocks[i]): new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ f"encoder.down.{i}.downsample.conv.weight" ] new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[ f"encoder.down.{i}.downsample.conv.bias" ] if any("block" in layer for layer in down_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"]): paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint) if any("attn" in layer for layer in down_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"]): paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] # Mid new 2 paths = renew_resnet_paths(mid_block_1_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], ) paths = renew_resnet_paths(mid_block_2_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], ) paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], ) for i in range(num_up_blocks): block_id = num_up_blocks - 1 - i if any("upsample" in layer for layer in up_blocks[i]): new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ f"decoder.up.{i}.upsample.conv.weight" ] new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[ f"decoder.up.{i}.upsample.conv.bias" ] if any("block" in layer for layer in up_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) if any("attn" in layer for layer in up_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} new_checkpoint["quant_conv.weight"] = checkpoint["quant_conv.weight"] new_checkpoint["quant_conv.bias"] = checkpoint["quant_conv.bias"] if "quantize.embedding.weight" in checkpoint: new_checkpoint["quantize.embedding.weight"] = checkpoint["quantize.embedding.weight"] new_checkpoint["post_quant_conv.weight"] = checkpoint["post_quant_conv.weight"] new_checkpoint["post_quant_conv.bias"] = checkpoint["post_quant_conv.bias"] return new_checkpoint if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") args = parser.parse_args() checkpoint = torch.load(args.checkpoint_path) with open(args.config_file) as f: config = json.loads(f.read()) # unet case key_prefix_set = {key.split(".")[0] for key in checkpoint.keys()} if "encoder" in key_prefix_set and "decoder" in key_prefix_set: converted_checkpoint = convert_vq_autoenc_checkpoint(checkpoint, config) else: converted_checkpoint = convert_ddpm_checkpoint(checkpoint, config) if "ddpm" in config: del config["ddpm"] if config["_class_name"] == "VQModel": model = VQModel(**config) model.load_state_dict(converted_checkpoint) model.save_pretrained(args.dump_path) elif config["_class_name"] == "AutoencoderKL": model = AutoencoderKL(**config) model.load_state_dict(converted_checkpoint) model.save_pretrained(args.dump_path) else: model = UNet2DModel(**config) model.load_state_dict(converted_checkpoint) scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) pipe = DDPMPipeline(unet=model, scheduler=scheduler) pipe.save_pretrained(args.dump_path)
diffusers/scripts/convert_ddpm_original_checkpoint_to_diffusers.py/0
{ "file_path": "diffusers/scripts/convert_ddpm_original_checkpoint_to_diffusers.py", "repo_id": "diffusers", "token_count": 8490 }
124
#!/usr/bin/env python3 import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from t5x import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder MODEL = "base_with_context" def load_notes_encoder(weights, model): model.token_embedder.weight = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"])) model.position_encoding.weight = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False ) for lyr_num, lyr in enumerate(model.encoders): ly_weight = weights[f"layers_{lyr_num}"] lyr.layer[0].layer_norm.weight = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"]) ) attention_weights = ly_weight["attention"] lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) lyr.layer[1].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) model.layer_norm.weight = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) return model def load_continuous_encoder(weights, model): model.input_proj.weight = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T)) model.position_encoding.weight = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False ) for lyr_num, lyr in enumerate(model.encoders): ly_weight = weights[f"layers_{lyr_num}"] attention_weights = ly_weight["attention"] lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) lyr.layer[0].layer_norm.weight = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"]) ) lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) lyr.layer[1].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) model.layer_norm.weight = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) return model def load_decoder(weights, model): model.conditioning_emb[0].weight = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T)) model.conditioning_emb[2].weight = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T)) model.position_encoding.weight = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False ) model.continuous_inputs_projection.weight = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T) ) for lyr_num, lyr in enumerate(model.decoders): ly_weight = weights[f"layers_{lyr_num}"] lyr.layer[0].layer_norm.weight = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"]) ) lyr.layer[0].FiLMLayer.scale_bias.weight = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T) ) attention_weights = ly_weight["self_attention"] lyr.layer[0].attention.to_q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) lyr.layer[0].attention.to_k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) lyr.layer[0].attention.to_v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) lyr.layer[0].attention.to_out[0].weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) attention_weights = ly_weight["MultiHeadDotProductAttention_0"] lyr.layer[1].attention.to_q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) lyr.layer[1].attention.to_k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) lyr.layer[1].attention.to_v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) lyr.layer[1].attention.to_out[0].weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) lyr.layer[1].layer_norm.weight = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"]) ) lyr.layer[2].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) lyr.layer[2].film.scale_bias.weight = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T) ) lyr.layer[2].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) lyr.layer[2].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) lyr.layer[2].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) model.decoder_norm.weight = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"])) model.spec_out.weight = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T)) return model def main(args): t5_checkpoint = checkpoints.load_t5x_checkpoint(args.checkpoint_path) t5_checkpoint = jnp.tree_util.tree_map(onp.array, t5_checkpoint) gin_overrides = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] gin_file = os.path.join(args.checkpoint_path, "..", "config.gin") gin_config = inference.parse_training_gin_file(gin_file, gin_overrides) synth_model = inference.InferenceModel(args.checkpoint_path, gin_config) scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2", variance_type="fixed_large") notes_encoder = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="gated-gelu", ) continuous_encoder = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length["targets_context"], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="gated-gelu", ) decoder = T5FilmDecoder( input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length["targets_context"], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, ) notes_encoder = load_notes_encoder(t5_checkpoint["target"]["token_encoder"], notes_encoder) continuous_encoder = load_continuous_encoder(t5_checkpoint["target"]["continuous_encoder"], continuous_encoder) decoder = load_decoder(t5_checkpoint["target"]["decoder"], decoder) melgan = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder") pipe = SpectrogramDiffusionPipeline( notes_encoder=notes_encoder, continuous_encoder=continuous_encoder, decoder=decoder, scheduler=scheduler, melgan=melgan, ) if args.save: pipe.save_pretrained(args.output_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"{MODEL}/checkpoint_500000", type=str, required=False, help="Path to the original jax model checkpoint.", ) args = parser.parse_args() main(args)
diffusers/scripts/convert_music_spectrogram_to_diffusers.py/0
{ "file_path": "diffusers/scripts/convert_music_spectrogram_to_diffusers.py", "repo_id": "diffusers", "token_count": 4469 }
125
import argparse import safetensors.torch from diffusers import AutoencoderTiny """ Example - From the diffusers root directory: Download the weights: ```sh $ wget -q https://huggingface.co/madebyollin/taesd/resolve/main/taesd_encoder.safetensors $ wget -q https://huggingface.co/madebyollin/taesd/resolve/main/taesd_decoder.safetensors ``` Convert the model: ```sh $ python scripts/convert_tiny_autoencoder_to_diffusers.py \ --encoder_ckpt_path taesd_encoder.safetensors \ --decoder_ckpt_path taesd_decoder.safetensors \ --dump_path taesd-diffusers ``` """ if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--encoder_ckpt_path", default=None, type=str, required=True, help="Path to the encoder ckpt.", ) parser.add_argument( "--decoder_ckpt_path", default=None, type=str, required=True, help="Path to the decoder ckpt.", ) parser.add_argument( "--use_safetensors", action="store_true", help="Whether to serialize in the safetensors format." ) args = parser.parse_args() print("Loading the original state_dicts of the encoder and the decoder...") encoder_state_dict = safetensors.torch.load_file(args.encoder_ckpt_path) decoder_state_dict = safetensors.torch.load_file(args.decoder_ckpt_path) print("Populating the state_dicts in the diffusers format...") tiny_autoencoder = AutoencoderTiny() new_state_dict = {} # Modify the encoder state dict. for k in encoder_state_dict: new_state_dict.update({f"encoder.layers.{k}": encoder_state_dict[k]}) # Modify the decoder state dict. for k in decoder_state_dict: layer_id = int(k.split(".")[0]) - 1 new_k = str(layer_id) + "." + ".".join(k.split(".")[1:]) new_state_dict.update({f"decoder.layers.{new_k}": decoder_state_dict[k]}) # Assertion tests with the original implementation can be found here: # https://gist.github.com/sayakpaul/337b0988f08bd2cf2b248206f760e28f tiny_autoencoder.load_state_dict(new_state_dict) print("Population successful, serializing...") tiny_autoencoder.save_pretrained(args.dump_path, safe_serialization=args.use_safetensors)
diffusers/scripts/convert_tiny_autoencoder_to_diffusers.py/0
{ "file_path": "diffusers/scripts/convert_tiny_autoencoder_to_diffusers.py", "repo_id": "diffusers", "token_count": 990 }
126
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage example: diffusers-cli fp16_safetensors --ckpt_id=openai/shap-e --fp16 --use_safetensors """ import glob import json import warnings from argparse import ArgumentParser, Namespace from importlib import import_module import huggingface_hub import torch from huggingface_hub import hf_hub_download from packaging import version from ..utils import logging from . import BaseDiffusersCLICommand def conversion_command_factory(args: Namespace): if args.use_auth_token: warnings.warn( "The `--use_auth_token` flag is deprecated and will be removed in a future version. Authentication is now" " handled automatically if user is logged in." ) return FP16SafetensorsCommand(args.ckpt_id, args.fp16, args.use_safetensors) class FP16SafetensorsCommand(BaseDiffusersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): conversion_parser = parser.add_parser("fp16_safetensors") conversion_parser.add_argument( "--ckpt_id", type=str, help="Repo id of the checkpoints on which to run the conversion. Example: 'openai/shap-e'.", ) conversion_parser.add_argument( "--fp16", action="store_true", help="If serializing the variables in FP16 precision." ) conversion_parser.add_argument( "--use_safetensors", action="store_true", help="If serializing in the safetensors format." ) conversion_parser.add_argument( "--use_auth_token", action="store_true", help="When working with checkpoints having private visibility. When used `huggingface-cli login` needs to be run beforehand.", ) conversion_parser.set_defaults(func=conversion_command_factory) def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool): self.logger = logging.get_logger("diffusers-cli/fp16_safetensors") self.ckpt_id = ckpt_id self.local_ckpt_dir = f"/tmp/{ckpt_id}" self.fp16 = fp16 self.use_safetensors = use_safetensors if not self.use_safetensors and not self.fp16: raise NotImplementedError( "When `use_safetensors` and `fp16` both are False, then this command is of no use." ) def run(self): if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"): raise ImportError( "The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub" " installation." ) else: from huggingface_hub import create_commit from huggingface_hub._commit_api import CommitOperationAdd model_index = hf_hub_download(repo_id=self.ckpt_id, filename="model_index.json") with open(model_index, "r") as f: pipeline_class_name = json.load(f)["_class_name"] pipeline_class = getattr(import_module("diffusers"), pipeline_class_name) self.logger.info(f"Pipeline class imported: {pipeline_class_name}.") # Load the appropriate pipeline. We could have use `DiffusionPipeline` # here, but just to avoid any rough edge cases. pipeline = pipeline_class.from_pretrained( self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32 ) pipeline.save_pretrained( self.local_ckpt_dir, safe_serialization=True if self.use_safetensors else False, variant="fp16" if self.fp16 else None, ) self.logger.info(f"Pipeline locally saved to {self.local_ckpt_dir}.") # Fetch all the paths. if self.fp16: modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.fp16.*") elif self.use_safetensors: modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.safetensors") # Prepare for the PR. commit_message = f"Serialize variables with FP16: {self.fp16} and safetensors: {self.use_safetensors}." operations = [] for path in modified_paths: operations.append(CommitOperationAdd(path_in_repo="/".join(path.split("/")[4:]), path_or_fileobj=path)) # Open the PR. commit_description = ( "Variables converted by the [`diffusers`' `fp16_safetensors`" " CLI](https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/fp16_safetensors.py)." ) hub_pr_url = create_commit( repo_id=self.ckpt_id, operations=operations, commit_message=commit_message, commit_description=commit_description, repo_type="model", create_pr=True, ).pr_url self.logger.info(f"PR created here: {hub_pr_url}.")
diffusers/src/diffusers/commands/fp16_safetensors.py/0
{ "file_path": "diffusers/src/diffusers/commands/fp16_safetensors.py", "repo_id": "diffusers", "token_count": 2248 }
127
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from huggingface_hub.utils import validate_hf_hub_args from ..utils import is_transformers_available, logging from .single_file_utils import ( create_diffusers_unet_model_from_ldm, create_diffusers_vae_model_from_ldm, create_scheduler_from_ldm, create_text_encoders_and_tokenizers_from_ldm, fetch_ldm_config_and_checkpoint, infer_model_type, ) logger = logging.get_logger(__name__) # Pipelines that support the SDXL Refiner checkpoint REFINER_PIPELINES = [ "StableDiffusionXLImg2ImgPipeline", "StableDiffusionXLInpaintPipeline", "StableDiffusionXLControlNetImg2ImgPipeline", ] if is_transformers_available(): from transformers import AutoFeatureExtractor def build_sub_model_components( pipeline_components, pipeline_class_name, component_name, original_config, checkpoint, local_files_only=False, load_safety_checker=False, model_type=None, image_size=None, torch_dtype=None, **kwargs, ): if component_name in pipeline_components: return {} if component_name == "unet": num_in_channels = kwargs.pop("num_in_channels", None) upcast_attention = kwargs.pop("upcast_attention", None) unet_components = create_diffusers_unet_model_from_ldm( pipeline_class_name, original_config, checkpoint, num_in_channels=num_in_channels, image_size=image_size, torch_dtype=torch_dtype, model_type=model_type, upcast_attention=upcast_attention, ) return unet_components if component_name == "vae": scaling_factor = kwargs.get("scaling_factor", None) vae_components = create_diffusers_vae_model_from_ldm( pipeline_class_name, original_config, checkpoint, image_size, scaling_factor, torch_dtype, model_type=model_type, ) return vae_components if component_name == "scheduler": scheduler_type = kwargs.get("scheduler_type", "ddim") prediction_type = kwargs.get("prediction_type", None) scheduler_components = create_scheduler_from_ldm( pipeline_class_name, original_config, checkpoint, scheduler_type=scheduler_type, prediction_type=prediction_type, model_type=model_type, ) return scheduler_components if component_name in ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]: text_encoder_components = create_text_encoders_and_tokenizers_from_ldm( original_config, checkpoint, model_type=model_type, local_files_only=local_files_only, torch_dtype=torch_dtype, ) return text_encoder_components if component_name == "safety_checker": if load_safety_checker: from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker safety_checker = StableDiffusionSafetyChecker.from_pretrained( "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype ) else: safety_checker = None return {"safety_checker": safety_checker} if component_name == "feature_extractor": if load_safety_checker: feature_extractor = AutoFeatureExtractor.from_pretrained( "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only ) else: feature_extractor = None return {"feature_extractor": feature_extractor} return def set_additional_components( pipeline_class_name, original_config, checkpoint=None, model_type=None, ): components = {} if pipeline_class_name in REFINER_PIPELINES: model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type) is_refiner = model_type == "SDXL-Refiner" components.update( { "requires_aesthetics_score": is_refiner, "force_zeros_for_empty_prompt": False if is_refiner else True, } ) return components class FromSingleFileMixin: """ Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`]. """ @classmethod @validate_hf_hub_args def from_single_file(cls, pretrained_model_link_or_path, **kwargs): r""" Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default. Parameters: pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): Can be either: - A link to the `.ckpt` file (for example `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. - A path to a *file* containing all pipeline weights. torch_dtype (`str` or `torch.dtype`, *optional*): Override the default `torch.dtype` and load the model with another dtype. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to resume downloading the model weights and configuration files. If set to `False`, any incompletely downloaded files are deleted. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. original_config_file (`str`, *optional*): The path to the original config file that was used to train the model. If not provided, the config file will be inferred from the checkpoint file. model_type (`str`, *optional*): The type of model to load. If not provided, the model type will be inferred from the checkpoint file. image_size (`int`, *optional*): The size of the image output. It's used to configure the `sample_size` parameter of the UNet and VAE model. load_safety_checker (`bool`, *optional*, defaults to `False`): Whether to load the safety checker model or not. By default, the safety checker is not loaded unless a `safety_checker` component is passed to the `kwargs`. num_in_channels (`int`, *optional*): Specify the number of input channels for the UNet model. Read more about how to configure UNet model with this parameter [here](https://huggingface.co/docs/diffusers/training/adapt_a_model#configure-unet2dconditionmodel-parameters). scaling_factor (`float`, *optional*): The scaling factor to use for the VAE model. If not provided, it is inferred from the config file first. If the scaling factor is not found in the config file, the default value 0.18215 is used. scheduler_type (`str`, *optional*): The type of scheduler to load. If not provided, the scheduler type will be inferred from the checkpoint file. prediction_type (`str`, *optional*): The type of prediction to load. If not provided, the prediction type will be inferred from the checkpoint file. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline class). The overwritten components are passed directly to the pipelines `__init__` method. See example below for more information. Examples: ```py >>> from diffusers import StableDiffusionPipeline >>> # Download pipeline from huggingface.co and cache. >>> pipeline = StableDiffusionPipeline.from_single_file( ... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors" ... ) >>> # Download pipeline from local file >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly") >>> # Enable float16 and move to GPU >>> pipeline = StableDiffusionPipeline.from_single_file( ... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", ... torch_dtype=torch.float16, ... ) >>> pipeline.to("cuda") ``` """ original_config_file = kwargs.pop("original_config_file", None) resume_download = kwargs.pop("resume_download", False) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) cache_dir = kwargs.pop("cache_dir", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) torch_dtype = kwargs.pop("torch_dtype", None) class_name = cls.__name__ original_config, checkpoint = fetch_ldm_config_and_checkpoint( pretrained_model_link_or_path=pretrained_model_link_or_path, class_name=class_name, original_config_file=original_config_file, resume_download=resume_download, force_download=force_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, cache_dir=cache_dir, ) from ..pipelines.pipeline_utils import _get_pipeline_class pipeline_class = _get_pipeline_class( cls, config=None, cache_dir=cache_dir, ) expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class) passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} model_type = kwargs.pop("model_type", None) image_size = kwargs.pop("image_size", None) load_safety_checker = (kwargs.pop("load_safety_checker", False)) or ( passed_class_obj.get("safety_checker", None) is not None ) init_kwargs = {} for name in expected_modules: if name in passed_class_obj: init_kwargs[name] = passed_class_obj[name] else: components = build_sub_model_components( init_kwargs, class_name, name, original_config, checkpoint, model_type=model_type, image_size=image_size, load_safety_checker=load_safety_checker, local_files_only=local_files_only, torch_dtype=torch_dtype, **kwargs, ) if not components: continue init_kwargs.update(components) additional_components = set_additional_components( class_name, original_config, checkpoint=checkpoint, model_type=model_type ) if additional_components: init_kwargs.update(additional_components) init_kwargs.update(passed_pipe_kwargs) pipe = pipeline_class(**init_kwargs) if torch_dtype is not None: pipe.to(dtype=torch_dtype) return pipe
diffusers/src/diffusers/loaders/single_file.py/0
{ "file_path": "diffusers/src/diffusers/loaders/single_file.py", "repo_id": "diffusers", "token_count": 5875 }
128
# Copyright 2024 Ollin Boer Bohan and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ...configuration_utils import ConfigMixin, register_to_config from ...utils import BaseOutput from ...utils.accelerate_utils import apply_forward_hook from ..modeling_utils import ModelMixin from .vae import DecoderOutput, DecoderTiny, EncoderTiny @dataclass class AutoencoderTinyOutput(BaseOutput): """ Output of AutoencoderTiny encoding method. Args: latents (`torch.Tensor`): Encoded outputs of the `Encoder`. """ latents: torch.Tensor class AutoencoderTiny(ModelMixin, ConfigMixin): r""" A tiny distilled VAE model for encoding images into latents and decoding latent representations into images. [`AutoencoderTiny`] is a wrapper around the original implementation of `TAESD`. This model inherits from [`ModelMixin`]. Check the superclass documentation for its generic methods implemented for all models (such as downloading or saving). Parameters: in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image. out_channels (`int`, *optional*, defaults to 3): Number of channels in the output. encoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`): Tuple of integers representing the number of output channels for each encoder block. The length of the tuple should be equal to the number of encoder blocks. decoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`): Tuple of integers representing the number of output channels for each decoder block. The length of the tuple should be equal to the number of decoder blocks. act_fn (`str`, *optional*, defaults to `"relu"`): Activation function to be used throughout the model. latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent representation. The latent space acts as a compressed representation of the input image. upsampling_scaling_factor (`int`, *optional*, defaults to 2): Scaling factor for upsampling in the decoder. It determines the size of the output image during the upsampling process. num_encoder_blocks (`Tuple[int]`, *optional*, defaults to `(1, 3, 3, 3)`): Tuple of integers representing the number of encoder blocks at each stage of the encoding process. The length of the tuple should be equal to the number of stages in the encoder. Each stage has a different number of encoder blocks. num_decoder_blocks (`Tuple[int]`, *optional*, defaults to `(3, 3, 3, 1)`): Tuple of integers representing the number of decoder blocks at each stage of the decoding process. The length of the tuple should be equal to the number of stages in the decoder. Each stage has a different number of decoder blocks. latent_magnitude (`float`, *optional*, defaults to 3.0): Magnitude of the latent representation. This parameter scales the latent representation values to control the extent of information preservation. latent_shift (float, *optional*, defaults to 0.5): Shift applied to the latent representation. This parameter controls the center of the latent space. scaling_factor (`float`, *optional*, defaults to 1.0): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. For this Autoencoder, however, no such scaling factor was used, hence the value of 1.0 as the default. force_upcast (`bool`, *optional*, default to `False`): If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE can be fine-tuned / trained to a lower range without losing too much precision, in which case `force_upcast` can be set to `False` (see this fp16-friendly [AutoEncoder](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)). """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, encoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64), decoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64), act_fn: str = "relu", latent_channels: int = 4, upsampling_scaling_factor: int = 2, num_encoder_blocks: Tuple[int, ...] = (1, 3, 3, 3), num_decoder_blocks: Tuple[int, ...] = (3, 3, 3, 1), latent_magnitude: int = 3, latent_shift: float = 0.5, force_upcast: bool = False, scaling_factor: float = 1.0, ): super().__init__() if len(encoder_block_out_channels) != len(num_encoder_blocks): raise ValueError("`encoder_block_out_channels` should have the same length as `num_encoder_blocks`.") if len(decoder_block_out_channels) != len(num_decoder_blocks): raise ValueError("`decoder_block_out_channels` should have the same length as `num_decoder_blocks`.") self.encoder = EncoderTiny( in_channels=in_channels, out_channels=latent_channels, num_blocks=num_encoder_blocks, block_out_channels=encoder_block_out_channels, act_fn=act_fn, ) self.decoder = DecoderTiny( in_channels=latent_channels, out_channels=out_channels, num_blocks=num_decoder_blocks, block_out_channels=decoder_block_out_channels, upsampling_scaling_factor=upsampling_scaling_factor, act_fn=act_fn, ) self.latent_magnitude = latent_magnitude self.latent_shift = latent_shift self.scaling_factor = scaling_factor self.use_slicing = False self.use_tiling = False # only relevant if vae tiling is enabled self.spatial_scale_factor = 2**out_channels self.tile_overlap_factor = 0.125 self.tile_sample_min_size = 512 self.tile_latent_min_size = self.tile_sample_min_size // self.spatial_scale_factor self.register_to_config(block_out_channels=decoder_block_out_channels) self.register_to_config(force_upcast=False) def _set_gradient_checkpointing(self, module, value: bool = False) -> None: if isinstance(module, (EncoderTiny, DecoderTiny)): module.gradient_checkpointing = value def scale_latents(self, x: torch.FloatTensor) -> torch.FloatTensor: """raw latents -> [0, 1]""" return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1) def unscale_latents(self, x: torch.FloatTensor) -> torch.FloatTensor: """[0, 1] -> raw latents""" return x.sub(self.latent_shift).mul(2 * self.latent_magnitude) def enable_slicing(self) -> None: r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True def disable_slicing(self) -> None: r""" Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False def enable_tiling(self, use_tiling: bool = True) -> None: r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.use_tiling = use_tiling def disable_tiling(self) -> None: r""" Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.enable_tiling(False) def _tiled_encode(self, x: torch.FloatTensor) -> torch.FloatTensor: r"""Encode a batch of images using a tiled encoder. When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. Args: x (`torch.FloatTensor`): Input batch of images. Returns: `torch.FloatTensor`: Encoded batch of images. """ # scale of encoder output relative to input sf = self.spatial_scale_factor tile_size = self.tile_sample_min_size # number of pixels to blend and to traverse between tile blend_size = int(tile_size * self.tile_overlap_factor) traverse_size = tile_size - blend_size # tiles index (up/left) ti = range(0, x.shape[-2], traverse_size) tj = range(0, x.shape[-1], traverse_size) # mask for blending blend_masks = torch.stack( torch.meshgrid([torch.arange(tile_size / sf) / (blend_size / sf - 1)] * 2, indexing="ij") ) blend_masks = blend_masks.clamp(0, 1).to(x.device) # output array out = torch.zeros(x.shape[0], 4, x.shape[-2] // sf, x.shape[-1] // sf, device=x.device) for i in ti: for j in tj: tile_in = x[..., i : i + tile_size, j : j + tile_size] # tile result tile_out = out[..., i // sf : (i + tile_size) // sf, j // sf : (j + tile_size) // sf] tile = self.encoder(tile_in) h, w = tile.shape[-2], tile.shape[-1] # blend tile result into output blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0] blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1] blend_mask = blend_mask_i * blend_mask_j tile, blend_mask = tile[..., :h, :w], blend_mask[..., :h, :w] tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out) return out def _tiled_decode(self, x: torch.FloatTensor) -> torch.FloatTensor: r"""Encode a batch of images using a tiled encoder. When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. Args: x (`torch.FloatTensor`): Input batch of images. Returns: `torch.FloatTensor`: Encoded batch of images. """ # scale of decoder output relative to input sf = self.spatial_scale_factor tile_size = self.tile_latent_min_size # number of pixels to blend and to traverse between tiles blend_size = int(tile_size * self.tile_overlap_factor) traverse_size = tile_size - blend_size # tiles index (up/left) ti = range(0, x.shape[-2], traverse_size) tj = range(0, x.shape[-1], traverse_size) # mask for blending blend_masks = torch.stack( torch.meshgrid([torch.arange(tile_size * sf) / (blend_size * sf - 1)] * 2, indexing="ij") ) blend_masks = blend_masks.clamp(0, 1).to(x.device) # output array out = torch.zeros(x.shape[0], 3, x.shape[-2] * sf, x.shape[-1] * sf, device=x.device) for i in ti: for j in tj: tile_in = x[..., i : i + tile_size, j : j + tile_size] # tile result tile_out = out[..., i * sf : (i + tile_size) * sf, j * sf : (j + tile_size) * sf] tile = self.decoder(tile_in) h, w = tile.shape[-2], tile.shape[-1] # blend tile result into output blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0] blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1] blend_mask = (blend_mask_i * blend_mask_j)[..., :h, :w] tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out) return out @apply_forward_hook def encode( self, x: torch.FloatTensor, return_dict: bool = True ) -> Union[AutoencoderTinyOutput, Tuple[torch.FloatTensor]]: if self.use_slicing and x.shape[0] > 1: output = [ self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x_slice) for x_slice in x.split(1) ] output = torch.cat(output) else: output = self._tiled_encode(x) if self.use_tiling else self.encoder(x) if not return_dict: return (output,) return AutoencoderTinyOutput(latents=output) @apply_forward_hook def decode( self, x: torch.FloatTensor, generator: Optional[torch.Generator] = None, return_dict: bool = True ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: if self.use_slicing and x.shape[0] > 1: output = [self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x) for x_slice in x.split(1)] output = torch.cat(output) else: output = self._tiled_decode(x) if self.use_tiling else self.decoder(x) if not return_dict: return (output,) return DecoderOutput(sample=output) def forward( self, sample: torch.FloatTensor, return_dict: bool = True, ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: r""" Args: sample (`torch.FloatTensor`): Input sample. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ enc = self.encode(sample).latents # scale latents to be in [0, 1], then quantize latents to a byte tensor, # as if we were storing the latents in an RGBA uint8 image. scaled_enc = self.scale_latents(enc).mul_(255).round_().byte() # unquantize latents back into [0, 1], then unscale latents back to their original range, # as if we were loading the latents from an RGBA uint8 image. unscaled_enc = self.unscale_latents(scaled_enc / 255.0) dec = self.decode(unscaled_enc) if not return_dict: return (dec,) return DecoderOutput(sample=dec)
diffusers/src/diffusers/models/autoencoders/autoencoder_tiny.py/0
{ "file_path": "diffusers/src/diffusers/models/autoencoders/autoencoder_tiny.py", "repo_id": "diffusers", "token_count": 6580 }
129
from ..utils import deprecate from .transformers.prior_transformer import PriorTransformer, PriorTransformerOutput class PriorTransformerOutput(PriorTransformerOutput): deprecation_message = "Importing `PriorTransformerOutput` from `diffusers.models.prior_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.prior_transformer import PriorTransformerOutput`, instead." deprecate("PriorTransformerOutput", "0.29", deprecation_message) class PriorTransformer(PriorTransformer): deprecation_message = "Importing `PriorTransformer` from `diffusers.models.prior_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.prior_transformer import PriorTransformer`, instead." deprecate("PriorTransformer", "0.29", deprecation_message)
diffusers/src/diffusers/models/prior_transformer.py/0
{ "file_path": "diffusers/src/diffusers/models/prior_transformer.py", "repo_id": "diffusers", "token_count": 235 }
130
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Union import torch import torch.nn.functional as F from torch import nn from torch.utils.checkpoint import checkpoint from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import PeftAdapterMixin from ..attention import BasicTransformerBlock, SkipFFTransformerBlock from ..attention_processor import ( ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, ) from ..embeddings import TimestepEmbedding, get_timestep_embedding from ..modeling_utils import ModelMixin from ..normalization import GlobalResponseNorm, RMSNorm from ..resnet import Downsample2D, Upsample2D class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): _supports_gradient_checkpointing = True @register_to_config def __init__( self, # global config hidden_size: int = 1024, use_bias: bool = False, hidden_dropout: float = 0.0, # conditioning dimensions cond_embed_dim: int = 768, micro_cond_encode_dim: int = 256, micro_cond_embed_dim: int = 1280, encoder_hidden_size: int = 768, # num tokens vocab_size: int = 8256, # codebook_size + 1 (for the mask token) rounded codebook_size: int = 8192, # `UVit2DConvEmbed` in_channels: int = 768, block_out_channels: int = 768, num_res_blocks: int = 3, downsample: bool = False, upsample: bool = False, block_num_heads: int = 12, # `TransformerLayer` num_hidden_layers: int = 22, num_attention_heads: int = 16, # `Attention` attention_dropout: float = 0.0, # `FeedForward` intermediate_size: int = 2816, # `Norm` layer_norm_eps: float = 1e-6, ln_elementwise_affine: bool = True, sample_size: int = 64, ): super().__init__() self.encoder_proj = nn.Linear(encoder_hidden_size, hidden_size, bias=use_bias) self.encoder_proj_layer_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine) self.embed = UVit2DConvEmbed( in_channels, block_out_channels, vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias ) self.cond_embed = TimestepEmbedding( micro_cond_embed_dim + cond_embed_dim, hidden_size, sample_proj_bias=use_bias ) self.down_block = UVitBlock( block_out_channels, num_res_blocks, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample, False, ) self.project_to_hidden_norm = RMSNorm(block_out_channels, layer_norm_eps, ln_elementwise_affine) self.project_to_hidden = nn.Linear(block_out_channels, hidden_size, bias=use_bias) self.transformer_layers = nn.ModuleList( [ BasicTransformerBlock( dim=hidden_size, num_attention_heads=num_attention_heads, attention_head_dim=hidden_size // num_attention_heads, dropout=hidden_dropout, cross_attention_dim=hidden_size, attention_bias=use_bias, norm_type="ada_norm_continuous", ada_norm_continous_conditioning_embedding_dim=hidden_size, norm_elementwise_affine=ln_elementwise_affine, norm_eps=layer_norm_eps, ada_norm_bias=use_bias, ff_inner_dim=intermediate_size, ff_bias=use_bias, attention_out_bias=use_bias, ) for _ in range(num_hidden_layers) ] ) self.project_from_hidden_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine) self.project_from_hidden = nn.Linear(hidden_size, block_out_channels, bias=use_bias) self.up_block = UVitBlock( block_out_channels, num_res_blocks, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample=False, upsample=upsample, ) self.mlm_layer = ConvMlmLayer( block_out_channels, in_channels, use_bias, ln_elementwise_affine, layer_norm_eps, codebook_size ) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value: bool = False) -> None: pass def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None): encoder_hidden_states = self.encoder_proj(encoder_hidden_states) encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states) micro_cond_embeds = get_timestep_embedding( micro_conds.flatten(), self.config.micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0 ) micro_cond_embeds = micro_cond_embeds.reshape((input_ids.shape[0], -1)) pooled_text_emb = torch.cat([pooled_text_emb, micro_cond_embeds], dim=1) pooled_text_emb = pooled_text_emb.to(dtype=self.dtype) pooled_text_emb = self.cond_embed(pooled_text_emb).to(encoder_hidden_states.dtype) hidden_states = self.embed(input_ids) hidden_states = self.down_block( hidden_states, pooled_text_emb=pooled_text_emb, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) batch_size, channels, height, width = hidden_states.shape hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels) hidden_states = self.project_to_hidden_norm(hidden_states) hidden_states = self.project_to_hidden(hidden_states) for layer in self.transformer_layers: if self.training and self.gradient_checkpointing: def layer_(*args): return checkpoint(layer, *args) else: layer_ = layer hidden_states = layer_( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs={"pooled_text_emb": pooled_text_emb}, ) hidden_states = self.project_from_hidden_norm(hidden_states) hidden_states = self.project_from_hidden(hidden_states) hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) hidden_states = self.up_block( hidden_states, pooled_text_emb=pooled_text_emb, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) logits = self.mlm_layer(hidden_states) return logits @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) class UVit2DConvEmbed(nn.Module): def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias): super().__init__() self.embeddings = nn.Embedding(vocab_size, in_channels) self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine) self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias) def forward(self, input_ids): embeddings = self.embeddings(input_ids) embeddings = self.layer_norm(embeddings) embeddings = embeddings.permute(0, 3, 1, 2) embeddings = self.conv(embeddings) return embeddings class UVitBlock(nn.Module): def __init__( self, channels, num_res_blocks: int, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample: bool, upsample: bool, ): super().__init__() if downsample: self.downsample = Downsample2D( channels, use_conv=True, padding=0, name="Conv2d_0", kernel_size=2, norm_type="rms_norm", eps=layer_norm_eps, elementwise_affine=ln_elementwise_affine, bias=use_bias, ) else: self.downsample = None self.res_blocks = nn.ModuleList( [ ConvNextBlock( channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, ) for i in range(num_res_blocks) ] ) self.attention_blocks = nn.ModuleList( [ SkipFFTransformerBlock( channels, block_num_heads, channels // block_num_heads, hidden_size, use_bias, attention_dropout, channels, attention_bias=use_bias, attention_out_bias=use_bias, ) for _ in range(num_res_blocks) ] ) if upsample: self.upsample = Upsample2D( channels, use_conv_transpose=True, kernel_size=2, padding=0, name="conv", norm_type="rms_norm", eps=layer_norm_eps, elementwise_affine=ln_elementwise_affine, bias=use_bias, interpolate=False, ) else: self.upsample = None def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs): if self.downsample is not None: x = self.downsample(x) for res_block, attention_block in zip(self.res_blocks, self.attention_blocks): x = res_block(x, pooled_text_emb) batch_size, channels, height, width = x.shape x = x.view(batch_size, channels, height * width).permute(0, 2, 1) x = attention_block( x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs ) x = x.permute(0, 2, 1).view(batch_size, channels, height, width) if self.upsample is not None: x = self.upsample(x) return x class ConvNextBlock(nn.Module): def __init__( self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4 ): super().__init__() self.depthwise = nn.Conv2d( channels, channels, kernel_size=3, padding=1, groups=channels, bias=use_bias, ) self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine) self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias) self.channelwise_act = nn.GELU() self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor)) self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias) self.channelwise_dropout = nn.Dropout(hidden_dropout) self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias) def forward(self, x, cond_embeds): x_res = x x = self.depthwise(x) x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.channelwise_linear_1(x) x = self.channelwise_act(x) x = self.channelwise_norm(x) x = self.channelwise_linear_2(x) x = self.channelwise_dropout(x) x = x.permute(0, 3, 1, 2) x = x + x_res scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1) x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None] return x class ConvMlmLayer(nn.Module): def __init__( self, block_out_channels: int, in_channels: int, use_bias: bool, ln_elementwise_affine: bool, layer_norm_eps: float, codebook_size: int, ): super().__init__() self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias) self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine) self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias) def forward(self, hidden_states): hidden_states = self.conv1(hidden_states) hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) logits = self.conv2(hidden_states) return logits
diffusers/src/diffusers/models/unets/uvit_2d.py/0
{ "file_path": "diffusers/src/diffusers/models/unets/uvit_2d.py", "repo_id": "diffusers", "token_count": 8290 }
131
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import torch import torch.nn.functional as F from transformers import ClapTextModelWithProjection, RobertaTokenizer, RobertaTokenizerFast, SpeechT5HifiGan from ...models import AutoencoderKL, UNet2DConditionModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import logging, replace_example_docstring from ...utils.torch_utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline, StableDiffusionMixin logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import AudioLDMPipeline >>> import torch >>> import scipy >>> repo_id = "cvssp/audioldm-s-full-v2" >>> pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16) >>> pipe = pipe.to("cuda") >>> prompt = "Techno music with a strong, upbeat tempo and high melodic riffs" >>> audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0] >>> # save the audio sample as a .wav file >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio) ``` """ class AudioLDMPipeline(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline for text-to-audio generation using AudioLDM. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.ClapTextModelWithProjection`]): Frozen text-encoder (`ClapTextModelWithProjection`, specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. tokenizer ([`PreTrainedTokenizer`]): A [`~transformers.RobertaTokenizer`] to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded audio latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. vocoder ([`~transformers.SpeechT5HifiGan`]): Vocoder of class `SpeechT5HifiGan`. """ model_cpu_offload_seq = "text_encoder->unet->vae" def __init__( self, vae: AutoencoderKL, text_encoder: ClapTextModelWithProjection, tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, vocoder: SpeechT5HifiGan, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, vocoder=vocoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) def _encode_prompt( self, prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device (`torch.device`): torch device num_waveforms_per_prompt (`int`): number of waveforms that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the audio generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLAP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask.to(device), ) prompt_embeds = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state prompt_embeds = F.normalize(prompt_embeds, dim=-1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) ( bs_embed, seq_len, ) = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt) prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_input.input_ids.to(device) attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input_ids, attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state negative_prompt_embeds = F.normalize(negative_prompt_embeds, dim=-1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def decode_latents(self, latents): latents = 1 / self.vae.config.scaling_factor * latents mel_spectrogram = self.vae.decode(latents).sample return mel_spectrogram def mel_spectrogram_to_waveform(self, mel_spectrogram): if mel_spectrogram.dim() == 4: mel_spectrogram = mel_spectrogram.squeeze(1) waveform = self.vocoder(mel_spectrogram) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 waveform = waveform.cpu().float() return waveform # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor if audio_length_in_s < min_audio_length_in_s: raise ValueError( f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but " f"is {audio_length_in_s}." ) if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: raise ValueError( f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the " f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of " f"{self.vae_scale_factor}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, height // self.vae_scale_factor, self.vocoder.config.model_in_dim // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, audio_length_in_s: Optional[float] = None, num_inference_steps: int = 10, guidance_scale: float = 2.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_waveforms_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, output_type: Optional[str] = "np", ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`. audio_length_in_s (`int`, *optional*, defaults to 5.12): The length of the generated audio sample in seconds. num_inference_steps (`int`, *optional*, defaults to 10): The number of denoising steps. More denoising steps usually lead to a higher quality audio at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 2.5): A higher guidance scale value encourages the model to generate audio that is closely linked to the text `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in audio generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_waveforms_per_prompt (`int`, *optional*, defaults to 1): The number of waveforms to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). output_type (`str`, *optional*, defaults to `"np"`): The output format of the generated image. Choose between `"np"` to return a NumPy `np.ndarray` or `"pt"` to return a PyTorch `torch.Tensor` object. Examples: Returns: [`~pipelines.AudioPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated audio. """ # 0. Convert audio input length from seconds to spectrogram height vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate if audio_length_in_s is None: audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor height = int(audio_length_in_s / vocoder_upsample_factor) original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) if height % self.vae_scale_factor != 0: height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor logger.info( f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} " f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the " f"denoising process." ) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_waveforms_per_prompt, num_channels_latents, height, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=None, class_labels=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # 8. Post-processing mel_spectrogram = self.decode_latents(latents) audio = self.mel_spectrogram_to_waveform(mel_spectrogram) audio = audio[:, :original_waveform_length] if output_type == "np": audio = audio.numpy() if not return_dict: return (audio,) return AudioPipelineOutput(audios=audio)
diffusers/src/diffusers/pipelines/audioldm/pipeline_audioldm.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/audioldm/pipeline_audioldm.py", "repo_id": "diffusers", "token_count": 11533 }
132
import html import inspect import re import urllib.parse as ul from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import PIL.Image import torch from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer from ...loaders import LoraLoaderMixin from ...models import UNet2DConditionModel from ...schedulers import DDPMScheduler from ...utils import ( BACKENDS_MAPPING, PIL_INTERPOLATION, is_accelerate_available, is_bs4_available, is_ftfy_available, logging, replace_example_docstring, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline from .pipeline_output import IFPipelineOutput from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_bs4_available(): from bs4 import BeautifulSoup if is_ftfy_available(): import ftfy # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.resize def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image: w, h = images.size coef = w / h w, h = img_size, img_size if coef >= 1: w = int(round(img_size / 8 * coef) * 8) else: h = int(round(img_size / 8 / coef) * 8) images = images.resize((w, h), resample=PIL_INTERPOLATION["bicubic"], reducing_gap=None) return images EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline >>> from diffusers.utils import pt_to_pil >>> import torch >>> from PIL import Image >>> import requests >>> from io import BytesIO >>> url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png" >>> response = requests.get(url) >>> original_image = Image.open(BytesIO(response.content)).convert("RGB") >>> original_image = original_image >>> url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png" >>> response = requests.get(url) >>> mask_image = Image.open(BytesIO(response.content)) >>> mask_image = mask_image >>> pipe = IFInpaintingPipeline.from_pretrained( ... "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16 ... ) >>> pipe.enable_model_cpu_offload() >>> prompt = "blue sunglasses" >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt) >>> image = pipe( ... image=original_image, ... mask_image=mask_image, ... prompt_embeds=prompt_embeds, ... negative_prompt_embeds=negative_embeds, ... output_type="pt", ... ).images >>> # save intermediate image >>> pil_image = pt_to_pil(image) >>> pil_image[0].save("./if_stage_I.png") >>> super_res_1_pipe = IFInpaintingSuperResolutionPipeline.from_pretrained( ... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16 ... ) >>> super_res_1_pipe.enable_model_cpu_offload() >>> image = super_res_1_pipe( ... image=image, ... mask_image=mask_image, ... original_image=original_image, ... prompt_embeds=prompt_embeds, ... negative_prompt_embeds=negative_embeds, ... ).images >>> image[0].save("./if_stage_II.png") ``` """ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin): tokenizer: T5Tokenizer text_encoder: T5EncoderModel unet: UNet2DConditionModel scheduler: DDPMScheduler feature_extractor: Optional[CLIPImageProcessor] safety_checker: Optional[IFSafetyChecker] watermarker: Optional[IFWatermarker] bad_punct_regex = re.compile( r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}" ) # noqa _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"] model_cpu_offload_seq = "text_encoder->unet" def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: UNet2DConditionModel, scheduler: DDPMScheduler, safety_checker: Optional[IFSafetyChecker], feature_extractor: Optional[CLIPImageProcessor], watermarker: Optional[IFWatermarker], requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the IF license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, watermarker=watermarker, ) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.remove_all_hooks def remove_all_hooks(self): if is_accelerate_available(): from accelerate.hooks import remove_hook_from_module else: raise ImportError("Please install accelerate via `pip install accelerate`") for model in [self.text_encoder, self.unet, self.safety_checker]: if model is not None: remove_hook_from_module(model, recurse=True) self.unet_offload_hook = None self.text_encoder_offload_hook = None self.final_offload_hook = None @torch.no_grad() # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, num_images_per_prompt: int = 1, device: Optional[torch.device] = None, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, clean_caption: bool = False, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. clean_caption (bool, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. """ if prompt is not None and negative_prompt is not None: if type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # while T5 can handle much longer input sequences than 77, the text encoder was trained with a max length of 77 for IF max_length = 77 if prompt_embeds is None: prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {max_length} tokens: {removed_text}" ) attention_mask = text_inputs.attention_mask.to(device) prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.unet is not None: dtype = self.unet.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes else: negative_prompt_embeds = None return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) image, nsfw_detected, watermark_detected = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype=dtype), ) else: nsfw_detected = None watermark_detected = None if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None: self.unet_offload_hook.offload() return image, nsfw_detected, watermark_detected # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, image, mask_image, batch_size, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # image if isinstance(image, list): check_image_type = image[0] else: check_image_type = image if ( not isinstance(check_image_type, torch.Tensor) and not isinstance(check_image_type, PIL.Image.Image) and not isinstance(check_image_type, np.ndarray) ): raise ValueError( "`image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is" f" {type(check_image_type)}" ) if isinstance(image, list): image_batch_size = len(image) elif isinstance(image, torch.Tensor): image_batch_size = image.shape[0] elif isinstance(image, PIL.Image.Image): image_batch_size = 1 elif isinstance(image, np.ndarray): image_batch_size = image.shape[0] else: assert False if batch_size != image_batch_size: raise ValueError(f"image batch size: {image_batch_size} must be same as prompt batch size {batch_size}") # mask_image if isinstance(mask_image, list): check_image_type = mask_image[0] else: check_image_type = mask_image if ( not isinstance(check_image_type, torch.Tensor) and not isinstance(check_image_type, PIL.Image.Image) and not isinstance(check_image_type, np.ndarray) ): raise ValueError( "`mask_image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is" f" {type(check_image_type)}" ) if isinstance(mask_image, list): image_batch_size = len(mask_image) elif isinstance(mask_image, torch.Tensor): image_batch_size = mask_image.shape[0] elif isinstance(mask_image, PIL.Image.Image): image_batch_size = 1 elif isinstance(mask_image, np.ndarray): image_batch_size = mask_image.shape[0] else: assert False if image_batch_size != 1 and batch_size != image_batch_size: raise ValueError( f"mask_image batch size: {image_batch_size} must be `1` or the same as prompt batch size {batch_size}" ) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("<person>", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @<nickname> caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # &quot; caption = re.sub(r"&quot;?", "", caption) # &amp caption = re.sub(r"&amp", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.IFImg2ImgPipeline.preprocess_image def preprocess_image(self, image: PIL.Image.Image) -> torch.Tensor: if not isinstance(image, list): image = [image] def numpy_to_pt(images): if images.ndim == 3: images = images[..., None] images = torch.from_numpy(images.transpose(0, 3, 1, 2)) return images if isinstance(image[0], PIL.Image.Image): new_image = [] for image_ in image: image_ = image_.convert("RGB") image_ = resize(image_, self.unet.config.sample_size) image_ = np.array(image_) image_ = image_.astype(np.float32) image_ = image_ / 127.5 - 1 new_image.append(image_) image = new_image image = np.stack(image, axis=0) # to np image = numpy_to_pt(image) # to pt elif isinstance(image[0], np.ndarray): image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) image = numpy_to_pt(image) elif isinstance(image[0], torch.Tensor): image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) return image def preprocess_mask_image(self, mask_image) -> torch.Tensor: if not isinstance(mask_image, list): mask_image = [mask_image] if isinstance(mask_image[0], torch.Tensor): mask_image = torch.cat(mask_image, axis=0) if mask_image[0].ndim == 4 else torch.stack(mask_image, axis=0) if mask_image.ndim == 2: # Batch and add channel dim for single mask mask_image = mask_image.unsqueeze(0).unsqueeze(0) elif mask_image.ndim == 3 and mask_image.shape[0] == 1: # Single mask, the 0'th dimension is considered to be # the existing batch size of 1 mask_image = mask_image.unsqueeze(0) elif mask_image.ndim == 3 and mask_image.shape[0] != 1: # Batch of mask, the 0'th dimension is considered to be # the batching dimension mask_image = mask_image.unsqueeze(1) mask_image[mask_image < 0.5] = 0 mask_image[mask_image >= 0.5] = 1 elif isinstance(mask_image[0], PIL.Image.Image): new_mask_image = [] for mask_image_ in mask_image: mask_image_ = mask_image_.convert("L") mask_image_ = resize(mask_image_, self.unet.config.sample_size) mask_image_ = np.array(mask_image_) mask_image_ = mask_image_[None, None, :] new_mask_image.append(mask_image_) mask_image = new_mask_image mask_image = np.concatenate(mask_image, axis=0) mask_image = mask_image.astype(np.float32) / 255.0 mask_image[mask_image < 0.5] = 0 mask_image[mask_image >= 0.5] = 1 mask_image = torch.from_numpy(mask_image) elif isinstance(mask_image[0], np.ndarray): mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0) mask_image[mask_image < 0.5] = 0 mask_image[mask_image >= 0.5] = 1 mask_image = torch.from_numpy(mask_image) return mask_image # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.IFImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def prepare_intermediate_images( self, image, timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator=None ): image_batch_size, channels, height, width = image.shape batch_size = batch_size * num_images_per_prompt shape = (batch_size, channels, height, width) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) image = image.repeat_interleave(num_images_per_prompt, dim=0) noised_image = self.scheduler.add_noise(image, noise, timestep) image = (1 - mask_image) * image + mask_image * noised_image return image @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, image: Union[ PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray] ] = None, mask_image: Union[ PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray] ] = None, strength: float = 1.0, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 7.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, clean_caption: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. mask_image (`PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. strength (`float`, *optional*, defaults to 1.0): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). Examples: Returns: [`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) or watermarked content, according to the `safety_checker`. """ # 1. Check inputs. Raise error if not correct if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] self.check_inputs( prompt, image, mask_image, batch_size, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) dtype = prompt_embeds.dtype # 4. Prepare timesteps if timesteps is not None: self.scheduler.set_timesteps(timesteps=timesteps, device=device) timesteps = self.scheduler.timesteps num_inference_steps = len(timesteps) else: self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength) # 5. Prepare intermediate images image = self.preprocess_image(image) image = image.to(device=device, dtype=dtype) mask_image = self.preprocess_mask_image(mask_image) mask_image = mask_image.to(device=device, dtype=dtype) if mask_image.shape[0] == 1: mask_image = mask_image.repeat_interleave(batch_size * num_images_per_prompt, dim=0) else: mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) noise_timestep = timesteps[0:1] noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt) intermediate_images = self.prepare_intermediate_images( image, noise_timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # HACK: see comment in `enable_model_cpu_offload` if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: self.text_encoder_offload_hook.offload() # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): model_input = ( torch.cat([intermediate_images] * 2) if do_classifier_free_guidance else intermediate_images ) model_input = self.scheduler.scale_model_input(model_input, t) # predict the noise residual noise_pred = self.unet( model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1], dim=1) noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1], dim=1) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) if self.scheduler.config.variance_type not in ["learned", "learned_range"]: noise_pred, _ = noise_pred.split(model_input.shape[1], dim=1) # compute the previous noisy sample x_t -> x_t-1 prev_intermediate_images = intermediate_images intermediate_images = self.scheduler.step( noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False )[0] intermediate_images = (1 - mask_image) * prev_intermediate_images + mask_image * intermediate_images # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, intermediate_images) image = intermediate_images if output_type == "pil": # 8. Post-processing image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() # 9. Run safety checker image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype) # 10. Convert to PIL image = self.numpy_to_pil(image) # 11. Apply watermark if self.watermarker is not None: self.watermarker.apply_watermark(image, self.unet.config.sample_size) elif output_type == "pt": nsfw_detected = None watermark_detected = None if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None: self.unet_offload_hook.offload() else: # 8. Post-processing image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() # 9. Run safety checker image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, nsfw_detected, watermark_detected) return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected)
