text
stringlengths
7
328k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
459
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import logging import os import sys import warnings from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version """ Pre-training a 🤗 ViT model as an MAE (masked autoencoder), as proposed in https://arxiv.org/abs/2111.06377.""" logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.40.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: Optional[str] = field( default="cifar10", metadata={"help": "Name of a dataset from the datasets package"} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) image_column_name: Optional[str] = field( default=None, metadata={"help": "The column name of the images in the files."} ) train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."}) validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."}) train_val_split: Optional[float] = field( default=0.15, metadata={"help": "Percent to split off of train for validation."} ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) def __post_init__(self): data_files = {} if self.train_dir is not None: data_files["train"] = self.train_dir if self.validation_dir is not None: data_files["val"] = self.validation_dir self.data_files = data_files if data_files else None @dataclass class ModelArguments: """ Arguments pertaining to which model/config/image processor we are going to pre-train. """ model_name_or_path: str = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." ) }, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) config_overrides: Optional[str] = field( default=None, metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) }, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) mask_ratio: float = field( default=0.75, metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) norm_pix_loss: bool = field( default=True, metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class CustomTrainingArguments(TrainingArguments): base_learning_rate: float = field( default=1e-3, metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) return {"pixel_values": pixel_values} def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae", model_args, data_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. ds = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # If we don't have a validation split, split off a percentage of train as validation. data_args.train_val_split = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: split = ds["train"].train_test_split(data_args.train_val_split) ds["train"] = split["train"] ds["validation"] = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.token, } if model_args.config_name: config = ViTMAEConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch.") if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}") config.update_from_string(model_args.config_overrides) logger.info(f"New config: {config}") # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: image_processor = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **config_kwargs) elif model_args.model_name_or_path: image_processor = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: image_processor = ViTImageProcessor() # create model if model_args.model_name_or_path: model = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, ) else: logger.info("Training new model from scratch") model = ViTMAEForPreTraining(config) if training_args.do_train: column_names = ds["train"].column_names else: column_names = ds["validation"].column_names if data_args.image_column_name is not None: image_column_name = data_args.image_column_name elif "image" in column_names: image_column_name = "image" elif "img" in column_names: image_column_name = "img" else: image_column_name = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: size = image_processor.size["shortest_edge"] else: size = (image_processor.size["height"], image_processor.size["width"]) transforms = Compose( [ Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), RandomResizedCrop(size, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std), ] ) def preprocess_images(examples): """Preprocess a batch of images by applying transforms.""" examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset") if data_args.max_train_samples is not None: ds["train"] = ds["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) # Set the training transforms ds["train"].set_transform(preprocess_images) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset") if data_args.max_eval_samples is not None: ds["validation"] = ( ds["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms ds["validation"].set_transform(preprocess_images) # Compute absolute learning rate total_train_batch_size = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: training_args.learning_rate = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer trainer = Trainer( model=model, args=training_args, train_dataset=ds["train"] if training_args.do_train else None, eval_dataset=ds["validation"] if training_args.do_eval else None, tokenizer=image_processor, data_collator=collate_fn, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub kwargs = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/pytorch/image-pretraining/run_mae.py/0
{ "file_path": "transformers/examples/pytorch/image-pretraining/run_mae.py", "repo_id": "transformers", "token_count": 6396 }
300