diffusers/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py", "repo_id": "diffusers", "token_count": 21148 }
133
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ....models import AutoencoderKL, UNet2DConditionModel from ....schedulers import DDIMScheduler, DDPMScheduler from ....utils.torch_utils import randn_tensor from ...pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class AudioDiffusionPipeline(DiffusionPipeline): """ Pipeline for audio diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: vqae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. mel ([`Mel`]): Transform audio into a spectrogram. scheduler ([`DDIMScheduler`] or [`DDPMScheduler`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`] or [`DDPMScheduler`]. """ _optional_components = ["vqvae"] def __init__( self, vqvae: AutoencoderKL, unet: UNet2DConditionModel, mel: Mel, scheduler: Union[DDIMScheduler, DDPMScheduler], ): super().__init__() self.register_modules(unet=unet, scheduler=scheduler, mel=mel, vqvae=vqvae) def get_default_steps(self) -> int: """Returns default number of steps recommended for inference. Returns: `int`: The number of steps. """ return 50 if isinstance(self.scheduler, DDIMScheduler) else 1000 @torch.no_grad() def __call__( self, batch_size: int = 1, audio_file: str = None, raw_audio: np.ndarray = None, slice: int = 0, start_step: int = 0, steps: int = None, generator: torch.Generator = None, mask_start_secs: float = 0, mask_end_secs: float = 0, step_generator: torch.Generator = None, eta: float = 0, noise: torch.Tensor = None, encoding: torch.Tensor = None, return_dict=True, ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """ The call function to the pipeline for generation. Args: batch_size (`int`): Number of samples to generate. audio_file (`str`): An audio file that must be on disk due to [Librosa](https://librosa.org/) limitation. raw_audio (`np.ndarray`): The raw audio file as a NumPy array. slice (`int`): Slice number of audio to convert. start_step (int): Step to start diffusion from. steps (`int`): Number of denoising steps (defaults to `50` for DDIM and `1000` for DDPM). generator (`torch.Generator`): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. mask_start_secs (`float`): Number of seconds of audio to mask (not generate) at start. mask_end_secs (`float`): Number of seconds of audio to mask (not generate) at end. step_generator (`torch.Generator`): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) used to denoise. None eta (`float`): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. noise (`torch.Tensor`): A noise tensor of shape `(batch_size, 1, height, width)` or `None`. encoding (`torch.Tensor`): A tensor for [`UNet2DConditionModel`] of shape `(batch_size, seq_length, cross_attention_dim)`. return_dict (`bool`): Whether or not to return a [`AudioPipelineOutput`], [`ImagePipelineOutput`] or a plain tuple. Examples: For audio diffusion: ```py import torch from IPython.display import Audio from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-256").to(device) output = pipe() display(output.images[0]) display(Audio(output.audios[0], rate=mel.get_sample_rate())) ``` For latent audio diffusion: ```py import torch from IPython.display import Audio from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("teticio/latent-audio-diffusion-256").to(device) output = pipe() display(output.images[0]) display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) ``` For other tasks like variation, inpainting, outpainting, etc: ```py output = pipe( raw_audio=output.audios[0, 0], start_step=int(pipe.get_default_steps() / 2), mask_start_secs=1, mask_end_secs=1, ) display(output.images[0]) display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) ``` Returns: `List[PIL Image]`: A list of Mel spectrograms (`float`, `List[np.ndarray]`) with the sample rate and raw audio. """ steps = steps or self.get_default_steps() self.scheduler.set_timesteps(steps) step_generator = step_generator or generator # For backwards compatibility if isinstance(self.unet.config.sample_size, int): self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: noise = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ), generator=generator, device=self.device, ) images = noise mask = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(audio_file, raw_audio) input_image = self.mel.audio_slice_to_image(slice) input_image = np.frombuffer(input_image.tobytes(), dtype="uint8").reshape( (input_image.height, input_image.width) ) input_image = (input_image / 255) * 2 - 1 input_images = torch.tensor(input_image[np.newaxis, :, :], dtype=torch.float).to(self.device) if self.vqvae is not None: input_images = self.vqvae.encode(torch.unsqueeze(input_images, 0)).latent_dist.sample( generator=generator )[0] input_images = self.vqvae.config.scaling_factor * input_images if start_step > 0: images[0, 0] = self.scheduler.add_noise(input_images, noise, self.scheduler.timesteps[start_step - 1]) pixels_per_second = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) mask_start = int(mask_start_secs * pixels_per_second) mask_end = int(mask_end_secs * pixels_per_second) mask = self.scheduler.add_noise(input_images, noise, torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet, UNet2DConditionModel): model_output = self.unet(images, t, encoding)["sample"] else: model_output = self.unet(images, t)["sample"] if isinstance(self.scheduler, DDIMScheduler): images = self.scheduler.step( model_output=model_output, timestep=t, sample=images, eta=eta, generator=step_generator, )["prev_sample"] else: images = self.scheduler.step( model_output=model_output, timestep=t, sample=images, generator=step_generator, )["prev_sample"] if mask is not None: if mask_start > 0: images[:, :, :, :mask_start] = mask[:, step, :, :mask_start] if mask_end > 0: images[:, :, :, -mask_end:] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance images = 1 / self.vqvae.config.scaling_factor * images images = self.vqvae.decode(images)["sample"] images = (images / 2 + 0.5).clamp(0, 1) images = images.cpu().permute(0, 2, 3, 1).numpy() images = (images * 255).round().astype("uint8") images = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_, mode="RGB").convert("L") for _ in images) ) audios = [self.mel.image_to_audio(_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(audios)[:, np.newaxis, :]), **ImagePipelineOutput(images)) @torch.no_grad() def encode(self, images: List[Image.Image], steps: int = 50) -> np.ndarray: """ Reverse the denoising step process to recover a noisy image from the generated image. Args: images (`List[PIL Image]`): List of images to encode. steps (`int`): Number of encoding steps to perform (defaults to `50`). Returns: `np.ndarray`: A noise tensor of shape `(batch_size, 1, height, width)`. """ # Only works with DDIM as this method is deterministic assert isinstance(self.scheduler, DDIMScheduler) self.scheduler.set_timesteps(steps) sample = np.array( [np.frombuffer(image.tobytes(), dtype="uint8").reshape((1, image.height, image.width)) for image in images] ) sample = (sample / 255) * 2 - 1 sample = torch.Tensor(sample).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps, (0,))): prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps alpha_prod_t = self.scheduler.alphas_cumprod[t] alpha_prod_t_prev = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) beta_prod_t = 1 - alpha_prod_t model_output = self.unet(sample, t)["sample"] pred_sample_direction = (1 - alpha_prod_t_prev) ** (0.5) * model_output sample = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) sample = sample * alpha_prod_t ** (0.5) + beta_prod_t ** (0.5) * model_output return sample @staticmethod def slerp(x0: torch.Tensor, x1: torch.Tensor, alpha: float) -> torch.Tensor: """Spherical Linear intERPolation. Args: x0 (`torch.Tensor`): The first tensor to interpolate between. x1 (`torch.Tensor`): Second tensor to interpolate between. alpha (`float`): Interpolation between 0 and 1 Returns: `torch.Tensor`: The interpolated tensor. """ theta = acos(torch.dot(torch.flatten(x0), torch.flatten(x1)) / torch.norm(x0) / torch.norm(x1)) return sin((1 - alpha) * theta) * x0 / sin(theta) + sin(alpha * theta) * x1 / sin(theta)
diffusers/src/diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py", "repo_id": "diffusers", "token_count": 6240 }
134
import inspect from typing import Callable, List, Optional, Union import numpy as np import PIL.Image import torch from transformers import CLIPImageProcessor, CLIPTokenizer from ....configuration_utils import FrozenDict from ....schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from ....utils import deprecate, logging from ...onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel from ...pipeline_utils import DiffusionPipeline from ...stable_diffusion.pipeline_output import StableDiffusionPipelineOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name def preprocess(image): w, h = image.size w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 image = image.resize((w, h), resample=PIL.Image.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) return 2.0 * image - 1.0 def preprocess_mask(mask, scale_factor=8): mask = mask.convert("L") w, h = mask.size w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL.Image.NEAREST) mask = np.array(mask).astype(np.float32) / 255.0 mask = np.tile(mask, (4, 1, 1)) mask = mask[None].transpose(0, 1, 2, 3) # what does this step do? mask = 1 - mask # repaint white, keep black return mask class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline): r""" Pipeline for text-guided image inpainting using Stable Diffusion. This is a *legacy feature* for Onnx pipelines to provide compatibility with StableDiffusionInpaintPipelineLegacy and may be removed in the future. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ _optional_components = ["safety_checker", "feature_extractor"] _is_onnx = True vae_encoder: OnnxRuntimeModel vae_decoder: OnnxRuntimeModel text_encoder: OnnxRuntimeModel tokenizer: CLIPTokenizer unet: OnnxRuntimeModel scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] safety_checker: OnnxRuntimeModel feature_extractor: CLIPImageProcessor def __init__( self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion.OnnxStableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] * batch_size elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] if do_classifier_free_guidance: negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def __call__( self, prompt: Union[str, List[str]], image: Union[np.ndarray, PIL.Image.Image] = None, mask_image: Union[np.ndarray, PIL.Image.Image] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[np.random.RandomState] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: int = 1, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`nd.ndarray` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. This is the image whose masked region will be inpainted. mask_image (`nd.ndarray` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.uu strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (?) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`np.random.RandomState`, *optional*): A np.random.RandomState to make generation deterministic. prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # check inputs. Raise error if not correct self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) # define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if generator is None: generator = np.random # set timesteps self.scheduler.set_timesteps(num_inference_steps) if isinstance(image, PIL.Image.Image): image = preprocess(image) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) latents_dtype = prompt_embeds.dtype image = image.astype(latents_dtype) # encode the init image into latents and scale the latents init_latents = self.vae_encoder(sample=image)[0] init_latents = 0.18215 * init_latents # Expand init_latents for batch_size and num_images_per_prompt init_latents = np.concatenate([init_latents] * num_images_per_prompt, axis=0) init_latents_orig = init_latents # preprocess mask if not isinstance(mask_image, np.ndarray): mask_image = preprocess_mask(mask_image, 8) mask_image = mask_image.astype(latents_dtype) mask = np.concatenate([mask_image] * num_images_per_prompt, axis=0) # check sizes if not mask.shape == init_latents.shape: raise ValueError("The mask and image should be the same size!") # get the original timestep using init_timestep offset = self.scheduler.config.get("steps_offset", 0) init_timestep = int(num_inference_steps * strength) + offset init_timestep = min(init_timestep, num_inference_steps) timesteps = self.scheduler.timesteps.numpy()[-init_timestep] timesteps = np.array([timesteps] * batch_size * num_images_per_prompt) # add noise to latents using the timesteps noise = generator.randn(*init_latents.shape).astype(latents_dtype) init_latents = self.scheduler.add_noise( torch.from_numpy(init_latents), torch.from_numpy(noise), torch.from_numpy(timesteps) ) init_latents = init_latents.numpy() # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (?) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to ? in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta latents = init_latents t_start = max(num_inference_steps - init_timestep + offset, 0) timesteps = self.scheduler.timesteps[t_start:].numpy() timestep_dtype = next( (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[ 0 ] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs ).prev_sample latents = latents.numpy() init_latents_proper = self.scheduler.add_noise( torch.from_numpy(init_latents_orig), torch.from_numpy(noise), torch.from_numpy(np.array([t])) ) init_latents_proper = init_latents_proper.numpy() latents = (init_latents_proper * mask) + (latents * (1 - mask)) # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) latents = 1 / 0.18215 * latents # image = self.vae_decoder(latent_sample=latents)[0] # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] ) image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1)) if self.safety_checker is not None: safety_checker_input = self.feature_extractor( self.numpy_to_pil(image), return_tensors="np" ).pixel_values.astype(image.dtype) # There will throw an error if use safety_checker batchsize>1 images, has_nsfw_concept = [], [] for i in range(image.shape[0]): image_i, has_nsfw_concept_i = self.safety_checker( clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] ) images.append(image_i) has_nsfw_concept.append(has_nsfw_concept_i[0]) image = np.concatenate(images) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py", "repo_id": "diffusers", "token_count": 12042 }
135
# Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) # William Peebles and Saining Xie # # Copyright (c) 2021 OpenAI # MIT License # # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, Transformer2DModel from ...schedulers import KarrasDiffusionSchedulers from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class DiTPipeline(DiffusionPipeline): r""" Pipeline for image generation based on a Transformer backbone instead of a UNet. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: transformer ([`Transformer2DModel`]): A class conditioned `Transformer2DModel` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. scheduler ([`DDIMScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ model_cpu_offload_seq = "transformer->vae" def __init__( self, transformer: Transformer2DModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers, id2label: Optional[Dict[int, str]] = None, ): super().__init__() self.register_modules(transformer=transformer, vae=vae, scheduler=scheduler) # create a imagenet -> id dictionary for easier use self.labels = {} if id2label is not None: for key, value in id2label.items(): for label in value.split(","): self.labels[label.lstrip().rstrip()] = int(key) self.labels = dict(sorted(self.labels.items())) def get_label_ids(self, label: Union[str, List[str]]) -> List[int]: r""" Map label strings from ImageNet to corresponding class ids. Parameters: label (`str` or `dict` of `str`): Label strings to be mapped to class ids. Returns: `list` of `int`: Class ids to be processed by pipeline. """ if not isinstance(label, list): label = list(label) for l in label: if l not in self.labels: raise ValueError( f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self, class_labels: List[int], guidance_scale: float = 4.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, ) -> Union[ImagePipelineOutput, Tuple]: r""" The call function to the pipeline for generation. Args: class_labels (List[int]): List of ImageNet class labels for the images to be generated. guidance_scale (`float`, *optional*, defaults to 4.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 250): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. Examples: ```py >>> from diffusers import DiTPipeline, DPMSolverMultistepScheduler >>> import torch >>> pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=torch.float16) >>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) >>> pipe = pipe.to("cuda") >>> # pick words from Imagenet class labels >>> pipe.labels # to print all available words >>> # pick words that exist in ImageNet >>> words = ["white shark", "umbrella"] >>> class_ids = pipe.get_label_ids(words) >>> generator = torch.manual_seed(33) >>> output = pipe(class_labels=class_ids, num_inference_steps=25, generator=generator) >>> image = output.images[0] # label 'white shark' ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ batch_size = len(class_labels) latent_size = self.transformer.config.sample_size latent_channels = self.transformer.config.in_channels latents = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size), generator=generator, device=self._execution_device, dtype=self.transformer.dtype, ) latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1 else latents class_labels = torch.tensor(class_labels, device=self._execution_device).reshape(-1) class_null = torch.tensor([1000] * batch_size, device=self._execution_device) class_labels_input = torch.cat([class_labels, class_null], 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: half = latent_model_input[: len(latent_model_input) // 2] latent_model_input = torch.cat([half, half], dim=0) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) timesteps = t if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(timesteps, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=latent_model_input.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( latent_model_input, timestep=timesteps, class_labels=class_labels_input ).sample # perform guidance if guidance_scale > 1: eps, rest = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) noise_pred = torch.cat([eps, rest], dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: model_output, _ = torch.split(noise_pred, latent_channels, dim=1) else: model_output = noise_pred # compute previous image: x_t -> x_t-1 latent_model_input = self.scheduler.step(model_output, t, latent_model_input).prev_sample if guidance_scale > 1: latents, _ = latent_model_input.chunk(2, dim=0) else: latents = latent_model_input latents = 1 / self.vae.config.scaling_factor * latents samples = self.vae.decode(latents).sample samples = (samples / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 samples = samples.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": samples = self.numpy_to_pil(samples) if not return_dict: return (samples,) return ImagePipelineOutput(images=samples)
diffusers/src/diffusers/pipelines/dit/pipeline_dit.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/dit/pipeline_dit.py", "repo_id": "diffusers", "token_count": 4179 }
136
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Dict, List, Optional, Union import numpy as np import PIL.Image import torch from PIL import Image from ...models import UNet2DConditionModel, VQModel from ...schedulers import DDPMScheduler from ...utils import deprecate, logging from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` """ # Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.downscale_height_and_width def downscale_height_and_width(height, width, scale_factor=8): new_height = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 new_width = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_img2img.prepare_image def prepare_image(pil_image, w=512, h=512): pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) arr = np.array(pil_image.convert("RGB")) arr = arr.astype(np.float32) / 127.5 - 1 arr = np.transpose(arr, [2, 0, 1]) image = torch.from_numpy(arr).unsqueeze(0) return image class KandinskyV22Img2ImgPipeline(DiffusionPipeline): """ Pipeline for image-to-image generation using Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: scheduler ([`DDIMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ Decoder to generate the image from the latents. """ model_cpu_offload_seq = "unet->movq" _callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds"] def __init__( self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, ): super().__init__() self.register_modules( unet=unet, scheduler=scheduler, movq=movq, ) self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_img2img.KandinskyImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): init_latents = [ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = self.movq.encode(image).latent_dist.sample(generator) init_latents = self.movq.config.scaling_factor * init_latents init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() def __call__( self, image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], height: int = 512, width: int = 512, num_inference_steps: int = 100, guidance_scale: float = 4.0, strength: float = 0.3, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for text prompt, that will be used to condition the image generation. image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded again. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for negative text prompt, will be used to condition the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) device = self._execution_device self._guidance_scale = guidance_scale if isinstance(image_embeds, list): image_embeds = torch.cat(image_embeds, dim=0) batch_size = image_embeds.shape[0] if isinstance(negative_image_embeds, list): negative_image_embeds = torch.cat(negative_image_embeds, dim=0) if self.do_classifier_free_guidance: image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( dtype=self.unet.dtype, device=device ) if not isinstance(image, list): image = [image] if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) image = image.to(dtype=image_embeds.dtype, device=device) latents = self.movq.encode(image)["latents"] latents = latents.repeat_interleave(num_images_per_prompt, dim=0) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) height, width = downscale_height_and_width(height, width, self.movq_scale_factor) latents = self.prepare_latents( latents, latent_timestep, batch_size, num_images_per_prompt, image_embeds.dtype, device, generator ) self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents added_cond_kwargs = {"image_embeds": image_embeds} noise_pred = self.unet( sample=latent_model_input, timestep=t, encoder_hidden_states=None, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] if self.do_classifier_free_guidance: noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) _, variance_pred_text = variance_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) if not ( hasattr(self.scheduler.config, "variance_type") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, generator=generator, )[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) image_embeds = callback_outputs.pop("image_embeds", image_embeds) negative_image_embeds = callback_outputs.pop("negative_image_embeds", negative_image_embeds) if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `pil` ,`np` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": # post-processing image = self.movq.decode(latents, force_not_quantize=True)["sample"] if output_type in ["np", "pil"]: image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) else: image = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
diffusers/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py", "repo_id": "diffusers", "token_count": 7964 }
137
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch import torch.nn.functional as F from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection, ) from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import ( FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, UNet2DConditionModel from ...models.attention_processor import ( Attention, AttnProcessor, AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler from ...utils import ( USE_PEFT_BACKEND, is_invisible_watermark_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput if is_invisible_watermark_available(): from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> import PIL >>> import requests >>> from io import BytesIO >>> from diffusers import LEditsPPPipelineStableDiffusionXL >>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained( ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> def download_image(url): ... response = requests.get(url) ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg" >>> image = download_image(img_url) >>> _ = pipe.invert( ... image = image, ... num_inversion_steps=50, ... skip=0.2 ... ) >>> edited_image = pipe( ... editing_prompt=["tennis ball","tomato"], ... reverse_editing_direction=[True,False], ... edit_guidance_scale=[5.0,10.0], ... edit_threshold=[0.9,0.85], ).images[0] ``` """ # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsAttentionStore class LeditsAttentionStore: @staticmethod def get_empty_store(): return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []} def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False): # attn.shape = batch_size * head_size, seq_len query, seq_len_key if attn.shape[1] <= self.max_size: bs = 1 + int(PnP) + editing_prompts skip = 2 if PnP else 1 # skip PnP & unconditional attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3) source_batch_size = int(attn.shape[1] // bs) self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet) def forward(self, attn, is_cross: bool, place_in_unet: str): key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" self.step_store[key].append(attn) def between_steps(self, store_step=True): if store_step: if self.average: if len(self.attention_store) == 0: self.attention_store = self.step_store else: for key in self.attention_store: for i in range(len(self.attention_store[key])): self.attention_store[key][i] += self.step_store[key][i] else: if len(self.attention_store) == 0: self.attention_store = [self.step_store] else: self.attention_store.append(self.step_store) self.cur_step += 1 self.step_store = self.get_empty_store() def get_attention(self, step: int): if self.average: attention = { key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store } else: assert step is not None attention = self.attention_store[step] return attention def aggregate_attention( self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int ): out = [[] for x in range(self.batch_size)] if isinstance(res, int): num_pixels = res**2 resolution = (res, res) else: num_pixels = res[0] * res[1] resolution = res[:2] for location in from_where: for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: for batch, item in enumerate(bs_item): if item.shape[1] == num_pixels: cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select] out[batch].append(cross_maps) out = torch.stack([torch.cat(x, dim=0) for x in out]) # average over heads out = out.sum(1) / out.shape[1] return out def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None): self.step_store = self.get_empty_store() self.attention_store = [] self.cur_step = 0 self.average = average self.batch_size = batch_size if max_size is None: self.max_size = max_resolution**2 elif max_size is not None and max_resolution is None: self.max_size = max_size else: raise ValueError("Only allowed to set one of max_resolution or max_size") # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsGaussianSmoothing class LeditsGaussianSmoothing: def __init__(self, device): kernel_size = [3, 3] sigma = [0.5, 0.5] # The gaussian kernel is the product of the gaussian function of each dimension. kernel = 1 meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / torch.sum(kernel) # Reshape to depthwise convolutional weight kernel = kernel.view(1, 1, *kernel.size()) kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) self.weight = kernel.to(device) def __call__(self, input): """ Arguments: Apply gaussian filter to input. input (torch.Tensor): Input to apply gaussian filter on. Returns: filtered (torch.Tensor): Filtered output. """ return F.conv2d(input, weight=self.weight.to(input.dtype)) # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEDITSCrossAttnProcessor class LEDITSCrossAttnProcessor: def __init__(self, attention_store, place_in_unet, pnp, editing_prompts): self.attnstore = attention_store self.place_in_unet = place_in_unet self.editing_prompts = editing_prompts self.pnp = pnp def __call__( self, attn: Attention, hidden_states, encoder_hidden_states, attention_mask=None, temb=None, ): batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) self.attnstore( attention_probs, is_cross=True, place_in_unet=self.place_in_unet, editing_prompts=self.editing_prompts, PnP=self.pnp, ) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class LEditsPPPipelineStableDiffusionXL( DiffusionPipeline, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, IPAdapterMixin, ): """ Pipeline for textual image editing using LEDits++ with Stable Diffusion XL. This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionXLPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). In addition the pipeline inherits the following loading methods: - *LoRA*: [`LEditsPPPipelineStableDiffusionXL.load_lora_weights`] - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] as well as the following saving methods: - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder. Stable Diffusion XL uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) variant. tokenizer ([`~transformers.CLIPTokenizer`]): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 ([`~transformers.CLIPTokenizer`]): Second Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will automatically be set to [`DPMSolverMultistepScheduler`]. force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of `stabilityai/stable-diffusion-xl-base-1-0`. add_watermarker (`bool`, *optional*): Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to watermark output images. If not defined, it will default to True if the package is installed, otherwise no watermarker will be used. """ model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" _optional_components = [ "tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2", "image_encoder", "feature_extractor", ] _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", "add_text_embeds", "add_time_ids", "negative_pooled_prompt_embeds", "negative_add_time_ids", ] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler], image_encoder: CLIPVisionModelWithProjection = None, feature_extractor: CLIPImageProcessor = None, force_zeros_for_empty_prompt: bool = True, add_watermarker: Optional[bool] = None, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor, ) self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler): self.scheduler = DPMSolverMultistepScheduler.from_config( scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2 ) logger.warning( "This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. " "The scheduler has been changed to DPMSolverMultistepScheduler." ) self.default_sample_size = self.unet.config.sample_size add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() if add_watermarker: self.watermark = StableDiffusionXLWatermarker() else: self.watermark = None self.inversion_steps = None def encode_prompt( self, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, negative_prompt: Optional[str] = None, negative_prompt_2: Optional[str] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, enable_edit_guidance: bool = True, editing_prompt: Optional[str] = None, editing_prompt_embeds: Optional[torch.FloatTensor] = None, editing_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, ) -> object: r""" Encodes the prompt into text encoder hidden states. Args: device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. enable_edit_guidance (`bool`): Whether to guide towards an editing prompt or not. editing_prompt (`str` or `List[str]`, *optional*): Editing prompt(s) to be encoded. If not defined and 'enable_edit_guidance' is True, one has to pass `editing_prompt_embeds` instead. editing_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided and 'enable_edit_guidance' is True, editing_prompt_embeds will be generated from `editing_prompt` input argument. editing_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated edit pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled editing_pooled_prompt_embeds will be generated from `editing_prompt` input argument. """ device = device or self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) else: scale_lora_layers(self.text_encoder_2, lora_scale) batch_size = self.batch_size # Define tokenizers and text encoders tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] text_encoders = ( [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] ) num_edit_tokens = 0 # get unconditional embeddings for classifier free guidance zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt if negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt # normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) uncond_tokens: List[str] if batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion " f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of the input images." ) else: uncond_tokens = [negative_prompt, negative_prompt_2] negative_prompt_embeds_list = [] for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) uncond_input = tokenizer( negative_prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder negative_pooled_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] negative_prompt_embeds_list.append(negative_prompt_embeds) negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) if zero_out_negative_prompt: negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds) if enable_edit_guidance and editing_prompt_embeds is None: editing_prompt_2 = editing_prompt editing_prompts = [editing_prompt, editing_prompt_2] edit_prompt_embeds_list = [] for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer) max_length = negative_prompt_embeds.shape[1] edit_concepts_input = tokenizer( # [x for item in editing_prompt for x in repeat(item, batch_size)], editing_prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", return_length=True, ) num_edit_tokens = edit_concepts_input.length - 2 edit_concepts_embeds = text_encoder( edit_concepts_input.input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder editing_pooled_prompt_embeds = edit_concepts_embeds[0] if clip_skip is None: edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2] else: # "2" because SDXL always indexes from the penultimate layer. edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)] edit_prompt_embeds_list.append(edit_concepts_embeds) edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1) elif not enable_edit_guidance: edit_concepts_embeds = None editing_pooled_prompt_embeds = None negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) bs_embed, seq_len, _ = negative_prompt_embeds.shape # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if enable_edit_guidance: bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device) edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1) edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1) negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if enable_edit_guidance: editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed_edit * num_images_per_prompt, -1 ) if self.text_encoder is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) return ( negative_prompt_embeds, edit_concepts_embeds, negative_pooled_prompt_embeds, editing_pooled_prompt_embeds, num_edit_tokens, ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, eta, generator=None): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, negative_prompt=None, negative_prompt_2=None, negative_prompt_embeds=None, negative_pooled_prompt_embeds=None, ): if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, device, latents): latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def _get_add_time_ids( self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None ): add_time_ids = list(original_size + crops_coords_top_left + target_size) passed_add_embed_dim = ( self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim ) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) return add_time_ids # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, LoRAXFormersAttnProcessor, LoRAAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype) # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 ) -> torch.FloatTensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def denoising_end(self): return self._denoising_end @property def num_timesteps(self): return self._num_timesteps # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.prepare_unet def prepare_unet(self, attention_store, PnP: bool = False): attn_procs = {} for name in self.unet.attn_processors.keys(): if name.startswith("mid_block"): place_in_unet = "mid" elif name.startswith("up_blocks"): place_in_unet = "up" elif name.startswith("down_blocks"): place_in_unet = "down" else: continue if "attn2" in name and place_in_unet != "mid": attn_procs[name] = LEDITSCrossAttnProcessor( attention_store=attention_store, place_in_unet=place_in_unet, pnp=PnP, editing_prompts=self.enabled_editing_prompts, ) else: attn_procs[name] = AttnProcessor() self.unet.set_attn_processor(attn_procs) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, denoising_end: Optional[float] = None, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, editing_prompt: Optional[Union[str, List[str]]] = None, editing_prompt_embeddings: Optional[torch.Tensor] = None, editing_pooled_prompt_embeds: Optional[torch.Tensor] = None, reverse_editing_direction: Optional[Union[bool, List[bool]]] = False, edit_guidance_scale: Optional[Union[float, List[float]]] = 5, edit_warmup_steps: Optional[Union[int, List[int]]] = 0, edit_cooldown_steps: Optional[Union[int, List[int]]] = None, edit_threshold: Optional[Union[float, List[float]]] = 0.9, sem_guidance: Optional[List[torch.Tensor]] = None, use_cross_attn_mask: bool = False, use_intersect_mask: bool = False, user_mask: Optional[torch.FloatTensor] = None, attn_store_steps: Optional[List[int]] = [], store_averaged_over_steps: bool = True, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" The call function to the pipeline for editing. The [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL.invert`] method has to be called beforehand. Edits will always be performed for the last inverted image(s). Args: denoising_end (`float`, *optional*): When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.7): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): For most cases, `target_size` should be set to the desired height and width of the generated image. If not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). editing_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. The image is reconstructed by setting `editing_prompt = None`. Guidance direction of prompt should be specified via `reverse_editing_direction`. editing_prompt_embeddings (`torch.Tensor`, *optional*): Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input argument. editing_pooled_prompt_embeddings (`torch.Tensor`, *optional*): Pre-generated pooled edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input argument. reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`): Whether the corresponding prompt in `editing_prompt` should be increased or decreased. edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5): Guidance scale for guiding the image generation. If provided as list values should correspond to `editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++ Paper](https://arxiv.org/abs/2301.12247). edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10): Number of diffusion steps (for each prompt) for which guidance is not applied. edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`): Number of diffusion steps (for each prompt) after which guidance is no longer applied. edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9): Masking threshold of guidance. Threshold should be proportional to the image region that is modified. 'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++ Paper](https://arxiv.org/abs/2301.12247). sem_guidance (`List[torch.Tensor]`, *optional*): List of pre-generated guidance vectors to be applied at generation. Length of the list has to correspond to `num_inference_steps`. use_cross_attn_mask: Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf). use_intersect_mask: Whether the masking term is calculated as intersection of cross-attention masks and masks derived from the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf). user_mask: User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s implicit masks do not meet user preferences. attn_store_steps: Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes. store_averaged_over_steps: Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If False, attention maps for each step are stores separately. Just for visualization purposes. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`: [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ if self.inversion_steps is None: raise ValueError( "You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)." ) eta = self.eta num_images_per_prompt = 1 latents = self.init_latents zs = self.zs self.scheduler.set_timesteps(len(self.scheduler.timesteps)) if use_intersect_mask: use_cross_attn_mask = True if use_cross_attn_mask: self.smoothing = LeditsGaussianSmoothing(self.device) if user_mask is not None: user_mask = user_mask.to(self.device) # TODO: Check inputs # 1. Check inputs. Raise error if not correct # self.check_inputs( # callback_steps, # negative_prompt, # negative_prompt_2, # prompt_embeds, # negative_prompt_embeds, # pooled_prompt_embeds, # negative_pooled_prompt_embeds, # ) self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._denoising_end = denoising_end # 2. Define call parameters batch_size = self.batch_size device = self._execution_device if editing_prompt: enable_edit_guidance = True if isinstance(editing_prompt, str): editing_prompt = [editing_prompt] self.enabled_editing_prompts = len(editing_prompt) elif editing_prompt_embeddings is not None: enable_edit_guidance = True self.enabled_editing_prompts = editing_prompt_embeddings.shape[0] else: self.enabled_editing_prompts = 0 enable_edit_guidance = False # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) ( prompt_embeds, edit_prompt_embeds, negative_pooled_prompt_embeds, pooled_edit_embeds, num_edit_tokens, ) = self.encode_prompt( device=device, num_images_per_prompt=num_images_per_prompt, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_embeds=negative_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, enable_edit_guidance=enable_edit_guidance, editing_prompt=editing_prompt, editing_prompt_embeds=editing_prompt_embeddings, editing_pooled_prompt_embeds=editing_pooled_prompt_embeds, ) # 4. Prepare timesteps # self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.inversion_steps t_to_idx = {int(v): k for k, v in enumerate(timesteps)} if use_cross_attn_mask: self.attention_store = LeditsAttentionStore( average=store_averaged_over_steps, batch_size=batch_size, max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0), max_resolution=None, ) self.prepare_unet(self.attention_store) resolution = latents.shape[-2:] att_res = (int(resolution[0] / 4), int(resolution[1] / 4)) # 5. Prepare latent variables latents = self.prepare_latents(device=device, latents=latents) # 6. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(eta) if self.text_encoder_2 is None: text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) else: text_encoder_projection_dim = self.text_encoder_2.config.projection_dim # 7. Prepare added time ids & embeddings add_text_embeds = negative_pooled_prompt_embeds add_time_ids = self._get_add_time_ids( self.size, crops_coords_top_left, self.size, dtype=negative_pooled_prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) if enable_edit_guidance: prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0) add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0) edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1) add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0) self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) if ip_adapter_image is not None: # TODO: fix image encoding image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt) if self.do_classifier_free_guidance: image_embeds = torch.cat([negative_image_embeds, image_embeds]) image_embeds = image_embeds.to(device) # 8. Denoising loop self.sem_guidance = None self.activation_mask = None if ( self.denoising_end is not None and isinstance(self.denoising_end, float) and self.denoising_end > 0 and self.denoising_end < 1 ): discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (self.denoising_end * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) timesteps = timesteps[:num_inference_steps] # 9. Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) self._num_timesteps = len(timesteps) with self.progress_bar(total=self._num_timesteps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts)) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} if ip_adapter_image is not None: added_cond_kwargs["image_embeds"] = image_embeds noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64] noise_pred_uncond = noise_pred_out[0] noise_pred_edit_concepts = noise_pred_out[1:] noise_guidance_edit = torch.zeros( noise_pred_uncond.shape, device=self.device, dtype=noise_pred_uncond.dtype, ) if sem_guidance is not None and len(sem_guidance) > i: noise_guidance_edit += sem_guidance[i].to(self.device) elif enable_edit_guidance: if self.activation_mask is None: self.activation_mask = torch.zeros( (len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape) ) if self.sem_guidance is None: self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape)) # noise_guidance_edit = torch.zeros_like(noise_guidance) for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): if isinstance(edit_warmup_steps, list): edit_warmup_steps_c = edit_warmup_steps[c] else: edit_warmup_steps_c = edit_warmup_steps if i < edit_warmup_steps_c: continue if isinstance(edit_guidance_scale, list): edit_guidance_scale_c = edit_guidance_scale[c] else: edit_guidance_scale_c = edit_guidance_scale if isinstance(edit_threshold, list): edit_threshold_c = edit_threshold[c] else: edit_threshold_c = edit_threshold if isinstance(reverse_editing_direction, list): reverse_editing_direction_c = reverse_editing_direction[c] else: reverse_editing_direction_c = reverse_editing_direction if isinstance(edit_cooldown_steps, list): edit_cooldown_steps_c = edit_cooldown_steps[c] elif edit_cooldown_steps is None: edit_cooldown_steps_c = i + 1 else: edit_cooldown_steps_c = edit_cooldown_steps if i >= edit_cooldown_steps_c: continue noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond if reverse_editing_direction_c: noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c if user_mask is not None: noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask if use_cross_attn_mask: out = self.attention_store.aggregate_attention( attention_maps=self.attention_store.step_store, prompts=self.text_cross_attention_maps, res=att_res, from_where=["up", "down"], is_cross=True, select=self.text_cross_attention_maps.index(editing_prompt[c]), ) attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] # 0 -> startoftext # average over all tokens if attn_map.shape[3] != num_edit_tokens[c]: raise ValueError( f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!" ) attn_map = torch.sum(attn_map, dim=3) # gaussian_smoothing attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect") attn_map = self.smoothing(attn_map).squeeze(1) # torch.quantile function expects float32 if attn_map.dtype == torch.float32: tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1) else: tmp = torch.quantile( attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1 ).to(attn_map.dtype) attn_mask = torch.where( attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0 ) # resolution must match latent space dimension attn_mask = F.interpolate( attn_mask.unsqueeze(1), noise_guidance_edit_tmp.shape[-2:], # 64,64 ).repeat(1, 4, 1, 1) self.activation_mask[i, c] = attn_mask.detach().cpu() if not use_intersect_mask: noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask if use_intersect_mask: noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) noise_guidance_edit_tmp_quantile = torch.sum( noise_guidance_edit_tmp_quantile, dim=1, keepdim=True ) noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat( 1, self.unet.config.in_channels, 1, 1 ) # torch.quantile function expects float32 if noise_guidance_edit_tmp_quantile.dtype == torch.float32: tmp = torch.quantile( noise_guidance_edit_tmp_quantile.flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False, ) else: tmp = torch.quantile( noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False, ).to(noise_guidance_edit_tmp_quantile.dtype) intersect_mask = ( torch.where( noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], torch.ones_like(noise_guidance_edit_tmp), torch.zeros_like(noise_guidance_edit_tmp), ) * attn_mask ) self.activation_mask[i, c] = intersect_mask.detach().cpu() noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask elif not use_cross_attn_mask: # calculate quantile noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) noise_guidance_edit_tmp_quantile = torch.sum( noise_guidance_edit_tmp_quantile, dim=1, keepdim=True ) noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1) # torch.quantile function expects float32 if noise_guidance_edit_tmp_quantile.dtype == torch.float32: tmp = torch.quantile( noise_guidance_edit_tmp_quantile.flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False, ) else: tmp = torch.quantile( noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False, ).to(noise_guidance_edit_tmp_quantile.dtype) self.activation_mask[i, c] = ( torch.where( noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], torch.ones_like(noise_guidance_edit_tmp), torch.zeros_like(noise_guidance_edit_tmp), ) .detach() .cpu() ) noise_guidance_edit_tmp = torch.where( noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], noise_guidance_edit_tmp, torch.zeros_like(noise_guidance_edit_tmp), ) noise_guidance_edit += noise_guidance_edit_tmp self.sem_guidance[i] = noise_guidance_edit.detach().cpu() noise_pred = noise_pred_uncond + noise_guidance_edit # compute the previous noisy sample x_t -> x_t-1 if enable_edit_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg( noise_pred, noise_pred_edit_concepts.mean(dim=0, keepdim=False), guidance_rescale=self.guidance_rescale, ) idx = t_to_idx[int(t)] latents = self.scheduler.step( noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False )[0] # step callback if use_cross_attn_mask: store_step = i in attn_store_steps self.attention_store.between_steps(store_step) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) negative_pooled_prompt_embeds = callback_outputs.pop( "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds ) add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) # negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) else: image = latents if not output_type == "latent": # apply watermark if available if self.watermark is not None: image = self.watermark.apply_watermark(image) image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None) @torch.no_grad() # Modified from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.encode_image def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None): image = self.image_processor.preprocess( image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords ) resized = self.image_processor.postprocess(image=image, output_type="pil") if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5: logger.warning( "Your input images far exceed the default resolution of the underlying diffusion model. " "The output images may contain severe artifacts! " "Consider down-sampling the input using the `height` and `width` parameters" ) image = image.to(self.device, dtype=dtype) needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: image = image.float() self.upcast_vae() image = image.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) x0 = self.vae.encode(image).latent_dist.mode() x0 = x0.to(dtype) # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) x0 = self.vae.config.scaling_factor * x0 return x0, resized @torch.no_grad() def invert( self, image: PipelineImageInput, source_prompt: str = "", source_guidance_scale=3.5, negative_prompt: str = None, negative_prompt_2: str = None, num_inversion_steps: int = 50, skip: float = 0.15, generator: Optional[torch.Generator] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), num_zero_noise_steps: int = 3, cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): r""" The function to the pipeline for image inversion as described by the [LEDITS++ Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead. Args: image (`PipelineImageInput`): Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect ratio. source_prompt (`str`, defaults to `""`): Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled if the `source_prompt` is `""`. source_guidance_scale (`float`, defaults to `3.5`): Strength of guidance during inversion. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders num_inversion_steps (`int`, defaults to `50`): Number of total performed inversion steps after discarding the initial `skip` steps. skip (`float`, defaults to `0.15`): Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values will lead to stronger changes to the input image. `skip` has to be between `0` and `1`. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion deterministic. crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). num_zero_noise_steps (`int`, defaults to `3`): Number of final diffusion steps that will not renoise the current image. If no steps are set to zero SD-XL in combination with [`DPMSolverMultistepScheduler`] will produce noise artifacts. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). Returns: [`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s) and respective VAE reconstruction(s). """ # Reset attn processor, we do not want to store attn maps during inversion self.unet.set_attn_processor(AttnProcessor()) self.eta = 1.0 self.scheduler.config.timestep_spacing = "leading" self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip))) self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:] timesteps = self.inversion_steps num_images_per_prompt = 1 device = self._execution_device # 0. Ensure that only uncond embedding is used if prompt = "" if source_prompt == "": # noise pred should only be noise_pred_uncond source_guidance_scale = 0.0 do_classifier_free_guidance = False else: do_classifier_free_guidance = source_guidance_scale > 1.0 # 1. prepare image x0, resized = self.encode_image(image, dtype=self.text_encoder_2.dtype) width = x0.shape[2] * self.vae_scale_factor height = x0.shape[3] * self.vae_scale_factor self.size = (height, width) self.batch_size = x0.shape[0] # 2. get embeddings text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) if isinstance(source_prompt, str): source_prompt = [source_prompt] * self.batch_size ( negative_prompt_embeds, prompt_embeds, negative_pooled_prompt_embeds, edit_pooled_prompt_embeds, _, ) = self.encode_prompt( device=device, num_images_per_prompt=num_images_per_prompt, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, editing_prompt=source_prompt, lora_scale=text_encoder_lora_scale, enable_edit_guidance=do_classifier_free_guidance, ) if self.text_encoder_2 is None: text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) else: text_encoder_projection_dim = self.text_encoder_2.config.projection_dim # 3. Prepare added time ids & embeddings add_text_embeds = negative_pooled_prompt_embeds add_time_ids = self._get_add_time_ids( self.size, crops_coords_top_left, self.size, dtype=negative_prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) if do_classifier_free_guidance: negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0) add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) negative_prompt_embeds = negative_prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1) # autoencoder reconstruction if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: self.upcast_vae() x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image_rec = self.vae.decode( x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator )[0] elif self.vae.config.force_upcast: x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image_rec = self.vae.decode( x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator )[0] else: image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] image_rec = self.image_processor.postprocess(image_rec, output_type="pil") # 5. find zs and xts variance_noise_shape = (num_inversion_steps, *x0.shape) # intermediate latents t_to_idx = {int(v): k for k, v in enumerate(timesteps)} xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) for t in reversed(timesteps): idx = num_inversion_steps - t_to_idx[int(t)] - 1 noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype) xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0)) xts = torch.cat([x0.unsqueeze(0), xts], dim=0) # noise maps zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) self.scheduler.set_timesteps(len(self.scheduler.timesteps)) for t in self.progress_bar(timesteps): idx = num_inversion_steps - t_to_idx[int(t)] - 1 # 1. predict noise residual xt = xts[idx + 1] latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=negative_prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # 2. perform guidance if do_classifier_free_guidance: noise_pred_out = noise_pred.chunk(2) noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1] noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond) xtm1 = xts[idx] z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta) zs[idx] = z # correction to avoid error accumulation xts[idx] = xtm1_corrected self.init_latents = xts[-1] zs = zs.flip(0) if num_zero_noise_steps > 0: zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:]) self.zs = zs return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec) # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.rescale_noise_cfg def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_ddim def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta): # 1. get previous step value (=t-1) prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps # 2. compute alphas, betas alpha_prod_t = scheduler.alphas_cumprod[timestep] alpha_prod_t_prev = ( scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod ) beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) # 4. Clip "predicted x_0" if scheduler.config.clip_sample: pred_original_sample = torch.clamp(pred_original_sample, -1, 1) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) variance = scheduler._get_variance(timestep, prev_timestep) std_dev_t = eta * variance ** (0.5) # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred # modifed so that updated xtm1 is returned as well (to avoid error accumulation) mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction if variance > 0.0: noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta) else: noise = torch.tensor([0.0]).to(latents.device) return noise, mu_xt + (eta * variance**0.5) * noise # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_sde_dpm_pp_2nd def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta): def first_order_update(model_output, sample): # timestep, prev_timestep, sample): sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index] alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s = torch.log(alpha_s) - torch.log(sigma_s) h = lambda_t - lambda_s mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output mu_xt = scheduler.dpm_solver_first_order_update( model_output=model_output, sample=sample, noise=torch.zeros_like(sample) ) sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) if sigma > 0.0: noise = (prev_latents - mu_xt) / sigma else: noise = torch.tensor([0.0]).to(sample.device) prev_sample = mu_xt + sigma * noise return noise, prev_sample def second_order_update(model_output_list, sample): # timestep_list, prev_timestep, sample): sigma_t, sigma_s0, sigma_s1 = ( scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index], scheduler.sigmas[scheduler.step_index - 1], ) alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0) alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) m0, m1 = model_output_list[-1], model_output_list[-2] h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 r0 = h_0 / h D0, D1 = m0, (1.0 / r0) * (m0 - m1) mu_xt = ( (sigma_t / sigma_s0 * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 ) sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) if sigma > 0.0: noise = (prev_latents - mu_xt) / sigma else: noise = torch.tensor([0.0]).to(sample.device) prev_sample = mu_xt + sigma * noise return noise, prev_sample if scheduler.step_index is None: scheduler._init_step_index(timestep) model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents) for i in range(scheduler.config.solver_order - 1): scheduler.model_outputs[i] = scheduler.model_outputs[i + 1] scheduler.model_outputs[-1] = model_output if scheduler.lower_order_nums < 1: noise, prev_sample = first_order_update(model_output, latents) else: noise, prev_sample = second_order_update(scheduler.model_outputs, latents) if scheduler.lower_order_nums < scheduler.config.solver_order: scheduler.lower_order_nums += 1 # upon completion increase step index by one scheduler._step_index += 1 return noise, prev_sample # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise def compute_noise(scheduler, *args): if isinstance(scheduler, DDIMScheduler): return compute_noise_ddim(scheduler, *args) elif ( isinstance(scheduler, DPMSolverMultistepScheduler) and scheduler.config.algorithm_type == "sde-dpmsolver++" and scheduler.config.solver_order == 2 ): return compute_noise_sde_dpm_pp_2nd(scheduler, *args) else: raise NotImplementedError
diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py", "repo_id": "diffusers", "token_count": 41594 }
138
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL.Image from ...utils import BaseOutput @dataclass class SemanticStableDiffusionPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. nsfw_content_detected (`List[bool]`) List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]]
diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_output.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_output.py", "repo_id": "diffusers", "token_count": 306 }
139
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from functools import partial from typing import Dict, List, Optional, Union import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict from flax.jax_utils import unreplicate from flax.training.common_utils import shard from PIL import Image from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel from ...models import FlaxAutoencoderKL, FlaxUNet2DConditionModel from ...schedulers import ( FlaxDDIMScheduler, FlaxDPMSolverMultistepScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, ) from ...utils import PIL_INTERPOLATION, logging, replace_example_docstring from ..pipeline_flax_utils import FlaxDiffusionPipeline from .pipeline_output import FlaxStableDiffusionPipelineOutput from .safety_checker_flax import FlaxStableDiffusionSafetyChecker logger = logging.get_logger(__name__) # pylint: disable=invalid-name # Set to True to use python for loop instead of jax.fori_loop for easier debugging DEBUG = False EXAMPLE_DOC_STRING = """ Examples: ```py >>> import jax >>> import numpy as np >>> import jax.numpy as jnp >>> from flax.jax_utils import replicate >>> from flax.training.common_utils import shard >>> import requests >>> from io import BytesIO >>> from PIL import Image >>> from diffusers import FlaxStableDiffusionImg2ImgPipeline >>> def create_key(seed=0): ... return jax.random.PRNGKey(seed) >>> rng = create_key(0) >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" >>> response = requests.get(url) >>> init_img = Image.open(BytesIO(response.content)).convert("RGB") >>> init_img = init_img.resize((768, 512)) >>> prompts = "A fantasy landscape, trending on artstation" >>> pipeline, params = FlaxStableDiffusionImg2ImgPipeline.from_pretrained( ... "CompVis/stable-diffusion-v1-4", ... revision="flax", ... dtype=jnp.bfloat16, ... ) >>> num_samples = jax.device_count() >>> rng = jax.random.split(rng, jax.device_count()) >>> prompt_ids, processed_image = pipeline.prepare_inputs( ... prompt=[prompts] * num_samples, image=[init_img] * num_samples ... ) >>> p_params = replicate(params) >>> prompt_ids = shard(prompt_ids) >>> processed_image = shard(processed_image) >>> output = pipeline( ... prompt_ids=prompt_ids, ... image=processed_image, ... params=p_params, ... prng_seed=rng, ... strength=0.75, ... num_inference_steps=50, ... jit=True, ... height=512, ... width=768, ... ).images >>> output_images = pipeline.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) ``` """ class FlaxStableDiffusionImg2ImgPipeline(FlaxDiffusionPipeline): r""" Flax-based pipeline for text-guided image-to-image generation using Stable Diffusion. This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`FlaxAutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.FlaxCLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`FlaxUNet2DConditionModel`]): A `FlaxUNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ def __init__( self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, scheduler: Union[ FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler ], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, dtype: jnp.dtype = jnp.float32, ): super().__init__() self.dtype = dtype if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) def prepare_inputs(self, prompt: Union[str, List[str]], image: Union[Image.Image, List[Image.Image]]): if not isinstance(prompt, (str, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if not isinstance(image, (Image.Image, list)): raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}") if isinstance(image, Image.Image): image = [image] processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image]) text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) return text_input.input_ids, processed_images def _get_has_nsfw_concepts(self, features, params): has_nsfw_concepts = self.safety_checker(features, params) return has_nsfw_concepts def _run_safety_checker(self, images, safety_model_params, jit=False): # safety_model_params should already be replicated when jit is True pil_images = [Image.fromarray(image) for image in images] features = self.feature_extractor(pil_images, return_tensors="np").pixel_values if jit: features = shard(features) has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) has_nsfw_concepts = unshard(has_nsfw_concepts) safety_model_params = unreplicate(safety_model_params) else: has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) images_was_copied = False for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): if has_nsfw_concept: if not images_was_copied: images_was_copied = True images = images.copy() images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image if any(has_nsfw_concepts): warnings.warn( "Potential NSFW content was detected in one or more images. A black image will be returned" " instead. Try again with a different prompt and/or seed." ) return images, has_nsfw_concepts def get_timestep_start(self, num_inference_steps, strength): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) return t_start def _generate( self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, start_timestep: int, num_inference_steps: int, height: int, width: int, guidance_scale: float, noise: Optional[jnp.ndarray] = None, neg_prompt_ids: Optional[jnp.ndarray] = None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") # get prompt text embeddings prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0] # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0` # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0` batch_size = prompt_ids.shape[0] max_length = prompt_ids.shape[-1] if neg_prompt_ids is None: uncond_input = self.tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np" ).input_ids else: uncond_input = neg_prompt_ids negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0] context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) latents_shape = ( batch_size, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if noise is None: noise = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) else: if noise.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {noise.shape}, expected {latents_shape}") # Create init_latents init_latent_dist = self.vae.apply({"params": params["vae"]}, image, method=self.vae.encode).latent_dist init_latents = init_latent_dist.sample(key=prng_seed).transpose((0, 3, 1, 2)) init_latents = self.vae.config.scaling_factor * init_latents def loop_body(step, args): latents, scheduler_state = args # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes latents_input = jnp.concatenate([latents] * 2) t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] timestep = jnp.broadcast_to(t, latents_input.shape[0]) latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) # predict the noise residual noise_pred = self.unet.apply( {"params": params["unet"]}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, ).sample # perform guidance noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0) noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() return latents, scheduler_state scheduler_state = self.scheduler.set_timesteps( params["scheduler"], num_inference_steps=num_inference_steps, shape=latents_shape ) latent_timestep = scheduler_state.timesteps[start_timestep : start_timestep + 1].repeat(batch_size) latents = self.scheduler.add_noise(params["scheduler"], init_latents, noise, latent_timestep) # scale the initial noise by the standard deviation required by the scheduler latents = latents * params["scheduler"].init_noise_sigma if DEBUG: # run with python for loop for i in range(start_timestep, num_inference_steps): latents, scheduler_state = loop_body(i, (latents, scheduler_state)) else: latents, _ = jax.lax.fori_loop(start_timestep, num_inference_steps, loop_body, (latents, scheduler_state)) # scale and decode the image latents with vae latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) return image @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, strength: float = 0.8, num_inference_steps: int = 50, height: Optional[int] = None, width: Optional[int] = None, guidance_scale: Union[float, jnp.ndarray] = 7.5, noise: jnp.ndarray = None, neg_prompt_ids: jnp.ndarray = None, return_dict: bool = True, jit: bool = False, ): r""" The call function to the pipeline for generation. Args: prompt_ids (`jnp.ndarray`): The prompt or prompts to guide image generation. image (`jnp.ndarray`): Array representing an image batch to be used as the starting point. params (`Dict` or `FrozenDict`): Dictionary containing the model parameters/weights. prng_seed (`jax.Array` or `jax.Array`): Array containing random number generator key. strength (`float`, *optional*, defaults to 0.8): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. noise (`jnp.ndarray`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. The array is generated by sampling using the supplied random `generator`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of a plain tuple. jit (`bool`, defaults to `False`): Whether to run `pmap` versions of the generation and safety scoring functions. <Tip warning={true}> This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release. </Tip> Examples: Returns: [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor if isinstance(guidance_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded guidance_scale = guidance_scale[:, None] start_timestep = self.get_timestep_start(num_inference_steps, strength) if jit: images = _p_generate( self, prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids, ) else: images = self._generate( prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids, ) if self.safety_checker is not None: safety_params = params["safety_checker"] images_uint8_casted = (images * 255).round().astype("uint8") num_devices, batch_size = images.shape[:2] images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit) images = np.asarray(images) # block images if any(has_nsfw_concept): for i, is_nsfw in enumerate(has_nsfw_concept): if is_nsfw: images[i] = np.asarray(images_uint8_casted[i]) images = images.reshape(num_devices, batch_size, height, width, 3) else: images = np.asarray(images) has_nsfw_concept = False if not return_dict: return (images, has_nsfw_concept) return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) # Static argnums are pipe, start_timestep, num_inference_steps, height, width. A change would trigger recompilation. # Non-static args are (sharded) input tensors mapped over their first dimension (hence, `0`). @partial( jax.pmap, in_axes=(None, 0, 0, 0, 0, None, None, None, None, 0, 0, 0), static_broadcasted_argnums=(0, 5, 6, 7, 8), ) def _p_generate( pipe, prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids, ): return pipe._generate( prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids, ) @partial(jax.pmap, static_broadcasted_argnums=(0,)) def _p_get_has_nsfw_concepts(pipe, features, params): return pipe._get_has_nsfw_concepts(features, params) def unshard(x: jnp.ndarray): # einops.rearrange(x, 'd b ... -> (d b) ...') num_devices, batch_size = x.shape[:2] rest = x.shape[2:] return x.reshape(num_devices * batch_size, *rest) def preprocess(image, dtype): w, h = image.size w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) image = jnp.array(image).astype(dtype) / 255.0 image = image[None].transpose(0, 3, 1, 2) return 2.0 * image - 1.0
diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py", "repo_id": "diffusers", "token_count": 9901 }
140
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Any, Callable, Dict, List, Optional, Union import PIL.Image import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection from ...image_processor import VaeImageProcessor from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, UNet2DConditionModel from ...models.embeddings import get_timestep_embedding from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput, StableDiffusionMixin from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import requests >>> import torch >>> from PIL import Image >>> from io import BytesIO >>> from diffusers import StableUnCLIPImg2ImgPipeline >>> pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( ... "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16 ... ) # TODO update model path >>> pipe = pipe.to("cuda") >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" >>> response = requests.get(url) >>> init_image = Image.open(BytesIO(response.content)).convert("RGB") >>> init_image = init_image.resize((768, 512)) >>> prompt = "A fantasy landscape, trending on artstation" >>> images = pipe(prompt, init_image).images >>> images[0].save("fantasy_landscape.png") ``` """ class StableUnCLIPImg2ImgPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin ): """ Pipeline for text-guided image-to-image generation using stable unCLIP. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights Args: feature_extractor ([`CLIPImageProcessor`]): Feature extractor for image pre-processing before being encoded. image_encoder ([`CLIPVisionModelWithProjection`]): CLIP vision model for encoding images. image_normalizer ([`StableUnCLIPImageNormalizer`]): Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image embeddings after the noise has been applied. image_noising_scheduler ([`KarrasDiffusionSchedulers`]): Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined by the `noise_level`. tokenizer (`~transformers.CLIPTokenizer`): A [`~transformers.CLIPTokenizer`)]. text_encoder ([`~transformers.CLIPTextModel`]): Frozen [`~transformers.CLIPTextModel`] text-encoder. unet ([`UNet2DConditionModel`]): A [`UNet2DConditionModel`] to denoise the encoded image latents. scheduler ([`KarrasDiffusionSchedulers`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. """ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" _exclude_from_cpu_offload = ["image_normalizer"] # image encoding components feature_extractor: CLIPImageProcessor image_encoder: CLIPVisionModelWithProjection # image noising components image_normalizer: StableUnCLIPImageNormalizer image_noising_scheduler: KarrasDiffusionSchedulers # regular denoising components tokenizer: CLIPTokenizer text_encoder: CLIPTextModel unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers vae: AutoencoderKL def __init__( self, # image encoding components feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection, # image noising components image_normalizer: StableUnCLIPImageNormalizer, image_noising_scheduler: KarrasDiffusionSchedulers, # regular denoising components tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, # vae vae: AutoencoderKL, ): super().__init__() self.register_modules( feature_extractor=feature_extractor, image_encoder=image_encoder, image_normalizer=image_normalizer, image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, vae=vae, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds def _encode_image( self, image, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, noise_level, generator, image_embeds, ): dtype = next(self.image_encoder.parameters()).dtype if isinstance(image, PIL.Image.Image): # the image embedding should repeated so it matches the total batch size of the prompt repeat_by = batch_size else: # assume the image input is already properly batched and just needs to be repeated so # it matches the num_images_per_prompt. # # NOTE(will) this is probably missing a few number of side cases. I.e. batched/non-batched # `image_embeds`. If those happen to be common use cases, let's think harder about # what the expected dimensions of inputs should be and how we handle the encoding. repeat_by = num_images_per_prompt if image_embeds is None: if not isinstance(image, torch.Tensor): image = self.feature_extractor(images=image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) image_embeds = self.image_encoder(image).image_embeds image_embeds = self.noise_image_embeddings( image_embeds=image_embeds, noise_level=noise_level, generator=generator, ) # duplicate image embeddings for each generation per prompt, using mps friendly method image_embeds = image_embeds.unsqueeze(1) bs_embed, seq_len, _ = image_embeds.shape image_embeds = image_embeds.repeat(1, repeat_by, 1) image_embeds = image_embeds.view(bs_embed * repeat_by, seq_len, -1) image_embeds = image_embeds.squeeze(1) if do_classifier_free_guidance: negative_prompt_embeds = torch.zeros_like(image_embeds) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_embeds = torch.cat([negative_prompt_embeds, image_embeds]) return image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, image, height, width, callback_steps, noise_level, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, image_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two." ) if prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( "Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined." ) if prompt is not None and negative_prompt is not None: if type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: raise ValueError( f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive." ) if image is not None and image_embeds is not None: raise ValueError( "Provide either `image` or `image_embeds`. Please make sure to define only one of the two." ) if image is None and image_embeds is None: raise ValueError( "Provide either `image` or `image_embeds`. Cannot leave both `image` and `image_embeds` undefined." ) if image is not None: if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" f" {type(image)}" ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_unclip.StableUnCLIPPipeline.noise_image_embeddings def noise_image_embeddings( self, image_embeds: torch.Tensor, noise_level: int, noise: Optional[torch.FloatTensor] = None, generator: Optional[torch.Generator] = None, ): """ Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher `noise_level` increases the variance in the final un-noised images. The noise is applied in two ways: 1. A noise schedule is applied directly to the embeddings. 2. A vector of sinusoidal time embeddings are appended to the output. In both cases, the amount of noise is controlled by the same `noise_level`. The embeddings are normalized before the noise is applied and un-normalized after the noise is applied. """ if noise is None: noise = randn_tensor( image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype ) noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) self.image_normalizer.to(image_embeds.device) image_embeds = self.image_normalizer.scale(image_embeds) image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) image_embeds = self.image_normalizer.unscale(image_embeds) noise_level = get_timestep_embedding( timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0 ) # `get_timestep_embeddings` does not contain any weights and will always return f32 tensors, # but we might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. noise_level = noise_level.to(image_embeds.dtype) image_embeds = torch.cat((image_embeds, noise_level), 1) return image_embeds @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image: Union[torch.FloatTensor, PIL.Image.Image] = None, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 20, guidance_scale: float = 10, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, noise_level: int = 0, image_embeds: Optional[torch.FloatTensor] = None, clip_skip: Optional[int] = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, either `prompt_embeds` will be used or prompt is initialized to `""`. image (`torch.FloatTensor` or `PIL.Image.Image`): `Image` or tensor representing an image batch. The image is encoded to its CLIP embedding which the `unet` is conditioned on. The image is _not_ encoded by the `vae` and then used as the latents in the denoising process like it is in the standard Stable Diffusion text-guided image variation process. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 20): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 10.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). noise_level (`int`, *optional*, defaults to `0`): The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in the final un-noised images. See [`StableUnCLIPPipeline.noise_image_embeddings`] for more details. image_embeds (`torch.FloatTensor`, *optional*): Pre-generated CLIP embeddings to condition the `unet` on. These latents are not used in the denoising process. If you want to provide pre-generated latents, pass them to `__call__` as `latents`. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor if prompt is None and prompt_embeds is None: prompt = len(image) * [""] if isinstance(image, list) else "" # 1. Check inputs. Raise error if not correct self.check_inputs( prompt=prompt, image=image, height=height, width=width, callback_steps=callback_steps, noise_level=noise_level, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image_embeds=image_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] batch_size = batch_size * num_images_per_prompt device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Encoder input image noise_level = torch.tensor([noise_level], device=device) image_embeds = self._encode_image( image=image, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, noise_level=noise_level, generator=generator, image_embeds=image_embeds, ) # 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 6. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size=batch_size, num_channels_latents=num_channels_latents, height=height, width=width, dtype=prompt_embeds.dtype, device=device, generator=generator, latents=latents, ) # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 8. Denoising loop for i, t in enumerate(self.progress_bar(timesteps)): latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, class_labels=image_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # 9. Post-processing if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py", "repo_id": "diffusers", "token_count": 17229 }
141
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_stable_diffusion_panorama"] = ["StableDiffusionPanoramaPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
diffusers/src/diffusers/pipelines/stable_diffusion_panorama/__init__.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_diffusion_panorama/__init__.py", "repo_id": "diffusers", "token_count": 528 }
142
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, BaseOutput, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure.update( { "pipeline_stable_video_diffusion": [ "StableVideoDiffusionPipeline", "StableVideoDiffusionPipelineOutput", ], } ) if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_stable_video_diffusion import ( StableVideoDiffusionPipeline, StableVideoDiffusionPipelineOutput, ) else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
diffusers/src/diffusers/pipelines/stable_video_diffusion/__init__.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_video_diffusion/__init__.py", "repo_id": "diffusers", "token_count": 664 }
143
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPT2Config, GPT2LMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin # Modified from ClipCaptionModel in https://github.com/thu-ml/unidiffuser/blob/main/libs/caption_decoder.py class UniDiffuserTextDecoder(ModelMixin, ConfigMixin, ModuleUtilsMixin): """ Text decoder model for a image-text [UniDiffuser](https://arxiv.org/pdf/2303.06555.pdf) model. This is used to generate text from the UniDiffuser image-text embedding. Parameters: prefix_length (`int`): Max number of prefix tokens that will be supplied to the model. prefix_inner_dim (`int`): The hidden size of the incoming prefix embeddings. For UniDiffuser, this would be the hidden dim of the CLIP text encoder. prefix_hidden_dim (`int`, *optional*): Hidden dim of the MLP if we encode the prefix. vocab_size (`int`, *optional*, defaults to 50257): Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`]. n_positions (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. n_inner (`int`, *optional*, defaults to None): Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"gelu"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_attn_weights (`bool`, *optional*, defaults to `True`): Scale attention weights by dividing by sqrt(hidden_size).. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): Whether to additionally scale attention weights by `1 / layer_idx + 1`. reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-product/softmax to float() when training with mixed precision. """ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self, prefix_length: int, prefix_inner_dim: int, prefix_hidden_dim: Optional[int] = None, vocab_size: int = 50257, # Start of GPT2 config args n_positions: int = 1024, n_embd: int = 768, n_layer: int = 12, n_head: int = 12, n_inner: Optional[int] = None, activation_function: str = "gelu_new", resid_pdrop: float = 0.1, embd_pdrop: float = 0.1, attn_pdrop: float = 0.1, layer_norm_epsilon: float = 1e-5, initializer_range: float = 0.02, scale_attn_weights: bool = True, use_cache: bool = True, scale_attn_by_inverse_layer_idx: bool = False, reorder_and_upcast_attn: bool = False, ): super().__init__() self.prefix_length = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) self.prefix_inner_dim = prefix_inner_dim self.prefix_hidden_dim = prefix_hidden_dim self.encode_prefix = ( nn.Linear(self.prefix_inner_dim, self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) self.decode_prefix = ( nn.Linear(self.prefix_hidden_dim, n_embd) if self.prefix_hidden_dim is not None else nn.Identity() ) gpt_config = GPT2Config( vocab_size=vocab_size, n_positions=n_positions, n_embd=n_embd, n_layer=n_layer, n_head=n_head, n_inner=n_inner, activation_function=activation_function, resid_pdrop=resid_pdrop, embd_pdrop=embd_pdrop, attn_pdrop=attn_pdrop, layer_norm_epsilon=layer_norm_epsilon, initializer_range=initializer_range, scale_attn_weights=scale_attn_weights, use_cache=use_cache, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, ) self.transformer = GPT2LMHeadModel(gpt_config) def forward( self, input_ids: torch.Tensor, prefix_embeds: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, ): """ Args: input_ids (`torch.Tensor` of shape `(N, max_seq_len)`): Text tokens to use for inference. prefix_embeds (`torch.Tensor` of shape `(N, prefix_length, 768)`): Prefix embedding to preprend to the embedded tokens. attention_mask (`torch.Tensor` of shape `(N, prefix_length + max_seq_len, 768)`, *optional*): Attention mask for the prefix embedding. labels (`torch.Tensor`, *optional*): Labels to use for language modeling. """ embedding_text = self.transformer.transformer.wte(input_ids) hidden = self.encode_prefix(prefix_embeds) prefix_embeds = self.decode_prefix(hidden) embedding_cat = torch.cat((prefix_embeds, embedding_text), dim=1) if labels is not None: dummy_token = self.get_dummy_token(input_ids.shape[0], input_ids.device) labels = torch.cat((dummy_token, input_ids), dim=1) out = self.transformer(inputs_embeds=embedding_cat, labels=labels, attention_mask=attention_mask) if self.prefix_hidden_dim is not None: return out, hidden else: return out def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor: return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) def encode(self, prefix): return self.encode_prefix(prefix) @torch.no_grad() def generate_captions(self, features, eos_token_id, device): """ Generate captions given text embedding features. Returns list[L]. Args: features (`torch.Tensor` of shape `(B, L, D)`): Text embedding features to generate captions from. eos_token_id (`int`): The token ID of the EOS token for the text decoder model. device: Device to perform text generation on. Returns: `List[str]`: A list of strings generated from the decoder model. """ features = torch.split(features, 1, dim=0) generated_tokens = [] generated_seq_lengths = [] for feature in features: feature = self.decode_prefix(feature.to(device)) # back to the clip feature # Only support beam search for now output_tokens, seq_lengths = self.generate_beam( input_embeds=feature, device=device, eos_token_id=eos_token_id ) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) generated_tokens = torch.stack(generated_tokens) generated_seq_lengths = torch.stack(generated_seq_lengths) return generated_tokens, generated_seq_lengths @torch.no_grad() def generate_beam( self, input_ids=None, input_embeds=None, device=None, beam_size: int = 5, entry_length: int = 67, temperature: float = 1.0, eos_token_id: Optional[int] = None, ): """ Generates text using the given tokenizer and text prompt or token embedding via beam search. This implementation is based on the beam search implementation from the [original UniDiffuser code](https://github.com/thu-ml/unidiffuser/blob/main/libs/caption_decoder.py#L89). Args: eos_token_id (`int`, *optional*): The token ID of the EOS token for the text decoder model. input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): Tokenizer indices of input sequence tokens in the vocabulary. One of `input_ids` and `input_embeds` must be supplied. input_embeds (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*): An embedded representation to directly pass to the transformer as a prefix for beam search. One of `input_ids` and `input_embeds` must be supplied. device: The device to perform beam search on. beam_size (`int`, *optional*, defaults to `5`): The number of best states to store during beam search. entry_length (`int`, *optional*, defaults to `67`): The number of iterations to run beam search. temperature (`float`, *optional*, defaults to 1.0): The temperature to use when performing the softmax over logits from the decoding model. Returns: `Tuple(torch.Tensor, torch.Tensor)`: A tuple of tensors where the first element is a tensor of generated token sequences sorted by score in descending order, and the second element is the sequence lengths corresponding to those sequences. """ # Generates text until stop_token is reached using beam search with the desired beam size. stop_token_index = eos_token_id tokens = None scores = None seq_lengths = torch.ones(beam_size, device=device, dtype=torch.int) is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) if input_embeds is not None: generated = input_embeds else: generated = self.transformer.transformer.wte(input_ids) for i in range(entry_length): outputs = self.transformer(inputs_embeds=generated) logits = outputs.logits logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) logits = logits.softmax(-1).log() if scores is None: scores, next_tokens = logits.topk(beam_size, -1) generated = generated.expand(beam_size, *generated.shape[1:]) next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) if tokens is None: tokens = next_tokens else: tokens = tokens.expand(beam_size, *tokens.shape[1:]) tokens = torch.cat((tokens, next_tokens), dim=1) else: logits[is_stopped] = -float(np.inf) logits[is_stopped, 0] = 0 scores_sum = scores[:, None] + logits seq_lengths[~is_stopped] += 1 scores_sum_average = scores_sum / seq_lengths[:, None] scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) next_tokens_source = next_tokens // scores_sum.shape[1] seq_lengths = seq_lengths[next_tokens_source] next_tokens = next_tokens % scores_sum.shape[1] next_tokens = next_tokens.unsqueeze(1) tokens = tokens[next_tokens_source] tokens = torch.cat((tokens, next_tokens), dim=1) generated = generated[next_tokens_source] scores = scores_sum_average * seq_lengths is_stopped = is_stopped[next_tokens_source] next_token_embed = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) generated = torch.cat((generated, next_token_embed), dim=1) is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() if is_stopped.all(): break scores = scores / seq_lengths order = scores.argsort(descending=True) # tokens tensors are already padded to max_seq_length output_texts = [tokens[i] for i in order] output_texts = torch.stack(output_texts, dim=0) seq_lengths = torch.tensor([seq_lengths[i] for i in order], dtype=seq_lengths.dtype) return output_texts, seq_lengths
diffusers/src/diffusers/pipelines/unidiffuser/modeling_text_decoder.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/unidiffuser/modeling_text_decoder.py", "repo_id": "diffusers", "token_count": 6304 }
144
# Copyright 2024 Google Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ...configuration_utils import ConfigMixin, register_to_config from ...utils.torch_utils import randn_tensor from ..scheduling_utils import SchedulerMixin class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin): """ `ScoreSdeVpScheduler` is a variance preserving stochastic differential equation (SDE) scheduler. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 2000): The number of diffusion steps to train the model. beta_min (`int`, defaults to 0.1): beta_max (`int`, defaults to 20): sampling_eps (`int`, defaults to 1e-3): The end value of sampling where timesteps decrease progressively from 1 to epsilon. """ order = 1 @register_to_config def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3): self.sigmas = None self.discrete_sigmas = None self.timesteps = None def set_timesteps(self, num_inference_steps, device: Union[str, torch.device] = None): """ Sets the continuous timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps, device=device) def step_pred(self, score, x, t, generator=None): """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: score (): x (): t (): generator (`torch.Generator`, *optional*): A random number generator. """ if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score log_mean_coeff = -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min std = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) std = std.flatten() while len(std.shape) < len(score.shape): std = std.unsqueeze(-1) score = -score / std # compute dt = -1.0 / len(self.timesteps) beta_t = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) beta_t = beta_t.flatten() while len(beta_t.shape) < len(x.shape): beta_t = beta_t.unsqueeze(-1) drift = -0.5 * beta_t * x diffusion = torch.sqrt(beta_t) drift = drift - diffusion**2 * score x_mean = x + drift * dt # add noise noise = randn_tensor(x.shape, layout=x.layout, generator=generator, device=x.device, dtype=x.dtype) x = x_mean + diffusion * math.sqrt(-dt) * noise return x, x_mean def __len__(self): return self.config.num_train_timesteps
diffusers/src/diffusers/schedulers/deprecated/scheduling_sde_vp.py/0
{ "file_path": "diffusers/src/diffusers/schedulers/deprecated/scheduling_sde_vp.py", "repo_id": "diffusers", "token_count": 1693 }
145
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Tuple, Union import numpy as np import torch import torchsde from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput class BatchedBrownianTree: """A wrapper around torchsde.BrownianTree that enables batches of entropy.""" def __init__(self, x, t0, t1, seed=None, **kwargs): t0, t1, self.sign = self.sort(t0, t1) w0 = kwargs.get("w0", torch.zeros_like(x)) if seed is None: seed = torch.randint(0, 2**63 - 1, []).item() self.batched = True try: assert len(seed) == x.shape[0] w0 = w0[0] except TypeError: seed = [seed] self.batched = False self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed] @staticmethod def sort(a, b): return (a, b, 1) if a < b else (b, a, -1) def __call__(self, t0, t1): t0, t1, sign = self.sort(t0, t1) w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign) return w if self.batched else w[0] class BrownianTreeNoiseSampler: """A noise sampler backed by a torchsde.BrownianTree. Args: x (Tensor): The tensor whose shape, device and dtype to use to generate random samples. sigma_min (float): The low end of the valid interval. sigma_max (float): The high end of the valid interval. seed (int or List[int]): The random seed. If a list of seeds is supplied instead of a single integer, then the noise sampler will use one BrownianTree per batch item, each with its own seed. transform (callable): A function that maps sigma to the sampler's internal timestep. """ def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x): self.transform = transform t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max)) self.tree = BatchedBrownianTree(x, t0, t1, seed) def __call__(self, sigma, sigma_next): t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next)) return self.tree(t0, t1) / (t1 - t0).abs().sqrt() # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar( num_diffusion_timesteps, max_beta=0.999, alpha_transform_type="cosine", ): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. Choose from `cosine` or `exp` Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ if alpha_transform_type == "cosine": def alpha_bar_fn(t): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(t): return math.exp(t * -12.0) else: raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin): """ DPMSolverSDEScheduler implements the stochastic sampler from the [Elucidating the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) paper. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.00085): The starting `beta` value of inference. beta_end (`float`, defaults to 0.012): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). use_karras_sigmas (`bool`, *optional*, defaults to `False`): Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, the sigmas are determined according to a sequence of noise levels {σi}. noise_sampler_seed (`int`, *optional*, defaults to `None`): The random seed to use for the noise sampler. If `None`, a random seed is generated. timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 2 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.00085, # sensible defaults beta_end: float = 0.012, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, prediction_type: str = "epsilon", use_karras_sigmas: Optional[bool] = False, noise_sampler_seed: Optional[int] = None, timestep_spacing: str = "linspace", steps_offset: int = 0, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # set all values self.set_timesteps(num_train_timesteps, None, num_train_timesteps) self.use_karras_sigmas = use_karras_sigmas self.noise_sampler = None self.noise_sampler_seed = noise_sampler_seed self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item() # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index def _init_step_index(self, timestep): if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index @property def init_noise_sigma(self): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index @property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index def scale_model_input( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], ) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.FloatTensor`: A scaled input sample. """ if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] sigma_input = sigma if self.state_in_first_order else self.mid_point_sigma sample = sample / ((sigma_input**2 + 1) ** 0.5) return sample def set_timesteps( self, num_inference_steps: int, device: Union[str, torch.device] = None, num_train_timesteps: Optional[int] = None, ): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() elif self.config.timestep_spacing == "leading": step_ratio = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": step_ratio = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(float) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) log_sigmas = np.log(sigmas) sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) if self.config.use_karras_sigmas: sigmas = self._convert_to_karras(in_sigmas=sigmas) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) second_order_timesteps = self._second_order_timesteps(sigmas, log_sigmas) sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) sigmas = torch.from_numpy(sigmas).to(device=device) self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) timesteps = torch.from_numpy(timesteps) second_order_timesteps = torch.from_numpy(second_order_timesteps) timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) timesteps[1::2] = second_order_timesteps if str(device).startswith("mps"): # mps does not support float64 self.timesteps = timesteps.to(device, dtype=torch.float32) else: self.timesteps = timesteps.to(device=device) # empty first order variables self.sample = None self.mid_point_sigma = None self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication self.noise_sampler = None def _second_order_timesteps(self, sigmas, log_sigmas): def sigma_fn(_t): return np.exp(-_t) def t_fn(_sigma): return -np.log(_sigma) midpoint_ratio = 0.5 t = t_fn(sigmas) delta_time = np.diff(t) t_proposed = t[:-1] + delta_time * midpoint_ratio sig_proposed = sigma_fn(t_proposed) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sig_proposed]) return timesteps # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t # copied from diffusers.schedulers.scheduling_euler_discrete._convert_to_karras def _convert_to_karras(self, in_sigmas: torch.FloatTensor) -> torch.FloatTensor: """Constructs the noise schedule of Karras et al. (2022).""" sigma_min: float = in_sigmas[-1].item() sigma_max: float = in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, self.num_inference_steps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def state_in_first_order(self): return self.sample is None def step( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: Union[float, torch.FloatTensor], sample: Union[torch.FloatTensor, np.ndarray], return_dict: bool = True, s_noise: float = 1.0, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor` or `np.ndarray`): The direct output from learned diffusion model. timestep (`float` or `torch.FloatTensor`): The current discrete timestep in the diffusion chain. sample (`torch.FloatTensor` or `np.ndarray`): A current instance of a sample created by the diffusion process. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple. s_noise (`float`, *optional*, defaults to 1.0): Scaling factor for noise added to the sample. Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.step_index is None: self._init_step_index(timestep) # Create a noise sampler if it hasn't been created yet if self.noise_sampler is None: min_sigma, max_sigma = self.sigmas[self.sigmas > 0].min(), self.sigmas.max() self.noise_sampler = BrownianTreeNoiseSampler(sample, min_sigma, max_sigma, self.noise_sampler_seed) # Define functions to compute sigma and t from each other def sigma_fn(_t: torch.FloatTensor) -> torch.FloatTensor: return _t.neg().exp() def t_fn(_sigma: torch.FloatTensor) -> torch.FloatTensor: return _sigma.log().neg() if self.state_in_first_order: sigma = self.sigmas[self.step_index] sigma_next = self.sigmas[self.step_index + 1] else: # 2nd order sigma = self.sigmas[self.step_index - 1] sigma_next = self.sigmas[self.step_index] # Set the midpoint and step size for the current step midpoint_ratio = 0.5 t, t_next = t_fn(sigma), t_fn(sigma_next) delta_time = t_next - t t_proposed = t + delta_time * midpoint_ratio # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed) pred_original_sample = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed) pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample") else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if sigma_next == 0: derivative = (sample - pred_original_sample) / sigma dt = sigma_next - sigma prev_sample = sample + derivative * dt else: if self.state_in_first_order: t_next = t_proposed else: sample = self.sample sigma_from = sigma_fn(t) sigma_to = sigma_fn(t_next) sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5) sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 ancestral_t = t_fn(sigma_down) prev_sample = (sigma_fn(ancestral_t) / sigma_fn(t)) * sample - ( t - ancestral_t ).expm1() * pred_original_sample prev_sample = prev_sample + self.noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * sigma_up if self.state_in_first_order: # store for 2nd order step self.sample = sample self.mid_point_sigma = sigma_fn(t_next) else: # free for "first order mode" self.sample = None self.mid_point_sigma = None # upon completion increase step index by one self._step_index += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.FloatTensor, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index if self.begin_index is None: step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] elif self.step_index is not None: # add_noise is called after first denoising step (for inpainting) step_indices = [self.step_index] * timesteps.shape[0] else: # add noise is called before first denoising step to create initial latent(img2img) step_indices = [self.begin_index] * timesteps.shape[0] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers/src/diffusers/schedulers/scheduling_dpmsolver_sde.py/0
{ "file_path": "diffusers/src/diffusers/schedulers/scheduling_dpmsolver_sde.py", "repo_id": "diffusers", "token_count": 10658 }
146
# Copyright 2024 Zhejiang University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, ) @flax.struct.dataclass class PNDMSchedulerState: common: CommonSchedulerState final_alpha_cumprod: jnp.ndarray # setable values init_noise_sigma: jnp.ndarray timesteps: jnp.ndarray num_inference_steps: Optional[int] = None prk_timesteps: Optional[jnp.ndarray] = None plms_timesteps: Optional[jnp.ndarray] = None # running values cur_model_output: Optional[jnp.ndarray] = None counter: Optional[jnp.int32] = None cur_sample: Optional[jnp.ndarray] = None ets: Optional[jnp.ndarray] = None @classmethod def create( cls, common: CommonSchedulerState, final_alpha_cumprod: jnp.ndarray, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray, ): return cls( common=common, final_alpha_cumprod=final_alpha_cumprod, init_noise_sigma=init_noise_sigma, timesteps=timesteps, ) @dataclass class FlaxPNDMSchedulerOutput(FlaxSchedulerOutput): state: PNDMSchedulerState class FlaxPNDMScheduler(FlaxSchedulerMixin, ConfigMixin): """ Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques, namely Runge-Kutta method and a linear multi-step method. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. For more details, see the original paper: https://arxiv.org/abs/2202.09778 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`jnp.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. skip_prk_steps (`bool`): allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required before plms steps; defaults to `False`. set_alpha_to_one (`bool`, default `False`): each diffusion step uses the value of alphas product at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the value of alpha at step 0. steps_offset (`int`, default `0`): An offset added to the inference steps, as required by some model families. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): the `dtype` used for params and computation. """ _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] dtype: jnp.dtype pndm_order: int @property def has_state(self): return True @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[jnp.ndarray] = None, skip_prk_steps: bool = False, set_alpha_to_one: bool = False, steps_offset: int = 0, prediction_type: str = "epsilon", dtype: jnp.dtype = jnp.float32, ): self.dtype = dtype # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. self.pndm_order = 4 def create_state(self, common: Optional[CommonSchedulerState] = None) -> PNDMSchedulerState: if common is None: common = CommonSchedulerState.create(self) # At every step in ddim, we are looking into the previous alphas_cumprod # For the final step, there is no previous alphas_cumprod because we are already at 0 # `set_alpha_to_one` decides whether we set this parameter simply to one or # whether we use the final alpha of the "non-previous" one. final_alpha_cumprod = ( jnp.array(1.0, dtype=self.dtype) if self.config.set_alpha_to_one else common.alphas_cumprod[0] ) # standard deviation of the initial noise distribution init_noise_sigma = jnp.array(1.0, dtype=self.dtype) timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] return PNDMSchedulerState.create( common=common, final_alpha_cumprod=final_alpha_cumprod, init_noise_sigma=init_noise_sigma, timesteps=timesteps, ) def set_timesteps(self, state: PNDMSchedulerState, num_inference_steps: int, shape: Tuple) -> PNDMSchedulerState: """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. shape (`Tuple`): the shape of the samples to be generated. """ step_ratio = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round() + self.config.steps_offset if self.config.skip_prk_steps: # for some models like stable diffusion the prk steps can/should be skipped to # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51 prk_timesteps = jnp.array([], dtype=jnp.int32) plms_timesteps = jnp.concatenate([_timesteps[:-1], _timesteps[-2:-1], _timesteps[-1:]])[::-1] else: prk_timesteps = _timesteps[-self.pndm_order :].repeat(2) + jnp.tile( jnp.array([0, self.config.num_train_timesteps // num_inference_steps // 2], dtype=jnp.int32), self.pndm_order, ) prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1] plms_timesteps = _timesteps[:-3][::-1] timesteps = jnp.concatenate([prk_timesteps, plms_timesteps]) # initial running values cur_model_output = jnp.zeros(shape, dtype=self.dtype) counter = jnp.int32(0) cur_sample = jnp.zeros(shape, dtype=self.dtype) ets = jnp.zeros((4,) + shape, dtype=self.dtype) return state.replace( timesteps=timesteps, num_inference_steps=num_inference_steps, prk_timesteps=prk_timesteps, plms_timesteps=plms_timesteps, cur_model_output=cur_model_output, counter=counter, cur_sample=cur_sample, ets=ets, ) def scale_model_input( self, state: PNDMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None ) -> jnp.ndarray: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. sample (`jnp.ndarray`): input sample timestep (`int`, optional): current timestep Returns: `jnp.ndarray`: scaled input sample """ return sample def step( self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, return_dict: bool = True, ) -> Union[FlaxPNDMSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class Returns: [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if self.config.skip_prk_steps: prev_sample, state = self.step_plms(state, model_output, timestep, sample) else: prk_prev_sample, prk_state = self.step_prk(state, model_output, timestep, sample) plms_prev_sample, plms_state = self.step_plms(state, model_output, timestep, sample) cond = state.counter < len(state.prk_timesteps) prev_sample = jax.lax.select(cond, prk_prev_sample, plms_prev_sample) state = state.replace( cur_model_output=jax.lax.select(cond, prk_state.cur_model_output, plms_state.cur_model_output), ets=jax.lax.select(cond, prk_state.ets, plms_state.ets), cur_sample=jax.lax.select(cond, prk_state.cur_sample, plms_state.cur_sample), counter=jax.lax.select(cond, prk_state.counter, plms_state.counter), ) if not return_dict: return (prev_sample, state) return FlaxPNDMSchedulerOutput(prev_sample=prev_sample, state=state) def step_prk( self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, ) -> Union[FlaxPNDMSchedulerOutput, Tuple]: """ Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the solution to the differential equation. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class Returns: [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) diff_to_prev = jnp.where( state.counter % 2, 0, self.config.num_train_timesteps // state.num_inference_steps // 2 ) prev_timestep = timestep - diff_to_prev timestep = state.prk_timesteps[state.counter // 4 * 4] model_output = jax.lax.select( (state.counter % 4) != 3, model_output, # remainder 0, 1, 2 state.cur_model_output + 1 / 6 * model_output, # remainder 3 ) state = state.replace( cur_model_output=jax.lax.select_n( state.counter % 4, state.cur_model_output + 1 / 6 * model_output, # remainder 0 state.cur_model_output + 1 / 3 * model_output, # remainder 1 state.cur_model_output + 1 / 3 * model_output, # remainder 2 jnp.zeros_like(state.cur_model_output), # remainder 3 ), ets=jax.lax.select( (state.counter % 4) == 0, state.ets.at[0:3].set(state.ets[1:4]).at[3].set(model_output), # remainder 0 state.ets, # remainder 1, 2, 3 ), cur_sample=jax.lax.select( (state.counter % 4) == 0, sample, # remainder 0 state.cur_sample, # remainder 1, 2, 3 ), ) cur_sample = state.cur_sample prev_sample = self._get_prev_sample(state, cur_sample, timestep, prev_timestep, model_output) state = state.replace(counter=state.counter + 1) return (prev_sample, state) def step_plms( self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, ) -> Union[FlaxPNDMSchedulerOutput, Tuple]: """ Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple times to approximate the solution. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class Returns: [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # NOTE: There is no way to check in the jitted runtime if the prk mode was ran before prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps prev_timestep = jnp.where(prev_timestep > 0, prev_timestep, 0) # Reference: # if state.counter != 1: # state.ets.append(model_output) # else: # prev_timestep = timestep # timestep = timestep + self.config.num_train_timesteps // state.num_inference_steps prev_timestep = jnp.where(state.counter == 1, timestep, prev_timestep) timestep = jnp.where( state.counter == 1, timestep + self.config.num_train_timesteps // state.num_inference_steps, timestep ) # Reference: # if len(state.ets) == 1 and state.counter == 0: # model_output = model_output # state.cur_sample = sample # elif len(state.ets) == 1 and state.counter == 1: # model_output = (model_output + state.ets[-1]) / 2 # sample = state.cur_sample # state.cur_sample = None # elif len(state.ets) == 2: # model_output = (3 * state.ets[-1] - state.ets[-2]) / 2 # elif len(state.ets) == 3: # model_output = (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12 # else: # model_output = (1 / 24) * (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4]) state = state.replace( ets=jax.lax.select( state.counter != 1, state.ets.at[0:3].set(state.ets[1:4]).at[3].set(model_output), # counter != 1 state.ets, # counter 1 ), cur_sample=jax.lax.select( state.counter != 1, sample, # counter != 1 state.cur_sample, # counter 1 ), ) state = state.replace( cur_model_output=jax.lax.select_n( jnp.clip(state.counter, 0, 4), model_output, # counter 0 (model_output + state.ets[-1]) / 2, # counter 1 (3 * state.ets[-1] - state.ets[-2]) / 2, # counter 2 (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12, # counter 3 (1 / 24) * (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4]), # counter >= 4 ), ) sample = state.cur_sample model_output = state.cur_model_output prev_sample = self._get_prev_sample(state, sample, timestep, prev_timestep, model_output) state = state.replace(counter=state.counter + 1) return (prev_sample, state) def _get_prev_sample(self, state: PNDMSchedulerState, sample, timestep, prev_timestep, model_output): # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf # this function computes x_(t−δ) using the formula of (9) # Note that x_t needs to be added to both sides of the equation # Notation (<variable name> -> <name in paper> # alpha_prod_t -> α_t # alpha_prod_t_prev -> α_(t−δ) # beta_prod_t -> (1 - α_t) # beta_prod_t_prev -> (1 - α_(t−δ)) # sample -> x_t # model_output -> e_θ(x_t, t) # prev_sample -> x_(t−δ) alpha_prod_t = state.common.alphas_cumprod[timestep] alpha_prod_t_prev = jnp.where( prev_timestep >= 0, state.common.alphas_cumprod[prev_timestep], state.final_alpha_cumprod ) beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev if self.config.prediction_type == "v_prediction": model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample elif self.config.prediction_type != "epsilon": raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`" ) # corresponds to (α_(t−δ) - α_t) divided by # denominator of x_t in formula (9) and plus 1 # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) = # sqrt(α_(t−δ)) / sqrt(α_t)) sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) # corresponds to denominator of e_θ(x_t, t) in formula (9) model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + ( alpha_prod_t * beta_prod_t * alpha_prod_t_prev ) ** (0.5) # full formula (9) prev_sample = ( sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff ) return prev_sample def add_noise( self, state: PNDMSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray, ) -> jnp.ndarray: return add_noise_common(state.common, original_samples, noise, timesteps) def __len__(self): return self.config.num_train_timesteps
diffusers/src/diffusers/schedulers/scheduling_pndm_flax.py/0