#!/usr/bin/env python # coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning a 🤗 Transformers model on multiple choice relying on the accelerate library without using a Trainer. """ # You can also adapt this script on your own multiple choice task. Pointers for this are left as comments. import argparse import json import logging import math import os import random from dataclasses import dataclass from itertools import chain from pathlib import Path from typing import Optional, Union import datasets import evaluate import torch from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from datasets import load_dataset from huggingface_hub import HfApi from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, PreTrainedTokenizerBase, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.40.0.dev0") logger = get_logger(__name__) # You should update this to your particular problem to have better documentation of `model_type` MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a multiple choice task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_seq_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument( "--debug", action="store_true", help="Activate debug mode and run training only with a subset of data.", ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--trust_remote_code", type=bool, default=False, help=( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ), ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. ' "Only applicable when `--with_tracking` is passed." ), ) args = parser.parse_args() if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args @dataclass class DataCollatorForMultipleChoice: """ Data collator that will dynamically pad the inputs for multiple choice received. Args: tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): The tokenizer used for encoding the data. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None def __call__(self, features): label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature.pop(label_name) for feature in features] batch_size = len(features) num_choices = len(features[0]["input_ids"]) flattened_features = [ [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features ] flattened_features = list(chain(*flattened_features)) batch = self.tokenizer.pad( flattened_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) # Un-flatten batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()} # Add back labels batch["labels"] = torch.tensor(labels, dtype=torch.int64) return batch def main(): args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment accelerator_log_kwargs = {} if args.with_tracking: accelerator_log_kwargs["log_with"] = args.report_to accelerator_log_kwargs["project_dir"] = args.output_dir accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: # Retrieve of infer repo_name repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name # Create repo and retrieve repo_id api = HfApi() repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file extension = args.train_file.split(".")[-1] if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.validation_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # Trim a number of training examples if args.debug: for split in raw_datasets.keys(): raw_datasets[split] = raw_datasets[split].select(range(100)) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. if raw_datasets["train"] is not None: column_names = raw_datasets["train"].column_names else: column_names = raw_datasets["validation"].column_names # When using your own dataset or a different dataset from swag, you will probably need to change this. ending_names = [f"ending{i}" for i in range(4)] context_name = "sent1" question_header_name = "sent2" label_column_name = "label" if "label" in column_names else "labels" # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=args.trust_remote_code) elif args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=args.trust_remote_code) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code ) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.model_name_or_path, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForMultipleChoice.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, trust_remote_code=args.trust_remote_code, ) else: logger.info("Training new model from scratch") model = AutoModelForMultipleChoice.from_config(config, trust_remote_code=args.trust_remote_code) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. padding = "max_length" if args.pad_to_max_length else False def preprocess_function(examples): first_sentences = [[context] * 4 for context in examples[context_name]] question_headers = examples[question_header_name] second_sentences = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers) ] labels = examples[label_column_name] # Flatten out first_sentences = list(chain(*first_sentences)) second_sentences = list(chain(*second_sentences)) # Tokenize tokenized_examples = tokenizer( first_sentences, second_sentences, max_length=args.max_seq_length, padding=padding, truncation=True, ) # Un-flatten tokenized_inputs = {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()} tokenized_inputs["labels"] = labels return tokenized_inputs with accelerator.main_process_first(): processed_datasets = raw_datasets.map( preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). data_collator = DataCollatorForMultipleChoice( tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None) ) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Use the device given by the `accelerator` object. device = accelerator.device model.to(device) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps if overrode_max_train_steps else args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("swag_no_trainer", experiment_config) # Metrics metric = evaluate.load("accuracy") # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": checkpoint_path = args.resume_from_checkpoint path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last checkpoint_path = path path = os.path.basename(checkpoint_path) accelerator.print(f"Resumed from checkpoint: {checkpoint_path}") accelerator.load_state(checkpoint_path) # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) completed_steps = resume_step // args.gradient_accumulation_steps resume_step -= starting_epoch * len(train_dataloader) # update the progress_bar if load from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We skip the first `n` batches in the dataloader when resuming from a checkpoint active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): with accelerator.accumulate(model): outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() accelerator.print(f"epoch {epoch}: {eval_metric}") if args.with_tracking: accelerator.log( { "accuracy": eval_metric, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) api.upload_folder( commit_message=f"Training in progress epoch {epoch}", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: api.upload_folder( commit_message="End of training", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) all_results = {f"eval_{k}": v for k, v in eval_metric.items()} with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump(all_results, f) if __name__ == "__main__": main()