{ "file_path": "diffusers/src/diffusers/schedulers/scheduling_pndm_flax.py", "repo_id": "diffusers", "token_count": 9597 }
147
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Doc utilities: Utilities related to documentation """ import re def replace_example_docstring(example_docstring): def docstring_decorator(fn): func_doc = fn.__doc__ lines = func_doc.split("\n") i = 0 while i < len(lines) and re.search(r"^\s*Examples?:\s*$", lines[i]) is None: i += 1 if i < len(lines): lines[i] = example_docstring func_doc = "\n".join(lines) else: raise ValueError( f"The function {fn} should have an empty 'Examples:' in its docstring as placeholder, " f"current docstring is:\n{func_doc}" ) fn.__doc__ = func_doc return fn return docstring_decorator
diffusers/src/diffusers/utils/doc_utils.py/0
{ "file_path": "diffusers/src/diffusers/utils/doc_utils.py", "repo_id": "diffusers", "token_count": 506 }
148
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Import utilities: Utilities related to imports and our lazy inits. """ import importlib.util import operator as op import os import sys from collections import OrderedDict from itertools import chain from types import ModuleType from typing import Any, Union from huggingface_hub.utils import is_jinja_available # noqa: F401 from packaging import version from packaging.version import Version, parse from . import logging # The package importlib_metadata is in a different place, depending on the python version. if sys.version_info < (3, 8): import importlib_metadata else: import importlib.metadata as importlib_metadata logger = logging.get_logger(__name__) # pylint: disable=invalid-name ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) USE_TF = os.environ.get("USE_TF", "AUTO").upper() USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper() USE_SAFETENSORS = os.environ.get("USE_SAFETENSORS", "AUTO").upper() DIFFUSERS_SLOW_IMPORT = os.environ.get("DIFFUSERS_SLOW_IMPORT", "FALSE").upper() DIFFUSERS_SLOW_IMPORT = DIFFUSERS_SLOW_IMPORT in ENV_VARS_TRUE_VALUES STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} _torch_version = "N/A" if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES: _torch_available = importlib.util.find_spec("torch") is not None if _torch_available: try: _torch_version = importlib_metadata.version("torch") logger.info(f"PyTorch version {_torch_version} available.") except importlib_metadata.PackageNotFoundError: _torch_available = False else: logger.info("Disabling PyTorch because USE_TORCH is set") _torch_available = False _torch_xla_available = importlib.util.find_spec("torch_xla") is not None if _torch_xla_available: try: _torch_xla_version = importlib_metadata.version("torch_xla") logger.info(f"PyTorch XLA version {_torch_xla_version} available.") except ImportError: _torch_xla_available = False # check whether torch_npu is available _torch_npu_available = importlib.util.find_spec("torch_npu") is not None if _torch_npu_available: try: _torch_npu_version = importlib_metadata.version("torch_npu") logger.info(f"torch_npu version {_torch_npu_version} available.") except ImportError: _torch_npu_available = False _jax_version = "N/A" _flax_version = "N/A" if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES: _flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None if _flax_available: try: _jax_version = importlib_metadata.version("jax") _flax_version = importlib_metadata.version("flax") logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.") except importlib_metadata.PackageNotFoundError: _flax_available = False else: _flax_available = False if USE_SAFETENSORS in ENV_VARS_TRUE_AND_AUTO_VALUES: _safetensors_available = importlib.util.find_spec("safetensors") is not None if _safetensors_available: try: _safetensors_version = importlib_metadata.version("safetensors") logger.info(f"Safetensors version {_safetensors_version} available.") except importlib_metadata.PackageNotFoundError: _safetensors_available = False else: logger.info("Disabling Safetensors because USE_TF is set") _safetensors_available = False _transformers_available = importlib.util.find_spec("transformers") is not None try: _transformers_version = importlib_metadata.version("transformers") logger.debug(f"Successfully imported transformers version {_transformers_version}") except importlib_metadata.PackageNotFoundError: _transformers_available = False _inflect_available = importlib.util.find_spec("inflect") is not None try: _inflect_version = importlib_metadata.version("inflect") logger.debug(f"Successfully imported inflect version {_inflect_version}") except importlib_metadata.PackageNotFoundError: _inflect_available = False _unidecode_available = importlib.util.find_spec("unidecode") is not None try: _unidecode_version = importlib_metadata.version("unidecode") logger.debug(f"Successfully imported unidecode version {_unidecode_version}") except importlib_metadata.PackageNotFoundError: _unidecode_available = False _onnxruntime_version = "N/A" _onnx_available = importlib.util.find_spec("onnxruntime") is not None if _onnx_available: candidates = ( "onnxruntime", "onnxruntime-gpu", "ort_nightly_gpu", "onnxruntime-directml", "onnxruntime-openvino", "ort_nightly_directml", "onnxruntime-rocm", "onnxruntime-training", ) _onnxruntime_version = None # For the metadata, we have to look for both onnxruntime and onnxruntime-gpu for pkg in candidates: try: _onnxruntime_version = importlib_metadata.version(pkg) break except importlib_metadata.PackageNotFoundError: pass _onnx_available = _onnxruntime_version is not None if _onnx_available: logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}") # (sayakpaul): importlib.util.find_spec("opencv-python") returns None even when it's installed. # _opencv_available = importlib.util.find_spec("opencv-python") is not None try: candidates = ( "opencv-python", "opencv-contrib-python", "opencv-python-headless", "opencv-contrib-python-headless", ) _opencv_version = None for pkg in candidates: try: _opencv_version = importlib_metadata.version(pkg) break except importlib_metadata.PackageNotFoundError: pass _opencv_available = _opencv_version is not None if _opencv_available: logger.debug(f"Successfully imported cv2 version {_opencv_version}") except importlib_metadata.PackageNotFoundError: _opencv_available = False _scipy_available = importlib.util.find_spec("scipy") is not None try: _scipy_version = importlib_metadata.version("scipy") logger.debug(f"Successfully imported scipy version {_scipy_version}") except importlib_metadata.PackageNotFoundError: _scipy_available = False _librosa_available = importlib.util.find_spec("librosa") is not None try: _librosa_version = importlib_metadata.version("librosa") logger.debug(f"Successfully imported librosa version {_librosa_version}") except importlib_metadata.PackageNotFoundError: _librosa_available = False _accelerate_available = importlib.util.find_spec("accelerate") is not None try: _accelerate_version = importlib_metadata.version("accelerate") logger.debug(f"Successfully imported accelerate version {_accelerate_version}") except importlib_metadata.PackageNotFoundError: _accelerate_available = False _xformers_available = importlib.util.find_spec("xformers") is not None try: _xformers_version = importlib_metadata.version("xformers") if _torch_available: _torch_version = importlib_metadata.version("torch") if version.Version(_torch_version) < version.Version("1.12"): raise ValueError("xformers is installed in your environment and requires PyTorch >= 1.12") logger.debug(f"Successfully imported xformers version {_xformers_version}") except importlib_metadata.PackageNotFoundError: _xformers_available = False _k_diffusion_available = importlib.util.find_spec("k_diffusion") is not None try: _k_diffusion_version = importlib_metadata.version("k_diffusion") logger.debug(f"Successfully imported k-diffusion version {_k_diffusion_version}") except importlib_metadata.PackageNotFoundError: _k_diffusion_available = False _note_seq_available = importlib.util.find_spec("note_seq") is not None try: _note_seq_version = importlib_metadata.version("note_seq") logger.debug(f"Successfully imported note-seq version {_note_seq_version}") except importlib_metadata.PackageNotFoundError: _note_seq_available = False _wandb_available = importlib.util.find_spec("wandb") is not None try: _wandb_version = importlib_metadata.version("wandb") logger.debug(f"Successfully imported wandb version {_wandb_version }") except importlib_metadata.PackageNotFoundError: _wandb_available = False _tensorboard_available = importlib.util.find_spec("tensorboard") try: _tensorboard_version = importlib_metadata.version("tensorboard") logger.debug(f"Successfully imported tensorboard version {_tensorboard_version}") except importlib_metadata.PackageNotFoundError: _tensorboard_available = False _compel_available = importlib.util.find_spec("compel") try: _compel_version = importlib_metadata.version("compel") logger.debug(f"Successfully imported compel version {_compel_version}") except importlib_metadata.PackageNotFoundError: _compel_available = False _ftfy_available = importlib.util.find_spec("ftfy") is not None try: _ftfy_version = importlib_metadata.version("ftfy") logger.debug(f"Successfully imported ftfy version {_ftfy_version}") except importlib_metadata.PackageNotFoundError: _ftfy_available = False _bs4_available = importlib.util.find_spec("bs4") is not None try: # importlib metadata under different name _bs4_version = importlib_metadata.version("beautifulsoup4") logger.debug(f"Successfully imported ftfy version {_bs4_version}") except importlib_metadata.PackageNotFoundError: _bs4_available = False _torchsde_available = importlib.util.find_spec("torchsde") is not None try: _torchsde_version = importlib_metadata.version("torchsde") logger.debug(f"Successfully imported torchsde version {_torchsde_version}") except importlib_metadata.PackageNotFoundError: _torchsde_available = False _invisible_watermark_available = importlib.util.find_spec("imwatermark") is not None try: _invisible_watermark_version = importlib_metadata.version("invisible-watermark") logger.debug(f"Successfully imported invisible-watermark version {_invisible_watermark_version}") except importlib_metadata.PackageNotFoundError: _invisible_watermark_available = False _peft_available = importlib.util.find_spec("peft") is not None try: _peft_version = importlib_metadata.version("peft") logger.debug(f"Successfully imported peft version {_peft_version}") except importlib_metadata.PackageNotFoundError: _peft_available = False _torchvision_available = importlib.util.find_spec("torchvision") is not None try: _torchvision_version = importlib_metadata.version("torchvision") logger.debug(f"Successfully imported torchvision version {_torchvision_version}") except importlib_metadata.PackageNotFoundError: _torchvision_available = False def is_torch_available(): return _torch_available def is_torch_xla_available(): return _torch_xla_available def is_torch_npu_available(): return _torch_npu_available def is_flax_available(): return _flax_available def is_transformers_available(): return _transformers_available def is_inflect_available(): return _inflect_available def is_unidecode_available(): return _unidecode_available def is_onnx_available(): return _onnx_available def is_opencv_available(): return _opencv_available def is_scipy_available(): return _scipy_available def is_librosa_available(): return _librosa_available def is_xformers_available(): return _xformers_available def is_accelerate_available(): return _accelerate_available def is_k_diffusion_available(): return _k_diffusion_available def is_note_seq_available(): return _note_seq_available def is_wandb_available(): return _wandb_available def is_tensorboard_available(): return _tensorboard_available def is_compel_available(): return _compel_available def is_ftfy_available(): return _ftfy_available def is_bs4_available(): return _bs4_available def is_torchsde_available(): return _torchsde_available def is_invisible_watermark_available(): return _invisible_watermark_available def is_peft_available(): return _peft_available def is_torchvision_available(): return _torchvision_available # docstyle-ignore FLAX_IMPORT_ERROR = """ {0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the installation page: https://github.com/google/flax and follow the ones that match your environment. """ # docstyle-ignore INFLECT_IMPORT_ERROR = """ {0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install inflect` """ # docstyle-ignore PYTORCH_IMPORT_ERROR = """ {0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment. """ # docstyle-ignore ONNX_IMPORT_ERROR = """ {0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip install onnxruntime` """ # docstyle-ignore OPENCV_IMPORT_ERROR = """ {0} requires the OpenCV library but it was not found in your environment. You can install it with pip: `pip install opencv-python` """ # docstyle-ignore SCIPY_IMPORT_ERROR = """ {0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install scipy` """ # docstyle-ignore LIBROSA_IMPORT_ERROR = """ {0} requires the librosa library but it was not found in your environment. Checkout the instructions on the installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment. """ # docstyle-ignore TRANSFORMERS_IMPORT_ERROR = """ {0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip install transformers` """ # docstyle-ignore UNIDECODE_IMPORT_ERROR = """ {0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install Unidecode` """ # docstyle-ignore K_DIFFUSION_IMPORT_ERROR = """ {0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip install k-diffusion` """ # docstyle-ignore NOTE_SEQ_IMPORT_ERROR = """ {0} requires the note-seq library but it was not found in your environment. You can install it with pip: `pip install note-seq` """ # docstyle-ignore WANDB_IMPORT_ERROR = """ {0} requires the wandb library but it was not found in your environment. You can install it with pip: `pip install wandb` """ # docstyle-ignore TENSORBOARD_IMPORT_ERROR = """ {0} requires the tensorboard library but it was not found in your environment. You can install it with pip: `pip install tensorboard` """ # docstyle-ignore COMPEL_IMPORT_ERROR = """ {0} requires the compel library but it was not found in your environment. You can install it with pip: `pip install compel` """ # docstyle-ignore BS4_IMPORT_ERROR = """ {0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip: `pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation. """ # docstyle-ignore FTFY_IMPORT_ERROR = """ {0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones that match your environment. Please note that you may need to restart your runtime after installation. """ # docstyle-ignore TORCHSDE_IMPORT_ERROR = """ {0} requires the torchsde library but it was not found in your environment. You can install it with pip: `pip install torchsde` """ # docstyle-ignore INVISIBLE_WATERMARK_IMPORT_ERROR = """ {0} requires the invisible-watermark library but it was not found in your environment. You can install it with pip: `pip install invisible-watermark>=0.2.0` """ BACKENDS_MAPPING = OrderedDict( [ ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)), ("flax", (is_flax_available, FLAX_IMPORT_ERROR)), ("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)), ("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)), ("opencv", (is_opencv_available, OPENCV_IMPORT_ERROR)), ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)), ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)), ("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)), ("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)), ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)), ("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)), ("note_seq", (is_note_seq_available, NOTE_SEQ_IMPORT_ERROR)), ("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)), ("tensorboard", (is_tensorboard_available, TENSORBOARD_IMPORT_ERROR)), ("compel", (is_compel_available, COMPEL_IMPORT_ERROR)), ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)), ("torchsde", (is_torchsde_available, TORCHSDE_IMPORT_ERROR)), ("invisible_watermark", (is_invisible_watermark_available, INVISIBLE_WATERMARK_IMPORT_ERROR)), ] ) def requires_backends(obj, backends): if not isinstance(backends, (list, tuple)): backends = [backends] name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__ checks = (BACKENDS_MAPPING[backend] for backend in backends) failed = [msg.format(name) for available, msg in checks if not available()] if failed: raise ImportError("".join(failed)) if name in [ "VersatileDiffusionTextToImagePipeline", "VersatileDiffusionPipeline", "VersatileDiffusionDualGuidedPipeline", "StableDiffusionImageVariationPipeline", "UnCLIPPipeline", ] and is_transformers_version("<", "4.25.0"): raise ImportError( f"You need to install `transformers>=4.25` in order to use {name}: \n```\n pip install" " --upgrade transformers \n```" ) if name in ["StableDiffusionDepth2ImgPipeline", "StableDiffusionPix2PixZeroPipeline"] and is_transformers_version( "<", "4.26.0" ): raise ImportError( f"You need to install `transformers>=4.26` in order to use {name}: \n```\n pip install" " --upgrade transformers \n```" ) class DummyObject(type): """ Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by `requires_backend` each time a user tries to access any method of that class. """ def __getattr__(cls, key): if key.startswith("_") and key not in ["_load_connected_pipes", "_is_onnx"]: return super().__getattr__(cls, key) requires_backends(cls, cls._backends) # This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319 def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str): """ Args: Compares a library version to some requirement using a given operation. library_or_version (`str` or `packaging.version.Version`): A library name or a version to check. operation (`str`): A string representation of an operator, such as `">"` or `"<="`. requirement_version (`str`): The version to compare the library version against """ if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}") operation = STR_OPERATION_TO_FUNC[operation] if isinstance(library_or_version, str): library_or_version = parse(importlib_metadata.version(library_or_version)) return operation(library_or_version, parse(requirement_version)) # This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338 def is_torch_version(operation: str, version: str): """ Args: Compares the current PyTorch version to a given reference with an operation. operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): A string version of PyTorch """ return compare_versions(parse(_torch_version), operation, version) def is_transformers_version(operation: str, version: str): """ Args: Compares the current Transformers version to a given reference with an operation. operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): A version string """ if not _transformers_available: return False return compare_versions(parse(_transformers_version), operation, version) def is_accelerate_version(operation: str, version: str): """ Args: Compares the current Accelerate version to a given reference with an operation. operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): A version string """ if not _accelerate_available: return False return compare_versions(parse(_accelerate_version), operation, version) def is_k_diffusion_version(operation: str, version: str): """ Args: Compares the current k-diffusion version to a given reference with an operation. operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): A version string """ if not _k_diffusion_available: return False return compare_versions(parse(_k_diffusion_version), operation, version) def get_objects_from_module(module): """ Args: Returns a dict of object names and values in a module, while skipping private/internal objects module (ModuleType): Module to extract the objects from. Returns: dict: Dictionary of object names and corresponding values """ objects = {} for name in dir(module): if name.startswith("_"): continue objects[name] = getattr(module, name) return objects class OptionalDependencyNotAvailable(BaseException): """An error indicating that an optional dependency of Diffusers was not found in the environment.""" class _LazyModule(ModuleType): """ Module class that surfaces all objects but only performs associated imports when the objects are requested. """ # Very heavily inspired by optuna.integration._IntegrationModule # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None): super().__init__(name) self._modules = set(import_structure.keys()) self._class_to_module = {} for key, values in import_structure.items(): for value in values: self._class_to_module[value] = key # Needed for autocompletion in an IDE self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values())) self.__file__ = module_file self.__spec__ = module_spec self.__path__ = [os.path.dirname(module_file)] self._objects = {} if extra_objects is None else extra_objects self._name = name self._import_structure = import_structure # Needed for autocompletion in an IDE def __dir__(self): result = super().__dir__() # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir. for attr in self.__all__: if attr not in result: result.append(attr) return result def __getattr__(self, name: str) -> Any: if name in self._objects: return self._objects[name] if name in self._modules: value = self._get_module(name) elif name in self._class_to_module.keys(): module = self._get_module(self._class_to_module[name]) value = getattr(module, name) else: raise AttributeError(f"module {self.__name__} has no attribute {name}") setattr(self, name, value) return value def _get_module(self, module_name: str): try: return importlib.import_module("." + module_name, self.__name__) except Exception as e: raise RuntimeError( f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its" f" traceback):\n{e}" ) from e def __reduce__(self): return (self.__class__, (self._name, self.__file__, self._import_structure))
diffusers/src/diffusers/utils/import_utils.py/0
{ "file_path": "diffusers/src/diffusers/utils/import_utils.py", "repo_id": "diffusers", "token_count": 9538 }
149
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import sys import unittest import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download from huggingface_hub.repocard import RepoCard from safetensors.torch import load_file from diffusers import ( AutoPipelineForImage2Image, AutoPipelineForText2Image, DDIMScheduler, DiffusionPipeline, LCMScheduler, StableDiffusionPipeline, ) from diffusers.utils.import_utils import is_accelerate_available from diffusers.utils.testing_utils import ( load_image, numpy_cosine_similarity_distance, require_peft_backend, require_torch_gpu, slow, torch_device, ) sys.path.append(".") from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402 if is_accelerate_available(): from accelerate.utils import release_memory class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): pipeline_class = StableDiffusionPipeline scheduler_cls = DDIMScheduler scheduler_kwargs = { "beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear", "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 1, } unet_kwargs = { "block_out_channels": (32, 64), "layers_per_block": 2, "sample_size": 32, "in_channels": 4, "out_channels": 4, "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), "cross_attention_dim": 32, } vae_kwargs = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() # Keeping this test here makes sense because it doesn't look any integration # (value assertions on logits). @slow @require_torch_gpu def test_integration_move_lora_cpu(self): path = "runwayml/stable-diffusion-v1-5" lora_id = "takuma104/lora-test-text-encoder-lora-target" pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe.load_lora_weights(lora_id, adapter_name="adapter-1") pipe.load_lora_weights(lora_id, adapter_name="adapter-2") pipe = pipe.to(torch_device) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder", ) self.assertTrue( check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in text encoder", ) # We will offload the first adapter in CPU and check if the offloading # has been performed correctly pipe.set_lora_device(["adapter-1"], "cpu") for name, module in pipe.unet.named_modules(): if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)): self.assertTrue(module.weight.device == torch.device("cpu")) elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)): self.assertTrue(module.weight.device != torch.device("cpu")) for name, module in pipe.text_encoder.named_modules(): if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)): self.assertTrue(module.weight.device == torch.device("cpu")) elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)): self.assertTrue(module.weight.device != torch.device("cpu")) pipe.set_lora_device(["adapter-1"], 0) for n, m in pipe.unet.named_modules(): if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)): self.assertTrue(m.weight.device != torch.device("cpu")) for n, m in pipe.text_encoder.named_modules(): if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)): self.assertTrue(m.weight.device != torch.device("cpu")) pipe.set_lora_device(["adapter-1", "adapter-2"], torch_device) for n, m in pipe.unet.named_modules(): if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)): self.assertTrue(m.weight.device != torch.device("cpu")) for n, m in pipe.text_encoder.named_modules(): if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)): self.assertTrue(m.weight.device != torch.device("cpu")) @slow @require_torch_gpu @require_peft_backend class LoraIntegrationTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_integration_logits_with_scale(self): path = "runwayml/stable-diffusion-v1-5" lora_id = "takuma104/lora-test-text-encoder-lora-target" pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) pipe.load_lora_weights(lora_id) pipe = pipe.to(torch_device) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder", ) prompt = "a red sks dog" images = pipe( prompt=prompt, num_inference_steps=15, cross_attention_kwargs={"scale": 0.5}, generator=torch.manual_seed(0), output_type="np", ).images expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321]) predicted_slice = images[0, -3:, -3:, -1].flatten() max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_integration_logits_no_scale(self): path = "runwayml/stable-diffusion-v1-5" lora_id = "takuma104/lora-test-text-encoder-lora-target" pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) pipe.load_lora_weights(lora_id) pipe = pipe.to(torch_device) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder", ) prompt = "a red sks dog" images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084]) predicted_slice = images[0, -3:, -3:, -1].flatten() max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_dreambooth_old_format(self): generator = torch.Generator("cpu").manual_seed(0) lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example" card = RepoCard.load(lora_model_id) base_model_id = card.data.to_dict()["base_model"] pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) pipe = pipe.to(torch_device) pipe.load_lora_weights(lora_model_id) images = pipe( "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-4 pipe.unload_lora_weights() release_memory(pipe) def test_dreambooth_text_encoder_new_format(self): generator = torch.Generator().manual_seed(0) lora_model_id = "hf-internal-testing/lora-trained" card = RepoCard.load(lora_model_id) base_model_id = card.data.to_dict()["base_model"] pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) pipe = pipe.to(torch_device) pipe.load_lora_weights(lora_model_id) images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-4 pipe.unload_lora_weights() release_memory(pipe) def test_a1111(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to( torch_device ) lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" lora_filename = "light_and_shadow.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_lycoris(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16" ).to(torch_device) lora_model_id = "hf-internal-testing/edgLycorisMugler-light" lora_filename = "edgLycorisMugler-light.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_a1111_with_model_cpu_offload(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None) pipe.enable_model_cpu_offload() lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" lora_filename = "light_and_shadow.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_a1111_with_sequential_cpu_offload(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None) pipe.enable_sequential_cpu_offload() lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" lora_filename = "light_and_shadow.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_kohya_sd_v15_with_higher_dimensions(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( torch_device ) lora_model_id = "hf-internal-testing/urushisato-lora" lora_filename = "urushisato_v15.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_vanilla_funetuning(self): generator = torch.Generator().manual_seed(0) lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4" card = RepoCard.load(lora_model_id) base_model_id = card.data.to_dict()["base_model"] pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) pipe = pipe.to(torch_device) pipe.load_lora_weights(lora_model_id) images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-4 pipe.unload_lora_weights() release_memory(pipe) def test_unload_kohya_lora(self): generator = torch.manual_seed(0) prompt = "masterpiece, best quality, mountain" num_inference_steps = 2 pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( torch_device ) initial_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images initial_images = initial_images[0, -3:, -3:, -1].flatten() lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" lora_filename = "Colored_Icons_by_vizsumit.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) generator = torch.manual_seed(0) lora_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images lora_images = lora_images[0, -3:, -3:, -1].flatten() pipe.unload_lora_weights() generator = torch.manual_seed(0) unloaded_lora_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() self.assertFalse(np.allclose(initial_images, lora_images)) self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) release_memory(pipe) def test_load_unload_load_kohya_lora(self): # This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded # without introducing any side-effects. Even though the test uses a Kohya-style # LoRA, the underlying adapter handling mechanism is format-agnostic. generator = torch.manual_seed(0) prompt = "masterpiece, best quality, mountain" num_inference_steps = 2 pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( torch_device ) initial_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images initial_images = initial_images[0, -3:, -3:, -1].flatten() lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" lora_filename = "Colored_Icons_by_vizsumit.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) generator = torch.manual_seed(0) lora_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images lora_images = lora_images[0, -3:, -3:, -1].flatten() pipe.unload_lora_weights() generator = torch.manual_seed(0) unloaded_lora_images = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() self.assertFalse(np.allclose(initial_images, lora_images)) self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) # make sure we can load a LoRA again after unloading and they don't have # any undesired effects. pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) generator = torch.manual_seed(0) lora_images_again = pipe( prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps ).images lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten() self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3)) release_memory(pipe) def test_not_empty_state_dict(self): # Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again pipe = AutoPipelineForText2Image.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 ).to(torch_device) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors") lcm_lora = load_file(cached_file) pipe.load_lora_weights(lcm_lora, adapter_name="lcm") self.assertTrue(lcm_lora != {}) release_memory(pipe) def test_load_unload_load_state_dict(self): # Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again pipe = AutoPipelineForText2Image.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 ).to(torch_device) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors") lcm_lora = load_file(cached_file) previous_state_dict = lcm_lora.copy() pipe.load_lora_weights(lcm_lora, adapter_name="lcm") self.assertDictEqual(lcm_lora, previous_state_dict) pipe.unload_lora_weights() pipe.load_lora_weights(lcm_lora, adapter_name="lcm") self.assertDictEqual(lcm_lora, previous_state_dict) release_memory(pipe) def test_sdv1_5_lcm_lora(self): pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe.to(torch_device) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) generator = torch.Generator("cpu").manual_seed(0) lora_model_id = "latent-consistency/lcm-lora-sdv1-5" pipe.load_lora_weights(lora_model_id) image = pipe( "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 ).images[0] expected_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png" ) image_np = pipe.image_processor.pil_to_numpy(image) expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) assert max_diff < 1e-4 pipe.unload_lora_weights() release_memory(pipe) def test_sdv1_5_lcm_lora_img2img(self): pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe.to(torch_device) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png" ) generator = torch.Generator("cpu").manual_seed(0) lora_model_id = "latent-consistency/lcm-lora-sdv1-5" pipe.load_lora_weights(lora_model_id) image = pipe( "snowy mountain", generator=generator, image=init_image, strength=0.5, num_inference_steps=4, guidance_scale=0.5, ).images[0] expected_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png" ) image_np = pipe.image_processor.pil_to_numpy(image) expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) assert max_diff < 1e-4 pipe.unload_lora_weights() release_memory(pipe) def test_sd_load_civitai_empty_network_alpha(self): """ This test simply checks that loading a LoRA with an empty network alpha works fine See: https://github.com/huggingface/diffusers/issues/5606 """ pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device) pipeline.enable_sequential_cpu_offload() civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors") pipeline.load_lora_weights(civitai_path, adapter_name="ahri") images = pipeline( "ahri, masterpiece, league of legends", output_type="np", generator=torch.manual_seed(156), num_inference_steps=5, ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipeline.unload_lora_weights() release_memory(pipeline)
diffusers/tests/lora/test_lora_layers_sd.py/0
{ "file_path": "diffusers/tests/lora/test_lora_layers_sd.py", "repo_id": "diffusers", "token_count": 10772 }
150
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import UNet1DModel from diffusers.utils.testing_utils import ( backend_manual_seed, floats_tensor, slow, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin class UNet1DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet1DModel main_input_name = "sample" @property def dummy_input(self): batch_size = 4 num_features = 14 seq_len = 16 noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) time_step = torch.tensor([10] * batch_size).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (4, 14, 16) @property def output_shape(self): return (4, 14, 16) def test_ema_training(self): pass def test_training(self): pass def test_determinism(self): super().test_determinism() def test_outputs_equivalence(self): super().test_outputs_equivalence() def test_from_save_pretrained(self): super().test_from_save_pretrained() def test_from_save_pretrained_variant(self): super().test_from_save_pretrained_variant() def test_model_from_pretrained(self): super().test_model_from_pretrained() def test_output(self): super().test_output() def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (32, 64, 128, 256), "in_channels": 14, "out_channels": 14, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1.0, "out_block_type": "OutConv1DBlock", "mid_block_type": "MidResTemporalBlock1D", "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"), "act_fn": "swish", } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNet1DModel.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet" ) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet") torch.manual_seed(0) backend_manual_seed(torch_device, 0) num_features = model.config.in_channels seq_len = 16 noise = torch.randn((1, seq_len, num_features)).permute( 0, 2, 1 ) # match original, we can update values and remove time_step = torch.full((num_features,), 0) with torch.no_grad(): output = model(noise, time_step).sample.permute(0, 2, 1) output_slice = output[0, -3:, -3:].flatten() # fmt: off expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3)) def test_forward_with_norm_groups(self): # Not implemented yet for this UNet pass @slow def test_unet_1d_maestro(self): model_id = "harmonai/maestro-150k" model = UNet1DModel.from_pretrained(model_id, subfolder="unet") model.to(torch_device) sample_size = 65536 noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device) timestep = torch.tensor([1]).to(torch_device) with torch.no_grad(): output = model(noise, timestep).sample output_sum = output.abs().sum() output_max = output.abs().max() assert (output_sum - 224.0896).abs() < 0.5 assert (output_max - 0.0607).abs() < 4e-4 class UNetRLModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet1DModel main_input_name = "sample" @property def dummy_input(self): batch_size = 4 num_features = 14 seq_len = 16 noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) time_step = torch.tensor([10] * batch_size).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (4, 14, 16) @property def output_shape(self): return (4, 14, 1) def test_determinism(self): super().test_determinism() def test_outputs_equivalence(self): super().test_outputs_equivalence() def test_from_save_pretrained(self): super().test_from_save_pretrained() def test_from_save_pretrained_variant(self): super().test_from_save_pretrained_variant() def test_model_from_pretrained(self): super().test_model_from_pretrained() def test_output(self): # UNetRL is a value-function is different output shape init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1)) self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_ema_training(self): pass def test_training(self): pass def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 14, "out_channels": 14, "down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"], "up_block_types": [], "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": [32, 64, 128, 256], "layers_per_block": 1, "downsample_each_block": True, "use_timestep_embedding": True, "freq_shift": 1.0, "flip_sin_to_cos": False, "time_embedding_type": "positional", "act_fn": "mish", } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): value_function, vf_loading_info = UNet1DModel.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function" ) self.assertIsNotNone(value_function) self.assertEqual(len(vf_loading_info["missing_keys"]), 0) value_function.to(torch_device) image = value_function(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): value_function, vf_loading_info = UNet1DModel.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function" ) torch.manual_seed(0) backend_manual_seed(torch_device, 0) num_features = value_function.config.in_channels seq_len = 14 noise = torch.randn((1, seq_len, num_features)).permute( 0, 2, 1 ) # match original, we can update values and remove time_step = torch.full((num_features,), 0) with torch.no_grad(): output = value_function(noise, time_step).sample # fmt: off expected_output_slice = torch.tensor([165.25] * seq_len) # fmt: on self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3)) def test_forward_with_norm_groups(self): # Not implemented yet for this UNet pass
diffusers/tests/models/unets/test_models_unet_1d.py/0
{ "file_path": "diffusers/tests/models/unets/test_models_unet_1d.py", "repo_id": "diffusers", "token_count": 3985 }
151
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import PIL.Image import torch from diffusers.image_processor import VaeImageProcessor class ImageProcessorTest(unittest.TestCase): @property def dummy_sample(self): batch_size = 1 num_channels = 3 height = 8 width = 8 sample = torch.rand((batch_size, num_channels, height, width)) return sample @property def dummy_mask(self): batch_size = 1 num_channels = 1 height = 8 width = 8 sample = torch.rand((batch_size, num_channels, height, width)) return sample def to_np(self, image): if isinstance(image[0], PIL.Image.Image): return np.stack([np.array(i) for i in image], axis=0) elif isinstance(image, torch.Tensor): return image.cpu().numpy().transpose(0, 2, 3, 1) return image def test_vae_image_processor_pt(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) input_pt = self.dummy_sample input_np = self.to_np(input_pt) for output_type in ["pt", "np", "pil"]: out = image_processor.postprocess( image_processor.preprocess(input_pt), output_type=output_type, ) out_np = self.to_np(out) in_np = (input_np * 255).round() if output_type == "pil" else input_np assert ( np.abs(in_np - out_np).max() < 1e-6 ), f"decoded output does not match input for output_type {output_type}" def test_vae_image_processor_np(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1) for output_type in ["pt", "np", "pil"]: out = image_processor.postprocess(image_processor.preprocess(input_np), output_type=output_type) out_np = self.to_np(out) in_np = (input_np * 255).round() if output_type == "pil" else input_np assert ( np.abs(in_np - out_np).max() < 1e-6 ), f"decoded output does not match input for output_type {output_type}" def test_vae_image_processor_pil(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1) input_pil = image_processor.numpy_to_pil(input_np) for output_type in ["pt", "np", "pil"]: out = image_processor.postprocess(image_processor.preprocess(input_pil), output_type=output_type) for i, o in zip(input_pil, out): in_np = np.array(i) out_np = self.to_np(out) if output_type == "pil" else (self.to_np(out) * 255).round() assert ( np.abs(in_np - out_np).max() < 1e-6 ), f"decoded output does not match input for output_type {output_type}" def test_preprocess_input_3d(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) input_pt_4d = self.dummy_sample input_pt_3d = input_pt_4d.squeeze(0) out_pt_4d = image_processor.postprocess( image_processor.preprocess(input_pt_4d), output_type="np", ) out_pt_3d = image_processor.postprocess( image_processor.preprocess(input_pt_3d), output_type="np", ) input_np_4d = self.to_np(self.dummy_sample) input_np_3d = input_np_4d.squeeze(0) out_np_4d = image_processor.postprocess( image_processor.preprocess(input_np_4d), output_type="np", ) out_np_3d = image_processor.postprocess( image_processor.preprocess(input_np_3d), output_type="np", ) assert np.abs(out_pt_4d - out_pt_3d).max() < 1e-6 assert np.abs(out_np_4d - out_np_3d).max() < 1e-6 def test_preprocess_input_list(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) input_pt_4d = self.dummy_sample input_pt_list = list(input_pt_4d) out_pt_4d = image_processor.postprocess( image_processor.preprocess(input_pt_4d), output_type="np", ) out_pt_list = image_processor.postprocess( image_processor.preprocess(input_pt_list), output_type="np", ) input_np_4d = self.to_np(self.dummy_sample) input_np_list = list(input_np_4d) out_np_4d = image_processor.postprocess( image_processor.preprocess(input_np_4d), output_type="np", ) out_np_list = image_processor.postprocess( image_processor.preprocess(input_np_list), output_type="np", ) assert np.abs(out_pt_4d - out_pt_list).max() < 1e-6 assert np.abs(out_np_4d - out_np_list).max() < 1e-6 def test_preprocess_input_mask_3d(self): image_processor = VaeImageProcessor( do_resize=False, do_normalize=False, do_binarize=True, do_convert_grayscale=True ) input_pt_4d = self.dummy_mask input_pt_3d = input_pt_4d.squeeze(0) input_pt_2d = input_pt_3d.squeeze(0) out_pt_4d = image_processor.postprocess( image_processor.preprocess(input_pt_4d), output_type="np", ) out_pt_3d = image_processor.postprocess( image_processor.preprocess(input_pt_3d), output_type="np", ) out_pt_2d = image_processor.postprocess( image_processor.preprocess(input_pt_2d), output_type="np", ) input_np_4d = self.to_np(self.dummy_mask) input_np_3d = input_np_4d.squeeze(0) input_np_3d_1 = input_np_4d.squeeze(-1) input_np_2d = input_np_3d.squeeze(-1) out_np_4d = image_processor.postprocess( image_processor.preprocess(input_np_4d), output_type="np", ) out_np_3d = image_processor.postprocess( image_processor.preprocess(input_np_3d), output_type="np", ) out_np_3d_1 = image_processor.postprocess( image_processor.preprocess(input_np_3d_1), output_type="np", ) out_np_2d = image_processor.postprocess( image_processor.preprocess(input_np_2d), output_type="np", ) assert np.abs(out_pt_4d - out_pt_3d).max() == 0 assert np.abs(out_pt_4d - out_pt_2d).max() == 0 assert np.abs(out_np_4d - out_np_3d).max() == 0 assert np.abs(out_np_4d - out_np_3d_1).max() == 0 assert np.abs(out_np_4d - out_np_2d).max() == 0 def test_preprocess_input_mask_list(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True) input_pt_4d = self.dummy_mask input_pt_3d = input_pt_4d.squeeze(0) input_pt_2d = input_pt_3d.squeeze(0) inputs_pt = [input_pt_4d, input_pt_3d, input_pt_2d] inputs_pt_list = [[input_pt] for input_pt in inputs_pt] for input_pt, input_pt_list in zip(inputs_pt, inputs_pt_list): out_pt = image_processor.postprocess( image_processor.preprocess(input_pt), output_type="np", ) out_pt_list = image_processor.postprocess( image_processor.preprocess(input_pt_list), output_type="np", ) assert np.abs(out_pt - out_pt_list).max() < 1e-6 input_np_4d = self.to_np(self.dummy_mask) input_np_3d = input_np_4d.squeeze(0) input_np_2d = input_np_3d.squeeze(-1) inputs_np = [input_np_4d, input_np_3d, input_np_2d] inputs_np_list = [[input_np] for input_np in inputs_np] for input_np, input_np_list in zip(inputs_np, inputs_np_list): out_np = image_processor.postprocess( image_processor.preprocess(input_np), output_type="np", ) out_np_list = image_processor.postprocess( image_processor.preprocess(input_np_list), output_type="np", ) assert np.abs(out_np - out_np_list).max() < 1e-6 def test_preprocess_input_mask_3d_batch(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True) # create a dummy mask input with batch_size 2 dummy_mask_batch = torch.cat([self.dummy_mask] * 2, axis=0) # squeeze out the channel dimension input_pt_3d = dummy_mask_batch.squeeze(1) input_np_3d = self.to_np(dummy_mask_batch).squeeze(-1) input_pt_3d_list = list(input_pt_3d) input_np_3d_list = list(input_np_3d) out_pt_3d = image_processor.postprocess( image_processor.preprocess(input_pt_3d), output_type="np", ) out_pt_3d_list = image_processor.postprocess( image_processor.preprocess(input_pt_3d_list), output_type="np", ) assert np.abs(out_pt_3d - out_pt_3d_list).max() < 1e-6 out_np_3d = image_processor.postprocess( image_processor.preprocess(input_np_3d), output_type="np", ) out_np_3d_list = image_processor.postprocess( image_processor.preprocess(input_np_3d_list), output_type="np", ) assert np.abs(out_np_3d - out_np_3d_list).max() < 1e-6 def test_vae_image_processor_resize_pt(self): image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1) input_pt = self.dummy_sample b, c, h, w = input_pt.shape scale = 2 out_pt = image_processor.resize(image=input_pt, height=h // scale, width=w // scale) exp_pt_shape = (b, c, h // scale, w // scale) assert ( out_pt.shape == exp_pt_shape ), f"resized image output shape '{out_pt.shape}' didn't match expected shape '{exp_pt_shape}'." def test_vae_image_processor_resize_np(self): image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1) input_pt = self.dummy_sample b, c, h, w = input_pt.shape scale = 2 input_np = self.to_np(input_pt) out_np = image_processor.resize(image=input_np, height=h // scale, width=w // scale) exp_np_shape = (b, h // scale, w // scale, c) assert ( out_np.shape == exp_np_shape ), f"resized image output shape '{out_np.shape}' didn't match expected shape '{exp_np_shape}'."
diffusers/tests/others/test_image_processor.py/0
{ "file_path": "diffusers/tests/others/test_image_processor.py", "repo_id": "diffusers", "token_count": 5494 }
152
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = DDIMPipeline params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) scheduler = DDIMScheduler() components = {"unet": unet, "scheduler": scheduler} return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "np", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 32, 32, 3)) expected_slice = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_dict_tuple_outputs_equivalent(self): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def test_save_load_local(self): super().test_save_load_local(expected_max_difference=3e-3) def test_save_load_optional_components(self): super().test_save_load_optional_components(expected_max_difference=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class DDIMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDIMScheduler() ddim = DDIMPipeline(unet=unet, scheduler=scheduler) ddim.to(torch_device) ddim.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddim(generator=generator, eta=0.0, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_ema_bedroom(self): model_id = "google/ddpm-ema-bedroom-256" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDIMScheduler.from_pretrained(model_id) ddpm = DDIMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ddpm(generator=generator, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
diffusers/tests/pipelines/ddim/test_ddim.py/0
{ "file_path": "diffusers/tests/pipelines/ddim/test_ddim.py", "repo_id": "diffusers", "token_count": 2227 }
153
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_numpy, require_torch_gpu, slow, torch_device, ) from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 32 @property def dummy_tokenizer(self): tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=1005, ) text_encoder = MultilingualCLIP(config) text_encoder = text_encoder.eval() return text_encoder @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer unet = self.dummy_unet movq = self.dummy_movq scheduler = DDIMScheduler( num_train_timesteps=1000, beta_schedule="linear", beta_start=0.00085, beta_end=0.012, clip_sample=False, set_alpha_to_one=False, steps_offset=1, prediction_type="epsilon", thresholding=False, ) components = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs class KandinskyPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyPipeline params = [ "prompt", "image_embeds", "negative_image_embeds", ] batch_params = ["prompt", "negative_prompt", "image_embeds", "negative_image_embeds"] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False def get_dummy_components(self): dummy = Dummies() return dummy.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummy = Dummies() return dummy.get_dummy_inputs(device=device, seed=seed) def test_kandinsky(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([1.0000, 1.0000, 0.2766, 1.0000, 0.5447, 0.1737, 1.0000, 0.4316, 0.9024]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 @slow @require_torch_gpu class KandinskyPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_text2img(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_text2img_cat_fp16.npy" ) pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) prompt = "red cat, 4k photo" generator = torch.Generator(device="cuda").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() generator = torch.Generator(device="cuda").manual_seed(0) output = pipeline( prompt, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(image, expected_image)
diffusers/tests/pipelines/kandinsky/test_kandinsky.py/0
{ "file_path": "diffusers/tests/pipelines/kandinsky/test_kandinsky.py", "repo_id": "diffusers", "token_count": 4828 }
154
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import AutoTokenizer, T5EncoderModel from diffusers import ( AutoPipelineForImage2Image, Kandinsky3Img2ImgPipeline, Kandinsky3UNet, VQModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers.scheduling_ddpm import DDPMScheduler from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, require_torch_gpu, slow, ) from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class Kandinsky3Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = Kandinsky3Img2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS test_xformers_attention = False required_optional_params = frozenset( [ "num_inference_steps", "num_images_per_prompt", "generator", "output_type", "return_dict", ] ) @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self, time_cond_proj_dim=None): torch.manual_seed(0) unet = Kandinsky3UNet( in_channels=4, time_embedding_dim=4, groups=2, attention_head_dim=4, layers_per_block=3, block_out_channels=(32, 64), cross_attention_dim=4, encoder_hid_dim=32, ) scheduler = DDPMScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="squaredcos_cap_v2", clip_sample=True, thresholding=False, ) torch.manual_seed(0) movq = self.dummy_movq torch.manual_seed(0) text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") components = { "unet": unet, "scheduler": scheduler, "movq": movq, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): # create init_image image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "generator": generator, "strength": 0.75, "num_inference_steps": 10, "guidance_scale": 6.0, "output_type": "np", } return inputs def test_kandinsky3_img2img(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [0.576259, 0.6132097, 0.41703486, 0.603196, 0.62062526, 0.4655338, 0.5434324, 0.5660727, 0.65433365] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" def test_float16_inference(self): super().test_float16_inference(expected_max_diff=1e-1) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=1e-2) @slow @require_torch_gpu class Kandinsky3Img2ImgPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinskyV3_img2img(self): pipe = AutoPipelineForImage2Image.from_pretrained( "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png" ) w, h = 512, 512 image = image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) prompt = "A painting of the inside of a subway train with tiny raccoons." image = pipe(prompt, image=image, strength=0.75, num_inference_steps=25, generator=generator).images[0] assert image.size == (512, 512) expected_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/i2i.png" ) image_processor = VaeImageProcessor() image_np = image_processor.pil_to_numpy(image) expected_image_np = image_processor.pil_to_numpy(expected_image) self.assertTrue(np.allclose(image_np, expected_image_np, atol=5e-2))
diffusers/tests/pipelines/kandinsky3/test_kandinsky3_img2img.py/0
{ "file_path": "diffusers/tests/pipelines/kandinsky3/test_kandinsky3_img2img.py", "repo_id": "diffusers", "token_count": 3405 }
155
# These are canonical sets of parameters for different types of pipelines. # They are set on subclasses of `PipelineTesterMixin` as `params` and # `batch_params`. # # If a pipeline's set of arguments has minor changes from one of the common sets # of arguments, do not make modifications to the existing common sets of arguments. # I.e. a text to image pipeline with non-configurable height and width arguments # should set its attribute as `params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. TEXT_TO_IMAGE_PARAMS = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) TEXT_TO_IMAGE_BATCH_PARAMS = frozenset(["prompt", "negative_prompt"]) TEXT_TO_IMAGE_IMAGE_PARAMS = frozenset([]) IMAGE_TO_IMAGE_IMAGE_PARAMS = frozenset(["image"]) IMAGE_VARIATION_PARAMS = frozenset( [ "image", "height", "width", "guidance_scale", ] ) IMAGE_VARIATION_BATCH_PARAMS = frozenset(["image"]) TEXT_GUIDED_IMAGE_VARIATION_PARAMS = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS = frozenset(["prompt", "image", "negative_prompt"]) TEXT_GUIDED_IMAGE_INPAINTING_PARAMS = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) IMAGE_INPAINTING_PARAMS = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) IMAGE_INPAINTING_BATCH_PARAMS = frozenset(["image", "mask_image"]) IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS = frozenset(["example_image", "image", "mask_image"]) CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS = frozenset(["class_labels"]) CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS = frozenset(["class_labels"]) UNCONDITIONAL_IMAGE_GENERATION_PARAMS = frozenset(["batch_size"]) UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS = frozenset([]) UNCONDITIONAL_AUDIO_GENERATION_PARAMS = frozenset(["batch_size"]) UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS = frozenset([]) TEXT_TO_AUDIO_PARAMS = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) TEXT_TO_AUDIO_BATCH_PARAMS = frozenset(["prompt", "negative_prompt"]) TOKENS_TO_AUDIO_GENERATION_PARAMS = frozenset(["input_tokens"]) TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS = frozenset(["input_tokens"]) TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS = frozenset(["prompt_embeds"]) VIDEO_TO_VIDEO_BATCH_PARAMS = frozenset(["prompt", "negative_prompt", "video"])
diffusers/tests/pipelines/pipeline_params.py/0
{ "file_path": "diffusers/tests/pipelines/pipeline_params.py", "repo_id": "diffusers", "token_count": 1584 }
156
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImg2ImgPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import ( floats_tensor, is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class OnnxStableDiffusionImg2ImgPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): hub_checkpoint = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def get_dummy_inputs(self, seed=0): image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed)) generator = np.random.RandomState(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_pipeline_default_ddim(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def test_pipeline_pndm(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_lms(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) # warmup pass to apply optimizations _ = pipe(**self.get_dummy_inputs()) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_euler(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_euler_ancestral(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_pipeline_dpm_multistep(self): pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class OnnxStableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase): @property def gpu_provider(self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def gpu_options(self): options = ort.SessionOptions() options.enable_mem_pattern = False return options def test_inference_default_pndm(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) init_image = init_image.resize((768, 512)) # using the PNDM scheduler by default pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A fantasy landscape, trending on artstation" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) expected_slice = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def test_inference_k_lms(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) init_image = init_image.resize((768, 512)) lms_scheduler = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx" ) pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=lms_scheduler, safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A fantasy landscape, trending on artstation" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) expected_slice = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
diffusers/tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_img2img.py/0
{ "file_path": "diffusers/tests/pipelines/stable_diffusion/test_onnx_stable_diffusion_img2img.py", "repo_id": "diffusers", "token_count": 4266 }
157
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNet2DConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device, ) enable_full_determinism() class StableDiffusionUpscalePipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_cond_unet_upscale(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 32, 64), layers_per_block=2, sample_size=32, in_channels=7, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=8, use_linear_projection=True, only_cross_attention=(True, True, False), num_class_embeds=100, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) return CLIPTextModel(config) def test_stable_diffusion_upscale(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet_upscale low_res_scheduler = DDPMScheduler() scheduler = DDIMScheduler(prediction_type="v_prediction") vae = self.dummy_vae text_encoder = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionUpscalePipeline( unet=unet, low_res_scheduler=low_res_scheduler, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, max_noise_level=350, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe( [prompt], image=low_res_image, generator=generator, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", ) image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], image=low_res_image, generator=generator, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] expected_height_width = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_upscale_batch(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet_upscale low_res_scheduler = DDPMScheduler() scheduler = DDIMScheduler(prediction_type="v_prediction") vae = self.dummy_vae text_encoder = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionUpscalePipeline( unet=unet, low_res_scheduler=low_res_scheduler, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, max_noise_level=350, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" output = sd_pipe( 2 * [prompt], image=2 * [low_res_image], guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", ) image = output.images assert image.shape[0] == 2 generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe( [prompt], image=low_res_image, generator=generator, num_images_per_prompt=2, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", ) image = output.images assert image.shape[0] == 2 def test_stable_diffusion_upscale_prompt_embeds(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet_upscale low_res_scheduler = DDPMScheduler() scheduler = DDIMScheduler(prediction_type="v_prediction") vae = self.dummy_vae text_encoder = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionUpscalePipeline( unet=unet, low_res_scheduler=low_res_scheduler, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, max_noise_level=350, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe( [prompt], image=low_res_image, generator=generator, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", ) image = output.images generator = torch.Generator(device=device).manual_seed(0) prompt_embeds, negative_prompt_embeds = sd_pipe.encode_prompt(prompt, device, 1, False) if negative_prompt_embeds is not None: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) image_from_prompt_embeds = sd_pipe( prompt_embeds=prompt_embeds, image=[low_res_image], generator=generator, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_prompt_embeds_slice = image_from_prompt_embeds[0, -3:, -3:, -1] expected_height_width = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_prompt_embeds_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_stable_diffusion_upscale_fp16(self): """Test that stable diffusion upscale works with fp16""" unet = self.dummy_cond_unet_upscale low_res_scheduler = DDPMScheduler() scheduler = DDIMScheduler(prediction_type="v_prediction") vae = self.dummy_vae text_encoder = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) # put models in fp16, except vae as it overflows in fp16 unet = unet.half() text_encoder = text_encoder.half() # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionUpscalePipeline( unet=unet, low_res_scheduler=low_res_scheduler, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, max_noise_level=350, ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = sd_pipe( [prompt], image=low_res_image, generator=generator, num_inference_steps=2, output_type="np", ).images expected_height_width = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) def test_stable_diffusion_upscale_from_save_pretrained(self): pipes = [] device = "cpu" # ensure determinism for the device-dependent torch.Generator low_res_scheduler = DDPMScheduler() scheduler = DDIMScheduler(prediction_type="v_prediction") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionUpscalePipeline( unet=self.dummy_cond_unet_upscale, low_res_scheduler=low_res_scheduler, scheduler=scheduler, vae=self.dummy_vae, text_encoder=self.dummy_text_encoder, tokenizer=tokenizer, max_noise_level=350, ) sd_pipe = sd_pipe.to(device) pipes.append(sd_pipe) with tempfile.TemporaryDirectory() as tmpdirname: sd_pipe.save_pretrained(tmpdirname) sd_pipe = StableDiffusionUpscalePipeline.from_pretrained(tmpdirname).to(device) pipes.append(sd_pipe) prompt = "A painting of a squirrel eating a burger" image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) image_slices = [] for pipe in pipes: generator = torch.Generator(device=device).manual_seed(0) image = pipe( [prompt], image=low_res_image, generator=generator, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="np", ).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 @slow @require_torch_gpu class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_upscale_pipeline(self): image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) model_id = "stabilityai/stable-diffusion-x4-upscaler" pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "a cat sitting on a park bench" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=image, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-3 def test_stable_diffusion_upscale_pipeline_fp16(self): image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) model_id = "stabilityai/stable-diffusion-x4-upscaler" pipe = StableDiffusionUpscalePipeline.from_pretrained( model_id, torch_dtype=torch.float16, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "a cat sitting on a park bench" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=image, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) model_id = "stabilityai/stable-diffusion-x4-upscaler" pipe = StableDiffusionUpscalePipeline.from_pretrained( model_id, torch_dtype=torch.float16, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() prompt = "a cat sitting on a park bench" generator = torch.manual_seed(0) _ = pipe( prompt=prompt, image=image, generator=generator, num_inference_steps=5, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9 def test_download_ckpt_diff_format_is_same(self): image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) prompt = "a cat sitting on a park bench" model_id = "stabilityai/stable-diffusion-x4-upscaler" pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id) pipe.enable_model_cpu_offload() generator = torch.Generator("cpu").manual_seed(0) output = pipe(prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3) image_from_pretrained = output.images[0] single_file_path = ( "https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/blob/main/x4-upscaler-ema.safetensors" ) pipe_from_single_file = StableDiffusionUpscalePipeline.from_single_file(single_file_path) pipe_from_single_file.enable_model_cpu_offload() generator = torch.Generator("cpu").manual_seed(0) output_from_single_file = pipe_from_single_file( prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3 ) image_from_single_file = output_from_single_file.images[0] assert image_from_pretrained.shape == (512, 512, 3) assert image_from_single_file.shape == (512, 512, 3) assert ( numpy_cosine_similarity_distance(image_from_pretrained.flatten(), image_from_single_file.flatten()) < 1e-3 ) def test_single_file_component_configs(self): pipe = StableDiffusionUpscalePipeline.from_pretrained( "stabilityai/stable-diffusion-x4-upscaler", variant="fp16" ) ckpt_path = ( "https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/blob/main/x4-upscaler-ema.safetensors" ) single_file_pipe = StableDiffusionUpscalePipeline.from_single_file(ckpt_path, load_safety_checker=True) for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items(): if param_name in ["torch_dtype", "architectures", "_name_or_path"]: continue assert pipe.text_encoder.config.to_dict()[param_name] == param_value PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "architectures", "_use_default_values"] for param_name, param_value in single_file_pipe.unet.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( pipe.unet.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" for param_name, param_value in single_file_pipe.vae.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( pipe.vae.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" for param_name, param_value in single_file_pipe.safety_checker.config.to_dict().items(): if param_name in PARAMS_TO_IGNORE: continue assert ( pipe.safety_checker.config.to_dict()[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading"
diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_upscale.py/0
{ "file_path": "diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_upscale.py", "repo_id": "diffusers", "token_count": 9868 }
158
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class IsSafetensorsCompatibleTests(unittest.TestCase): def test_all_is_compatible(self): filenames = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(filenames)) def test_diffusers_model_is_compatible(self): filenames = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(filenames)) def test_diffusers_model_is_not_compatible(self): filenames = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(filenames)) def test_transformer_model_is_compatible(self): filenames = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(filenames)) def test_transformer_model_is_not_compatible(self): filenames = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(filenames)) def test_all_is_compatible_variant(self): filenames = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_diffusers_model_is_compatible_variant(self): filenames = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_diffusers_model_is_compatible_variant_partial(self): # pass variant but use the non-variant filenames filenames = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_diffusers_model_is_not_compatible_variant(self): filenames = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] variant = "fp16" self.assertFalse(is_safetensors_compatible(filenames, variant=variant)) def test_transformer_model_is_compatible_variant(self): filenames = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_transformer_model_is_compatible_variant_partial(self): # pass variant but use the non-variant filenames filenames = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] variant = "fp16" self.assertTrue(is_safetensors_compatible(filenames, variant=variant)) def test_transformer_model_is_not_compatible_variant(self): filenames = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] variant = "fp16" self.assertFalse(is_safetensors_compatible(filenames, variant=variant))
diffusers/tests/pipelines/test_pipeline_utils.py/0
{ "file_path": "diffusers/tests/pipelines/test_pipeline_utils.py", "repo_id": "diffusers", "token_count": 2746 }
159
import gc import random import traceback import unittest import numpy as np import torch from PIL import Image from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, GPT2Tokenizer, ) from diffusers import ( AutoencoderKL, DPMSolverMultistepScheduler, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, ) from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, nightly, require_torch_2, require_torch_gpu, run_test_in_subprocess, torch_device, ) from diffusers.utils.torch_utils import randn_tensor from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() # Will be run via run_test_in_subprocess def _test_unidiffuser_compile(in_queue, out_queue, timeout): error = None try: inputs = in_queue.get(timeout=timeout) torch_device = inputs.pop("torch_device") seed = inputs.pop("seed") inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(torch_device) pipe.unet.to(memory_format=torch.channels_last) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.set_progress_bar_config(disable=None) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520]) assert np.abs(image_slice - expected_slice).max() < 1e-1 except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() class UniDiffuserPipelineFastTests( PipelineTesterMixin, PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase ): pipeline_class = UniDiffuserPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS # vae_latents, not latents, is the argument that corresponds to VAE latent inputs image_latents_params = frozenset(["vae_latents"]) def get_dummy_components(self): unet = UniDiffuserModel.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="unet", ) scheduler = DPMSolverMultistepScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", solver_order=3, ) vae = AutoencoderKL.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="vae", ) text_encoder = CLIPTextModel.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="text_encoder", ) clip_tokenizer = CLIPTokenizer.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="clip_tokenizer", ) image_encoder = CLIPVisionModelWithProjection.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="image_encoder", ) # From the Stable Diffusion Image Variation pipeline tests clip_image_processor = CLIPImageProcessor(crop_size=32, size=32) # image_processor = CLIPImageProcessor.from_pretrained("hf-internal-testing/tiny-random-clip") text_tokenizer = GPT2Tokenizer.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="text_tokenizer", ) text_decoder = UniDiffuserTextDecoder.from_pretrained( "hf-internal-testing/unidiffuser-diffusers-test", subfolder="text_decoder", ) components = { "vae": vae, "text_encoder": text_encoder, "image_encoder": image_encoder, "clip_image_processor": clip_image_processor, "clip_tokenizer": clip_tokenizer, "text_decoder": text_decoder, "text_tokenizer": text_tokenizer, "unet": unet, "scheduler": scheduler, } return components def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "an elephant under the sea", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "np", } return inputs def get_fixed_latents(self, device, seed=0): if isinstance(device, str): device = torch.device(device) generator = torch.Generator(device=device).manual_seed(seed) # Hardcode the shapes for now. prompt_latents = randn_tensor((1, 77, 32), generator=generator, device=device, dtype=torch.float32) vae_latents = randn_tensor((1, 4, 16, 16), generator=generator, device=device, dtype=torch.float32) clip_latents = randn_tensor((1, 1, 32), generator=generator, device=device, dtype=torch.float32) latents = { "prompt_latents": prompt_latents, "vae_latents": vae_latents, "clip_latents": clip_latents, } return latents def get_dummy_inputs_with_latents(self, device, seed=0): # image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) # image = image.cpu().permute(0, 2, 3, 1)[0] # image = Image.fromarray(np.uint8(image)).convert("RGB") image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg", ) image = image.resize((32, 32)) latents = self.get_fixed_latents(device, seed=seed) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "an elephant under the sea", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "np", "prompt_latents": latents.get("prompt_latents"), "vae_latents": latents.get("vae_latents"), "clip_latents": latents.get("clip_latents"), } return inputs def test_unidiffuser_default_joint_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'joint' unidiffuser_pipe.set_joint_mode() assert unidiffuser_pipe.mode == "joint" # inputs = self.get_dummy_inputs(device) inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] sample = unidiffuser_pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_joint_no_cfg_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'joint' unidiffuser_pipe.set_joint_mode() assert unidiffuser_pipe.mode == "joint" # inputs = self.get_dummy_inputs(device) inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] # Set guidance scale to 1.0 to turn off CFG inputs["guidance_scale"] = 1.0 sample = unidiffuser_pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_text2img_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs_with_latents(device) # Delete image for text-conditioned image generation del inputs["image"] image = unidiffuser_pipe(**inputs).images assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_unidiffuser_default_image_0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img' unidiffuser_pipe.set_image_mode() assert unidiffuser_pipe.mode == "img" inputs = self.get_dummy_inputs(device) # Delete prompt and image for unconditional ("marginal") text generation. del inputs["prompt"] del inputs["image"] image = unidiffuser_pipe(**inputs).images assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.5760, 0.6270, 0.6571, 0.4966, 0.4638, 0.5663, 0.5254, 0.5068, 0.5715]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_unidiffuser_default_text_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img' unidiffuser_pipe.set_text_mode() assert unidiffuser_pipe.mode == "text" inputs = self.get_dummy_inputs(device) # Delete prompt and image for unconditional ("marginal") text generation. del inputs["prompt"] del inputs["image"] text = unidiffuser_pipe(**inputs).text expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_img2text_v0(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs_with_latents(device) # Delete text for image-conditioned text generation del inputs["prompt"] text = unidiffuser_pipe(**inputs).text expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_joint_v1(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1") unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'joint' unidiffuser_pipe.set_joint_mode() assert unidiffuser_pipe.mode == "joint" # inputs = self.get_dummy_inputs(device) inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] inputs["data_type"] = 1 sample = unidiffuser_pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_default_text2img_v1(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1") unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs_with_latents(device) # Delete image for text-conditioned image generation del inputs["image"] image = unidiffuser_pipe(**inputs).images assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_unidiffuser_default_img2text_v1(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1") unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs_with_latents(device) # Delete text for image-conditioned text generation del inputs["prompt"] text = unidiffuser_pipe(**inputs).text expected_text_prefix = " no no no " assert text[0][:10] == expected_text_prefix def test_unidiffuser_text2img_multiple_images(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs(device) # Delete image for text-conditioned image generation del inputs["image"] inputs["num_images_per_prompt"] = 2 inputs["num_prompts_per_image"] = 3 image = unidiffuser_pipe(**inputs).images assert image.shape == (2, 32, 32, 3) def test_unidiffuser_img2text_multiple_prompts(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs(device) # Delete text for image-conditioned text generation del inputs["prompt"] inputs["num_images_per_prompt"] = 2 inputs["num_prompts_per_image"] = 3 text = unidiffuser_pipe(**inputs).text assert len(text) == 3 def test_unidiffuser_text2img_multiple_images_with_latents(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs_with_latents(device) # Delete image for text-conditioned image generation del inputs["image"] inputs["num_images_per_prompt"] = 2 inputs["num_prompts_per_image"] = 3 image = unidiffuser_pipe(**inputs).images assert image.shape == (2, 32, 32, 3) def test_unidiffuser_img2text_multiple_prompts_with_latents(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() unidiffuser_pipe = UniDiffuserPipeline(**components) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs_with_latents(device) # Delete text for image-conditioned text generation del inputs["prompt"] inputs["num_images_per_prompt"] = 2 inputs["num_prompts_per_image"] = 3 text = unidiffuser_pipe(**inputs).text assert len(text) == 3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=2e-4) @require_torch_gpu def test_unidiffuser_default_joint_v1_cuda_fp16(self): device = "cuda" unidiffuser_pipe = UniDiffuserPipeline.from_pretrained( "hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16 ) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'joint' unidiffuser_pipe.set_joint_mode() assert unidiffuser_pipe.mode == "joint" inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] inputs["data_type"] = 1 sample = unidiffuser_pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5049, 0.5498, 0.5854, 0.3052, 0.4460, 0.6489, 0.5122, 0.4810, 0.6138]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 expected_text_prefix = '" This This' assert text[0][: len(expected_text_prefix)] == expected_text_prefix @require_torch_gpu def test_unidiffuser_default_text2img_v1_cuda_fp16(self): device = "cuda" unidiffuser_pipe = UniDiffuserPipeline.from_pretrained( "hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16 ) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'text2img' unidiffuser_pipe.set_text_to_image_mode() assert unidiffuser_pipe.mode == "text2img" inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["image"] inputs["data_type"] = 1 sample = unidiffuser_pipe(**inputs) image = sample.images assert image.shape == (1, 32, 32, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.5054, 0.5498, 0.5854, 0.3052, 0.4458, 0.6489, 0.5122, 0.4810, 0.6138]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 @require_torch_gpu def test_unidiffuser_default_img2text_v1_cuda_fp16(self): device = "cuda" unidiffuser_pipe = UniDiffuserPipeline.from_pretrained( "hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16 ) unidiffuser_pipe = unidiffuser_pipe.to(device) unidiffuser_pipe.set_progress_bar_config(disable=None) # Set mode to 'img2text' unidiffuser_pipe.set_image_to_text_mode() assert unidiffuser_pipe.mode == "img2text" inputs = self.get_dummy_inputs_with_latents(device) # Delete prompt and image for joint inference. del inputs["prompt"] inputs["data_type"] = 1 text = unidiffuser_pipe(**inputs).text expected_text_prefix = '" This This' assert text[0][: len(expected_text_prefix)] == expected_text_prefix @nightly @require_torch_gpu class UniDiffuserPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, seed=0, generate_latents=False): generator = torch.manual_seed(seed) image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" ) inputs = { "prompt": "an elephant under the sea", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 8.0, "output_type": "np", } if generate_latents: latents = self.get_fixed_latents(device, seed=seed) for latent_name, latent_tensor in latents.items(): inputs[latent_name] = latent_tensor return inputs def get_fixed_latents(self, device, seed=0): if isinstance(device, str): device = torch.device(device) latent_device = torch.device("cpu") generator = torch.Generator(device=latent_device).manual_seed(seed) # Hardcode the shapes for now. prompt_latents = randn_tensor((1, 77, 768), generator=generator, device=device, dtype=torch.float32) vae_latents = randn_tensor((1, 4, 64, 64), generator=generator, device=device, dtype=torch.float32) clip_latents = randn_tensor((1, 1, 512), generator=generator, device=device, dtype=torch.float32) # Move latents onto desired device. prompt_latents = prompt_latents.to(device) vae_latents = vae_latents.to(device) clip_latents = clip_latents.to(device) latents = { "prompt_latents": prompt_latents, "vae_latents": vae_latents, "clip_latents": clip_latents, } return latents def test_unidiffuser_default_joint_v1(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() # inputs = self.get_dummy_inputs(device) inputs = self.get_inputs(device=torch_device, generate_latents=True) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] sample = pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 512, 512, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-1 expected_text_prefix = "a living room" assert text[0][: len(expected_text_prefix)] == expected_text_prefix def test_unidiffuser_default_text2img_v1(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(device=torch_device, generate_latents=True) del inputs["image"] sample = pipe(**inputs) image = sample.images assert image.shape == (1, 512, 512, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_unidiffuser_default_img2text_v1(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(device=torch_device, generate_latents=True) del inputs["prompt"] sample = pipe(**inputs) text = sample.text expected_text_prefix = "An astronaut" assert text[0][: len(expected_text_prefix)] == expected_text_prefix @unittest.skip(reason="Skip torch.compile test to speed up the slow test suite.") @require_torch_2 def test_unidiffuser_compile(self, seed=0): inputs = self.get_inputs(torch_device, seed=seed, generate_latents=True) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] # Can't pickle a Generator object del inputs["generator"] inputs["torch_device"] = torch_device inputs["seed"] = seed run_test_in_subprocess(test_case=self, target_func=_test_unidiffuser_compile, inputs=inputs) @nightly @require_torch_gpu class UniDiffuserPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, seed=0, generate_latents=False): generator = torch.manual_seed(seed) image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" ) inputs = { "prompt": "an elephant under the sea", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 8.0, "output_type": "np", } if generate_latents: latents = self.get_fixed_latents(device, seed=seed) for latent_name, latent_tensor in latents.items(): inputs[latent_name] = latent_tensor return inputs def get_fixed_latents(self, device, seed=0): if isinstance(device, str): device = torch.device(device) latent_device = torch.device("cpu") generator = torch.Generator(device=latent_device).manual_seed(seed) # Hardcode the shapes for now. prompt_latents = randn_tensor((1, 77, 768), generator=generator, device=device, dtype=torch.float32) vae_latents = randn_tensor((1, 4, 64, 64), generator=generator, device=device, dtype=torch.float32) clip_latents = randn_tensor((1, 1, 512), generator=generator, device=device, dtype=torch.float32) # Move latents onto desired device. prompt_latents = prompt_latents.to(device) vae_latents = vae_latents.to(device) clip_latents = clip_latents.to(device) latents = { "prompt_latents": prompt_latents, "vae_latents": vae_latents, "clip_latents": clip_latents, } return latents def test_unidiffuser_default_joint_v1_fp16(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() # inputs = self.get_dummy_inputs(device) inputs = self.get_inputs(device=torch_device, generate_latents=True) # Delete prompt and image for joint inference. del inputs["prompt"] del inputs["image"] sample = pipe(**inputs) image = sample.images text = sample.text assert image.shape == (1, 512, 512, 3) image_slice = image[0, -3:, -3:, -1] expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520]) assert np.abs(image_slice.flatten() - expected_img_slice).max() < 2e-1 expected_text_prefix = "a living room" assert text[0][: len(expected_text_prefix)] == expected_text_prefix def test_unidiffuser_default_text2img_v1_fp16(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(device=torch_device, generate_latents=True) del inputs["image"] sample = pipe(**inputs) image = sample.images assert image.shape == (1, 512, 512, 3) image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def test_unidiffuser_default_img2text_v1_fp16(self): pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(device=torch_device, generate_latents=True) del inputs["prompt"] sample = pipe(**inputs) text = sample.text expected_text_prefix = "An astronaut" assert text[0][: len(expected_text_prefix)] == expected_text_prefix
diffusers/tests/pipelines/unidiffuser/test_unidiffuser.py/0
{ "file_path": "diffusers/tests/pipelines/unidiffuser/test_unidiffuser.py", "repo_id": "diffusers", "token_count": 14375 }
160
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class DPMSolverSinglestepSchedulerTest(SchedulerCommonTest): scheduler_classes = (DPMSolverSinglestepScheduler,) forward_default_kwargs = (("num_inference_steps", 25),) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf"), "variance_type": None, "final_sigmas_type": "sigma_min", } config.update(**kwargs) return config def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) new_scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] output, new_output = sample, sample for t in range(time_step, time_step + scheduler.config.solver_order + 1): t = scheduler.timesteps[t] output = scheduler.step(residual, t, output, **kwargs).prev_sample new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_from_save_pretrained(self): pass def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals (must be after setting timesteps) scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) # copy over dummy past residuals new_scheduler.set_timesteps(num_inference_steps) # copy over dummy past residual (must be after setting timesteps) new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def full_loop(self, scheduler=None, **config): if scheduler is None: scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) for i, t in enumerate(scheduler.timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample return sample def test_full_uneven_loop(self): scheduler = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) num_inference_steps = 50 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2574) < 1e-3 def test_timesteps(self): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_switch(self): # make sure that iterating over schedulers with same config names gives same results # for defaults scheduler = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) sample = self.full_loop(scheduler=scheduler) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2791) < 1e-3 scheduler = DEISMultistepScheduler.from_config(scheduler.config) scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) scheduler = UniPCMultistepScheduler.from_config(scheduler.config) scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config) sample = self.full_loop(scheduler=scheduler) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2791) < 1e-3 def test_thresholding(self): self.check_over_configs(thresholding=False) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=True, prediction_type=prediction_type, sample_max_value=threshold, algorithm_type="dpmsolver++", solver_order=order, solver_type=solver_type, ) def test_prediction_type(self): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=prediction_type) def test_solver_order_and_type(self): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=order, solver_type=solver_type, prediction_type=prediction_type, algorithm_type=algorithm_type, ) sample = self.full_loop( solver_order=order, solver_type=solver_type, prediction_type=prediction_type, algorithm_type=algorithm_type, ) assert not torch.isnan(sample).any(), "Samples have nan numbers" def test_lower_order_final(self): self.check_over_configs(lower_order_final=True) self.check_over_configs(lower_order_final=False) def test_lambda_min_clipped(self): self.check_over_configs(lambda_min_clipped=-float("inf")) self.check_over_configs(lambda_min_clipped=-5.1) def test_variance_type(self): self.check_over_configs(variance_type=None) self.check_over_configs(variance_type="learned_range") def test_inference_steps(self): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) def test_full_loop_no_noise(self): sample = self.full_loop() result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2791) < 1e-3 def test_full_loop_with_karras(self): sample = self.full_loop(use_karras_sigmas=True) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2248) < 1e-3 def test_full_loop_with_v_prediction(self): sample = self.full_loop(prediction_type="v_prediction") result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.1453) < 1e-3 def test_full_loop_with_karras_and_v_prediction(self): sample = self.full_loop(prediction_type="v_prediction", use_karras_sigmas=True) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.0649) < 1e-3 def test_fp16_support(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter.half() scheduler.set_timesteps(num_inference_steps) for i, t in enumerate(scheduler.timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample assert sample.dtype == torch.float16 def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] time_step_0 = scheduler.timesteps[0] time_step_1 = scheduler.timesteps[1] output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_full_loop_with_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 t_start = 5 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) # add noise noise = self.dummy_noise_deter timesteps = scheduler.timesteps[t_start * scheduler.order :] sample = scheduler.add_noise(sample, noise, timesteps[:1]) for i, t in enumerate(timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 269.2187) < 1e-2, f" expected result sum 269.2187, but get {result_sum}" assert abs(result_mean.item() - 0.3505) < 1e-3, f" expected result mean 0.3505, but get {result_mean}"
diffusers/tests/schedulers/test_scheduler_dpm_single.py/0
{ "file_path": "diffusers/tests/schedulers/test_scheduler_dpm_single.py", "repo_id": "diffusers", "token_count": 6088 }
161
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest # UnCLIPScheduler is a modified DDPMScheduler with a subset of the configuration. class UnCLIPSchedulerTest(SchedulerCommonTest): scheduler_classes = (UnCLIPScheduler,) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**kwargs) return config def test_timesteps(self): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_variance_type(self): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=variance) def test_clip_sample(self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=clip_sample) def test_clip_sample_range(self): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=clip_sample_range) def test_prediction_type(self): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=prediction_type) def test_time_indices(self): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=time_step, prev_timestep=prev_timestep) def test_variance_fixed_small_log(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(variance_type="fixed_small_log") scheduler = scheduler_class(**scheduler_config) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0000e-10)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0549625)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.9994987)) < 1e-5 def test_variance_learned_range(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(variance_type="learned_range") scheduler = scheduler_class(**scheduler_config) predicted_variance = 0.5 assert scheduler._get_variance(1, predicted_variance=predicted_variance) - -10.1712790 < 1e-5 assert scheduler._get_variance(487, predicted_variance=predicted_variance) - -5.7998052 < 1e-5 assert scheduler._get_variance(999, predicted_variance=predicted_variance) - -0.0010011 < 1e-5 def test_full_loop(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) timesteps = scheduler.timesteps model = self.dummy_model() sample = self.dummy_sample_deter generator = torch.manual_seed(0) for i, t in enumerate(timesteps): # 1. predict noise residual residual = model(sample, t) # 2. predict previous mean of sample x_t-1 pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample sample = pred_prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 252.2682495) < 1e-2 assert abs(result_mean.item() - 0.3284743) < 1e-3 def test_full_loop_skip_timesteps(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(25) timesteps = scheduler.timesteps model = self.dummy_model() sample = self.dummy_sample_deter generator = torch.manual_seed(0) for i, t in enumerate(timesteps): # 1. predict noise residual residual = model(sample, t) if i + 1 == timesteps.shape[0]: prev_timestep = None else: prev_timestep = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 pred_prev_sample = scheduler.step( residual, t, sample, prev_timestep=prev_timestep, generator=generator ).prev_sample sample = pred_prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 258.2044983) < 1e-2 assert abs(result_mean.item() - 0.3362038) < 1e-3 def test_trained_betas(self): pass def test_add_noise_device(self): pass
diffusers/tests/schedulers/test_scheduler_unclip.py/0
{ "file_path": "diffusers/tests/schedulers/test_scheduler_unclip.py", "repo_id": "diffusers", "token_count": 2227 }
162
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from collections import defaultdict def overwrite_file(file, class_name, test_name, correct_line, done_test): _id = f"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(file, "r") as f: lines = f.readlines() class_regex = f"class {class_name}(" test_regex = f"{4 * ' '}def {test_name}(" line_begin_regex = f"{8 * ' '}{correct_line.split()[0]}" another_line_begin_regex = f"{16 * ' '}{correct_line.split()[0]}" in_class = False in_func = False in_line = False insert_line = False count = 0 spaces = 0 new_lines = [] for line in lines: if line.startswith(class_regex): in_class = True elif in_class and line.startswith(test_regex): in_func = True elif in_class and in_func and (line.startswith(line_begin_regex) or line.startswith(another_line_begin_regex)): spaces = len(line.split(correct_line.split()[0])[0]) count += 1 if count == done_test[_id]: in_line = True if in_class and in_func and in_line: if ")" not in line: continue else: insert_line = True if in_class and in_func and in_line and insert_line: new_lines.append(f"{spaces * ' '}{correct_line}") in_class = in_func = in_line = insert_line = False else: new_lines.append(line) with open(file, "w") as f: for line in new_lines: f.write(line) def main(correct, fail=None): if fail is not None: with open(fail, "r") as f: test_failures = {l.strip() for l in f.readlines()} else: test_failures = None with open(correct, "r") as f: correct_lines = f.readlines() done_tests = defaultdict(int) for line in correct_lines: file, class_name, test_name, correct_line = line.split(";") if test_failures is None or "::".join([file, class_name, test_name]) in test_failures: overwrite_file(file, class_name, test_name, correct_line, done_tests) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) args = parser.parse_args() main(args.correct_filename, args.fail_filename)
diffusers/utils/overwrite_expected_slice.py/0
{ "file_path": "diffusers/utils/overwrite_expected_slice.py", "repo_id": "diffusers", "token_count": 1258 }
163
# Introduction <CourseFloatingBanner unit={0} classNames="absolute z-10 right-0 top-0" /> ## Bienvenue au cours sur les modèles de diffusion 🤗 ! ## À quoi s'attendre ? In this free course, you will: - 👩‍🎓 Study the theory behind diffusion models - 🧨 Learn how to generate images and audio with the popular 🤗 Diffusers library - 🏋️‍♂️ Train your own diffusion models from scratch - 📻 Fine-tune existing diffusion models on new datasets - 🗺 Explore conditional generation and guidance - 🧑‍🔬 Create your own custom diffusion model pipelines ## Prérequis Ce cours requiert un bon niveau en Python et des bases en apprentissage profond et Pytorch. Si ce n'est pas encore le cas, vous pouvez consulter ces ressources gratuites (en anglais) : - Python : https://www.udacity.com/course/introduction-to-python--ud1110 - Introduction à l'apprentissage profond avec PyTorch : https://www.udacity.com/course/deep-learning-pytorch--ud188 - PyTorch en 60 min : https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html Pour pousser vos modèles sur le *Hub* d'*Hugging Face*, vous aurez besoin d'un compte. Vous pouvez en créer un gratuitement à l'adresse suivante : [https://huggingface.co/join](https://huggingface.co/join). ## Quel est le programme ? Le cours est constitué de quatre unités. Chacune d'elle est composée d'une partie théorie listant également des ressources / papiers, ainsi que de deux *notebooks*. Plus précisément, nous avons : - Unité 1 : Introduction aux modèles de diffusion Introduction à 🤗 Diffusers et implémentation à partir de 0 - Unité 2 : <i>Finetuning</i> et guidage *Finetuner* un modèle de diffusion sur de nouvelles données et ajout du guidage - Unité 3 : Stable Diffusion Exploration d'un puissant modèle de diffusion latent conditionné par le texte - Unité 4 : Faire plus avec la diffusion Techniques avancées pour aller plus loin dans la diffusion ## Qui sommes-nous ? À propos des auteurs de ce cours : [**Jonathan Whitaker**](https://huggingface.co/johnowhitaker) est TODO. [**Lewis Tunstall**](https://huggingface.co/lewtun) est ingénieur en apprentissage machine chez Hugging Face et dévoué au développement d'outils *open source* avec la volonté de les rendre accessibles à une communauté plus large. Il est également co-auteur du livre [*Natural Language Processing with Transformers*](https://www.oreilly.com/library/view/natural-language-processing/9781098136789/). ## FAQ Voici quelques réponses aux questions fréquemment posées : - **Suivre ce cours mène-t-il à une certification ?** Actuellement, nous n'avons pas de certification pour ce cours. - **Combien de temps dois-je consacrer à ce cours ?** Chaque chapitre de ce cours est conçu pour être complété en une semaine, avec environ 6 à 8 heures de travail par unité. Cependant, vous pouvez prendre tout le temps nécessaire pour le suivre. - **Où puis-je poser une question si j'en ai une ?** Si vous avez une question sur l'une des sections du cours, il vous suffit de cliquer sur la bannière « *Ask a question* » en haut de la page pour être automatiquement redirigé vers le [Discord de Hugging Face](https://discord.com/invite/JfAtkvEtRb) pour poser votre question dans le channel `#diffusion-models-class`. <img src="https://huggingface.co/datasets/huggingface-course/documentation-images/resolve/main/en/chapter1/forum-button.png" alt="Link to the Hugging Face forums" width="75%"> - **Où puis-je obtenir le code du cours ?** Pour chaque section, vous pouvez cliquer sur la bannière en haut de la page pour exécuter son code : <img src="https://huggingface.co/datasets/huggingface-course/documentation-images/resolve/main/en/chapter1/notebook-buttons.png" alt="Link to the Hugging Face course notebooks" width="75%"> - **Comment puis-je contribuer au cours ?** Il existe de nombreuses façons de contribuer au cours ! Si vous trouvez une coquille ou un bug, veuillez ouvrir une « *Issue* » sur le dépôt [`diffusion-models-class`](https://github.com/huggingface/diffusion-models-class). Si vous souhaitez aider à traduire le cours dans votre langue maternelle, consultez les instructions [ici](https://github.com/huggingface/diffusion-models-class#translating-the-course-into-your-language). - **Peut-on réutiliser ce cours?** Bien sûr ! Le cours est publié sous la licence [Apache 2 license](https://www.apache.org/licenses/LICENSE-2.0.html). Cela signifie que vous devez créditer de manière appropriée, fournir un lien vers la licence et indiquer si des modifications ont été apportées. Vous pouvez le faire de toute manière raisonnable, mais pas d'une façon qui suggère que le distributeur de la licence vous approuve ou approuve votre utilisation. Si vous souhaitez citer le cours, veuillez utiliser le BibTeX suivant : ``` @misc{huggingfacecourse, author = {Hugging Face}, title = {The Hugging Face Diffusion Models Course, 2022}, howpublished = "\url{https://huggingface.co/course}", year = {2022}, note = "[Online; accessed <today>]" } ``` ## C'est parti ! Êtes-vous prêt à commencer ? Alors rendez vous à la première unité pour débuter le cours.
diffusion-models-class/units/fr/unit0/1.mdx/0
{ "file_path": "diffusion-models-class/units/fr/unit0/1.mdx", "repo_id": "diffusion-models-class", "token_count": 1801 }
164
<jupyter_start><jupyter_text>Préparer des données (PyTorch) Installez les bibliothèques 🤗 *Transformers* et 🤗 *Datasets* pour exécuter ce *notebook*.<jupyter_code>!pip install datasets transformers[sentencepiece] import torch from transformers import AdamW, AutoTokenizer, AutoModelForSequenceClassification # Comme avant checkpoint = "camembert-base" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSequenceClassification.from_pretrained(checkpoint) sequences = [ "J'ai attendu un cours d'HuggingFace toute ma vie.", "Je déteste tellement ça !"] batch = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt") # C'est nouveau batch["labels"] = torch.tensor([1, 1]) optimizer = AdamW(model.parameters()) loss = model(**batch).loss loss.backward() optimizer.step() from datasets import load_dataset raw_datasets = load_dataset("paws-x", "fr") raw_datasets raw_train_dataset = raw_datasets["train"] raw_train_dataset[0] raw_train_dataset.features from transformers import AutoTokenizer checkpoint = "camembert-base" tokenizer = AutoTokenizer.from_pretrained(checkpoint) tokenized_sentences_1 = tokenizer(raw_datasets["train"]["sentence1"]) tokenized_sentences_2 = tokenizer(raw_datasets["train"]["sentence2"]) inputs = tokenizer("C'est la première phrase.", "C'est la deuxième.") inputs tokenizer.convert_ids_to_tokens(inputs["input_ids"]) tokenized_dataset = tokenizer( raw_datasets["train"]["sentence1"], raw_datasets["train"]["sentence2"], padding=True, truncation=True, ) def tokenize_function(example): return tokenizer(example["sentence1"], example["sentence2"], truncation=True) tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) tokenized_datasets from transformers import DataCollatorWithPadding data_collator = DataCollatorWithPadding(tokenizer=tokenizer) samples = tokenized_datasets["train"][:8] samples = {k: v for k, v in samples.items() if k not in ["idx", "sentence1", "sentence2"]} [len(x) for x in samples["input_ids"]] batch = data_collator(samples) {k: v.shape for k, v in batch.items()}<jupyter_output><empty_output>
notebooks/course/fr/chapter3/section2_pt.ipynb/0
{ "file_path": "notebooks/course/fr/chapter3/section2_pt.ipynb", "repo_id": "notebooks", "token_count": 784 }
165
<jupyter_start><jupyter_text>Entraîner un nouveau *tokenizer* à partir d'un ancien Installez les bibliothèques 🤗 *Transformers* et 🤗 *Datasets* pour exécuter ce *notebook*.<jupyter_code>!pip install datasets transformers[sentencepiece] !apt install git-lfs<jupyter_output><empty_output><jupyter_text>Vous aurez besoin de configurer git, adaptez votre email et votre nom dans la cellule suivante.<jupyter_code>!git config --global user.email "[email protected]" !git config --global user.name "Your Name"<jupyter_output><empty_output><jupyter_text>Vous devrez également être connecté au Hub d'Hugging Face. Exécutez ce qui suit et entrez vos informations d'identification.<jupyter_code>from huggingface_hub import notebook_login notebook_login() from datasets import load_dataset # Le chargement peut prendre quelques minutes, alors prenez un café ou un thé pendant que vous attendez ! raw_datasets = load_dataset("code_search_net", "python") raw_datasets["train"] print(raw_datasets["train"][123456]["whole_func_string"]) # Ne décommentez pas la ligne suivante à moins que votre jeu de données soit petit ! # training_corpus = [raw_datasets["train"][i: i + 1000]["whole_func_string"] for i in range(0, len(raw_datasets["train"]), 1000)] training_corpus = ( raw_datasets["train"][i : i + 1000]["whole_func_string"] for i in range(0, len(raw_datasets["train"]), 1000) ) gen = (i for i in range(10)) print(list(gen)) print(list(gen)) def get_training_corpus(): return ( raw_datasets["train"][i : i + 1000]["whole_func_string"] for i in range(0, len(raw_datasets["train"]), 1000) ) training_corpus = get_training_corpus() def get_training_corpus(): dataset = raw_datasets["train"] for start_idx in range(0, len(dataset), 1000): samples = dataset[start_idx : start_idx + 1000] yield samples["whole_func_string"] from transformers import AutoTokenizer old_tokenizer = AutoTokenizer.from_pretrained("asi/gpt-fr-cased-base") example = '''def add_numbers(a, b): """Add the two numbers `a` and `b`.""" return a + b''' tokens = old_tokenizer.tokenize(example) tokens tokenizer = old_tokenizer.train_new_from_iterator(training_corpus, 52000) # prend un peu de temps tokens = tokenizer.tokenize(example) tokens print(len(tokens)) print(len(old_tokenizer.tokenize(example))) example = """class LinearLayer(): def __init__(self, input_size, output_size): self.weight = torch.randn(input_size, output_size) self.bias = torch.zeros(output_size) def __call__(self, x): return x @ self.weights + self.bias """ tokenizer.tokenize(example) tokenizer.save_pretrained("code-search-net-tokenizer") from huggingface_hub import notebook_login notebook_login() tokenizer.push_to_hub("code-search-net-tokenizer") # Remplacez "huggingface-course" ci-dessous par votre espace de nom réel pour utiliser votre propre tokenizer tokenizer = AutoTokenizer.from_pretrained("huggingface-course/code-search-net-tokenizer")<jupyter_output><empty_output>
notebooks/course/fr/chapter6/section2.ipynb/0
{ "file_path": "notebooks/course/fr/chapter6/section2.ipynb", "repo_id": "notebooks", "token_count": 1147 }
166
<jupyter_start><jupyter_text>Résumé (PyTorch) Installez les bibliothèques 🤗 *Datasets* et 🤗 *Transformers* pour exécuter ce *notebook*.<jupyter_code>!pip install datasets transformers[sentencepiece] !pip install accelerate # Pour exécuter l'entraînement sur TPU, vous devez décommenter la ligne suivante : # !pip install cloud-tpu-client==0.10 torch==1.9.0 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.9-cp37-cp37m-linux_x86_64.whl !apt install git-lfs<jupyter_output><empty_output><jupyter_text>Vous aurez besoin de configurer git, adaptez votre email et votre nom dans la cellule suivante.<jupyter_code>!git config --global user.email "[email protected]" !git config --global user.name "Your Name"<jupyter_output><empty_output><jupyter_text>Vous devrez également être connecté au Hub d'Hugging Face. Exécutez ce qui suit et entrez vos informations d'identification.<jupyter_code>from huggingface_hub import notebook_login notebook_login() from datasets import load_dataset french_dataset = load_dataset("amazon_reviews_multi", "fr") english_dataset = load_dataset("amazon_reviews_multi", "en") french_dataset def show_samples(dataset, num_samples=3, seed=42): sample = dataset["train"].shuffle(seed=seed).select(range(num_samples)) for example in sample: print(f"\n'>> Title: {example['review_title']}'") print(f"'>> Review: {example['review_body']}'") show_samples(french_dataset) french_dataset.set_format("pandas") french_df = french_dataset["train"][:] # Afficher les comptes des 20 premiers produits french_df["product_category"].value_counts()[:20] def filter_books(example): return ( example["product_category"] == "book" or example["product_category"] == "digital_ebook_purchase" ) french_dataset.reset_format() french_books = french_dataset.filter(filter_books) english_books = english_dataset.filter(filter_books) show_samples(french_dataset) from datasets import concatenate_datasets, DatasetDict books_dataset = DatasetDict() for split in english_books.keys(): books_dataset[split] = concatenate_datasets( [english_books[split], french_books[split]] ) books_dataset[split] = books_dataset[split].shuffle(seed=42) # Quelques exemples show_samples(books_dataset) books_dataset = books_dataset.filter(lambda x: len(x["review_title"].split()) > 2) from transformers import AutoTokenizer model_checkpoint = "google/mt5-small" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) inputs = tokenizer("J'ai adoré lire les Hunger Games !") inputs tokenizer.convert_ids_to_tokens(inputs.input_ids) max_input_length = 512 max_target_length = 30 def preprocess_function(examples): model_inputs = tokenizer( examples["review_body"], max_length=max_input_length, truncation=True ) # Configurer le tokenizer pour les cibles with tokenizer.as_target_tokenizer(): labels = tokenizer( examples["review_title"], max_length=max_target_length, truncation=True ) model_inputs["labels"] = labels["input_ids"] return model_inputs tokenized_datasets = books_dataset.map(preprocess_function, batched=True) generated_summary = "J'ai absolument adoré lire les Hunger Games" reference_summary = "J'ai adoré lire les Hunger Games" !pip install rouge_score from datasets import load_metric rouge_score = load_metric("rouge") scores = rouge_score.compute( predictions=[generated_summary], references=[reference_summary] ) scores scores["rouge1"].mid !pip install nltk import nltk nltk.download("punkt") from nltk.tokenize import sent_tokenize def three_sentence_summary(text): return "\n".join(sent_tokenize(text)[:3]) print(three_sentence_summary(books_dataset["train"][1]["review_body"])) def evaluate_baseline(dataset, metric): summaries = [three_sentence_summary(text) for text in dataset["review_body"]] return metric.compute(predictions=summaries, references=dataset["review_title"]) import pandas as pd score = evaluate_baseline(books_dataset["validation"], rouge_score) rouge_names = ["rouge1", "rouge2", "rougeL", "rougeLsum"] rouge_dict = dict((rn, round(score[rn].mid.fmeasure * 100, 2)) for rn in rouge_names) rouge_dict from transformers import AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) from transformers import Seq2SeqTrainingArguments batch_size = 8 num_train_epochs = 8 # Montre la perte d'entraînement à chaque époque logging_steps = len(tokenized_datasets["train"]) // batch_size model_name = model_checkpoint.split("/")[-1] args = Seq2SeqTrainingArguments( output_dir=f"{model_name}-finetuned-amazon-en-fr", evaluation_strategy="epoch", learning_rate=5.6e-5, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, weight_decay=0.01, save_total_limit=3, num_train_epochs=num_train_epochs, predict_with_generate=True, logging_steps=logging_steps, push_to_hub=True, ) import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred # Décoder les résumés générés en texte decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) # Remplacer -100 dans les étiquettes car nous ne pouvons pas les décoder labels = np.where(labels != -100, labels, tokenizer.pad_token_id) # Décoder les résumés de référence en texte decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # ROUGE attend une nouvelle ligne après chaque phrase decoded_preds = ["\n".join(sent_tokenize(pred.strip())) for pred in decoded_preds] decoded_labels = ["\n".join(sent_tokenize(label.strip())) for label in decoded_labels] # Calculer les scores ROUGE result = rouge_score.compute( predictions=decoded_preds, references=decoded_labels, use_stemmer=True ) # Extraire les scores médians result = {key: value.mid.fmeasure * 100 for key, value in result.items()} return {k: round(v, 4) for k, v in result.items()} from transformers import DataCollatorForSeq2Seq data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) tokenized_datasets = tokenized_datasets.remove_columns( books_dataset["train"].column_names ) features = [tokenized_datasets["train"][i] for i in range(2)] data_collator(features) from transformers import Seq2SeqTrainer trainer = Seq2SeqTrainer( model, args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, tokenizer=tokenizer, compute_metrics=compute_metrics, ) trainer.train() trainer.evaluate() tokenized_datasets.set_format("torch") model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) from torch.utils.data import DataLoader batch_size = 8 train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=data_collator, batch_size=batch_size, ) eval_dataloader = DataLoader( tokenized_datasets["validation"], collate_fn=data_collator, batch_size=batch_size ) from torch.optim import AdamW optimizer = AdamW(model.parameters(), lr=2e-5) from accelerate import Accelerator accelerator = Accelerator() model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) from transformers import get_scheduler num_train_epochs = 10 num_update_steps_per_epoch = len(train_dataloader) num_training_steps = num_train_epochs * num_update_steps_per_epoch lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps, ) def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [label.strip() for label in labels] # ROUGE attend une nouvelle ligne après chaque phrase preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] return preds, labels from huggingface_hub import get_full_repo_name model_name = "test-bert-finetuned-squad-accelerate" repo_name = get_full_repo_name(model_name) repo_name from huggingface_hub import Repository output_dir = "results-mt5-finetuned-squad-accelerate" repo = Repository(output_dir, clone_from=repo_name) from tqdm.auto import tqdm import torch import numpy as np progress_bar = tqdm(range(num_training_steps)) for epoch in range(num_train_epochs): # Entraînement model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) # Evaluation model.eval() for step, batch in enumerate(eval_dataloader): with torch.no_grad(): generated_tokens = accelerator.unwrap_model(model).generate( batch["input_ids"], attention_mask=batch["attention_mask"], ) generated_tokens = accelerator.pad_across_processes( generated_tokens, dim=1, pad_index=tokenizer.pad_token_id ) labels = batch["labels"] # Si nous n'avons pas rempli la longueur maximale, nous devons également remplir les étiquettes labels = accelerator.pad_across_processes( batch["labels"], dim=1, pad_index=tokenizer.pad_token_id ) generated_tokens = accelerator.gather(generated_tokens).cpu().numpy() labels = accelerator.gather(labels).cpu().numpy() # Remplacer -100 dans les étiquettes car nous ne pouvons pas les décoder labels = np.where(labels != -100, labels, tokenizer.pad_token_id) if isinstance(generated_tokens, tuple): generated_tokens = generated_tokens[0] decoded_preds = tokenizer.batch_decode( generated_tokens, skip_special_tokens=True ) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_preds, decoded_labels = postprocess_text( decoded_preds, decoded_labels ) rouge_score.add_batch(predictions=decoded_preds, references=decoded_labels) # Calculer les métriques result = rouge_score.compute() # Extraire les scores médians de ROUGE result = {key: value.mid.fmeasure * 100 for key, value in result.items()} result = {k: round(v, 4) for k, v in result.items()} print(f"Epoch {epoch}:", result) # Sauvegarder et télécharger accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False ) from transformers import pipeline hub_model_id = "huggingface-course/mt5-small-finetuned-amazon-en-fr" summarizer = pipeline("summarization", model=hub_model_id) def print_summary(idx): review = books_dataset["test"][idx]["review_body"] title = books_dataset["test"][idx]["review_title"] summary = summarizer(books_dataset["test"][idx]["review_body"])[0]["summary_text"] print(f"'>>> Review: {review}'") print(f"\n'>>> Title: {title}'") print(f"\n'>>> Summary: {summary}'") print_summary(100) print_summary(0)<jupyter_output><empty_output>
notebooks/course/fr/chapter7/section5_pt.ipynb/0
{ "file_path": "notebooks/course/fr/chapter7/section5_pt.ipynb", "repo_id": "notebooks", "token_count": 4623 }
167
<jupyter_start><jupyter_text>Fonctions avancées d'Interface Installez les bibliothèques 🤗 Transformers et 🤗 Gradio pour exécuter ce *notebook*.<jupyter_code>!pip install datasets transformers[sentencepiece] !pip install gradio import random import gradio as gr def chat(message, history): history = history or [] if message.startswith("Combien"): response = random.randint(1, 10) elif message.startswith("Comment"): response = random.choice(["Super", "Bon", "Ok", "Mal"]) elif message.startswith("Où"): response = random.choice(["Ici", "Là", "Quelque part"]) else: response = "Je ne sais pas." history.append((message, response)) return history, history iface = gr.Interface( chat, ["text", "state"], ["chatbot", "state"], allow_screenshot=False, allow_flagging="never", ) iface.launch() import requests import tensorflow as tf import gradio as gr inception_net = tf.keras.applications.MobileNetV2() # charger le modèle # Télécharger des étiquettes lisibles par l'homme pour ImageNet response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() return {labels[i]: float(prediction[i]) for i in range(1000)} image = gr.Image(shape=(224, 224)) label = gr.Label(num_top_classes=3) title = "Classification des images avec Gradio + Exemple d'interprétation" gr.Interface( fn=classify_image, inputs=image, outputs=label, interpretation="default", title=title ).launch()<jupyter_output><empty_output>
notebooks/course/fr/chapter9/section6.ipynb/0
{ "file_path": "notebooks/course/fr/chapter9/section6.ipynb", "repo_id": "notebooks", "token_count": 647 }
168
<jupyter_start><jupyter_text>CLIP Guided Stable Diffusion using [d🧨ffusers](https://github.com/huggingface/diffusers) This notebook shows how to do CLIP guidance with Stable diffusion using diffusers libray. This allows you to use newly released [CLIP models by LAION AI.](https://huggingface.co/laion).This notebook is based on the following amazing repos, all credits to the original authors!- https://github.com/Jack000/glid-3-xl- https://github.dev/crowsonkb/k-diffusion Initial Setup<jupyter_code>#@title Instal dependancies !pip install -qqq diffusers==0.11.1 transformers ftfy gradio accelerate<jupyter_output> |████████████████████████████████| 229 kB 8.9 MB/s  |████████████████████████████████| 4.9 MB 68.2 MB/s  |████████████████████████████████| 53 kB 2.2 MB/s  |████████████████████████████████| 5.3 MB 51.1 MB/s  |████████████████████████████████| 163 kB 68.4 MB/s  |████████████████████████████████| 6.6 MB 46.5 MB/s  |████████████████████████████████| 55 kB 4.4 MB/s  |████████████████████████████████| 2.3 MB 56.0 MB/s  |████████████████████████████████| 57 kB 6.2 MB/s  |████████████████████████████████| 270 kB 48.4 MB/s  |████████████████████████████████| 112 kB 58.6 MB/s  |████████████████████████████████| 84 kB 4.2 MB/s  |████████████████████████████████| 54 kB 3.8 MB/s  |████████████████████████████████| 84 kB 2.4 MB/s  |████████████████████████████████| 212 kB 12.2 MB/s  |████████████████████████████████| 63 kB 2.7 MB/s  |██████████████████████████████[...]<jupyter_text>Authenticate with Hugging Face HubTo use private and gated models on 🤗 Hugging Face Hub, login is required. If you are only using a public checkpoint (such as `CompVis/stable-diffusion-v1-4` in this notebook), you can skip this step.<jupyter_code>#@title Login from huggingface_hub import notebook_login notebook_login()<jupyter_output>Login successful Your token has been saved to /root/.huggingface/token<jupyter_text>CLIP Guided Stable Diffusion<jupyter_code>#@title Load the pipeline import torch from PIL import Image from diffusers import LMSDiscreteScheduler, DiffusionPipeline, PNDMScheduler from transformers import CLIPFeatureExtractor, CLIPModel model_id = "CompVis/stable-diffusion-v1-4" #@param {type: "string"} clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" #@param ["laion/CLIP-ViT-B-32-laion2B-s34B-b79K", "laion/CLIP-ViT-L-14-laion2B-s32B-b82K", "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", "laion/CLIP-ViT-g-14-laion2B-s12B-b42K", "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch16", "openai/clip-vit-large-patch14"] {allow-input: true} scheduler = "plms" #@param ['plms', 'lms'] def image_grid(imgs, rows, cols): assert len(imgs) == rows*cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) return grid if scheduler == "lms": scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") else: scheduler = PNDMScheduler.from_config(model_id, subfolder="scheduler") feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id) clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16) guided_pipeline = DiffusionPipeline.from_pretrained( model_id, custom_pipeline="clip_guided_stable_diffusion", custom_revision="main", # TODO: remove if diffusers>=0.12.0 clip_model=clip_model, feature_extractor=feature_extractor, scheduler=scheduler, torch_dtype=torch.float16, ) guided_pipeline = guided_pipeline.to("cuda") #@title Generate with Gradio Demo import gradio as gr import torch from torch import autocast from diffusers import StableDiffusionPipeline from PIL import Image last_model = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" def infer(prompt, clip_prompt, samples, steps, clip_scale, scale, seed, clip_model, use_cutouts, num_cutouts): global last_model print(last_model) if(last_model == clip_model): guided_pipeline = create_clip_guided_pipeline(model_id, clip_model_id) guided_pipeline = guided_pipeline.to("cuda") last_model = clip_model prompt = prompt clip_prompt = clip_prompt num_samples = samples num_inference_steps = steps guidance_scale = scale clip_guidance_scale = clip_scale if(use_cutouts): use_cutouts = "True" else: use_cutouts = "False" unfreeze_unet = "True" unfreeze_vae = "True" seed = seed if unfreeze_unet == "True": guided_pipeline.unfreeze_unet() else: guided_pipeline.freeze_unet() if unfreeze_vae == "True": guided_pipeline.unfreeze_vae() else: guided_pipeline.freeze_vae() generator = torch.Generator(device="cuda").manual_seed(seed) images = [] for i in range(num_samples): image = guided_pipeline( prompt, clip_prompt=clip_prompt if clip_prompt.strip() != "" else None, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, clip_guidance_scale=clip_guidance_scale, num_cutouts=num_cutouts, use_cutouts=use_cutouts == "True", generator=generator, ).images[0] images.append(image) #image_grid(images, 1, num_samples) return images css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } """ block = gr.Blocks(css=css) examples = [ [ 'A high tech solarpunk utopia in the Amazon rainforest', 2, 45, 7.5, 1024, ], [ 'A pikachu fine dining with a view to the Eiffel Tower', 2, 45, 7, 1024, ], [ 'A mecha robot in a favela in expressionist style', 2, 45, 7, 1024, ], [ 'an insect robot preparing a delicious meal', 2, 45, 7, 1024, ], [ "A small cabin on top of a snowy mountain in the style of Disney, artstation", 2, 45, 7, 1024, ], ] with block: gr.HTML( """ <div style="text-align: center; max-width: 650px; margin: 0 auto;"> <div style=" display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; " > <svg width="0.65em" height="0.65em" viewBox="0 0 115 115" fill="none" xmlns="http://www.w3.org/2000/svg" > <rect width="23" height="23" fill="white"></rect> <rect y="69" width="23" height="23" fill="white"></rect> <rect x="23" width="23" height="23" fill="#AEAEAE"></rect> <rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect> <rect x="46" width="23" height="23" fill="white"></rect> <rect x="46" y="69" width="23" height="23" fill="white"></rect> <rect x="69" width="23" height="23" fill="black"></rect> <rect x="69" y="69" width="23" height="23" fill="black"></rect> <rect x="92" width="23" height="23" fill="#D9D9D9"></rect> <rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect> <rect x="115" y="46" width="23" height="23" fill="white"></rect> <rect x="115" y="115" width="23" height="23" fill="white"></rect> <rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect> <rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect> <rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect> <rect x="92" y="69" width="23" height="23" fill="white"></rect> <rect x="69" y="46" width="23" height="23" fill="white"></rect> <rect x="69" y="115" width="23" height="23" fill="white"></rect> <rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect> <rect x="46" y="46" width="23" height="23" fill="black"></rect> <rect x="46" y="115" width="23" height="23" fill="black"></rect> <rect x="46" y="69" width="23" height="23" fill="black"></rect> <rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect> <rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect> <rect x="23" y="69" width="23" height="23" fill="black"></rect> </svg> <h1 style="font-weight: 900; margin-bottom: 7px;"> CLIP Guided Stable Diffusion Demo </h1> </div> <p style="margin-bottom: 10px; font-size: 94%"> Demo allows you to use newly released <a href="https://huggingface.co/laion" style="text-decoration: underline">CLIP models by LAION AI</a> with Stable Diffusion </p> </div> """ ) with gr.Group(): with gr.Box(): with gr.Row().style(mobile_collapse=False, equal_height=True): text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, ) btn = gr.Button("Generate image").style( margin=False, rounded=(False, True, True, False), ) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") advanced_button = gr.Button("Advanced options", elem_id="advanced-btn") with gr.Row(elem_id="advanced-options"): with gr.Column(): clip_prompt = gr.Textbox( label="Enter a CLIP prompt if you want it to differ", show_label=False, max_lines=1, placeholder="Enter a CLIP prompt if you want it to differ", ) with gr.Row(): samples = gr.Slider(label="Images", minimum=1, maximum=2, value=1, step=1) steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1) with gr.Row(): use_cutouts = gr.Checkbox(label="Use cutouts?") num_cutouts = gr.Slider(label="Cutouts", minimum=1, maximum=16, value=4, step=1) with gr.Row(): with gr.Column(): clip_model = gr.Dropdown(["laion/CLIP-ViT-B-32-laion2B-s34B-b79K", "laion/CLIP-ViT-L-14-laion2B-s32B-b82K", "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", "laion/CLIP-ViT-g-14-laion2B-s12B-b42K", "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch16", "openai/clip-vit-large-patch14"], value="laion/CLIP-ViT-B-32-laion2B-s34B-b79K", show_label=False) with gr.Row(): scale = gr.Slider( label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 ) seed = gr.Slider( label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True, ) clip_scale = gr.Slider( label="CLIP Guidance Scale", minimum=0, maximum=5000, value=100, step=1 ) ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, clip_scale, seed], outputs=gallery, cache_examples=False) ex.dataset.headers = [""] text.submit(infer, inputs=[text, clip_prompt, samples, steps, scale, clip_scale, seed, clip_model, use_cutouts, num_cutouts], outputs=gallery) btn.click(infer, inputs=[text, clip_prompt, samples, steps, scale, clip_scale, seed, clip_model, use_cutouts, num_cutouts], outputs=gallery) advanced_button.click( None, [], text, _js=""" () => { const options = document.querySelector("body > gradio-app").querySelector("#advanced-options"); options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none"; }""", ) gr.HTML( """ <div class="footer"> <p>Model by <a href="https://huggingface.co/CompVis" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Gradio Demo by 🤗 Hugging Face </p> </div> <div class="acknowledgments"> <p><h4>LICENSE</h4> The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p> <p><h4>Biases and content acknowledgment</h4> Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p> </div> """ ) block.launch(debug=True) #@title Generate on Colab prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece" #@param {type: "string"} #@markdown `clip_prompt` is optional, if you leave it blank the same prompt is sent to Stable Diffusion and CLIP clip_prompt = "" #@param {type: "string"} num_samples = 1 #@param {type: "number"} num_inference_steps = 50 #@param {type: "number"} guidance_scale = 7.5 #@param {type: "number"} clip_guidance_scale = 100 #@param {type: "number"} num_cutouts = 4 #@param {type: "number"} use_cutouts = "False" #@param ["False", "True"] unfreeze_unet = "True" #@param ["False", "True"] unfreeze_vae = "True" #@param ["False", "True"] seed = 3788086447 #@param {type: "number"} if unfreeze_unet == "True": guided_pipeline.unfreeze_unet() else: guided_pipeline.freeze_unet() if unfreeze_vae == "True": guided_pipeline.unfreeze_vae() else: guided_pipeline.freeze_vae() generator = torch.Generator(device="cuda").manual_seed(seed) images = [] for i in range(num_samples): image = guided_pipeline( prompt, clip_prompt=clip_prompt if clip_prompt.strip() != "" else None, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, clip_guidance_scale=clip_guidance_scale, num_cutouts=num_cutouts, use_cutouts=use_cutouts == "True", generator=generator, ).images[0] images.append(image) image_grid(images, 1, num_samples)<jupyter_output><empty_output>
notebooks/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb/0
{ "file_path": "notebooks/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb", "repo_id": "notebooks", "token_count": 9092 }
169
<jupyter_start><jupyter_text>Run Dreambooth fine-tuned models for Stable Diffusion using d🧨ffusers This notebook allows you to run Stable Diffusion concepts trained via Dreambooth using 🤗 Hugging Face [🧨 Diffusers library](https://github.com/huggingface/diffusers). Train your own using [here]() and navigate the [public library concepts]() to pick yours. You may also want to use the [Spaces]() to browse the library_By using just 3-5 images you can teach new concepts to Stable Diffusion and personalize the model on your own images_ Differently from Textual Inversion, this approach trains the whole model, which can yield better results to the cost of bigger models.<jupyter_code>#@title Install and import requirements !pip install -qqq diffusers==0.11.1 transformers gradio ftfy accelerate import diffusers import gradio from PIL import Image def image_grid(imgs, rows, cols): assert len(imgs) == rows*cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) return grid #@title Login to the Hugging Face Hub #@markdown Optional step, do it if you want to run private concepts from huggingface_hub import notebook_login !git config --global credential.helper store notebook_login() #@title Load the model from the [Concepts Library](https://huggingface.co/sd-dreambooth-library). If you are new to Stable Diffusion, make sure you [read the LICENSE](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE) #@markdown You may also use a locally trained model by replacing the `model_id` to a path with the model locally or on Google Drive from torch import autocast from diffusers import StableDiffusionPipeline import torch model_id = "sd-dreambooth-library/cat-toy" #@param {type:"string"} pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") #@title Run the Stable Diffusion pipeline with interactive UI Demo on Gradio #@markdown Run this cell to get a Gradio UI like this to run your models #@markdown ![](https://i.imgur.com/bxHfawQ.png) import gradio as gr def inference(prompt, num_samples): all_images = [] images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images all_images.extend(images) return all_images with gr.Blocks() as demo: gr.HTML("<h2 style=\"font-size: 2em; font-weight: bold\" align=\"center\">Stable Diffusion Dreambooth - Run Concept</h2>") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="prompt") samples = gr.Slider(label="Samples",value=1) run = gr.Button(value="Run") with gr.Column(): gallery = gr.Gallery(show_label=False) run.click(inference, inputs=[prompt,samples], outputs=gallery) gr.Examples([["a photo of sks toy riding a bicycle", 1,1]], [prompt,samples], gallery, inference, cache_examples=False) demo.launch(debug=True) #@title Run the Stable Diffusion pipeline on Colab #@markdown Don't forget to use the `sks` token in your prompt from torch import autocast prompt = "a photo of sks toy floating on a ramen bowl" #@param {type:"string"} num_samples = 1 #@param {type:"number"} num_rows = 2 #@param {type:"number"} all_images = [] for _ in range(num_rows): images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images all_images.extend(images) grid = image_grid(all_images, num_samples, num_rows) grid<jupyter_output><empty_output>
notebooks/diffusers/sd_dreambooth_inference.ipynb/0
{ "file_path": "notebooks/diffusers/sd_dreambooth_inference.ipynb", "repo_id": "notebooks", "token_count": 1238 }
170
<jupyter_start><jupyter_text>Patch Time Series Transformer in HuggingFace - Getting StartedIn this blog, we provide examples of how to get started with PatchTST. We first demonstrate the forecasting capability of `PatchTST` on the Electricity data. We will then demonstrate the transfer learning capability of `PatchTST` by using the previously trained model to do zero-shot forecasting on the electrical transformer (ETTh1) dataset. The zero-shot forecasting performance will denote the `test` performance of the model in the `target` domain, without any training on the target domain. Subsequently, we will do linear probing and (then) finetuning of the pretrained model on the `train` part of the target data and will validate the forecasting performance on the `test` part of the target data.The `PatchTST` model was proposed in A Time Series is Worth [64 Words: Long-term Forecasting with Transformers](https://huggingface.co/papers/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam and presented at ICLR 2023. Quick overview of PatchTSTAt a high level, the model vectorizes individual time series in a batch into patches of a given size and encodes the resulting sequence of vectors via a Transformer that then outputs the prediction length forecast via an appropriate head.The model is based on two key components: 1. segmentation of time series into subseries-level patches which serve as input tokens to the Transformer; 2. channel-independence where each channel contains a single univariate time series that shares the same embedding and Transformer weights across all the series, i.e. a [global](https://doi.org/10.1016/j.ijforecast.2021.03.004) univariate model. The patching design naturally has three-fold benefit: - local semantic information is retained in the embedding; - computation and memory usage of the attention maps are quadratically reduced given the same look-back window via strides between patches; and - the model can attend longer history via a trade-off between the patch length (input vector size) and the context length (number of sequences). In addition, `PatchTST` has a modular design to seamlessly support masked time series pre-training as well as direct time series forecasting.| ||:--:||(a) `PatchTST` model overview where a batch of \\(M\\) time series each of length \\(L\\) are processed independently (by reshaping them into the batch dimension) via a Transformer backbone and then reshaping the resulting batch back into \\(M \\) series of prediction length \\(T\\). Each *univariate* series can be processed in a supervised fashion (b) where the patched set of vectors is used to output the full prediction length or in a self-supervised fashion (c) where masked patches are predicted. | InstallationThis demo requires Hugging Face [`Transformers`](https://github.com/huggingface/transformers) for the model, and the IBM `tsfm` package for auxiliary data pre-processing.We can install both by cloning the `tsfm` repository and following the below steps.1. Clone the public IBM Time Series Foundation Model Repository [`tsfm`](https://github.com/ibm/tsfm). ```bash pip install git+https://github.com/IBM/tsfm.git ```2. Install Hugging Face [`Transformers`](https://github.com/huggingface/transformersinstallation) ```bash pip install transformers ```3. Test it with the following commands in a `python` terminal. ```python from transformers import PatchTSTConfig from tsfm_public.toolkit.dataset import ForecastDFDataset ``` Part 1: Forecasting on the Electricity datasetHere we train a `PatchTST` model directly on the Electricity dataset (available from https://github.com/zhouhaoyi/Informer2020), and evaluate its performance.<jupyter_code># Standard import os # Third Party from transformers import ( EarlyStoppingCallback, PatchTSTConfig, PatchTSTForPrediction, set_seed, Trainer, TrainingArguments, ) import numpy as np import pandas as pd # First Party from tsfm_public.toolkit.dataset import ForecastDFDataset from tsfm_public.toolkit.time_series_preprocessor import TimeSeriesPreprocessor from tsfm_public.toolkit.util import select_by_index # supress some warnings import warnings warnings.filterwarnings("ignore", module="torch")<jupyter_output><empty_output><jupyter_text>Set seed<jupyter_code>set_seed(2023)<jupyter_output><empty_output><jupyter_text>Load and prepare datasets In the next cell, please adjust the following parameters to suit your application: - `dataset_path`: path to local .csv file, or web address to a csv file for the data of interest. Data is loaded with pandas, so anything supported by `pd.read_csv` is supported: (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html). - `timestamp_column`: column name containing timestamp information, use `None` if there is no such column. - `id_columns`: List of column names specifying the IDs of different time series. If no ID column exists, use `[]`. - `forecast_columns`: List of columns to be modeled - `context_length`: The amount of historical data used as input to the model. Windows of the input time series data with length equal to `context_length` will be extracted from the input dataframe. In the case of a multi-time series dataset, the context windows will be created so that they are contained within a single time series (i.e., a single ID). - `forecast_horizon`: Number of timestamps to forecast in the future. - `train_start_index`, `train_end_index`: the start and end indices in the loaded data which delineate the training data. - `valid_start_index`, `eval_end_index`: the start and end indices in the loaded data which delineate the validation data. - `test_start_index`, `eval_end_index`: the start and end indices in the loaded data which delineate the test data. - `patch_length`: The patch length for the `PatchTST` model. It is recommended to choose a value that evenly divides `context_length`. - `num_workers`: Number of CPU workers in the PyTorch dataloader. - `batch_size`: Batch size.The data is first loaded into a Pandas dataframe and split into training, validation, and test parts. Then the Pandas dataframes are converted to the appropriate PyTorch dataset required for training.<jupyter_code># The ECL data is available from https://github.com/zhouhaoyi/Informer2020?tab=readme-ov-file#data dataset_path = "~/data/ECL.csv" timestamp_column = "date" id_columns = [] context_length = 512 forecast_horizon = 96 patch_length = 16 num_workers = 16 # Reduce this if you have low number of CPU cores batch_size = 64 # Adjust according to GPU memory data = pd.read_csv( dataset_path, parse_dates=[timestamp_column], ) forecast_columns = list(data.columns[1:]) # get split num_train = int(len(data) * 0.7) num_test = int(len(data) * 0.2) num_valid = len(data) - num_train - num_test border1s = [ 0, num_train - context_length, len(data) - num_test - context_length, ] border2s = [num_train, num_train + num_valid, len(data)] train_start_index = border1s[0] # None indicates beginning of dataset train_end_index = border2s[0] # we shift the start of the evaluation period back by context length so that # the first evaluation timestamp is immediately following the training data valid_start_index = border1s[1] valid_end_index = border2s[1] test_start_index = border1s[2] test_end_index = border2s[2] train_data = select_by_index( data, id_columns=id_columns, start_index=train_start_index, end_index=train_end_index, ) valid_data = select_by_index( data, id_columns=id_columns, start_index=valid_start_index, end_index=valid_end_index, ) test_data = select_by_index( data, id_columns=id_columns, start_index=test_start_index, end_index=test_end_index, ) time_series_preprocessor = TimeSeriesPreprocessor( timestamp_column=timestamp_column, id_columns=id_columns, input_columns=forecast_columns, output_columns=forecast_columns, scaling=True, ) time_series_preprocessor = time_series_preprocessor.train(train_data) train_dataset = ForecastDFDataset( time_series_preprocessor.preprocess(train_data), id_columns=id_columns, timestamp_column="date", input_columns=forecast_columns, output_columns=forecast_columns, context_length=context_length, prediction_length=forecast_horizon, ) valid_dataset = ForecastDFDataset( time_series_preprocessor.preprocess(valid_data), id_columns=id_columns, timestamp_column="date", input_columns=forecast_columns, output_columns=forecast_columns, context_length=context_length, prediction_length=forecast_horizon, ) test_dataset = ForecastDFDataset( time_series_preprocessor.preprocess(test_data), id_columns=id_columns, timestamp_column="date", input_columns=forecast_columns, output_columns=forecast_columns, context_length=context_length, prediction_length=forecast_horizon, )<jupyter_output><empty_output><jupyter_text>Configure the PatchTST modelNext, we instantiate a randomly initialized `PatchTST` model with a configuration. The settings below control the different hyperparameters related to the architecture. - `num_input_channels`: the number of input channels (or dimensions) in the time series data. This is automatically set to the number for forecast columns. - `context_length`: As described above, the amount of historical data used as input to the model. - `patch_length`: The length of the patches extracted from the context window (of length `context_length`). - `patch_stride`: The stride used when extracting patches from the context window. - `random_mask_ratio`: The fraction of input patches that are completely masked for pretraining the model. - `d_model`: Dimension of the transformer layers. - `num_attention_heads`: The number of attention heads for each attention layer in the Transformer encoder. - `num_hidden_layers`: The number of encoder layers. - `ffn_dim`: Dimension of the intermediate (often referred to as feed-forward) layer in the encoder. - `dropout`: Dropout probability for all fully connected layers in the encoder. - `head_dropout`: Dropout probability used in the head of the model. - `pooling_type`: Pooling of the embedding. `"mean"`, `"max"` and `None` are supported. - `channel_attention`: Activate the channel attention block in the Transformer to allow channels to attend to each other. - `scaling`: Whether to scale the input targets via "mean" scaler, "std" scaler, or no scaler if `None`. If `True`, the scaler is set to `"mean"`. - `loss`: The loss function for the model corresponding to the `distribution_output` head. For parametric distributions it is the negative log-likelihood (`"nll"`) and for point estimates it is the mean squared error `"mse"`. - `pre_norm`: Normalization is applied before self-attention if pre_norm is set to `True`. Otherwise, normalization is applied after residual block. - `norm_type`: Normalization at each Transformer layer. Can be `"BatchNorm"` or `"LayerNorm"`.For full details on the parameters, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/patchtsttransformers.PatchTSTConfig).<jupyter_code>config = PatchTSTConfig( num_input_channels=len(forecast_columns), context_length=context_length, patch_length=patch_length, patch_stride=patch_length, prediction_length=forecast_horizon, random_mask_ratio=0.4, d_model=128, num_attention_heads=16, num_hidden_layers=3, ffn_dim=256, dropout=0.2, head_dropout=0.2, pooling_type=None, channel_attention=False, scaling="std", loss="mse", pre_norm=True, norm_type="batchnorm", ) model = PatchTSTForPrediction(config)<jupyter_output><empty_output><jupyter_text>Train modelNext, we can leverage the Hugging Face [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) class to train the model based on the direct forecasting strategy. We first define the [TrainingArguments](https://huggingface.co/docs/transformers/main_classes/trainertransformers.TrainingArguments) which lists various hyperparameters for training such as the number of epochs, learning rate and so on.<jupyter_code>training_args = TrainingArguments( output_dir="./checkpoint/patchtst/electricity/pretrain/output/", overwrite_output_dir=True, # learning_rate=0.001, num_train_epochs=100, do_eval=True, evaluation_strategy="epoch", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, dataloader_num_workers=num_workers, save_strategy="epoch", logging_strategy="epoch", save_total_limit=3, logging_dir="./checkpoint/patchtst/electricity/pretrain/logs/", # Make sure to specify a logging directory load_best_model_at_end=True, # Load the best model when training ends metric_for_best_model="eval_loss", # Metric to monitor for early stopping greater_is_better=False, # For loss label_names=["future_values"], ) # Create the early stopping callback early_stopping_callback = EarlyStoppingCallback( early_stopping_patience=10, # Number of epochs with no improvement after which to stop early_stopping_threshold=0.0001, # Minimum improvement required to consider as improvement ) # define trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=valid_dataset, callbacks=[early_stopping_callback], # compute_metrics=compute_metrics, ) # pretrain trainer.train()<jupyter_output>Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.<jupyter_text>Evaluate the model on the test set of the source domainNext, we can leverage `trainer.evaluate()` to calculate test metrics. While this is not the target metric to judge in this task, it provides a reasonable check that the pretrained model has trained properly.Note that the training and evaluation loss for `PatchTST` is the Mean Squared Error (MSE) loss. Hence, we do not separately compute the MSE metric in any of the following evaluation experiments.<jupyter_code>results = trainer.evaluate(test_dataset) print("Test result:") print(results)<jupyter_output><empty_output><jupyter_text>The MSE of `0.131` is very close to the value reported for the Electricity dataset in the original `PatchTST` paper. Save model<jupyter_code>save_dir = "patchtst/electricity/model/pretrain/" os.makedirs(save_dir, exist_ok=True) trainer.save_model(save_dir)<jupyter_output><empty_output><jupyter_text>Part 2: Transfer Learning from Electricity to ETTh1In this section, we will demonstrate the transfer learning capability of the `PatchTST` model.We use the model pre-trained on the Electricity dataset to do zero-shot forecasting on the ETTh1 dataset.By Transfer Learning, we mean that we first pretrain the model for a forecasting task on a `source` dataset (which we did above on the `Electricity` dataset). Then, we will use the pretrained model for zero-shot forecasting on a `target` dataset. By zero-shot, we mean that we test the performance in the `target` domain without any additional training. We hope that the model gained enough knowledge from pretraining which can be transferred to a different dataset. Subsequently, we will do linear probing and (then) finetuning of the pretrained model on the `train` split of the target data and will validate the forecasting performance on the `test` split of the target data. In this example, the source dataset is the `Electricity` dataset and the target dataset is ETTh1. Transfer learning on ETTh1 data. All evaluations are on the `test` part of the `ETTh1` data.Step 1: Directly evaluate the electricity-pretrained model. This is the zero-shot performance. Step 2: Evaluate after doing linear probing. Step 3: Evaluate after doing full finetuning. Load ETTh datasetBelow, we load the `ETTh1` dataset as a Pandas dataframe. Next, we create 3 splits for training, validation, and testing. We then leverage the `TimeSeriesPreprocessor` class to prepare each split for the model.<jupyter_code>dataset = "ETTh1" print(f"Loading target dataset: {dataset}") dataset_path = f"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/{dataset}.csv" timestamp_column = "date" id_columns = [] forecast_columns = ["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL", "OT"] train_start_index = None # None indicates beginning of dataset train_end_index = 12 * 30 * 24 # we shift the start of the evaluation period back by context length so that # the first evaluation timestamp is immediately following the training data valid_start_index = 12 * 30 * 24 - context_length valid_end_index = 12 * 30 * 24 + 4 * 30 * 24 test_start_index = 12 * 30 * 24 + 4 * 30 * 24 - context_length test_end_index = 12 * 30 * 24 + 8 * 30 * 24 data = pd.read_csv( dataset_path, parse_dates=[timestamp_column], ) train_data = select_by_index( data, id_columns=id_columns, start_index=train_start_index, end_index=train_end_index, ) valid_data = select_by_index( data, id_columns=id_columns, start_index=valid_start_index, end_index=valid_end_index, ) test_data = select_by_index( data, id_columns=id_columns, start_index=test_start_index, end_index=test_end_index, ) time_series_preprocessor = TimeSeriesPreprocessor( timestamp_column=timestamp_column, id_columns=id_columns, input_columns=forecast_columns, output_columns=forecast_columns, scaling=True, ) time_series_preprocessor = time_series_preprocessor.train(train_data) train_dataset = ForecastDFDataset( time_series_preprocessor.preprocess(train_data), id_columns=id_columns, input_columns=forecast_columns, output_columns=forecast_columns, context_length=context_length, prediction_length=forecast_horizon, ) valid_dataset = ForecastDFDataset( time_series_preprocessor.preprocess(valid_data), id_columns=id_columns, input_columns=forecast_columns, output_columns=forecast_columns, context_length=context_length, prediction_length=forecast_horizon, ) test_dataset = ForecastDFDataset( time_series_preprocessor.preprocess(test_data), id_columns=id_columns, input_columns=forecast_columns, output_columns=forecast_columns, context_length=context_length, prediction_length=forecast_horizon, )<jupyter_output><empty_output><jupyter_text>Zero-shot forecasting on ETTHAs we are going to test forecasting performance out-of-the-box, we load the model which we pretrained above.<jupyter_code>finetune_forecast_model = PatchTSTForPrediction.from_pretrained( "patchtst/electricity/model/pretrain/", num_input_channels=len(forecast_columns), head_dropout=0.7, ) finetune_forecast_args = TrainingArguments( output_dir="./checkpoint/patchtst/transfer/finetune/output/", overwrite_output_dir=True, learning_rate=0.0001, num_train_epochs=100, do_eval=True, evaluation_strategy="epoch", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, dataloader_num_workers=num_workers, report_to="tensorboard", save_strategy="epoch", logging_strategy="epoch", save_total_limit=3, logging_dir="./checkpoint/patchtst/transfer/finetune/logs/", # Make sure to specify a logging directory load_best_model_at_end=True, # Load the best model when training ends metric_for_best_model="eval_loss", # Metric to monitor for early stopping greater_is_better=False, # For loss label_names=["future_values"], ) # Create a new early stopping callback with faster convergence properties early_stopping_callback = EarlyStoppingCallback( early_stopping_patience=10, # Number of epochs with no improvement after which to stop early_stopping_threshold=0.001, # Minimum improvement required to consider as improvement ) finetune_forecast_trainer = Trainer( model=finetune_forecast_model, args=finetune_forecast_args, train_dataset=train_dataset, eval_dataset=valid_dataset, callbacks=[early_stopping_callback], ) print("\n\nDoing zero-shot forecasting on target data") result = finetune_forecast_trainer.evaluate(test_dataset) print("Target data zero-shot forecasting result:") print(result)<jupyter_output>Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.<jupyter_text>As can be seen, with a zero-shot forecasting approach we obtain an MSE of 0.370 which is near to the state-of-the-art result in the original `PatchTST` paper.Next, let's see how we can do by performing linear probing, which involves training a linear layer on top of a frozen pre-trained model. Linear probing is often done to test the performance of features of a pretrained model. Linear probing on ETTh1We can do a quick linear probing on the `train` part of the target data to see any possible `test` performance improvement.<jupyter_code># Freeze the backbone of the model for param in finetune_forecast_trainer.model.model.parameters(): param.requires_grad = False print("\n\nLinear probing on the target data") finetune_forecast_trainer.train() print("Evaluating") result = finetune_forecast_trainer.evaluate(test_dataset) print("Target data head/linear probing result:") print(result)<jupyter_output>Linear probing on the target data<jupyter_text>As can be seen, by only training a simple linear layer on top of the frozen backbone, the MSE decreased from 0.370 to 0.357, beating the originally reported results!<jupyter_code>save_dir = f"patchtst/electricity/model/transfer/{dataset}/model/linear_probe/" os.makedirs(save_dir, exist_ok=True) finetune_forecast_trainer.save_model(save_dir) save_dir = f"patchtst/electricity/model/transfer/{dataset}/preprocessor/" os.makedirs(save_dir, exist_ok=True) time_series_preprocessor.save_pretrained(save_dir)<jupyter_output><empty_output><jupyter_text>Finally, let's see if we can get additional improvements by doing a full fine-tune of the model. Full fine-tune on ETTh1We can do a full model fine-tune (instead of probing the last linear layer as shown above) on the `train` part of the target data to see a possible `test` performance improvement. The code looks similar to the linear probing task above, except that we are not freezing any parameters.<jupyter_code># Reload the model finetune_forecast_model = PatchTSTForPrediction.from_pretrained( "patchtst/electricity/model/pretrain/", num_input_channels=len(forecast_columns), dropout=0.7, head_dropout=0.7, ) finetune_forecast_trainer = Trainer( model=finetune_forecast_model, args=finetune_forecast_args, train_dataset=train_dataset, eval_dataset=valid_dataset, callbacks=[early_stopping_callback], ) print("\n\nFinetuning on the target data") finetune_forecast_trainer.train() print("Evaluating") result = finetune_forecast_trainer.evaluate(test_dataset) print("Target data full finetune result:") print(result)<jupyter_output>Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.<jupyter_text>In this case, there is only a small improvement on the ETTh1 dataset with full fine-tuning. For other datasets there may be more substantial improvements. Let's save the model anyway.<jupyter_code>save_dir = f"patchtst/electricity/model/transfer/{dataset}/model/fine_tuning/" os.makedirs(save_dir, exist_ok=True) finetune_forecast_trainer.save_model(save_dir)<jupyter_output><empty_output>
notebooks/examples/patch_tst.ipynb/0
{ "file_path": "notebooks/examples/patch_tst.ipynb", "repo_id": "notebooks", "token_count": 7448 }
171
<jupyter_start><jupyter_text>Fine-tuning a 🤗 Transformers model on TPU with **Flax/JAX** In this notebook, we will see how to fine-tune one of the [🤗 Transformers](https://github.com/huggingface/transformers) models on TPU using [**Flax**](https://flax.readthedocs.io/en/latest/index.html). As can be seen on [this benchmark](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classificationruntime-evaluation) using Flax/JAX on GPU/TPU is often much faster and can also be considerably cheaper than using PyTorch on GPU/TPU.[**Flax**](https://flax.readthedocs.io/en/latest/index.html) is a high-performance neural network library designed for flexibility built on top of JAX (see below). It aims to provide users with full control of their training code and is carefully designed to work well with JAX transformations such as `grad` and `pmap` (see the [Flax philosophy](https://flax.readthedocs.io/en/latest/philosophy.html)). For an introduction to Flax see the [Flax Basic Colab](https://flax.readthedocs.io/en/latest/notebooks/flax_basics.html) or the list of curated [Flax examples](https://flax.readthedocs.io/en/latest/examples.html).[**JAX**](https://jax.readthedocs.io/en/latest/index.html) is Autograd and XLA, brought together for high-performance numerical computing and machine learning research. It provides composable transformations of Python+NumPy programs: differentiate, vectorize, parallelize, Just-In-Time compile to GPU/TPU, and more. A great place for getting started with JAX is the [JAX 101 Tutorial](https://jax.readthedocs.io/en/latest/jax-101/index.html). If you're opening this Notebook on colab, you will probably need to install 🤗 Transformers and 🤗 Datasets as well as [Flax](https://github.com/google/flax.git) and [Optax](https://github.com/deepmind/optax). Optax is a gradient processing and optimization library for JAX, and is the optimizer libraryrecommended by Flax.<jupyter_code>%%capture !pip install datasets !pip install git+https://github.com/huggingface/transformers.git !pip install flax !pip install git+https://github.com/deepmind/optax.git<jupyter_output><empty_output><jupyter_text>You also will need to set up the TPU for JAX in this notebook. This can be done by executing the following lines.<jupyter_code>import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu()<jupyter_output><empty_output><jupyter_text>If everything is set up correctly, the following command should return a list of 8 TPU devices.<jupyter_code>jax.local_devices()<jupyter_output><empty_output><jupyter_text>If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries.You can find a script version of this notebook to fine-tune your model [here](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification). As an example, we will fine-tune a pretrained [*auto-encoding model*](https://huggingface.co/transformers/model_summary.htmlautoencoding-models) on a text classification task of the [GLUE Benchmark](https://gluebenchmark.com/). Note that this notebook does not focus so much on data preprocessing, but rather on how to write a training and evaluation loop in **JAX/Flax**. If you want more detailed explanations regarding the data preprocessing, please check out [this](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynbscrollTo=545PP3o8IrJV) notebook.The GLUE Benchmark is a group of nine classification tasks on sentences or pairs of sentences which are:[CoLA](https://nyu-mll.github.io/CoLA/), [MNLI](https://arxiv.org/abs/1704.05426), [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398), [QNLI](https://rajpurkar.github.io/SQuAD-explorer/), [QQP](https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs), [RTE](https://aclweb.org/aclwiki/Recognizing_Textual_Entailment), [SST-2](https://nlp.stanford.edu/sentiment/index.html), [STS-B](http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark), [WNLI](https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html).We will see how to easily load the dataset for each one of those tasks and how to write a training loop in Flax. Each task is named by its acronym, with `mnli-mm` standing for the mismatched version of MNLI (so same training set as `mnli` but different validation and test sets):<jupyter_code>GLUE_TASKS = ["cola", "mnli", "mnli-mm", "mrpc", "qnli", "qqp", "rte", "sst2", "stsb", "wnli"]<jupyter_output><empty_output><jupyter_text>This notebook is built to run on any of the tasks in the list above, with any Flax/JAX model checkpoint from the [Model Hub](https://huggingface.co/models) as long as that model has a version with a classification head. Depending on the model you are using, you might need to adjust the batch size to avoid out-of-memory errors. Set those three parameters, then the rest of the notebook should run smoothly:<jupyter_code>task = "cola" model_checkpoint = "bert-base-cased" per_device_batch_size = 4<jupyter_output><empty_output><jupyter_text>We also quickly upload some telemetry - this tells us which examples and software versions are getting used so we know where to prioritize our maintenance efforts. We don't collect (or care about) any personally identifiable information, but if you'd prefer not to be counted, feel free to skip this step or delete this cell entirely.<jupyter_code>from transformers.utils import send_example_telemetry send_example_telemetry("text_classification_notebook", framework="flax")<jupyter_output><empty_output><jupyter_text>Loading the dataset We will use the [🤗 Datasets](https://github.com/huggingface/datasets) library to download the data and get the metric we need to use for evaluation (to compare our model to the benchmark). This can be easily done with the functions `load_dataset` and `load_metric`.<jupyter_code>from datasets import load_dataset, load_metric<jupyter_output><empty_output><jupyter_text>Apart from `mnli-mm` being a special code, we can directly pass our task name to those functions. `load_dataset` will cache the dataset to avoid downloading it again the next time you run this cell.<jupyter_code>actual_task = "mnli" if task == "mnli-mm" else task is_regression = task == "stsb" raw_dataset = load_dataset("glue", actual_task) metric = load_metric('glue', actual_task)<jupyter_output>/tmp/ipykernel_253934/2906828129.py:5: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate metric = load_metric('glue', actual_task)<jupyter_text>Preprocessing the data Before we can feed those texts to our model, we need to preprocess them. This is done by a 🤗 Transformers `Tokenizer` which will (as the name indicates) tokenize the inputs. This includes converting the tokens to their corresponding IDs in the pretrained vocabulary and putting them in a format the model expects, as well as generate the other inputs that the model requires.To do all of this, we instantiate our tokenizer with the `AutoTokenizer.from_pretrained` method, which will ensure:- we get a tokenizer that corresponds to the model architecture we want to use,- we download the vocabulary used when pretraining this specific checkpoint.That vocabulary will be cached, so it's not downloaded again the next time we run the cell.<jupyter_code>from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)<jupyter_output><empty_output><jupyter_text>To preprocess our dataset, we will thus need the names of the columns containing the sentence(s). The following dictionary keeps track of the correspondence task to column names:<jupyter_code>task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mnli-mm": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), }<jupyter_output><empty_output><jupyter_text>We can then write the function that will preprocess our samples. We just feed them to the `tokenizer` with the argument `truncation=True`. This will ensure that an input longer than what the model can handle will be truncated to the maximum length accepted by the model.<jupyter_code>sentence1_key, sentence2_key = task_to_keys[task] def preprocess_function(examples): texts = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) processed = tokenizer(*texts, padding="max_length", max_length=128, truncation=True) processed["labels"] = examples["label"] return processed<jupyter_output><empty_output><jupyter_text>To apply this function to all the sentences (or pairs of sentences) in our dataset, we just use the `map` method of our dataset object we created earlier. This will apply the function on all the elements of all the splits in the dataset, so our training, validation, and testing data will be preprocessed in one single command.<jupyter_code>tokenized_dataset = raw_dataset.map(preprocess_function, batched=True, remove_columns=raw_dataset["train"].column_names)<jupyter_output><empty_output><jupyter_text>As a final step, we split the dataset into the *train* and *validation* dataset and give each set more explicit names.<jupyter_code>train_dataset = tokenized_dataset["train"] eval_dataset = tokenized_dataset["validation"]<jupyter_output><empty_output><jupyter_text>Fine-tuning the model Now that our data is ready, we can download the pretrained model and fine-tune it. Since all our tasks are about sentence classification, we use the `FlaxAutoModelForSequenceClassification` class. Like with the tokenizer, the `from_pretrained` method will download and cache the model for us. All weight parameters that are not found in the pretrained model weights will be randomly initialized upon instantiating the model class. Because the GLUE task contains relatively small training datasets, a different seed for weight initialization might very well lead to significantly different results. For reproducibility, we set the random seed to *0* in this notebook.The only thing we have to specify in the config is the number of labels for our problem (which is always 2, except for STS-B which is a regression problem, and MNLI where we have 3 labels):<jupyter_code>from transformers import FlaxAutoModelForSequenceClassification, AutoConfig num_labels = 3 if task.startswith("mnli") else 1 if task=="stsb" else 2 seed = 0 config = AutoConfig.from_pretrained(model_checkpoint, num_labels=num_labels) model = FlaxAutoModelForSequenceClassification.from_pretrained(model_checkpoint, config=config, seed=seed)<jupyter_output>Some weights of the model checkpoint at bert-base-cased were not used when initializing FlaxBertForSequenceClassification: {('cls', 'predictions', 'transform', 'dense', 'bias'), ('cls', 'predictions', 'transform', 'LayerNorm', 'bias'), ('cls', 'predictions', 'bias'), ('cls', 'predictions', 'transform', 'dense', 'kernel'), ('cls', 'predictions', 'transform', 'LayerNorm', 'scale')} - This IS expected if you are initializing FlaxBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing FlaxBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of FlaxBertForSequenceClassification were not initialized from the model checkpoint at bert-base-cased [...]<jupyter_text>The warning is telling us we are throwing away some weights (the `vocab_transform` and `vocab_layer_norm` layers) and randomly initializing some others (the `pre_classifier` and `classifier` layers). This is normal in this case because we are removing the head used to pretrain the model on a masked language modeling objective and replacing it with a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do. To write a full training and evaluation loop in Flax, we will need to import a couple of packages.<jupyter_code>import flax import jax import optax from itertools import chain from tqdm.notebook import tqdm from typing import Callable import jax.numpy as jnp from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key from flax.training import train_state<jupyter_output><empty_output><jupyter_text>For all GLUE tasks except `"wnli"` and `"mrpc"`, it is usually sufficient to train for just 3 epochs. `"wnli"` and `"mrpc"` are so small that we recommend training on 5 epochs. We use a learning rate of *0.00002*.<jupyter_code>num_train_epochs = 3 if task not in ["mrpc", "wnli"] else 5 learning_rate = 2e-5<jupyter_output><empty_output><jupyter_text>We've already set the batch size per device, but are now interested in the effective total batch_size:<jupyter_code>total_batch_size = per_device_batch_size * jax.local_device_count() print("The overall batch size (both for training and eval) is", total_batch_size)<jupyter_output>The overall batch size (both for training and eval) is 32<jupyter_text>Next, we define the learning rate schedule. A simple and effective learning rate schedule is the linear decay with warmup (click [here](https://huggingface.co/transformers/main_classes/optimizer_schedules.htmltransformers.get_linear_schedule_with_warmup) for more information). Since GLUE datasets are rather small and therefore have few training steps, we set the number of warmup steps simply to 0. The schedule is then fully defined by the number of training steps and the learning rate.It is recommended to use the [**optax**](https://github.com/deepmind/optax) library for training utilities, *e.g.* learning rate schedules and optimizers.<jupyter_code>num_train_steps = len(train_dataset) // total_batch_size * num_train_epochs learning_rate_function = optax.linear_schedule(init_value=learning_rate, end_value=0, transition_steps=num_train_steps)<jupyter_output><empty_output><jupyter_text>Defining the training state Next, we will create the *training state* that includes the optimizer, the loss function, and is responsible for updating the model's parameters during training.Most JAX transformations (notably [jax.jit](https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html)) require functions that are transformed to have no side-effects. This is because any such side-effects will only be executed once, when the Python version of the function is run during compilation (see [Stateful Computations in JAX](https://jax.readthedocs.io/en/latest/jax-101/07-state.html)). As a consequence, Flax models (which can be transformed by JAX transformations) are **immutable**, and the state of the model (i.e., its weight parameters) are stored *outside* of the model instance.Models are initialized and updated in a purely functional way: you pass the state to the model when calling it, and the model returns the new (possibly modified) state, leaving the model instance itself unchanged.Flax provides a convenience class [`flax.training.train_state.TrainState`](https://github.com/google/flax/blob/9da95cdd12591f42d2cd4c17089861bff7e43cc5/flax/training/train_state.pyL22), which stores things such as the model parameters, the loss function, the optimizer, and exposes an `apply_gradients` function to update the model's weight parameters.Alright, let's begin by defining our *training state* class. We create a derived `TrainState` class that additionally stores the model's forward pass as `eval_function` as well as a `loss_function`.<jupyter_code>class TrainState(train_state.TrainState): logits_function: Callable = flax.struct.field(pytree_node=False) loss_function: Callable = flax.struct.field(pytree_node=False)<jupyter_output><empty_output><jupyter_text>We will be using the standard Adam optimizer with weight decay. For more information on AdamW (Adam + weight decay), one can take a look at [this](https://www.fast.ai/2018/07/02/adam-weight-decay/) blog post.AdamW can easily be imported from [optax](https://github.com/deepmind/optax): Regularizing the *bias* and/or *LayerNorm* has not shown to improve performance and can even be disadvantageous, which is why we disable it here. For more information on this, please check out the following [blog post](https://medium.com/@shrutijadon10104776/why-we-dont-use-bias-in-regularization-5a86905dfcd6) or [paper](https://arxiv.org/abs/1711.05101).Hence we create a `decay_mask_fn` which makes sure that weight decay is not applied to any *bias* or *LayerNorm* weights. This can easily be done by passing a `mask_fn` to `optax.adamw`.<jupyter_code>from flax import traverse_util def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) import optax def adamw(weight_decay): return optax.adamw(learning_rate=learning_rate_function, b1=0.9, b2=0.999, eps=1e-6, weight_decay=weight_decay, mask=decay_mask_fn)<jupyter_output><empty_output><jupyter_text>Now we also need to define the evaluation and loss function given the model's output logits. For regression tasks, the evaluation function simply takes the first logit element and the mean-square error (mse) loss is used. For classification tasks, the evaluation function uses the `argmax` of the logits, and the cross-entropy loss with `num_labels` is used.<jupyter_code>def loss_function(logits, labels): if is_regression: return jnp.mean((logits[..., 0] - labels) ** 2) xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels)) return jnp.mean(xentropy) def eval_function(logits): return logits[..., 0] if is_regression else logits.argmax(-1)<jupyter_output><empty_output><jupyter_text>Finally, we put the pieces together to instantiate a `TrainState`.<jupyter_code>state = TrainState.create( apply_fn=model.__call__, params=model.params, tx=adamw(weight_decay=0.01), logits_function=eval_function, loss_function=loss_function, )<jupyter_output><empty_output><jupyter_text>Defining the training and evaluation stepDuring fine-tuning, we want to update the model parameters and evaluate the performance after each epoch. Let's write the functions `train_step` and `eval_step` accordingly. During training the weight parameters should be updated as follows:1. Define a loss function `loss_function` that first runs a forward pass of the model given data input. Remember that Flax models are immutable, and we explicitly pass it the state (in this case the model parameters and the RNG). `loss_function` returns a scalar loss (using the previously defined `state.loss_function`) between the model output and input targets.2. Differentiate this loss function using [`jax.value_and_grad`](https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.htmlevaluate-a-function-and-its-gradient-using-value-and-grad). This is a JAX transformation called [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), which computes the gradient of `loss_function` given the input to the function (i.e., the parameters of the model), and returns the value and the gradient in a pair `(loss, gradients)`.3. Compute the mean gradient over all devices using the collective operation [lax.pmean](https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.pmean.html). As we will see below, each device runs `train_step` on a different batch of data, but by taking the mean here we ensure the model parameters are the same on all devices.4. Use `state.apply_gradients`, which applies the gradients to the weights.Below, you can see how each of the described steps above is put into practice.<jupyter_code>def train_step(state, batch, dropout_rng): targets = batch.pop("labels") dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) def loss_function(params): logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss = state.loss_function(logits, targets) return loss grad_function = jax.value_and_grad(loss_function) loss, grad = grad_function(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_function(state.step)}, axis_name="batch") return new_state, metrics, new_dropout_rng<jupyter_output><empty_output><jupyter_text>Now, we want to do parallelized training over all TPU devices. To do so, we use [`jax.pmap`](https://jax.readthedocs.io/en/latest/jax.html?highlight=pmapparallelization-pmap). This will compile the function once and run the same program on each device (it is an [SPMD program](https://en.wikipedia.org/wiki/SPMD)). When calling this pmapped function, all inputs (`"state"`, `"batch"`, `"dropout_rng"`) should be replicated for all devices, which means that the first axis of each argument is used to map over all TPU devices.The argument `donate_argnums` is used to tell JAX that the first argument `"state"` is "donated" to the computation, because it is not needed anymore afterwards. XLA can make use of donated buffers to reduce the memory needed.<jupyter_code>parallel_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))<jupyter_output><empty_output><jupyter_text>Similarly, we can now define the evaluation step. Here, the function is much easier as it simply needs to stack the model's forward pass with the previously defined `eval_function` (or `logits_function`).<jupyter_code>def eval_step(state, batch): logits = state.apply_fn(**batch, params=state.params, train=False)[0] return state.logits_function(logits)<jupyter_output><empty_output><jupyter_text>We then also apply `jax.pmap` to the evaluation step.<jupyter_code>parallel_eval_step = jax.pmap(eval_step, axis_name="batch")<jupyter_output><empty_output><jupyter_text>Defining the data collatorsIn a final step before we can start training, we need to define the data collators. The data collator is important to shuffle the training data before each epoch and to prepare the batch for each training and evaluation step.Let's start with the training collator. The training collator can be defined as a [Python generator](https://wiki.python.org/moin/Generators) that returns a batch model input every time it is called.First, a random permutation of the whole dataset is defined. Then, every time the training data collator is called the next batch of the randomized dataset is extracted, converted to a JAX array and sharded over all local TPU devices.<jupyter_code>def glue_train_data_loader(rng, dataset, batch_size): steps_per_epoch = len(dataset) // batch_size perms = jax.random.permutation(rng, len(dataset)) perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch. perms = perms.reshape((steps_per_epoch, batch_size)) for perm in perms: batch = dataset[perm] batch = {k: jnp.array(v) for k, v in batch.items()} batch = shard(batch) yield batch<jupyter_output><empty_output><jupyter_text>We define the eval data collator in a similar fashion. **Note**:For simplicity, we throw away the last incomplete batch since it can't be easily sharded over all devices. This means that the evaluation results might be slightly incorrect. It can be easily fixed by including [this](https://github.com/huggingface/transformers/blob/f063c56d942737d2c7aac93895cd8310afd9c7a4/examples/flax/text-classification/run_flax_glue.pyL491) part in the training loop after evaluation.<jupyter_code>def glue_eval_data_loader(dataset, batch_size): for i in range(len(dataset) // batch_size): batch = dataset[i * batch_size : (i + 1) * batch_size] batch = {k: jnp.array(v) for k, v in batch.items()} batch = shard(batch) yield batch<jupyter_output><empty_output><jupyter_text>Next, we replicate/copy the weight parameters on each device, so that we can pass them to our pmapped functions.<jupyter_code>state = flax.jax_utils.replicate(state)<jupyter_output><empty_output><jupyter_text>TrainingFinally, we can write down the full training loop. Let's start by generating a seeded `PRNGKey` for the dropout layers and dataset shuffling.<jupyter_code>rng = jax.random.PRNGKey(seed) dropout_rngs = jax.random.split(rng, jax.local_device_count())<jupyter_output><empty_output><jupyter_text>Now we define the full training loop. For each batch in each epoch, we run a training step. Here, we also need to make sure that the PRNGKey is sharded/split over each device. Having completed an epoch, we report the training metrics and can run the evaluation.<jupyter_code>for i, epoch in enumerate(tqdm(range(1, num_train_epochs + 1), desc=f"Epoch ...", position=0, leave=True)): rng, input_rng = jax.random.split(rng) # train with tqdm(total=len(train_dataset) // total_batch_size, desc="Training...", leave=False) as progress_bar_train: for batch in glue_train_data_loader(input_rng, train_dataset, total_batch_size): state, train_metrics, dropout_rngs = parallel_train_step(state, batch, dropout_rngs) progress_bar_train.update(1) # evaluate with tqdm(total=len(eval_dataset) // total_batch_size, desc="Evaluating...", leave=False) as progress_bar_eval: for batch in glue_eval_data_loader(eval_dataset, total_batch_size): labels = batch.pop("labels") predictions = parallel_eval_step(state, batch) metric.add_batch(predictions=chain(*predictions), references=chain(*labels)) progress_bar_eval.update(1) eval_metric = metric.compute() loss = round(flax.jax_utils.unreplicate(train_metrics)['loss'].item(), 3) eval_score = round(list(eval_metric.values())[0], 3) metric_name = list(eval_metric.keys())[0] print(f"{i+1}/{num_train_epochs} | Train loss: {loss} | Eval {metric_name}: {eval_score}")<jupyter_output><empty_output><jupyter_text>To see how your model fared you can compare it to the [GLUE Benchmark leaderboard](https://gluebenchmark.com/leaderboard). Sharing fine-tuned modelNow that you've succesfully trained a model, you can share it with the community by uploading the fine-tuned model checkpoint and tokenizer to your account on the [hub](https://huggingface.co/models).If you don't have an account yet, you can click [here](https://huggingface.co/join) join the community 🤗. In a first step, we install [git-lfs](https://git-lfs.github.com/) to easily upload the model weights.<jupyter_code>%%capture !sudo apt-get install software-properties-common !sudo curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash !sudo apt-get install git-lfs !git lfs install<jupyter_output><empty_output><jupyter_text>Next, we you will need to store your git credentials so that `git` knows who is uploading the files. You should replace the fields `` and `` with your credentials accordingly.<jupyter_code>!git config --global user.email "<your-email-address>" # e.g. "[email protected]" !git config --global user.name "<your-name>" # e.g. "Patrick von Platen"<jupyter_output><empty_output><jupyter_text>You will need to pass your user authentification token `hf_auth_token` to allow the 🤗 hub to upload model weights under your username. To find your authentification token, you need to log in [here](https://huggingface.co/login), click on your icon (top right), go to *Settings*, then *API Tokens*. You can copy the *User API token* and replace it with the field `` below.<jupyter_code>hf_auth_token = "<your-auth-token>" # e.g. api_DaYgaaVnGdRtznIgiNfotCHFUqmOdARmPx<jupyter_output><empty_output><jupyter_text>Finally, you can give your fine-tuned model a nice `model_id` or leave the default one as noted below. The model will be uploaded under `https://huggingface.co//`, *e.g.*<jupyter_code>model_id = f"{model_checkpoint}_fine_tuned_glue_{task}"<jupyter_output><empty_output><jupyter_text>Great! Now all that is left to do is to upload your model:<jupyter_code>model.push_to_hub(model_id, use_auth_token=hf_auth_token) tokenizer.push_to_hub(model_id, use_auth_token=hf_auth_token)<jupyter_output><empty_output><jupyter_text>You can now go to your model page to check it out 😊.We strongly recommend to add a model card so that the community can actually make use of your fine-tuned model. You can do so by clicking on *Create Model Card* and adding a descriptive text in markdown format. A simple description for your fine-tuned model is given by running the following cell. You can simply copy-paste the output to be used as your model card `README.md`.<jupyter_code>print(f"""--- language: en license: apache-2.0 datasets: - glue --- # {" ".join([x.capitalize() for x in model_id.split("_")])} This checkpoint was initialized from the pre-trained checkpoint {model_checkpoint} and subsequently fine-tuned on GLUE task: {task} using [this](https://colab.research.google.com/drive/162pW3wonGcMMrGxmA-jdxwy1rhqXd90x?usp=sharing) notebook. Training was conducted for {num_train_epochs} epochs, using a linear decaying learning rate of {learning_rate}, and a total batch size of {total_batch_size}. The model has a final training loss of {loss} and a {metric_name} of {eval_score}. """)<jupyter_output><empty_output>
notebooks/examples/text_classification_flax.ipynb/0
{ "file_path": "notebooks/examples/text_classification_flax.ipynb", "repo_id": "notebooks", "token_count": 9221 }
172
<jupyter_start><jupyter_text>Huggingface Sagemaker-sdk - Distributed Training Demo Distributed Summarization with `transformers` scripts + `Trainer` and `samsum` dataset 1. [Tutorial](Tutorial) 2. [Set up a development environment and install sagemaker](Set-up-a-development-environment-and-install-sagemaker) 1. [Installation](Installation) 2. [Development environment](Development-environment) 3. [Permissions](Permissions) 4. [Choose 🤗 Transformers `examples/` script](Choose-%F0%9F%A4%97-Transformers-examples/-script) 1. [Configure distributed training and hyperparameters](Configure-distributed-training-and-hyperparameters) 2. [Create a `HuggingFace` estimator and start training](Create-a-HuggingFace-estimator-and-start-training) 3. [Upload the fine-tuned model to huggingface.co](Upload-the-fine-tuned-model-to-huggingface.co) TutorialWe will use the new [Hugging Face DLCs](https://github.com/aws/deep-learning-containers/tree/master/huggingface) and [Amazon SageMaker extension](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/sagemaker.huggingface.htmlhuggingface-estimator) to train a distributed Seq2Seq-transformer model on `summarization` using the `transformers` and `datasets` libraries and upload it afterwards to [huggingface.co](http://huggingface.co) and test it.As [distributed training strategy](https://huggingface.co/transformers/sagemaker.htmldistributed-training-data-parallel) we are going to use [SageMaker Data Parallelism](https://aws.amazon.com/blogs/aws/managed-data-parallelism-in-amazon-sagemaker-simplifies-training-on-large-datasets/), which has been built into the [Trainer](https://huggingface.co/transformers/main_classes/trainer.html) API. To use data-parallelism we only have to define the `distribution` parameter in our `HuggingFace` estimator.```python configuration for running training on smdistributed Data Paralleldistribution = {'smdistributed':{'dataparallel':{ 'enabled': True }}}```In this tutorial, we will use an Amazon SageMaker Notebook Instance for running our training job. You can learn [here how to set up a Notebook Instance](https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html).**What are we going to do:**- Set up a development environment and install sagemaker- Chose 🤗 Transformers `examples/` script- Configure distributed training and hyperparameters- Create a `HuggingFace` estimator and start training- Upload the fine-tuned model to [huggingface.co](http://huggingface.co)- Test inference Model and DatasetWe are going to fine-tune [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the [samsum](https://huggingface.co/datasets/samsum) dataset. *"BART is sequence-to-sequence model trained with denoising as pretraining objective."* [[REF](https://github.com/pytorch/fairseq/blob/master/examples/bart/README.md)]The `samsum` dataset contains about 16k messenger-like conversations with summaries. ```python{'id': '13818513', 'summary': 'Amanda baked cookies and will bring Jerry some tomorrow.', 'dialogue': "Amanda: I baked cookies. Do you want some?\r\nJerry: Sure!\r\nAmanda: I'll bring you tomorrow :-)"}```_**NOTE: You can run this demo in Sagemaker Studio, your local machine or Sagemaker Notebook Instances**_ Set up a development environment and install sagemaker Installation_**Note:** The use of Jupyter is optional: We could also launch SageMaker Training jobs from anywhere we have an SDK installed, connectivity to the cloud and appropriate permissions, such as a Laptop, another IDE or a task scheduler like Airflow or AWS Step Functions._<jupyter_code>!pip install "sagemaker>=2.48.0" --upgrade #!apt install git-lfs !curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.rpm.sh | sudo bash !sudo yum install git-lfs -y !git lfs install<jupyter_output><empty_output><jupyter_text>Development environment<jupyter_code>import sagemaker.huggingface<jupyter_output><empty_output><jupyter_text>Permissions _If you are going to use Sagemaker in a local environment. You need access to an IAM Role with the required permissions for Sagemaker. You can find [here](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html) more about it._<jupyter_code>import sagemaker import boto3 sess = sagemaker.Session() # sagemaker session bucket -> used for uploading data, models and logs # sagemaker will automatically create this bucket if it not exists sagemaker_session_bucket=None if sagemaker_session_bucket is None and sess is not None: # set to default bucket if a bucket name is not given sagemaker_session_bucket = sess.default_bucket() try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] sess = sagemaker.Session(default_bucket=sagemaker_session_bucket) print(f"sagemaker role arn: {role}") print(f"sagemaker bucket: {sess.default_bucket()}") print(f"sagemaker session region: {sess.boto_region_name}")<jupyter_output><empty_output><jupyter_text>Choose 🤗 Transformers `examples/` scriptThe [🤗 Transformers repository](https://github.com/huggingface/transformers/tree/master/examples) contains several `examples/`scripts for fine-tuning models on tasks from `language-modeling` to `token-classification`. In our case, we are using the `run_summarization.py` from the `seq2seq/` examples. _**Note**: you can use this tutorial identical to train your model on a different examples script._Since the `HuggingFace` Estimator has git support built-in, we can specify a [training script that is stored in a GitHub repository](https://sagemaker.readthedocs.io/en/stable/overview.htmluse-scripts-stored-in-a-git-repository) as `entry_point` and `source_dir`.We are going to use the `transformers 4.4.2` DLC which means we need to configure the `v4.4.2` as the branch to pull the compatible example scripts.<jupyter_code>git_config = {'repo': 'https://github.com/huggingface/transformers.git','branch': 'v4.26.0'} # v4.6.1 is referring to the `transformers_version` you use in the estimator.<jupyter_output><empty_output><jupyter_text>Configure distributed training and hyperparametersNext, we will define our `hyperparameters` and configure our distributed training strategy. As hyperparameter, we can define any [Seq2SeqTrainingArguments](https://huggingface.co/transformers/main_classes/trainer.htmlseq2seqtrainingarguments) and the ones defined in [run_summarization.py](https://github.com/huggingface/transformers/tree/master/examples/seq2seqsequence-to-sequence-training-and-evaluation).<jupyter_code># hyperparameters, which are passed into the training job hyperparameters={'per_device_train_batch_size': 4, 'per_device_eval_batch_size': 4, 'model_name_or_path': 'facebook/bart-large-cnn', 'dataset_name': 'samsum', 'do_train': True, 'do_eval': True, 'do_predict': True, 'predict_with_generate': True, 'output_dir': '/opt/ml/model', 'num_train_epochs': 3, 'learning_rate': 5e-5, 'seed': 7, 'fp16': True, } # configuration for running training on smdistributed Data Parallel distribution = {'smdistributed':{'dataparallel':{ 'enabled': True }}}<jupyter_output><empty_output><jupyter_text>Create a `HuggingFace` estimator and start training<jupyter_code>from sagemaker.huggingface import HuggingFace # create the Estimator huggingface_estimator = HuggingFace( entry_point='run_summarization.py', # script source_dir='./examples/pytorch/summarization', # relative path to example git_config=git_config, instance_type='ml.p3dn.24xlarge', instance_count=2, transformers_version='4.26.0', pytorch_version='1.13.1', py_version='py39', role=role, hyperparameters = hyperparameters, distribution = distribution ) # starting the train job huggingface_estimator.fit()<jupyter_output><empty_output><jupyter_text>Deploying the endpointTo deploy our endpoint, we call `deploy()` on our HuggingFace estimator object, passing in our desired number of instances and instance type.<jupyter_code>predictor = huggingface_estimator.deploy(1,"ml.g4dn.xlarge")<jupyter_output><empty_output><jupyter_text>Then, we use the returned predictor object to call the endpoint.<jupyter_code>conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face ''' data= {"inputs":conversation} predictor.predict(data)<jupyter_output><empty_output><jupyter_text>Finally, we delete the endpoint again.<jupyter_code>predictor.delete_endpoint()<jupyter_output><empty_output><jupyter_text>Upload the fine-tuned model to [huggingface.co](http://huggingface.co)We can download our model from Amazon S3 and unzip it using the following snippet.<jupyter_code>import os import tarfile from sagemaker.s3 import S3Downloader local_path = 'my_bart_model' os.makedirs(local_path, exist_ok = True) # download model from S3 S3Downloader.download( s3_uri=huggingface_estimator.model_data, # s3 uri where the trained model is located local_path=local_path, # local path where *.targ.gz is saved sagemaker_session=sess # sagemaker session used for training the model ) # unzip model tar = tarfile.open(f"{local_path}/model.tar.gz", "r:gz") tar.extractall(path=local_path) tar.close() os.remove(f"{local_path}/model.tar.gz")<jupyter_output><empty_output><jupyter_text>Before we are going to upload our model to [huggingface.co](http://huggingface.co) we need to create a `model_card`. The `model_card` describes the model includes hyperparameters, results and which dataset was used for training. To create a `model_card` we create a `README.md` in our `local_path`<jupyter_code># read eval and test results with open(f"{local_path}/eval_results.json") as f: eval_results_raw = json.load(f) eval_results={} eval_results["eval_rouge1"] = eval_results_raw["eval_rouge1"] eval_results["eval_rouge2"] = eval_results_raw["eval_rouge2"] eval_results["eval_rougeL"] = eval_results_raw["eval_rougeL"] eval_results["eval_rougeLsum"] = eval_results_raw["eval_rougeLsum"] with open(f"{local_path}/test_results.json") as f: test_results_raw = json.load(f) test_results={} test_results["test_rouge1"] = test_results_raw["test_rouge1"] test_results["test_rouge2"] = test_results_raw["test_rouge2"] test_results["test_rougeL"] = test_results_raw["test_rougeL"] test_results["test_rougeLsum"] = test_results_raw["test_rougeLsum"]<jupyter_output><empty_output><jupyter_text>After we extract all the metrics we want to include we are going to create our `README.md`. Additionally to the automated generation of the results table we add the metrics manually to the `metadata` of our model card under `model-index`<jupyter_code>print(eval_results) print(test_results) import json MODEL_CARD_TEMPLATE = """ --- language: en tags: - sagemaker - bart - summarization license: apache-2.0 datasets: - samsum model-index: - name: {model_name} results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization" type: samsum metrics: - name: Validation ROGUE-1 type: rogue-1 value: 42.621 - name: Validation ROGUE-2 type: rogue-2 value: 21.9825 - name: Validation ROGUE-L type: rogue-l value: 33.034 - name: Test ROGUE-1 type: rogue-1 value: 41.3174 - name: Test ROGUE-2 type: rogue-2 value: 20.8716 - name: Test ROGUE-L type: rogue-l value: 32.1337 widget: - text: | Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face --- ## `{model_name}` This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. For more information look at: - [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html) - [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker) - [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html) - [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html) - [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers) ## Hyperparameters {hyperparameters} ## Usage from transformers import pipeline summarizer = pipeline("summarization", model="philschmid/{model_name}") conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face ''' summarizer(conversation) ## Results | key | value | | --- | ----- | {eval_table} {test_table} """ # Generate model card (todo: add more data from Trainer) model_card = MODEL_CARD_TEMPLATE.format( model_name=f"{hyperparameters['model_name_or_path'].split('/')[1]}-{hyperparameters['dataset_name']}", hyperparameters=json.dumps(hyperparameters, indent=4, sort_keys=True), eval_table="\n".join(f"| {k} | {v} |" for k, v in eval_results.items()), test_table="\n".join(f"| {k} | {v} |" for k, v in test_results.items()), ) with open(f"{local_path}/README.md", "w") as f: f.write(model_card)<jupyter_output><empty_output><jupyter_text>After we have our unzipped model and model card located in `my_bart_model` we can use the either `huggingface_hub` SDK to create a repository and upload it to [huggingface.co](http://huggingface.co) or go to https://huggingface.co/new an create a new repository and upload it.<jupyter_code>from getpass import getpass from huggingface_hub import HfApi, Repository hf_username = "philschmid" # your username on huggingface.co hf_email = "[email protected]" # email used for commit repository_name = f"{hyperparameters['model_name_or_path'].split('/')[1]}-{hyperparameters['dataset_name']}" # repository name on huggingface.co password = getpass("Enter your password:") # creates a prompt for entering password # get hf token token = HfApi().login(username=hf_username, password=password) # create repository repo_url = HfApi().create_repo(token=token, name=repository_name, exist_ok=True) # create a Repository instance model_repo = Repository(use_auth_token=token, clone_from=repo_url, local_dir=local_path, git_user=hf_username, git_email=hf_email) # push model to the hub model_repo.push_to_hub() print(f"https://huggingface.co/{hf_username}/{repository_name}")<jupyter_output><empty_output>
notebooks/sagemaker/08_distributed_summarization_bart_t5/sagemaker-notebook.ipynb/0
{ "file_path": "notebooks/sagemaker/08_distributed_summarization_bart_t5/sagemaker-notebook.ipynb", "repo_id": "notebooks", "token_count": 5673 }
173
import argparse import logging import os import random import sys import numpy as np import torch from datasets import load_from_disk, load_metric from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments from transformers.trainer_utils import get_last_checkpoint if __name__ == "__main__": parser = argparse.ArgumentParser() # hyperparameters sent by the client are passed as command-line arguments to the script. parser.add_argument("--epochs", type=int, default=3) parser.add_argument("--train_batch_size", type=int, default=32) parser.add_argument("--eval_batch_size", type=int, default=64) parser.add_argument("--warmup_steps", type=int, default=500) parser.add_argument("--model_id", type=str) parser.add_argument("--learning_rate", type=str, default=5e-5) parser.add_argument("--fp16", type=bool, default=True) # Push to Hub Parameters parser.add_argument("--push_to_hub", type=bool, default=True) parser.add_argument("--hub_model_id", type=str, default=None) parser.add_argument("--hub_strategy", type=str, default=None) parser.add_argument("--hub_token", type=str, default=None) # Data, model, and output directories parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"]) parser.add_argument("--output_dir", type=str, default=os.environ["SM_MODEL_DIR"]) parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"]) parser.add_argument("--training_dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"]) parser.add_argument("--test_dir", type=str, default=os.environ["SM_CHANNEL_TEST"]) args, _ = parser.parse_known_args() # make sure we have required parameters to push if args.push_to_hub: if args.hub_strategy is None: raise ValueError("--hub_strategy is required when pushing to Hub") if args.hub_token is None: raise ValueError("--hub_token is required when pushing to Hub") # sets hub id if not provided if args.hub_model_id is None: args.hub_model_id = args.model_id.replace("/", "--") # Set up logging logger = logging.getLogger(__name__) logging.basicConfig( level=logging.getLevelName("INFO"), handlers=[logging.StreamHandler(sys.stdout)], format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) # load datasets train_dataset = load_from_disk(args.training_dir) test_dataset = load_from_disk(args.test_dir) logger.info(f" loaded train_dataset length is: {len(train_dataset)}") logger.info(f" loaded test_dataset length is: {len(test_dataset)}") # define metrics and metrics function metric = load_metric("accuracy") def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return metric.compute(predictions=predictions, references=labels) # Prepare model labels - useful in inference API labels = train_dataset.features["labels"].names num_labels = len(labels) label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label # download model from model hub model = AutoModelForSequenceClassification.from_pretrained( args.model_id, num_labels=num_labels, label2id=label2id, id2label=id2label ) tokenizer = AutoTokenizer.from_pretrained(args.model_id) # define training args training_args = TrainingArguments( output_dir=args.output_dir, overwrite_output_dir=True if get_last_checkpoint(args.output_dir) is not None else False, num_train_epochs=args.epochs, per_device_train_batch_size=args.train_batch_size, per_device_eval_batch_size=args.eval_batch_size, warmup_steps=args.warmup_steps, fp16=args.fp16, evaluation_strategy="epoch", save_strategy="epoch", save_total_limit=2, logging_dir=f"{args.output_data_dir}/logs", learning_rate=float(args.learning_rate), load_best_model_at_end=True, metric_for_best_model="accuracy", # push to hub parameters push_to_hub=args.push_to_hub, hub_strategy=args.hub_strategy, hub_model_id=args.hub_model_id, hub_token=args.hub_token, ) # create Trainer instance trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=test_dataset, tokenizer=tokenizer, ) # train model trainer.train() # evaluate model eval_result = trainer.evaluate(eval_dataset=test_dataset) # save best model, metrics and create model card trainer.create_model_card(model_name=args.hub_model_id) trainer.push_to_hub() # Saves the model to s3 uses os.environ["SM_MODEL_DIR"] to make sure checkpointing works trainer.save_model(os.environ["SM_MODEL_DIR"])
notebooks/sagemaker/14_train_and_push_to_hub/scripts/train.py/0
{ "file_path": "notebooks/sagemaker/14_train_and_push_to_hub/scripts/train.py", "repo_id": "notebooks", "token_count": 1998 }
174
<jupyter_start><jupyter_text>Serverless Inference with Hugging Face's Transformers & Amazon SageMaker Welcome to this getting started guide. We will use the Hugging Face Inference DLCs and Amazon SageMaker Python SDK to create a [Serverless Inference](https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html) endpoint.Amazon SageMaker Serverless Inference is a new capability in SageMaker that enables you to deploy and scale ML models in a Serverless fashion. Serverless endpoints automatically launch compute resources and scale them in and out depending on traffic similar to AWS Lambda.Serverless Inference is ideal for workloads which have idle periods between traffic spurts and can tolerate cold starts. With a pay-per-use model, Serverless Inference is a cost-effective option if you have an infrequent or unpredictable traffic pattern. How it works The following diagram shows the workflow of Serverless Inference and the benefits of using a serverless endpoint.When you create a serverless endpoint, SageMaker provisions and manages the compute resources for you. Then, you can make inference requests to the endpoint and receive model predictions in response. SageMaker scales the compute resources up and down as needed to handle your request traffic, and you only pay for what you use. LimitationsMemory size: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB Concurrent invocations: 50 per region Cold starts: ms to seconds. Can be monitored with the `ModelSetupTime` Cloudwatch Metric _NOTE: You can run this demo in Sagemaker Studio, your local machine, or Sagemaker Notebook Instances_ Development Environment and Permissions Installation<jupyter_code>!pip install sagemaker --upgrade<jupyter_output><empty_output><jupyter_text>Permissions_If you are going to use Sagemaker in a local environment (not SageMaker Studio or Notebook Instances). You need access to an IAM Role with the required permissions for Sagemaker. You can find [here](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html) more about it._<jupyter_code>import sagemaker import boto3 sess = sagemaker.Session() # sagemaker session bucket -> used for uploading data, models and logs # sagemaker will automatically create this bucket if it not exists sagemaker_session_bucket=None if sagemaker_session_bucket is None and sess is not None: # set to default bucket if a bucket name is not given sagemaker_session_bucket = sess.default_bucket() try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] sess = sagemaker.Session(default_bucket=sagemaker_session_bucket) print(f"sagemaker role arn: {role}") print(f"sagemaker bucket: {sess.default_bucket()}") print(f"sagemaker session region: {sess.boto_region_name}")<jupyter_output>Couldn't call 'get_role' to get Role ARN from role name philippschmid to get Role path.<jupyter_text>Create Inference `HuggingFaceModel` for the Serverless Inference EndpointWe use the [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) model running our serverless endpoint. This model is a fine-tune checkpoint of [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned on SST-2. This model reaches an accuracy of 91.3 on the dev set (for comparison, Bert bert-base-uncased version reaches an accuracy of 92.7).<jupyter_code>from sagemaker.huggingface.model import HuggingFaceModel from sagemaker.serverless import ServerlessInferenceConfig # Hub Model configuration. <https://huggingface.co/models> hub = { 'HF_MODEL_ID':'distilbert-base-uncased-finetuned-sst-2-english', 'HF_TASK':'text-classification' } # create Hugging Face Model Class huggingface_model = HuggingFaceModel( env=hub, # configuration for loading model from Hub role=role, # iam role with permissions to create an Endpoint transformers_version="4.26", # transformers version used pytorch_version="1.13", # pytorch version used py_version='py39', # python version used ) # Specify MemorySizeInMB and MaxConcurrency in the serverless config object serverless_config = ServerlessInferenceConfig( memory_size_in_mb=4096, max_concurrency=10, ) # deploy the endpoint endpoint predictor = huggingface_model.deploy( serverless_inference_config=serverless_config )<jupyter_output>---<jupyter_text>Request Serverless Inference Endpoint using the `HuggingFacePredictor`The `.deploy()` returns an `HuggingFacePredictor` object which can be used to request inference. This `HuggingFacePredictor` makes it easy to send requests to your endpoint and get the results back._The first request might have some coldstart (2-5s)._<jupyter_code>data = { "inputs": "the mesmerizing performances of the leads keep the film grounded and keep the audience riveted .", } res = predictor.predict(data=data) print(res)<jupyter_output>[{'label': 'POSITIVE', 'score': 0.9998838901519775}]<jupyter_text>Clean up<jupyter_code>predictor.delete_model() predictor.delete_endpoint()<jupyter_output><empty_output>
notebooks/sagemaker/19_serverless_inference/sagemaker-notebook.ipynb/0
{ "file_path": "notebooks/sagemaker/19_serverless_inference/sagemaker-notebook.ipynb", "repo_id": "notebooks", "token_count": 1569 }
175
import base64 import torch from io import BytesIO from diffusers import StableDiffusionPipeline def model_fn(model_dir): # Load stable diffusion and move it to the GPU pipe = StableDiffusionPipeline.from_pretrained(model_dir, torch_dtype=torch.float16) pipe = pipe.to("cuda") return pipe def predict_fn(data, pipe): # get prompt & parameters prompt = data.pop("inputs", data) # set valid HP for stable diffusion num_inference_steps = data.pop("num_inference_steps", 50) guidance_scale = data.pop("guidance_scale", 7.5) num_images_per_prompt = data.pop("num_images_per_prompt", 4) # run generation with parameters generated_images = pipe(prompt,num_inference_steps=num_inference_steps,guidance_scale=guidance_scale,num_images_per_prompt=num_images_per_prompt)["images"] # create response encoded_images=[] for image in generated_images: buffered = BytesIO() image.save(buffered, format="JPEG") encoded_images.append(base64.b64encode(buffered.getvalue()).decode()) # create response return {"generated_images": encoded_images}
notebooks/sagemaker/23_stable_diffusion_inference/code/inference.py/0
{ "file_path": "notebooks/sagemaker/23_stable_diffusion_inference/code/inference.py", "repo_id": "notebooks", "token_count": 400 }
176
import os import argparse from transformers import ( AutoModelForCausalLM, AutoTokenizer, set_seed, default_data_collator, ) from datasets import load_from_disk import torch from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer, DonutProcessor, VisionEncoderDecoderModel,VisionEncoderDecoderConfig import shutil import logging import sys import json def parse_arge(): """Parse the arguments.""" parser = argparse.ArgumentParser() # add model id and dataset path argument parser.add_argument( "--model_id", type=str, default="naver-clova-ix/donut-base", help="Model id to use for training.", ) parser.add_argument("--special_tokens", type=str, default=None, help="JSON string of special tokens to add to tokenizer.") parser.add_argument("--dataset_path", type=str, default="lm_dataset", help="Path to dataset.") # add training hyperparameters for epochs, batch size, learning rate, and seed parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for.") parser.add_argument( "--per_device_train_batch_size", type=int, default=1, help="Batch size to use for training.", ) parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate to use for training.") parser.add_argument("--seed", type=int, default=42, help="Seed to use for training.") parser.add_argument( "--gradient_checkpointing", type=bool, default=False, help="Path to deepspeed config file.", ) parser.add_argument( "--bf16", type=bool, default=True if torch.cuda.get_device_capability()[0] == 8 else False, help="Whether to use bf16.", ) args = parser.parse_known_args() return args def training_function(args): # set seed set_seed(args.seed) # Set up logging logger = logging.getLogger(__name__) logging.basicConfig( level=logging.getLevelName("INFO"), handlers=[logging.StreamHandler(sys.stdout)], format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) # load datasets train_dataset = load_from_disk(args.dataset_path) image_size = list(torch.tensor(train_dataset[0]["pixel_values"][0]).shape) # height, width logger.info(f"loaded train_dataset length is: {len(train_dataset)}") # Load processor and set up new special tokens processor = DonutProcessor.from_pretrained(args.model_id) # add new special tokens to tokenizer and resize feature extractor special_tokens = args.special_tokens.split(",") processor.tokenizer.add_special_tokens({"additional_special_tokens": special_tokens}) processor.feature_extractor.size = image_size[::-1] # should be (width, height) processor.feature_extractor.do_align_long_axis = False # Load model from huggingface.co config = VisionEncoderDecoderConfig.from_pretrained(args.model_id, use_cache=False if args.gradient_checkpointing else True) model = VisionEncoderDecoderModel.from_pretrained(args.model_id, config=config) # Resize embedding layer to match vocabulary size & adjust our image size and output sequence lengths model.decoder.resize_token_embeddings(len(processor.tokenizer)) model.config.encoder.image_size = image_size model.config.decoder.max_length = len(max(train_dataset["labels"], key=len)) # Add task token for decoder to start model.config.pad_token_id = processor.tokenizer.pad_token_id model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids(['<s>'])[0] # Arguments for training output_dir = "/tmp" training_args = Seq2SeqTrainingArguments( output_dir=output_dir, num_train_epochs=args.epochs, learning_rate=args.lr, per_device_train_batch_size=args.per_device_train_batch_size, bf16=True, tf32=True, gradient_checkpointing=args.gradient_checkpointing, logging_steps=10, save_total_limit=1, evaluation_strategy="no", save_strategy="epoch", ) # Create Trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset, ) # Start training trainer.train() # save model and processor trainer.model.save_pretrained("/opt/ml/model/") processor.save_pretrained("/opt/ml/model/") # copy inference script os.makedirs("/opt/ml/model/code", exist_ok=True) shutil.copyfile( os.path.join(os.path.dirname(__file__), "inference.py"), "/opt/ml/model/code/inference.py", ) def main(): args, _ = parse_arge() training_function(args) if __name__ == "__main__": main()
notebooks/sagemaker/26_document_ai_donut/scripts/train.py/0
{ "file_path": "notebooks/sagemaker/26_document_ai_donut/scripts/train.py", "repo_id": "notebooks", "token_count": 1878 }
177
# docstyle-ignore INSTALL_CONTENT = """ # PEFT installation ! pip install peft accelerate transformers # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/peft.git """
peft/docs/source/_config.py/0
{ "file_path": "peft/docs/source/_config.py", "repo_id": "peft", "token_count": 75 }
178
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Installation Before you start, you will need to setup your environment, install the appropriate packages, and configure 🤗 PEFT. 🤗 PEFT is tested on **Python 3.8+**. 🤗 PEFT is available on PyPI, as well as GitHub: ## PyPI To install 🤗 PEFT from PyPI: ```bash pip install peft ``` ## Source New features that haven't been released yet are added every day, which also means there may be some bugs. To try them out, install from the GitHub repository: ```bash pip install git+https://github.com/huggingface/peft ``` If you're working on contributing to the library or wish to play with the source code and see live results as you run the code, an editable version can be installed from a locally-cloned version of the repository: ```bash git clone https://github.com/huggingface/peft cd peft pip install -e . ```
peft/docs/source/install.md/0
{ "file_path": "peft/docs/source/install.md", "repo_id": "peft", "token_count": 436 }
179
import os import torch import torch.nn as nn import transformers from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from peft import LoraConfig, get_peft_model os.environ["CUDA_VISIBLE_DEVICES"] = "0" # -*- coding: utf-8 -*- """Finetune-opt-bnb-peft.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o ## Fine-tune large models using 🤗 `peft` adapters, `transformers` & `bitsandbytes` In this tutorial we will cover how we can fine-tune large language models using the very recent `peft` library and `bitsandbytes` for loading large models in 8-bit. The fine-tuning method will rely on a recent method called "Low Rank Adapters" (LoRA), instead of fine-tuning the entire model you just have to fine-tune these adapters and load them properly inside the model. After fine-tuning the model you can also share your adapters on the 🤗 Hub and load them very easily. Let's get started! ### Install requirements First, run the cells below to install the requirements: """ """### Model loading Here let's load the `opt-6.7b` model, its weights in half-precision (float16) are about 13GB on the Hub! If we load them in 8-bit we would require around 7GB of memory instead. """ free_in_GB = int(torch.cuda.mem_get_info()[0] / 1024**3) max_memory = f"{free_in_GB-2}GB" n_gpus = torch.cuda.device_count() max_memory = {i: max_memory for i in range(n_gpus)} model = AutoModelForCausalLM.from_pretrained( "facebook/opt-350m", max_memory=max_memory, quantization_config=BitsAndBytesConfig( load_in_4bit=True, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ), torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") """### Post-processing on the model Finally, we need to apply some post-processing on the 8-bit model to enable training, let's freeze all our layers, and cast the layer-norm in `float32` for stability. We also cast the output of the last layer in `float32` for the same reasons. """ print(model) for param in model.parameters(): param.requires_grad = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability param.data = param.data.to(torch.float32) # model.gradient_checkpointing_enable() # reduce number of stored activations # model.model.decoder.project_in = lambda x: x.requires_grad_(True) class CastOutputToFloat(nn.Sequential): def forward(self, x): return super().forward(x).to(torch.float32) model.lm_head = CastOutputToFloat(model.lm_head) """### Apply LoRA Here comes the magic with `peft`! Let's load a `PeftModel` and specify that we are going to use low-rank adapters (LoRA) using `get_peft_model` utility function from `peft`. """ def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) config = LoraConfig( r=64, lora_alpha=32, target_modules=["q_proj", "v_proj", "out_proj", "fc1", "fc2"], lora_dropout=0.01, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) print_trainable_parameters(model) # Verifying the datatypes. dtypes = {} for _, p in model.named_parameters(): dtype = p.dtype if dtype not in dtypes: dtypes[dtype] = 0 dtypes[dtype] += p.numel() total = 0 for k, v in dtypes.items(): total += v for k, v in dtypes.items(): print(k, v, v / total) """### Training""" data = load_dataset("Abirate/english_quotes") data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) trainer = transformers.Trainer( model=model, train_dataset=data["train"], args=transformers.TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, warmup_steps=10, max_steps=20, learning_rate=3e-4, fp16=True, logging_steps=1, output_dir="outputs", ), data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False # silence the warnings. Please re-enable for inference! trainer.train() # from huggingface_hub import notebook_login # notebook_login() # model.push_to_hub("ybelkada/opt-6.7b-lora", use_auth_token=True) """## Load adapters from the Hub You can also directly load adapters from the Hub using the commands below: """ # import torch # from peft import PeftModel, PeftConfig # from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig # # peft_model_id = "ybelkada/opt-6.7b-lora" # config = PeftConfig.from_pretrained(peft_model_id) # model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, quantization_config=BitsAndBytesConfig(load_in_8bit=True), device_map='auto') # tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # ## Load the Lora model # model = PeftModel.from_pretrained(model, peft_model_id) # # """## Inference # # You can then directly use the trained model or the model that you have loaded from the 🤗 Hub for inference as you would do it usually in `transformers`. # """ # batch = tokenizer("Two things are infinite: ", return_tensors="pt") model.config.use_cache = False # silence the warnings. Please re-enable for inference! model.eval() with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) print("\n\n", tokenizer.decode(output_tokens[0], skip_special_tokens=True)) # model.save('./test.pt') # """As you can see by fine-tuning for few steps we have almost recovered the quote from Albert Einstein that is present in the [training data](https://huggingface.co/datasets/Abirate/english_quotes)."""
peft/examples/fp4_finetuning/finetune_fp4_opt_bnb_peft.py/0
{ "file_path": "peft/examples/fp4_finetuning/finetune_fp4_opt_bnb_peft.py", "repo_id": "peft", "token_count": 2325 }
180
import argparse import os from typing import Dict import torch from diffusers import UNet2DConditionModel from safetensors.torch import save_file from transformers import CLIPTextModel from peft import PeftModel, get_peft_model_state_dict # Default kohya_ss LoRA replacement modules # https://github.com/kohya-ss/sd-scripts/blob/c924c47f374ac1b6e33e71f82948eb1853e2243f/networks/lora.py#L664 LORA_PREFIX_UNET = "lora_unet" LORA_PREFIX_TEXT_ENCODER = "lora_te" LORA_ADAPTER_NAME = "default" def get_module_kohya_state_dict( module: PeftModel, prefix: str, dtype: torch.dtype, adapter_name: str = LORA_ADAPTER_NAME ) -> Dict[str, torch.Tensor]: kohya_ss_state_dict = {} for peft_key, weight in get_peft_model_state_dict(module, adapter_name=adapter_name).items(): kohya_key = peft_key.replace("base_model.model", prefix) kohya_key = kohya_key.replace("lora_A", "lora_down") kohya_key = kohya_key.replace("lora_B", "lora_up") kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2) kohya_ss_state_dict[kohya_key] = weight.to(dtype) # Set alpha parameter if "lora_down" in kohya_key: alpha_key = f'{kohya_key.split(".")[0]}.alpha' kohya_ss_state_dict[alpha_key] = torch.tensor(module.peft_config[adapter_name].lora_alpha).to(dtype) return kohya_ss_state_dict if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--sd_checkpoint", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--sd_checkpoint_revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument("--peft_lora_path", default=None, type=str, required=True, help="Path to peft trained LoRA") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to the output safetensors file for use with webui.", ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") args = parser.parse_args() # Store kohya_ss state dict kohya_ss_state_dict = {} dtype = torch.float16 if args.half else torch.float32 # Load Text Encoder LoRA model text_encoder_peft_lora_path = os.path.join(args.peft_lora_path, "text_encoder") if os.path.exists(text_encoder_peft_lora_path): text_encoder = CLIPTextModel.from_pretrained( args.sd_checkpoint, subfolder="text_encoder", revision=args.sd_checkpoint_revision ) text_encoder = PeftModel.from_pretrained( text_encoder, text_encoder_peft_lora_path, adapter_name=LORA_ADAPTER_NAME ) kohya_ss_state_dict.update( get_module_kohya_state_dict(text_encoder, LORA_PREFIX_TEXT_ENCODER, dtype, LORA_ADAPTER_NAME) ) # Load UNet LoRA model unet_peft_lora_path = os.path.join(args.peft_lora_path, "unet") if os.path.exists(unet_peft_lora_path): unet = UNet2DConditionModel.from_pretrained( args.sd_checkpoint, subfolder="unet", revision=args.sd_checkpoint_revision ) unet = PeftModel.from_pretrained(unet, unet_peft_lora_path, adapter_name=LORA_ADAPTER_NAME) kohya_ss_state_dict.update(get_module_kohya_state_dict(unet, LORA_PREFIX_UNET, dtype, LORA_ADAPTER_NAME)) # Save state dict save_file( kohya_ss_state_dict, args.dump_path, )
peft/examples/lora_dreambooth/convert_peft_sd_lora_to_kohya_ss.py/0
{ "file_path": "peft/examples/lora_dreambooth/convert_peft_sd_lora_to_kohya_ss.py", "repo_id": "peft", "token_count": 1639 }
181
<jupyter_start><jupyter_code>import argparse import os import torch from torch.optim import AdamW from torch.utils.data import DataLoader from peft import ( get_peft_config, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict, PeftType, PrefixTuningConfig, PromptEncoderConfig, ) import evaluate from datasets import load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from tqdm import tqdm batch_size = 32 model_name_or_path = "roberta-large" task = "mrpc" peft_type = PeftType.P_TUNING device = "cuda" num_epochs = 20 peft_config = PromptEncoderConfig(task_type="SEQ_CLS", num_virtual_tokens=20, encoder_hidden_size=128) lr = 1e-3 if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")): padding_side = "left" else: padding_side = "right" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side) if getattr(tokenizer, "pad_token_id") is None: tokenizer.pad_token_id = tokenizer.eos_token_id datasets = load_dataset("glue", task) metric = evaluate.load("glue", task) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size ) model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True) model = get_peft_model(model, peft_config) model.print_trainable_parameters() model optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, # 0.06*(len(train_dataloader) * num_epochs), num_training_steps=(len(train_dataloader) * num_epochs), ) model.to(device) for epoch in range(num_epochs): model.train() for step, batch in enumerate(tqdm(train_dataloader)): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(f"epoch {epoch}:", eval_metric)<jupyter_output>0%| | 0/115 [00:00<?, ?it/s]You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. 100%|████████████████████████████████████████████████████████████████████████████████████████| 115/115 [00:32<00:00, 3.54it/s] 100%|██████████████████████████████████████████████████████████████████████████████████████████| 13/13 [00:01<00:00, 6.91it/s]<jupyter_text>Share adapters on the 🤗 Hub<jupyter_code>model.push_to_hub("smangrul/roberta-large-peft-p-tuning", use_auth_token=True)<jupyter_output><empty_output><jupyter_text>Load adapters from the HubYou can also directly load adapters from the Hub using the commands below:<jupyter_code>import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "smangrul/roberta-large-peft-p-tuning" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model inference_model = PeftModel.from_pretrained(inference_model, peft_model_id) inference_model.to(device) inference_model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): batch.to(device) with torch.no_grad(): outputs = inference_model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = predictions, batch["labels"] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() print(eval_metric)<jupyter_output>Some weights of the model checkpoint at roberta-large were not used when initializing RobertaForSequenceClassification: ['lm_head.decoder.weight', 'lm_head.layer_norm.bias', 'lm_head.dense.bias', 'roberta.pooler.dense.weight', 'lm_head.layer_norm.weight', 'roberta.pooler.dense.bias', 'lm_head.dense.weight', 'lm_head.bias'] - This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at roberta-large and are newly initialized: ['classifier.dense.weight', 'classif[...]
peft/examples/sequence_classification/P_Tuning.ipynb/0
{ "file_path": "peft/examples/sequence_classification/P_Tuning.ipynb", "repo_id": "peft", "token_count": 2284 }
182
accelerate launch --config_file "configs/deepspeed_config_z3_qlora.yaml" train.py \ --seed 100 \ --model_name_or_path "meta-llama/Llama-2-70b-hf" \ --dataset_name "smangrul/ultrachat-10k-chatml" \ --chat_template_format "chatml" \ --add_special_tokens False \ --append_concat_token False \ --splits "train,test" \ --max_seq_len 2048 \ --num_train_epochs 1 \ --logging_steps 5 \ --log_level "info" \ --logging_strategy "steps" \ --evaluation_strategy "epoch" \ --save_strategy "epoch" \ --push_to_hub \ --hub_private_repo True \ --hub_strategy "every_save" \ --bf16 True \ --packing True \ --learning_rate 1e-4 \ --lr_scheduler_type "cosine" \ --weight_decay 1e-4 \ --warmup_ratio 0.0 \ --max_grad_norm 1.0 \ --output_dir "llama-sft-qlora-dsz3" \ --per_device_train_batch_size 2 \ --per_device_eval_batch_size 2 \ --gradient_accumulation_steps 2 \ --gradient_checkpointing True \ --use_reentrant True \ --dataset_text_field "content" \ --use_flash_attn True \ --use_peft_lora True \ --lora_r 8 \ --lora_alpha 16 \ --lora_dropout 0.1 \ --lora_target_modules "all-linear" \ --use_4bit_quantization True \ --use_nested_quant True \ --bnb_4bit_compute_dtype "bfloat16" \ --bnb_4bit_quant_storage_dtype "bfloat16"
peft/examples/sft/run_peft_qlora_deepspeed_stage3.sh/0
{ "file_path": "peft/examples/sft/run_peft_qlora_deepspeed_stage3.sh", "repo_id": "peft", "token_count": 510 }
183
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import importlib import os from typing import Optional from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoTokenizer, ) from .config import PeftConfig from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING from .peft_model import ( PeftModel, PeftModelForCausalLM, PeftModelForFeatureExtraction, PeftModelForQuestionAnswering, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, ) from .utils.constants import TOKENIZER_CONFIG_NAME from .utils.other import check_file_exists_on_hf_hub class _BaseAutoPeftModel: _target_class = None _target_peft_class = None def __init__(self, *args, **kwargs): # For consistency with transformers: https://github.com/huggingface/transformers/blob/91d7df58b6537d385e90578dac40204cb550f706/src/transformers/models/auto/auto_factory.py#L400 raise EnvironmentError( # noqa: UP024 f"{self.__class__.__name__} is designed to be instantiated " f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " f"`{self.__class__.__name__}.from_config(config)` methods." ) @classmethod def from_pretrained( cls, pretrained_model_name_or_path, adapter_name: str = "default", is_trainable: bool = False, config: Optional[PeftConfig] = None, **kwargs, ): r""" A wrapper around all the preprocessing steps a user needs to perform in order to load a PEFT model. The kwargs are passed along to `PeftConfig` that automatically takes care of filtering the kwargs of the Hub methods and the config object init. """ peft_config = PeftConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) base_model_path = peft_config.base_model_name_or_path task_type = getattr(peft_config, "task_type", None) if cls._target_class is not None: target_class = cls._target_class elif cls._target_class is None and task_type is not None: # this is only in the case where we use `AutoPeftModel` raise ValueError( "Cannot use `AutoPeftModel` with a task type, please use a specific class for your task type. (e.g. `AutoPeftModelForCausalLM` for `task_type='CAUSAL_LM'`)" ) if task_type is not None: expected_target_class = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[task_type] if cls._target_peft_class.__name__ != expected_target_class.__name__: raise ValueError( f"Expected target PEFT class: {expected_target_class.__name__}, but you have asked for: {cls._target_peft_class.__name__ }" " make sure that you are loading the correct model for your task type." ) elif task_type is None and getattr(peft_config, "auto_mapping", None) is not None: auto_mapping = getattr(peft_config, "auto_mapping", None) base_model_class = auto_mapping["base_model_class"] parent_library_name = auto_mapping["parent_library"] parent_library = importlib.import_module(parent_library_name) target_class = getattr(parent_library, base_model_class) else: raise ValueError( "Cannot infer the auto class from the config, please make sure that you are loading the correct model for your task type." ) base_model = target_class.from_pretrained(base_model_path, **kwargs) tokenizer_exists = False if os.path.exists(os.path.join(pretrained_model_name_or_path, TOKENIZER_CONFIG_NAME)): tokenizer_exists = True else: token = kwargs.get("token", None) if token is None: token = kwargs.get("use_auth_token", None) tokenizer_exists = check_file_exists_on_hf_hub( repo_id=pretrained_model_name_or_path, filename=TOKENIZER_CONFIG_NAME, revision=kwargs.get("revision", None), repo_type=kwargs.get("repo_type", None), token=token, ) if tokenizer_exists: tokenizer = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, trust_remote_code=kwargs.get("trust_remote_code", False) ) base_model.resize_token_embeddings(len(tokenizer)) return cls._target_peft_class.from_pretrained( base_model, pretrained_model_name_or_path, adapter_name=adapter_name, is_trainable=is_trainable, config=config, **kwargs, ) class AutoPeftModel(_BaseAutoPeftModel): _target_class = None _target_peft_class = PeftModel class AutoPeftModelForCausalLM(_BaseAutoPeftModel): _target_class = AutoModelForCausalLM _target_peft_class = PeftModelForCausalLM class AutoPeftModelForSeq2SeqLM(_BaseAutoPeftModel): _target_class = AutoModelForSeq2SeqLM _target_peft_class = PeftModelForSeq2SeqLM class AutoPeftModelForSequenceClassification(_BaseAutoPeftModel): _target_class = AutoModelForSequenceClassification _target_peft_class = PeftModelForSequenceClassification class AutoPeftModelForTokenClassification(_BaseAutoPeftModel): _target_class = AutoModelForTokenClassification _target_peft_class = PeftModelForTokenClassification class AutoPeftModelForQuestionAnswering(_BaseAutoPeftModel): _target_class = AutoModelForQuestionAnswering _target_peft_class = PeftModelForQuestionAnswering class AutoPeftModelForFeatureExtraction(_BaseAutoPeftModel): _target_class = AutoModel _target_peft_class = PeftModelForFeatureExtraction
peft/src/peft/auto.py/0
{ "file_path": "peft/src/peft/auto.py", "repo_id": "peft", "token_count": 2695 }
184
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple from dataclasses import dataclass, field from peft.config import PeftConfig from peft.utils import PeftType from .utils import llama_compute_query_states @dataclass class AdaptionPromptConfig(PeftConfig): """Stores the configuration of an [`AdaptionPromptModel`].""" target_modules: str = field( default=None, metadata={"help": "Name of the attention submodules to insert adaption prompts into."} ) adapter_len: int = field(default=None, metadata={"help": "Number of adapter tokens to insert"}) adapter_layers: int = field(default=None, metadata={"help": "Number of adapter layers (from the top)"}) def __post_init__(self): self.peft_type = PeftType.ADAPTION_PROMPT @property def is_adaption_prompt(self) -> bool: """Return True if this is an adaption prompt config.""" return True # Contains the config that is specific to a transformers model type. ModelTypeConfig = namedtuple( "ModelTypeConfig", ["compute_query_states", "target_modules", "k_proj_layer", "v_proj_layer", "o_proj_layer"] ) # Mapping of transformers model types to their specific configuration. TRANSFORMERS_MODEL_CONFIG = { "llama": ModelTypeConfig( compute_query_states=llama_compute_query_states, target_modules="self_attn", k_proj_layer="k_proj", v_proj_layer="v_proj", o_proj_layer="o_proj", ), "mistral": ModelTypeConfig( # same as llama, compute_query_states=llama_compute_query_states, target_modules="self_attn", k_proj_layer="k_proj", v_proj_layer="v_proj", o_proj_layer="o_proj", ), } def prepare_config( peft_config: AdaptionPromptConfig, model, ) -> AdaptionPromptConfig: """Prepare the config based on the llama model type.""" if model.config.model_type not in TRANSFORMERS_MODEL_CONFIG: raise ValueError("Unsupported model type for adaption prompt: '{model.config.model_type}'.") model_config = TRANSFORMERS_MODEL_CONFIG[model.config.model_type] if peft_config.target_modules is None: peft_config.target_modules = model_config.target_modules return peft_config
peft/src/peft/tuners/adaption_prompt/config.py/0
{ "file_path": "peft/src/peft/tuners/adaption_prompt/config.py", "repo_id": "peft", "token_count": 994 }
185
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from itertools import chain from typing import Dict, Type, Union import torch from torch import nn from peft.tuners.lycoris_utils import LycorisConfig, LycorisTuner from .layer import Conv2d, Linear, LoKrLayer class LoKrModel(LycorisTuner): """ Creates Low-Rank Kronecker Product model from a pretrained model. The original method is partially described in https://arxiv.org/abs/2108.06098 and in https://arxiv.org/abs/2309.14859 Current implementation heavily borrows from https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py Args: model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached. config ([`LoKrConfig`]): The configuration of the LoKr model. adapter_name (`str`): The name of the adapter, defaults to `"default"`. Returns: `torch.nn.Module`: The LoKr model. Example: ```py >>> from diffusers import StableDiffusionPipeline >>> from peft import LoKrModel, LoKrConfig >>> config_te = LoKrConfig( ... r=8, ... lora_alpha=32, ... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"], ... rank_dropout=0.0, ... module_dropout=0.0, ... init_weights=True, ... ) >>> config_unet = LoKrConfig( ... r=8, ... lora_alpha=32, ... target_modules=[ ... "proj_in", ... "proj_out", ... "to_k", ... "to_q", ... "to_v", ... "to_out.0", ... "ff.net.0.proj", ... "ff.net.2", ... ], ... rank_dropout=0.0, ... module_dropout=0.0, ... init_weights=True, ... use_effective_conv2d=True, ... ) >>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") >>> model.text_encoder = LoKrModel(model.text_encoder, config_te, "default") >>> model.unet = LoKrModel(model.unet, config_unet, "default") ``` **Attributes**: - **model** ([`~torch.nn.Module`]) -- The model to be adapted. - **peft_config** ([`LoKrConfig`]): The configuration of the LoKr model. """ prefix: str = "lokr_" layers_mapping: Dict[Type[torch.nn.Module], Type[LoKrLayer]] = { torch.nn.Conv2d: Conv2d, torch.nn.Linear: Linear, } def _create_and_replace( self, config: LycorisConfig, adapter_name: str, target: Union[LoKrLayer, nn.Module], target_name: str, parent: nn.Module, current_key: str, ) -> None: """ A private method to create and replace the target module with the adapter module. """ # Regexp matching - Find key which matches current target_name in patterns provided pattern_keys = list(chain(config.rank_pattern.keys(), config.alpha_pattern.keys())) target_name_key = next(filter(lambda key: re.match(rf"(.*\.)?{key}$", current_key), pattern_keys), target_name) kwargs = config.to_dict() kwargs["r"] = config.rank_pattern.get(target_name_key, config.r) kwargs["alpha"] = config.alpha_pattern.get(target_name_key, config.alpha) if isinstance(target, LoKrLayer): target.update_layer(adapter_name, **kwargs) else: new_module = self._create_new_module(config, adapter_name, target, **kwargs) self._replace_module(parent, target_name, new_module, target)
peft/src/peft/tuners/lokr/model.py/0
{ "file_path": "peft/src/peft/tuners/lokr/model.py", "repo_id": "peft", "token_count": 1864 }
186
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum from dataclasses import dataclass, field from typing import Optional, Union from peft.config import PromptLearningConfig from peft.utils import PeftType class PromptTuningInit(str, enum.Enum): TEXT = "TEXT" RANDOM = "RANDOM" @dataclass class PromptTuningConfig(PromptLearningConfig): """ This is the configuration class to store the configuration of a [`PromptEmbedding`]. Args: prompt_tuning_init (Union[[`PromptTuningInit`], `str`]): The initialization of the prompt embedding. prompt_tuning_init_text (`str`, *optional*): The text to initialize the prompt embedding. Only used if `prompt_tuning_init` is `TEXT`. tokenizer_name_or_path (`str`, *optional*): The name or path of the tokenizer. Only used if `prompt_tuning_init` is `TEXT`. tokenizer_kwargs (`dict`, *optional*): The keyword arguments to pass to `AutoTokenizer.from_pretrained`. Only used if `prompt_tuning_init` is `TEXT`. """ prompt_tuning_init: Union[PromptTuningInit, str] = field( default=PromptTuningInit.RANDOM, metadata={"help": "How to initialize the prompt tuning parameters"}, ) prompt_tuning_init_text: Optional[str] = field( default=None, metadata={ "help": "The text to use for prompt tuning initialization. Only used if prompt_tuning_init is `TEXT`" }, ) tokenizer_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The tokenizer to use for prompt tuning initialization. Only used if prompt_tuning_init is `TEXT`" }, ) tokenizer_kwargs: Optional[dict] = field( default=None, metadata={ "help": ( "The keyword arguments to pass to `AutoTokenizer.from_pretrained`. Only used if prompt_tuning_init is " "`TEXT`" ), }, ) def __post_init__(self): self.peft_type = PeftType.PROMPT_TUNING if (self.prompt_tuning_init == PromptTuningInit.TEXT) and not self.tokenizer_name_or_path: raise ValueError( f"When prompt_tuning_init='{PromptTuningInit.TEXT.value}', " f"tokenizer_name_or_path can't be {self.tokenizer_name_or_path}." ) if (self.prompt_tuning_init == PromptTuningInit.TEXT) and self.prompt_tuning_init_text is None: raise ValueError( f"When prompt_tuning_init='{PromptTuningInit.TEXT.value}', " f"prompt_tuning_init_text can't be {self.prompt_tuning_init_text}." ) if self.tokenizer_kwargs and (self.prompt_tuning_init != PromptTuningInit.TEXT): raise ValueError( f"tokenizer_kwargs only valid when using prompt_tuning_init='{PromptTuningInit.TEXT.value}'." )
peft/src/peft/tuners/prompt_tuning/config.py/0
{ "file_path": "peft/src/peft/tuners/prompt_tuning/config.py", "repo_id": "peft", "token_count": 1394 }
187
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import pytest import torch import torch.nn.functional as F from parameterized import parameterized from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoTokenizer, BitsAndBytesConfig, LlamaForCausalLM, WhisperForConditionalGeneration, ) from peft import ( AdaLoraConfig, AdaptionPromptConfig, IA3Config, LoraConfig, PeftModel, TaskType, get_peft_model, prepare_model_for_kbit_training, ) from peft.import_utils import is_bnb_4bit_available, is_bnb_available from .testing_utils import require_bitsandbytes, require_torch_gpu, require_torch_multi_gpu if is_bnb_available(): import bitsandbytes as bnb from peft.tuners.ia3 import Linear8bitLt as IA3Linear8bitLt from peft.tuners.lora import Linear8bitLt as LoraLinear8bitLt if is_bnb_4bit_available(): from peft.tuners.ia3 import Linear4bit as IA3Linear4bit from peft.tuners.lora import Linear4bit as LoraLinear4bit @require_torch_gpu class PeftGPUCommonTests(unittest.TestCase): r""" A common tester to run common operations that are performed on GPU such as generation, loading in 8bit, etc. """ def setUp(self): self.seq2seq_model_id = "google/flan-t5-base" self.causal_lm_model_id = "facebook/opt-350m" self.audio_model_id = "openai/whisper-large" if torch.cuda.is_available(): self.device = torch.device("cuda:0") def tearDown(self): r""" Efficient mechanism to free GPU memory after each test. Based on https://github.com/huggingface/transformers/issues/21094 """ gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_lora_bnb_8bit_quantization(self): r""" Test that tests if the 8bit quantization using LoRA works as expected """ whisper_8bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) opt_8bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_8bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") flan_8bit = get_peft_model(flan_8bit, flan_lora_config) assert isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, LoraLinear8bitLt) opt_8bit = get_peft_model(opt_8bit, opt_lora_config) assert isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) whisper_8bit = get_peft_model(whisper_8bit, config) assert isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_ia3_bnb_8bit_quantization(self): r""" Test that tests if the 8bit quantization using IA3 works as expected """ whisper_8bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) opt_8bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_8bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) flan_ia3_config = IA3Config(target_modules=["q", "v"], task_type="SEQ_2_SEQ_LM") opt_ia3_config = IA3Config( target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"], task_type="CAUSAL_LM", ) config = IA3Config(target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"]) flan_8bit = get_peft_model(flan_8bit, flan_ia3_config) assert isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, IA3Linear8bitLt) opt_8bit = get_peft_model(opt_8bit, opt_ia3_config) assert isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear8bitLt) whisper_8bit = get_peft_model(whisper_8bit, config) assert isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear8bitLt) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_lora_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using LoRA works as expected with safetensors weights. """ model_id = "facebook/opt-350m" peft_model_id = "ybelkada/test-st-lora" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True) else: kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, peft_model_id) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(peft_model_id, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer assert "default" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A assert "adapter2" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_adalora_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using AdaLora works as expected with safetensors weights. """ model_id = "facebook/opt-350m" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True) else: kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) config = AdaLoraConfig(task_type=TaskType.CAUSAL_LM) peft_model = get_peft_model(model, config) peft_model = prepare_model_for_kbit_training(peft_model) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(peft_model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer assert "default" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A assert "adapter2" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_ia3_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using IA³ works as expected with safetensors weights. """ model_id = "facebook/opt-350m" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True) else: kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) config = IA3Config(task_type=TaskType.CAUSAL_LM) peft_model = get_peft_model(model, config) peft_model = prepare_model_for_kbit_training(peft_model) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer assert "default" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.ia3_l assert "adapter2" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.ia3_l @pytest.mark.single_gpu_tests def test_lora_gptq_quantization_from_pretrained_safetensors(self): r""" Tests that the autogptq quantization using LoRA works as expected with safetensors weights. """ from transformers import GPTQConfig model_id = "marcsun13/opt-350m-gptq-4bit" quantization_config = GPTQConfig(bits=4, use_exllama=False) kwargs = { "pretrained_model_name_or_path": model_id, "torch_dtype": torch.float16, "device_map": "auto", "quantization_config": quantization_config, } model = AutoModelForCausalLM.from_pretrained(**kwargs) model = prepare_model_for_kbit_training(model) config = LoraConfig(task_type="CAUSAL_LM") peft_model = get_peft_model(model, config) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(**kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer assert "default" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A assert "adapter2" in model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_lora_bnb_4bit_quantization(self): r""" Test that tests if the 4bit quantization using LoRA works as expected """ whisper_4bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) opt_4bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_4bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") flan_4bit = get_peft_model(flan_4bit, flan_lora_config) assert isinstance(flan_4bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, LoraLinear4bit) opt_4bit = get_peft_model(opt_4bit, opt_lora_config) assert isinstance(opt_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit) whisper_4bit = get_peft_model(whisper_4bit, config) assert isinstance(whisper_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_ia3_bnb_4bit_quantization(self): r""" Test that tests if the 4bit quantization using IA3 works as expected """ whisper_4bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) opt_4bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_4bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) flan_ia3_config = IA3Config(target_modules=["q", "v"], task_type="SEQ_2_SEQ_LM") opt_ia3_config = IA3Config( target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"], task_type="CAUSAL_LM", ) config = IA3Config(target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"]) flan_4bit = get_peft_model(flan_4bit, flan_ia3_config) assert isinstance(flan_4bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, IA3Linear4bit) opt_4bit = get_peft_model(opt_4bit, opt_ia3_config) assert isinstance(opt_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear4bit) whisper_4bit = get_peft_model(whisper_4bit, config) assert isinstance(whisper_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear4bit) @pytest.mark.multi_gpu_tests @require_torch_multi_gpu def test_lora_causal_lm_multi_gpu_inference(self): r""" Test if LORA can be used for inference on multiple GPUs. """ lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, device_map="balanced") tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) assert set(model.hf_device_map.values()) == set(range(torch.cuda.device_count())) model = get_peft_model(model, lora_config) assert isinstance(model, PeftModel) dummy_input = "This is a dummy input:" input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device) # this should work without any problem _ = model.generate(input_ids=input_ids) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_lora_seq2seq_lm_multi_gpu_inference(self): r""" Test if LORA can be used for inference on multiple GPUs - 8bit version. """ lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) model = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="balanced", quantization_config=BitsAndBytesConfig(load_in_8bit=True) ) tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) assert set(model.hf_device_map.values()) == set(range(torch.cuda.device_count())) model = get_peft_model(model, lora_config) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.encoder.block[0].layer[0].SelfAttention.q, LoraLinear8bitLt) dummy_input = "This is a dummy input:" input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device) # this should work without any problem _ = model.generate(input_ids=input_ids) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_adaption_prompt_8bit(self): model = LlamaForCausalLM.from_pretrained( "HuggingFaceM4/tiny-random-LlamaForCausalLM", quantization_config=BitsAndBytesConfig(load_in_8bit=True), torch_dtype=torch.float16, device_map="auto", ) model = prepare_model_for_kbit_training(model) config = AdaptionPromptConfig( adapter_len=10, adapter_layers=2, task_type="CAUSAL_LM", ) model = get_peft_model(model, config) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(0) _ = model(random_input) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_adaption_prompt_4bit(self): model = LlamaForCausalLM.from_pretrained( "HuggingFaceM4/tiny-random-LlamaForCausalLM", quantization_config=BitsAndBytesConfig(load_in_4bit=True), torch_dtype=torch.float16, device_map="auto", ) model = prepare_model_for_kbit_training(model) config = AdaptionPromptConfig( adapter_len=10, adapter_layers=2, task_type="CAUSAL_LM", ) model = get_peft_model(model, config) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(0) _ = model(random_input) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_print_4bit_expected(self): EXPECTED_TRAINABLE_PARAMS = 294912 EXPECTED_ALL_PARAMS = 125534208 model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_4bit=True), ) config = LoraConfig( r=8, ) model = get_peft_model(model, config) trainable_params, all_params = model.get_nb_trainable_parameters() assert trainable_params == EXPECTED_TRAINABLE_PARAMS assert all_params == EXPECTED_ALL_PARAMS # test with double quant bnb_config = BitsAndBytesConfig( quantization_config=BitsAndBytesConfig(load_in_4bit=True), bnb_4bit_use_double_quant=True, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, ) config = LoraConfig( r=8, ) model = get_peft_model(model, config) trainable_params, all_params = model.get_nb_trainable_parameters() assert trainable_params == EXPECTED_TRAINABLE_PARAMS assert all_params == EXPECTED_ALL_PARAMS @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_modules_to_save_grad(self): model_id = "bigscience/bloomz-560m" model = AutoModelForSequenceClassification.from_pretrained( model_id, quantization_config=BitsAndBytesConfig(load_in_4bit=True), torch_dtype=torch.float32, ) model = prepare_model_for_kbit_training(model) config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="SEQ_CLS", ) peft_model = get_peft_model(model, config) lm_head = peft_model.base_model.model.score original_module = lm_head.original_module modules_to_save = lm_head.modules_to_save.default inputs = torch.randn(1024) o1 = lm_head(inputs) o1.mean().backward() assert modules_to_save.weight.requires_grad is True assert original_module.weight.grad is None assert modules_to_save.weight.grad is not None @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_merge_lora(self): torch.manual_seed(1000) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before_merge = F.softmax(model(random_input).logits, dim=-1) model.merge_and_unload() with torch.inference_mode(): out_after_merge = F.softmax(model(random_input).logits, dim=-1) atol = 0.01 rtol = 10 assert not torch.allclose(out_base, out_before_merge, atol=atol, rtol=rtol) assert torch.allclose(out_before_merge, out_after_merge, atol=atol, rtol=rtol) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, bnb.nn.Linear8bitLt) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, bnb.nn.Linear8bitLt) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_merge_and_disable_lora(self): torch.manual_seed(1000) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=BitsAndBytesConfig(load_in_8bit=True), ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() with model.disable_adapter(): with torch.inference_mode(): out_after = F.softmax(model(random_input).logits, dim=-1) atol = 0.01 rtol = 10 assert not torch.allclose(out_base, out_before, atol=atol, rtol=rtol) assert torch.allclose(out_base, out_after, atol=atol, rtol=rtol) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear8bitLt) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_merge_lora(self): torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( quantization_config=BitsAndBytesConfig(load_in_4bit=True), bnb_4bit_use_double_quant=False, bnb_4bit_compute_type=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before_merge = F.softmax(model(random_input).logits, dim=-1) model.merge_and_unload() with torch.inference_mode(): out_after_merge = F.softmax(model(random_input).logits, dim=-1) # tolerances are pretty high because some deviations are expected with quantization atol = 0.01 rtol = 10 assert not torch.allclose(out_base, out_before_merge, atol=atol, rtol=rtol) assert torch.allclose(out_before_merge, out_after_merge, atol=atol, rtol=rtol) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, bnb.nn.Linear4bit) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, bnb.nn.Linear4bit) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_merge_and_disable_lora(self): torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( quantization_config=BitsAndBytesConfig(load_in_4bit=True), bnb_4bit_use_double_quant=False, bnb_4bit_compute_type=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() with model.disable_adapter(): with torch.inference_mode(): out_after = F.softmax(model(random_input).logits, dim=-1) atol = 0.01 rtol = 10 assert not torch.allclose(out_base, out_before, atol=atol, rtol=rtol) assert torch.allclose(out_base, out_after, atol=atol, rtol=rtol) assert isinstance(model, PeftModel) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear4bit) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_lora_mixed_adapter_batches_lora(self): # check that we can pass mixed adapter names to the model torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_type=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ).eval() tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m") # input with 9 samples inputs = tokenizer( [ "Hello, my dog is cute", "Hello, my cat is awesome", "Hello, my fish is great", "Salut, mon chien est mignon", "Salut, mon chat est génial", "Salut, mon poisson est super", "Hallo, mein Hund ist süß", "Hallo, meine Katze ist toll", "Hallo, mein Fisch ist großartig", ], return_tensors="pt", padding=True, ).to(model.device) with torch.inference_mode(): out_base = model(**inputs).logits config0 = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config0).eval() with torch.inference_mode(): out_adapter0 = model(**inputs).logits config1 = LoraConfig( r=16, init_lora_weights=False, ) model.add_adapter("adapter1", config1) model.set_adapter("adapter1") with torch.inference_mode(): out_adapter1 = model(**inputs).logits atol, rtol = 1e-5, 1e-5 # sanity check, outputs have the right shape and are not the same assert len(out_base) >= 3 assert len(out_base) == len(out_adapter0) == len(out_adapter1) assert not torch.allclose(out_base, out_adapter0, atol=atol, rtol=rtol) assert not torch.allclose(out_base, out_adapter1, atol=atol, rtol=rtol) assert not torch.allclose(out_adapter0, out_adapter1, atol=atol, rtol=rtol) # mixed adapter batch adapters = ["__base__", "default", "adapter1"] adapter_names = [adapters[i % 3] for i in (range(9))] with torch.inference_mode(): out_mixed = model(**inputs, adapter_names=adapter_names).logits assert torch.allclose(out_base[::3], out_mixed[::3], atol=atol, rtol=rtol) assert torch.allclose(out_adapter0[1::3], out_mixed[1::3], atol=atol, rtol=rtol) assert torch.allclose(out_adapter1[2::3], out_mixed[2::3], atol=atol, rtol=rtol) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_lora_mixed_adapter_batches_lora(self): # check that we can pass mixed adapter names to the model # note that with 8bit, we have quite a bit of imprecision, therefore we use softmax and higher tolerances torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( load_in_8bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_type=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ).eval() tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m") # input with 9 samples inputs = tokenizer( [ "Hello, my dog is cute", "Hello, my cat is awesome", "Hello, my fish is great", "Salut, mon chien est mignon", "Salut, mon chat est génial", "Salut, mon poisson est super", "Hallo, mein Hund ist süß", "Hallo, meine Katze ist toll", "Hallo, mein Fisch ist großartig", ], return_tensors="pt", padding=True, ).to(model.device) with torch.inference_mode(): out_base = F.softmax(model(**inputs).logits, dim=-1) config0 = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config0).eval() with torch.inference_mode(): out_adapter0 = F.softmax(model(**inputs).logits, dim=-1) config1 = LoraConfig( r=16, init_lora_weights=False, ) model.add_adapter("adapter1", config1) model.set_adapter("adapter1") with torch.inference_mode(): out_adapter1 = F.softmax(model(**inputs).logits, dim=-1) atol = 0.01 rtol = 0.5 # sanity check, outputs have the right shape and are not the same assert len(out_base) >= 3 assert len(out_base) == len(out_adapter0) == len(out_adapter1) assert not torch.allclose(out_base, out_adapter0, atol=atol, rtol=rtol) assert not torch.allclose(out_base, out_adapter1, atol=atol, rtol=rtol) assert not torch.allclose(out_adapter0, out_adapter1, atol=atol, rtol=rtol) # mixed adapter batch adapters = ["__base__", "default", "adapter1"] adapter_names = [adapters[i % 3] for i in (range(9))] with torch.inference_mode(): out_mixed = F.softmax(model(**inputs, adapter_names=adapter_names).logits, dim=-1) assert torch.allclose(out_base[::3], out_mixed[::3], atol=atol, rtol=rtol) assert torch.allclose(out_adapter0[1::3], out_mixed[1::3], atol=atol, rtol=rtol) assert torch.allclose(out_adapter1[2::3], out_mixed[2::3], atol=atol, rtol=rtol) @require_torch_gpu @pytest.mark.single_gpu_tests def test_serialization_shared_tensors(self): model_checkpoint = "roberta-base" peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all" ) model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=11).to("cuda") model = get_peft_model(model, peft_config) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_dora_inference(self): # check for same result with and without DoRA when initializing with init_lora_weights=False bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_type=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) torch.manual_seed(0) config_lora = LoraConfig(r=8, init_lora_weights=False, use_dora=False) model = get_peft_model(model, config_lora).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) logits_lora = model(random_input).logits model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) torch.manual_seed(0) config_dora = LoraConfig(r=8, init_lora_weights=False, use_dora=True) model = get_peft_model(model, config_dora) logits_dora = model(random_input).logits assert torch.allclose(logits_lora, logits_dora) # sanity check assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear4bit) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_dora_inference(self): # check for same result with and without DoRA when initializing with init_lora_weights=False model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", load_in_8bit=True, torch_dtype=torch.float32, ).eval() torch.manual_seed(0) config_lora = LoraConfig(r=8, init_lora_weights=False, use_dora=False) model = get_peft_model(model, config_lora).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) logits_lora = model(random_input).logits model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", load_in_8bit=True, torch_dtype=torch.float32, ) torch.manual_seed(0) config_dora = LoraConfig(r=8, init_lora_weights=False, use_dora=True) model = get_peft_model(model, config_dora) logits_dora = model(random_input).logits assert torch.allclose(logits_lora, logits_dora) # sanity check assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear8bitLt) assert isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_dora_merging(self): # Check results for merging, unmerging, unloading torch.manual_seed(0) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_type=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "HuggingFaceM4/tiny-random-LlamaForCausalLM", quantization_config=bnb_config, torch_dtype=torch.float32, ).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, use_dora=True, ) model = get_peft_model(model, config).eval() # Note: By default, DoRA is a no-op before training, even if we set init_lora_weights=False. In order to # measure any differences, we need to change the magnitude vector. for name, module in model.named_modules(): if isinstance(module, LoraLinear4bit): module.lora_magnitude_vector["default"] = torch.nn.Parameter( 10 * torch.rand_like(module.lora_magnitude_vector["default"]) ) with torch.inference_mode(): out_dora = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() out_merged = F.softmax(model(random_input).logits, dim=-1) model.unmerge_adapter() out_unmerged = F.softmax(model(random_input).logits, dim=-1) model = model.merge_and_unload() out_unloaded = F.softmax(model(random_input).logits, dim=-1) atol = 1e-5 rtol = 1e-3 # sanity check that using DoRA changes the results assert not torch.allclose(out_base, out_dora, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_merged, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_unmerged, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_unloaded, atol=atol, rtol=rtol) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_dora_merging(self): # Check results for merging, unmerging, unloading torch.manual_seed(0) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", load_in_8bit=True, torch_dtype=torch.float32, ).eval() random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, use_dora=True, ) model = get_peft_model(model, config).eval() # Note: By default, DoRA is a no-op before training, even if we set init_lora_weights=False. In order to # measure any differences, we need to change the magnitude vector. for name, module in model.named_modules(): if isinstance(module, LoraLinear8bitLt): module.lora_magnitude_vector["default"] = torch.nn.Parameter( 10 * torch.rand_like(module.lora_magnitude_vector["default"]) ) with torch.inference_mode(): out_dora = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() out_merged = F.softmax(model(random_input).logits, dim=-1) model.unmerge_adapter() out_unmerged = F.softmax(model(random_input).logits, dim=-1) model = model.merge_and_unload() out_unloaded = F.softmax(model(random_input).logits, dim=-1) # 8bit merging less precise than 4bit atol = 0.01 rtol = 10 # sanity check that using DoRA changes the results assert not torch.allclose(out_base, out_dora, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_merged, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_unmerged, atol=atol, rtol=rtol) assert torch.allclose(out_dora, out_unloaded, atol=atol, rtol=rtol)
peft/tests/test_common_gpu.py/0
{ "file_path": "peft/tests/test_common_gpu.py", "repo_id": "peft", "token_count": 20421 }
188
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from copy import deepcopy import pytest from diffusers import StableDiffusionPipeline from parameterized import parameterized from torch import nn from transformers import AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, BitsAndBytesConfig from peft import IA3Config, LoHaConfig, LoraConfig, get_peft_model from peft.tuners.tuners_utils import ( _maybe_include_all_linear_layers, check_target_module_exists, inspect_matched_modules, ) from peft.utils import INCLUDE_LINEAR_LAYERS_SHORTHAND from .testing_utils import require_bitsandbytes, require_torch_gpu # Implements tests for regex matching logic common for all BaseTuner subclasses, and # tests for correct behaviour with different config kwargs for BaseTuners (Ex: feedforward for IA3, etc) and # tests for utility function to include all linear layers REGEX_TEST_CASES = [ # tuple of # 1. key # 2. target_modules # 3. layers_to_transform # 4. layers_pattern # 5. expected result # some basic examples ("", [], None, None, False), ("", ["foo"], None, None, False), ("foo", [], None, None, False), ("foo", ["foo"], None, None, True), ("foo", ["bar"], None, None, False), ("foo", ["foo", "bar"], None, None, True), # with regex ("foo", "foo", None, None, True), ("foo", ".*oo", None, None, True), ("foo", "fo.*", None, None, True), ("foo", ".*bar.*", None, None, False), ("foobar", ".*oba.*", None, None, True), # with layers_to_transform ("foo.bar.1.baz", ["baz"], [1], ["bar"], True), ("foo.bar.1.baz", ["baz"], [0], ["bar"], False), ("foo.bar.1.baz", ["baz"], [2], ["bar"], False), ("foo.bar.10.baz", ["baz"], [0], ["bar"], False), ("foo.bar.10.baz", ["baz"], [1], ["bar"], False), ("foo.bar.1.baz", ["baz"], [0, 1, 2], ["bar"], True), ("foo.bar.1.baz", ["baz", "spam"], [1], ["bar"], True), ("foo.bar.1.baz", ["baz", "spam"], [0, 1, 2], ["bar"], True), # empty layers_to_transform ("foo.bar.7.baz", ["baz"], [], ["bar"], True), ("foo.bar.7.baz", ["baz"], None, ["bar"], True), # empty layers_pattern ("foo.whatever.1.baz", ["baz"], [1], [], True), ("foo.whatever.1.baz", ["baz"], [0], [], False), ("foo.whatever.1.baz", ["baz"], [1], "", True), ("foo.whatever.1.baz", ["baz"], [0], "", False), ("foo.whatever.1.baz", ["baz"], [1], None, True), ("foo.whatever.1.baz", ["baz"], [0], None, False), # some realistic examples: transformers model ("transformer.h.1.attn.attention.q_proj.foo", ["q_proj"], None, [], False), ("transformer.h.1.attn.attention.q_proj", [], None, [], False), ("transformer.h.1.attn.attention.q_proj", ["q_proj"], None, [], True), ("transformer.h.1.attn.attention.q_proj", ["q_proj", "v_proj"], None, [], True), ("transformer.h.1.attn.attention.resid_dropout", ["q_proj", "v_proj"], None, [], False), ("transformer.h.1.attn.attention.q_proj", ["q_proj"], [1], ["h"], True), ("transformer.h.1.attn.attention.q_proj", ["q_proj"], [0], ["h"], False), ("transformer.h.1.attn.attention.q_proj", ["q_proj"], [2], ["h"], False), ("transformer.h.1.attn.attention.q_proj", ["q_proj"], [0, 1, 2], ["h"], True), ("transformer.h.1.attn.attention.q_proj", ["q_proj", "v_proj"], [0, 1, 2], ["h"], True), ("foo.bar.q_proj", ["q_proj"], None, [], True), ("foo.bar.1.baz", ["baz"], [1], ["foo"], False), # other corner cases. For ex, below is a case where layers_pattern # is one of the target nn.modules ("foo.bar.1.baz", ["baz"], [1], ["baz"], False), # here, layers_pattern is 'bar', but only keys that contain '.bar' are valid. ("bar.1.baz", ["baz"], [1], ["bar"], False), ("foo.bar.001.baz", ["baz"], [1], ["bar"], True), ("foo.bar.1.spam.2.baz", ["baz"], [1], ["bar"], True), ("foo.bar.2.spam.1.baz", ["baz"], [1], ["bar"], False), # some realistic examples: module using nn.Sequential # for the below test case, key should contain '.blocks' to be valid, because of how layers_pattern is matched ("blocks.1.weight", ["weight"], [1], ["blocks"], False), ("blocks.1.bias", ["weight"], [1], ["blocks"], False), ("mlp.blocks.1.weight", ["weight"], [1], ["blocks"], True), ("mlp.blocks.1.bias", ["weight"], [1], ["blocks"], False), ] MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_CASES = [ # model_name, model_type, initial_target_modules, expected_target_modules # test for a causal Llama model ( "HuggingFaceH4/tiny-random-LlamaForCausalLM", "causal", INCLUDE_LINEAR_LAYERS_SHORTHAND, ["k_proj", "v_proj", "q_proj", "o_proj", "down_proj", "up_proj", "gate_proj"], ), # test for a Llama model without the LM head ( "HuggingFaceH4/tiny-random-LlamaForCausalLM", "base", INCLUDE_LINEAR_LAYERS_SHORTHAND, ["k_proj", "v_proj", "q_proj", "o_proj", "down_proj", "up_proj", "gate_proj"], ), # test for gpt2 with Conv1D layers ("hf-internal-testing/tiny-random-gpt2", "causal", INCLUDE_LINEAR_LAYERS_SHORTHAND, ["c_attn", "c_proj", "c_fc"]), # test for T5 model ( "hf-internal-testing/tiny-random-t5", "seq2seq", INCLUDE_LINEAR_LAYERS_SHORTHAND, ["k", "q", "v", "o", "wi", "wo"], ), # test for GPTNeoX. output module list should exclude classification head - which is named as "embed_out" instead of the usual "lm_head" for GPTNeoX ( "hf-internal-testing/tiny-random-GPTNeoXForCausalLM", "causal", INCLUDE_LINEAR_LAYERS_SHORTHAND, ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], ), ] # tests for a few args that should remain unchanged MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_INTERNALS = [ # initial_target_modules, expected_target_modules (["k_proj"], ["k_proj"]), # test with target_modules as None (None, None), # test with target_modules as a regex expression (".*(q_proj|v_proj)$", ".*(q_proj|v_proj)$"), ] BNB_QUANTIZATIONS = [("4bit",), ("8bit",)] BNB_TEST_CASES = [(x + y) for x in MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_CASES for y in BNB_QUANTIZATIONS] class PeftCustomKwargsTester(unittest.TestCase): r""" Test if the PeftModel is instantiated with correct behaviour for custom kwargs. This includes: - test if regex matching works correctly - test if adapters handle custom kwargs the right way e.g. IA3 for `feedforward_modules` """ transformers_class_map = {"causal": AutoModelForCausalLM, "seq2seq": AutoModelForSeq2SeqLM, "base": AutoModel} @parameterized.expand(REGEX_TEST_CASES) def test_regex_matching_valid(self, key, target_modules, layers_to_transform, layers_pattern, expected_result): # We use a LoRA Config for testing, but the regex matching function is common for all BaseTuner subclasses. # example model_id for config initialization. key is matched only against the target_modules given, so this can be any model model_id = "peft-internal-testing/tiny-OPTForCausalLM-lora" config = LoraConfig( base_model_name_or_path=model_id, target_modules=target_modules, layers_pattern=layers_pattern, layers_to_transform=layers_to_transform, ) actual_result = bool(check_target_module_exists(config, key)) assert actual_result == expected_result def test_module_matching_lora(self): # peft models that have a module matching method to inspect the matching modules to allow # users to easily debug their configuration. Here we only test a single case, not all possible combinations of # configs that could exist. This is okay as the method calls `check_target_module_exists` internally, which # has been extensively tested above. model_id = "hf-internal-testing/tiny-random-BloomForCausalLM" model = AutoModel.from_pretrained(model_id) # by default, this model matches query_key_value config = LoraConfig() peft_model = get_peft_model(model, config) output = inspect_matched_modules(peft_model) # inspects default adapter for peft_model matched = output["matched"] expected = [ "h.0.self_attention.query_key_value", "h.1.self_attention.query_key_value", "h.2.self_attention.query_key_value", "h.3.self_attention.query_key_value", "h.4.self_attention.query_key_value", ] assert matched == expected # module lists should match exactly # no overlap with matched modules unmatched = output["unmatched"] for key in expected: assert key not in unmatched def test_feedforward_matching_ia3(self): model_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration" model = AutoModelForSeq2SeqLM.from_pretrained(model_id) # simple example for just one t5 block for testing config_kwargs = { "target_modules": ".*encoder.*block.0.*(SelfAttention|EncDecAttention|DenseReluDense).(k|q|v|wo|wi)$", "feedforward_modules": ["wo", "wi"], } config = IA3Config(base_model_name_or_path=model_id, **config_kwargs) peft_model = get_peft_model(model, config) output = inspect_matched_modules(peft_model) # inspects default adapter for peft_model matched = output["matched"] expected = [ "encoder.block.0.layer.0.SelfAttention.q", "encoder.block.0.layer.0.SelfAttention.k", "encoder.block.0.layer.0.SelfAttention.v", "encoder.block.0.layer.1.DenseReluDense.wi", "encoder.block.0.layer.1.DenseReluDense.wo", ] expected_feedforward = [ "encoder.block.0.layer.1.DenseReluDense.wi", "encoder.block.0.layer.1.DenseReluDense.wo", ] assert matched == expected # not required since we do similar checks above, but just to be sure module_dict = dict(model.named_modules()) for key in matched: module = module_dict[key] if key in expected_feedforward: assert module.is_feedforward else: # other IA3 modules should not be marked as feedforward assert not module.is_feedforward @parameterized.expand(MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_CASES) def test_maybe_include_all_linear_layers_lora( self, model_id, model_type, initial_target_modules, expected_target_modules ): model = self.transformers_class_map[model_type].from_pretrained(model_id) config_cls = LoraConfig self._check_match_with_expected_target_modules( model_id, model, config_cls, initial_target_modules, expected_target_modules ) @parameterized.expand(BNB_TEST_CASES) @require_torch_gpu @require_bitsandbytes def test_maybe_include_all_linear_layers_lora_bnb( self, model_id, model_type, initial_target_modules, expected_target_modules, quantization ): if quantization == "4bit": config_kwargs = {"quantization_config": BitsAndBytesConfig(load_in_4bit=True)} elif quantization == "8bit": config_kwargs = {"quantization_config": BitsAndBytesConfig(load_in_8bit=True)} model = self.transformers_class_map[model_type].from_pretrained(model_id, device_map="auto", **config_kwargs) config_cls = LoraConfig self._check_match_with_expected_target_modules( model_id, model, config_cls, initial_target_modules, expected_target_modules ) def _check_match_with_expected_target_modules( self, model_id, model, config_cls, initial_target_modules, expected_target_modules ): """ Helper function for the test for `_maybe_include_all_linear_layers` """ actual_config = config_cls(base_model_name_or_path=model_id, target_modules=initial_target_modules) expected_config = config_cls(base_model_name_or_path=model_id, target_modules=expected_target_modules) model_copy = deepcopy(model) actual_model = get_peft_model(model, peft_config=actual_config) expected_model = get_peft_model(model_copy, peft_config=expected_config) expected_model_module_dict = dict(expected_model.named_modules()) # compare the two models and assert that all layers are of the same type for name, actual_module in actual_model.named_modules(): expected_module = expected_model_module_dict[name] assert type(actual_module) == type(expected_module) def test_maybe_include_all_linear_layers_ia3_loha(self): model_id, initial_target_modules, expected_target_modules = ( "HuggingFaceH4/tiny-random-LlamaForCausalLM", INCLUDE_LINEAR_LAYERS_SHORTHAND, ["k_proj", "v_proj", "q_proj", "o_proj", "down_proj", "up_proj", "gate_proj"], ) model_ia3 = AutoModelForCausalLM.from_pretrained(model_id) model_loha = deepcopy(model_ia3) config_classes = [IA3Config, LoHaConfig] models = [model_ia3, model_loha] for config_cls, model in zip(config_classes, models): self._check_match_with_expected_target_modules( model_id, model, config_cls, initial_target_modules, expected_target_modules ) @parameterized.expand(MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_INTERNALS) def test_maybe_include_all_linear_layers_internals(self, initial_target_modules, expected_target_modules): model_id = "HuggingFaceH4/tiny-random-LlamaForCausalLM" model = AutoModelForCausalLM.from_pretrained(model_id) config = LoraConfig(base_model_name_or_path=model_id, target_modules=initial_target_modules) new_config = _maybe_include_all_linear_layers(config, model) if isinstance(expected_target_modules, list): # assert that expected and actual target_modules have the same items assert set(new_config.target_modules) == set(expected_target_modules) else: assert new_config.target_modules == expected_target_modules def test_maybe_include_all_linear_layers_diffusion(self): model_id = "hf-internal-testing/tiny-stable-diffusion-torch" model = StableDiffusionPipeline.from_pretrained(model_id) config = LoraConfig(base_model_name_or_path=model_id, target_modules="all-linear") with pytest.raises( ValueError, match="Only instances of PreTrainedModel support `target_modules='all-linear'`", ): model.unet = get_peft_model(model.unet, config) class MLP(nn.Module): def __init__(self, bias=True): super().__init__() self.lin0 = nn.Linear(10, 20, bias=bias) self.relu = nn.ReLU() self.drop = nn.Dropout(0.5) self.lin1 = nn.Linear(20, 2, bias=bias) self.sm = nn.LogSoftmax(dim=-1) class TestTargetedModuleNames(unittest.TestCase): """Check that the attribute targeted_module_names is correctly set. This checks LoRA and IA³, but this should be sufficient, testing all other tuners is not necessary. """ def test_one_targeted_module_regex(self): model = MLP() model = get_peft_model(model, LoraConfig(target_modules="lin0")) assert model.targeted_module_names == ["lin0"] def test_two_targeted_module_regex(self): model = MLP() model = get_peft_model(model, LoraConfig(target_modules="lin.*")) assert model.targeted_module_names == ["lin0", "lin1"] def test_one_targeted_module_list(self): model = MLP() model = get_peft_model(model, LoraConfig(target_modules=["lin0"])) assert model.targeted_module_names == ["lin0"] def test_two_targeted_module_list(self): model = MLP() model = get_peft_model(model, LoraConfig(target_modules=["lin0", "lin1"])) assert model.targeted_module_names == ["lin0", "lin1"] def test_ia3_targeted_module_regex(self): model = MLP() model = get_peft_model(model, IA3Config(target_modules=".*lin.*", feedforward_modules=".*lin.*")) assert model.targeted_module_names == ["lin0", "lin1"] def test_ia3_targeted_module_list(self): model = MLP() model = get_peft_model(model, IA3Config(target_modules=["lin0", "lin1"], feedforward_modules=["lin0", "lin1"])) assert model.targeted_module_names == ["lin0", "lin1"] def test_realistic_example(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-BloomForCausalLM") config = LoraConfig(task_type="CAUSAL_LM") model = get_peft_model(model, config) expected = [ f"transformer.h.{i}.self_attention.query_key_value" for i in range(len(model.base_model.transformer.h)) ] assert model.targeted_module_names == expected
peft/tests/test_tuners_utils.py/0
{ "file_path": "peft/tests/test_tuners_utils.py", "repo_id": "peft", "token_count": 7337 }
189
""" Convert weights from https://github.com/google-research/nested-transformer NOTE: You'll need https://github.com/google/CommonLoopUtils, not included in requirements.txt """ import sys import numpy as np import torch from clu import checkpoint arch_depths = { 'nest_base': [2, 2, 20], 'nest_small': [2, 2, 20], 'nest_tiny': [2, 2, 8], } def convert_nest(checkpoint_path, arch): """ Expects path to checkpoint which is a dir containing 4 files like in each of these folders - https://console.cloud.google.com/storage/browser/gresearch/nest-checkpoints `arch` is needed to Returns a state dict that can be used with `torch.nn.Module.load_state_dict` Hint: Follow timm.models.nest.Nest.__init__ and https://github.com/google-research/nested-transformer/blob/main/models/nest_net.py """ assert arch in ['nest_base', 'nest_small', 'nest_tiny'], "Your `arch` is not supported" flax_dict = checkpoint.load_state_dict(checkpoint_path)['optimizer']['target'] state_dict = {} # Patch embedding state_dict['patch_embed.proj.weight'] = torch.tensor( flax_dict['PatchEmbedding_0']['Conv_0']['kernel']).permute(3, 2, 0, 1) state_dict['patch_embed.proj.bias'] = torch.tensor(flax_dict['PatchEmbedding_0']['Conv_0']['bias']) # Positional embeddings posemb_keys = [k for k in flax_dict.keys() if k.startswith('PositionEmbedding')] for i, k in enumerate(posemb_keys): state_dict[f'levels.{i}.pos_embed'] = torch.tensor(flax_dict[k]['pos_embedding']) # Transformer encoders depths = arch_depths[arch] for level in range(len(depths)): for layer in range(depths[level]): global_layer_ix = sum(depths[:level]) + layer # Norms for i in range(2): state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i+1}.weight'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['scale']) state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i+1}.bias'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['bias']) # Attention qkv w_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['kernel'] w_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['kernel'] # Pay attention to dims here (maybe get pen and paper) w_kv = np.concatenate(np.split(w_kv, 2, -1), 1) w_qkv = np.concatenate([w_q, w_kv], 1) state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.weight'] = torch.tensor(w_qkv).flatten(1).permute(1,0) b_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['bias'] b_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['bias'] # Pay attention to dims here (maybe get pen and paper) b_kv = np.concatenate(np.split(b_kv, 2, -1), 0) b_qkv = np.concatenate([b_q, b_kv], 0) state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.bias'] = torch.tensor(b_qkv).reshape(-1) # Attention proj w_proj = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['proj_kernel'] w_proj = torch.tensor(w_proj).permute(2, 1, 0).flatten(1) state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.weight'] = w_proj state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.bias'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['bias']) # MLP for i in range(2): state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i+1}.weight'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['kernel']).permute(1, 0) state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i+1}.bias'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['bias']) # Block aggregations (ConvPool) for level in range(1, len(depths)): # Convs state_dict[f'levels.{level}.pool.conv.weight'] = torch.tensor( flax_dict[f'ConvPool_{level-1}']['Conv_0']['kernel']).permute(3, 2, 0, 1) state_dict[f'levels.{level}.pool.conv.bias'] = torch.tensor( flax_dict[f'ConvPool_{level-1}']['Conv_0']['bias']) # Norms state_dict[f'levels.{level}.pool.norm.weight'] = torch.tensor( flax_dict[f'ConvPool_{level-1}']['LayerNorm_0']['scale']) state_dict[f'levels.{level}.pool.norm.bias'] = torch.tensor( flax_dict[f'ConvPool_{level-1}']['LayerNorm_0']['bias']) # Final norm state_dict[f'norm.weight'] = torch.tensor(flax_dict['LayerNorm_0']['scale']) state_dict[f'norm.bias'] = torch.tensor(flax_dict['LayerNorm_0']['bias']) # Classifier state_dict['head.weight'] = torch.tensor(flax_dict['Dense_0']['kernel']).permute(1, 0) state_dict['head.bias'] = torch.tensor(flax_dict['Dense_0']['bias']) return state_dict if __name__ == '__main__': variant = sys.argv[1] # base, small, or tiny state_dict = convert_nest(f'./nest-{variant[0]}_imagenet', f'nest_{variant}') torch.save(state_dict, f'./jx_nest_{variant}.pth')
pytorch-image-models/convert/convert_nest_flax.py/0
{ "file_path": "pytorch-image-models/convert/convert_nest_flax.py", "repo_id": "pytorch-image-models", "token_count": 2670 }
190
# CSP-ResNeXt **CSPResNeXt** is a convolutional neural network where we apply the Cross Stage Partial Network (CSPNet) approach to [ResNeXt](https://paperswithcode.com/method/resnext). The CSPNet partitions the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{wang2019cspnet, title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, year={2019}, eprint={1911.11929}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: CSP ResNeXt Paper: Title: 'CSPNet: A New Backbone that can Enhance Learning Capability of CNN' URL: https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance Models: - Name: cspresnext50 In Collection: CSP ResNeXt Metadata: FLOPs: 3962945536 Parameters: 20570000 File Size: 82562887 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - Polynomial Learning Rate Decay - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 1x GPU ID: cspresnext50 LR: 0.1 Layers: 50 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 128 Image Size: '224' Weight Decay: 0.005 Interpolation: bilinear Training Steps: 8000000 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L430 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.05% Top 5 Accuracy: 94.94% -->
pytorch-image-models/docs/models/.templates/models/csp-resnext.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/csp-resnext.md", "repo_id": "pytorch-image-models", "token_count": 916 }
191
# HRNet **HRNet**, or **High-Resolution Net**, is a general purpose convolutional neural network for tasks like semantic segmentation, object detection and image classification. It is able to maintain high resolution representations through the whole process. We start from a high-resolution convolution stream, gradually add high-to-low resolution convolution streams one by one, and connect the multi-resolution streams in parallel. The resulting network consists of several ($4$ in the paper) stages and the $n$th stage contains $n$ streams corresponding to $n$ resolutions. The authors conduct repeated multi-resolution fusions by exchanging the information across the parallel streams over and over. {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{sun2019highresolution, title={High-Resolution Representations for Labeling Pixels and Regions}, author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang}, year={2019}, eprint={1904.04514}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: HRNet Paper: Title: Deep High-Resolution Representation Learning for Visual Recognition URL: https://paperswithcode.com/paper/190807919 Models: - Name: hrnet_w18 In Collection: HRNet Metadata: FLOPs: 5547205500 Parameters: 21300000 File Size: 85718883 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L800 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w18-8cb57bb9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.76% Top 5 Accuracy: 93.44% - Name: hrnet_w18_small In Collection: HRNet Metadata: FLOPs: 2071651488 Parameters: 13190000 File Size: 52934302 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18_small Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L790 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v1-f460c6bc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.34% Top 5 Accuracy: 90.68% - Name: hrnet_w18_small_v2 In Collection: HRNet Metadata: FLOPs: 3360023160 Parameters: 15600000 File Size: 62682879 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18_small_v2 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L795 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v2-4c50a8cb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.11% Top 5 Accuracy: 92.41% - Name: hrnet_w30 In Collection: HRNet Metadata: FLOPs: 10474119492 Parameters: 37710000 File Size: 151452218 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w30 Epochs: 100 Layers: 30 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L805 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w30-8d7f8dab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.21% Top 5 Accuracy: 94.22% - Name: hrnet_w32 In Collection: HRNet Metadata: FLOPs: 11524528320 Parameters: 41230000 File Size: 165547812 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs Training Time: 60 hours ID: hrnet_w32 Epochs: 100 Layers: 32 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L810 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w32-90d8c5fb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.45% Top 5 Accuracy: 94.19% - Name: hrnet_w40 In Collection: HRNet Metadata: FLOPs: 16381182192 Parameters: 57560000 File Size: 230899236 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w40 Epochs: 100 Layers: 40 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L815 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w40-7cd397a4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.93% Top 5 Accuracy: 94.48% - Name: hrnet_w44 In Collection: HRNet Metadata: FLOPs: 19202520264 Parameters: 67060000 File Size: 268957432 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w44 Epochs: 100 Layers: 44 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L820 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w44-c9ac8c18.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.89% Top 5 Accuracy: 94.37% - Name: hrnet_w48 In Collection: HRNet Metadata: FLOPs: 22285865760 Parameters: 77470000 File Size: 310603710 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs Training Time: 80 hours ID: hrnet_w48 Epochs: 100 Layers: 48 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L825 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w48-abd2e6ab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.32% Top 5 Accuracy: 94.51% - Name: hrnet_w64 In Collection: HRNet Metadata: FLOPs: 37239321984 Parameters: 128060000 File Size: 513071818 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w64 Epochs: 100 Layers: 64 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L830 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w64-b47cc881.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.46% Top 5 Accuracy: 94.65% -->
pytorch-image-models/docs/models/.templates/models/hrnet.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/hrnet.md", "repo_id": "pytorch-image-models", "token_count": 4240 }
192
# RegNetY **RegNetY** is a convolutional network design space with simple, regular models with parameters: depth $d$, initial width $w\_{0} > 0$, and slope $w\_{a} > 0$, and generates a different block width $u\_{j}$ for each block $j < d$. The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): $$ u\_{j} = w\_{0} + w\_{a}\cdot{j} $$ For **RegNetX** authors have additional restrictions: we set $b = 1$ (the bottleneck ratio), $12 \leq d \leq 28$, and $w\_{m} \geq 2$ (the width multiplier). For **RegNetY** authors make one change, which is to include [Squeeze-and-Excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{radosavovic2020designing, title={Designing Network Design Spaces}, author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, year={2020}, eprint={2003.13678}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: RegNetY Paper: Title: Designing Network Design Spaces URL: https://paperswithcode.com/paper/designing-network-design-spaces Models: - Name: regnety_002 In Collection: RegNetY Metadata: FLOPs: 255754236 Parameters: 3160000 File Size: 12782926 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_002 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L409 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 70.28% Top 5 Accuracy: 89.55% - Name: regnety_004 In Collection: RegNetY Metadata: FLOPs: 515664568 Parameters: 4340000 File Size: 17542753 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_004 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L415 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.02% Top 5 Accuracy: 91.76% - Name: regnety_006 In Collection: RegNetY Metadata: FLOPs: 771746928 Parameters: 6060000 File Size: 24394127 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_006 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L421 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.27% Top 5 Accuracy: 92.53% - Name: regnety_008 In Collection: RegNetY Metadata: FLOPs: 1023448952 Parameters: 6260000 File Size: 25223268 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_008 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L427 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.32% Top 5 Accuracy: 93.07% - Name: regnety_016 In Collection: RegNetY Metadata: FLOPs: 2070895094 Parameters: 11200000 File Size: 45115589 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_016 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L433 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.87% Top 5 Accuracy: 93.73% - Name: regnety_032 In Collection: RegNetY Metadata: FLOPs: 4081118714 Parameters: 19440000 File Size: 78084523 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_032 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L439 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.01% Top 5 Accuracy: 95.91% - Name: regnety_040 In Collection: RegNetY Metadata: FLOPs: 5105933432 Parameters: 20650000 File Size: 82913909 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_040 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L445 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.23% Top 5 Accuracy: 94.64% - Name: regnety_064 In Collection: RegNetY Metadata: FLOPs: 8167730444 Parameters: 30580000 File Size: 122751416 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_064 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L451 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.73% Top 5 Accuracy: 94.76% - Name: regnety_080 In Collection: RegNetY Metadata: FLOPs: 10233621420 Parameters: 39180000 File Size: 157124671 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_080 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L457 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.87% Top 5 Accuracy: 94.83% - Name: regnety_120 In Collection: RegNetY Metadata: FLOPs: 15542094856 Parameters: 51820000 File Size: 207743949 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_120 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L463 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.38% Top 5 Accuracy: 95.12% - Name: regnety_160 In Collection: RegNetY Metadata: FLOPs: 20450196852 Parameters: 83590000 File Size: 334916722 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_160 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L469 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_160-d64013cd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.28% Top 5 Accuracy: 94.97% - Name: regnety_320 In Collection: RegNetY Metadata: FLOPs: 41492618394 Parameters: 145050000 File Size: 580891965 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_320 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L475 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.8% Top 5 Accuracy: 95.25% -->
pytorch-image-models/docs/models/.templates/models/regnety.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/regnety.md", "repo_id": "pytorch-image-models", "token_count": 5944 }
193
# SWSL ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. The models in this collection utilise semi-weakly supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SWSL ResNet Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: swsl_resnet18 In Collection: SWSL ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46811375 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnet18 LR: 0.0015 Epochs: 30 Layers: 18 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L954 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.28% Top 5 Accuracy: 91.76% - Name: swsl_resnet50 In Collection: SWSL ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102480594 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnet50 LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L965 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.14% Top 5 Accuracy: 95.97% -->
pytorch-image-models/docs/models/.templates/models/swsl-resnet.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/swsl-resnet.md", "repo_id": "pytorch-image-models", "token_count": 1630 }
194
# CSP-ResNet **CSPResNet** is a convolutional neural network where we apply the Cross Stage Partial Network (CSPNet) approach to [ResNet](https://paperswithcode.com/method/resnet). The CSPNet partitions the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('cspresnet50', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `cspresnet50`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('cspresnet50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{wang2019cspnet, title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, year={2019}, eprint={1911.11929}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: CSP ResNet Paper: Title: 'CSPNet: A New Backbone that can Enhance Learning Capability of CNN' URL: https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance Models: - Name: cspresnet50 In Collection: CSP ResNet Metadata: FLOPs: 5924992000 Parameters: 21620000 File Size: 86679303 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - Polynomial Learning Rate Decay - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: cspresnet50 LR: 0.1 Layers: 50 Crop Pct: '0.887' Momentum: 0.9 Batch Size: 128 Image Size: '256' Weight Decay: 0.005 Interpolation: bilinear Training Steps: 8000000 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L415 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.57% Top 5 Accuracy: 94.71% -->
pytorch-image-models/docs/models/csp-resnet.md/0
{ "file_path": "pytorch-image-models/docs/models/csp-resnet.md", "repo_id": "pytorch-image-models", "token_count": 1703 }
195
# (Gluon) Xception **Xception** is a convolutional neural network architecture that relies solely on [depthwise separable convolution](https://paperswithcode.com/method/depthwise-separable-convolution) layers. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('gluon_xception65', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_xception65`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('gluon_xception65', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{chollet2017xception, title={Xception: Deep Learning with Depthwise Separable Convolutions}, author={François Chollet}, year={2017}, eprint={1610.02357}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Gloun Xception Paper: Title: 'Xception: Deep Learning with Depthwise Separable Convolutions' URL: https://paperswithcode.com/paper/xception-deep-learning-with-depthwise Models: - Name: gluon_xception65 In Collection: Gloun Xception Metadata: FLOPs: 17594889728 Parameters: 39920000 File Size: 160551306 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_xception65 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_xception.py#L241 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_xception-7015a15c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.7% Top 5 Accuracy: 94.87% -->
pytorch-image-models/docs/models/gloun-xception.md/0
{ "file_path": "pytorch-image-models/docs/models/gloun-xception.md", "repo_id": "pytorch-image-models", "token_count": 1559 }
196
# RegNetX **RegNetX** is a convolutional network design space with simple, regular models with parameters: depth $d$, initial width $w\_{0} > 0$, and slope $w\_{a} > 0$, and generates a different block width $u\_{j}$ for each block $j < d$. The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): $$ u\_{j} = w\_{0} + w\_{a}\cdot{j} $$ For **RegNetX** we have additional restrictions: we set $b = 1$ (the bottleneck ratio), $12 \leq d \leq 28$, and $w\_{m} \geq 2$ (the width multiplier). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('regnetx_002', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `regnetx_002`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('regnetx_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{radosavovic2020designing, title={Designing Network Design Spaces}, author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, year={2020}, eprint={2003.13678}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: RegNetX Paper: Title: Designing Network Design Spaces URL: https://paperswithcode.com/paper/designing-network-design-spaces Models: - Name: regnetx_002 In Collection: RegNetX Metadata: FLOPs: 255276032 Parameters: 2680000 File Size: 10862199 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_002 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L337 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 68.75% Top 5 Accuracy: 88.56% - Name: regnetx_004 In Collection: RegNetX Metadata: FLOPs: 510619136 Parameters: 5160000 File Size: 20841309 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_004 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L343 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.39% Top 5 Accuracy: 90.82% - Name: regnetx_006 In Collection: RegNetX Metadata: FLOPs: 771659136 Parameters: 6200000 File Size: 24965172 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_006 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L349 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.84% Top 5 Accuracy: 91.68% - Name: regnetx_008 In Collection: RegNetX Metadata: FLOPs: 1027038208 Parameters: 7260000 File Size: 29235944 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_008 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L355 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.05% Top 5 Accuracy: 92.34% - Name: regnetx_016 In Collection: RegNetX Metadata: FLOPs: 2059337856 Parameters: 9190000 File Size: 36988158 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_016 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L361 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.95% Top 5 Accuracy: 93.43% - Name: regnetx_032 In Collection: RegNetX Metadata: FLOPs: 4082555904 Parameters: 15300000 File Size: 61509573 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_032 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L367 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.15% Top 5 Accuracy: 94.09% - Name: regnetx_040 In Collection: RegNetX Metadata: FLOPs: 5095167744 Parameters: 22120000 File Size: 88844824 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_040 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L373 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.48% Top 5 Accuracy: 94.25% - Name: regnetx_064 In Collection: RegNetX Metadata: FLOPs: 8303405824 Parameters: 26210000 File Size: 105184854 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_064 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L379 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.06% Top 5 Accuracy: 94.47% - Name: regnetx_080 In Collection: RegNetX Metadata: FLOPs: 10276726784 Parameters: 39570000 File Size: 158720042 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_080 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L385 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.21% Top 5 Accuracy: 94.55% - Name: regnetx_120 In Collection: RegNetX Metadata: FLOPs: 15536378368 Parameters: 46110000 File Size: 184866342 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_120 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L391 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.61% Top 5 Accuracy: 94.73% - Name: regnetx_160 In Collection: RegNetX Metadata: FLOPs: 20491740672 Parameters: 54280000 File Size: 217623862 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_160 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L397 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.84% Top 5 Accuracy: 94.82% - Name: regnetx_320 In Collection: RegNetX Metadata: FLOPs: 40798958592 Parameters: 107810000 File Size: 431962133 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_320 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L403 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.25% Top 5 Accuracy: 95.03% -->
pytorch-image-models/docs/models/regnetx.md/0
{ "file_path": "pytorch-image-models/docs/models/regnetx.md", "repo_id": "pytorch-image-models", "token_count": 6551 }
197
# SSL ResNeXT A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width. The model in this collection utilises semi-supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('ssl_resnext101_32x16d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ssl_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('ssl_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SSL ResNext Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: ssl_resnext101_32x16d In Collection: SSL ResNext Metadata: FLOPs: 46623691776 Parameters: 194030000 File Size: 777518664 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnext101_32x16d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L944 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.84% Top 5 Accuracy: 96.09% - Name: ssl_resnext101_32x4d In Collection: SSL ResNext Metadata: FLOPs: 10298145792 Parameters: 44180000 File Size: 177341913 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnext101_32x4d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L924 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.91% Top 5 Accuracy: 95.73% - Name: ssl_resnext101_32x8d In Collection: SSL ResNext Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356056638 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnext101_32x8d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L934 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.61% Top 5 Accuracy: 96.04% - Name: ssl_resnext50_32x4d In Collection: SSL ResNext Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100428550 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnext50_32x4d LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L914 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.3% Top 5 Accuracy: 95.41% -->
pytorch-image-models/docs/models/ssl-resnext.md/0
{ "file_path": "pytorch-image-models/docs/models/ssl-resnext.md", "repo_id": "pytorch-image-models", "token_count": 3444 }
198
# Hugging Face Timm Docs ## Getting Started ``` pip install git+https://github.com/huggingface/doc-builder.git@main#egg=hf-doc-builder pip install watchdog black ``` ## Preview the Docs Locally ``` doc-builder preview timm hfdocs/source ```
pytorch-image-models/hfdocs/README.md/0
{ "file_path": "pytorch-image-models/hfdocs/README.md", "repo_id": "pytorch-image-models", "token_count": 88 }
199