transformers/examples/pytorch/multiple-choice/run_swag_no_trainer.py/0
{ "file_path": "transformers/examples/pytorch/multiple-choice/run_swag_no_trainer.py", "repo_id": "transformers", "token_count": 12074 }
301
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Speech Recognition Pre-Training ## Wav2Vec2 Speech Pre-Training The script [`run_speech_wav2vec2_pretraining_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py) can be used to pre-train a [Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html?highlight=wav2vec2) model from scratch. In the script [`run_speech_wav2vec2_pretraining_no_trainer`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py), a Wav2Vec2 model is pre-trained on audio data alone using [Wav2Vec2's contrastive loss objective](https://arxiv.org/abs/2006.11477). The following examples show how to fine-tune a `"base"`-sized Wav2Vec2 model as well as a `"large"`-sized Wav2Vec2 model using [`accelerate`](https://github.com/huggingface/accelerate). --- **NOTE 1** Wav2Vec2's pre-training is known to be quite unstable. It is advised to do a couple of test runs with a smaller dataset, *i.e.* `--dataset_config_names clean clean`, `--dataset_split_names validation test` to find good hyper-parameters for `learning_rate`, `batch_size`, `num_warmup_steps`, and the optimizer. A good metric to observe during training is the gradient norm which should ideally be between 0.5 and 2. --- --- **NOTE 2** When training a model on large datasets it is recommended to run the data preprocessing in a first run in a **non-distributed** mode via `--preprocessing_only` so that when running the model in **distributed** mode in a second step the preprocessed data can easily be loaded on each distributed device. --- ### Demo In this demo run we pre-train a `"base-sized"` Wav2Vec2 model simply only on the validation and test data of [librispeech_asr](https://huggingface.co/datasets/librispeech_asr). The demo is run on two Titan RTX (24 GB RAM each). In case you have less RAM available per device, consider reducing `--batch_size` and/or the `--max_duration_in_seconds`. ```bash accelerate launch run_wav2vec2_pretraining_no_trainer.py \ --dataset_name="librispeech_asr" \ --dataset_config_names clean clean \ --dataset_split_names validation test \ --model_name_or_path="patrickvonplaten/wav2vec2-base-v2" \ --output_dir="./wav2vec2-pretrained-demo" \ --max_train_steps="20000" \ --num_warmup_steps="32000" \ --gradient_accumulation_steps="8" \ --learning_rate="0.005" \ --weight_decay="0.01" \ --max_duration_in_seconds="20.0" \ --min_duration_in_seconds="2.0" \ --logging_steps="1" \ --saving_steps="10000" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="8" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --adam_epsilon="1e-06" \ --gradient_checkpointing \ --mask_time_prob="0.65" \ --mask_time_length="10" ``` The results of this run can be seen [here](https://wandb.ai/patrickvonplaten/wav2vec2-pretrained-demo/reports/Wav2Vec2-PreTraining-Demo-Run--VmlldzoxMDk3MjAw?accessToken=oa05s1y57lizo2ocxy3k01g6db1u4pt8m6ur2n8nl4cb0ug02ms2cw313kb8ruch). ### Base To pre-train `"base-sized"` Wav2Vec2 model, *e.g.* [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on [librispeech_asr](https://huggingface.co/datasets/librispeech_asr), the following command can be run: ```bash accelerate launch run_wav2vec2_pretraining_no_trainer.py \ --dataset_name=librispeech_asr \ --dataset_config_names clean clean other \ --dataset_split_names train.100 train.360 train.500 \ --model_name_or_path="patrickvonplaten/wav2vec2-base-v2" \ --output_dir="./wav2vec2-pretrained-demo" \ --max_train_steps="200000" \ --num_warmup_steps="32000" \ --gradient_accumulation_steps="4" \ --learning_rate="0.001" \ --weight_decay="0.01" \ --max_duration_in_seconds="20.0" \ --min_duration_in_seconds="2.0" \ --logging_steps="1" \ --saving_steps="10000" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="8" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --adam_epsilon="1e-06" \ --gradient_checkpointing \ --mask_time_prob="0.65" \ --mask_time_length="10" ``` The experiment was run on 8 GPU V100 (16 GB RAM each) for 4 days. In case you have more than 8 GPUs available for a higher effective `batch_size`, it is recommended to increase the `learning_rate` to `0.005` for faster convergence. The results of this run can be seen [here](https://wandb.ai/patrickvonplaten/test/reports/Wav2Vec2-Base--VmlldzoxMTUyODQ0?accessToken=rg6e8u9yizx964k8q47zctq1m4afpvtn1i3qi9exgdmzip6xwkfzvagfajpzj55n) and the checkpoint pretrained for 85,000 steps can be accessed [here](https://huggingface.co/patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps) ### Large To pre-train `"large-sized"` Wav2Vec2 model, *e.g.* [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), on [librispeech_asr](https://huggingface.co/datasets/librispeech_asr), the following command can be run: ```bash accelerate launch run_wav2vec2_pretraining_no_trainer.py \ --dataset_name=librispeech_asr \ --dataset_config_names clean clean other \ --dataset_split_names train.100 train.360 train.500 \ --output_dir=./test \ --max_train_steps=200000 \ --num_warmup_steps=32000 \ --gradient_accumulation_steps=8 \ --learning_rate=0.001 \ --weight_decay=0.01 \ --max_duration_in_seconds=20.0 \ --min_duration_in_seconds=2.0 \ --model_name_or_path=./ --logging_steps=1 \ --saving_steps=10000 \ --per_device_train_batch_size=2 \ --per_device_eval_batch_size=4 \ --adam_beta1=0.9 \ --adam_beta2=0.98 \ --adam_epsilon=1e-06 \ --gradient_checkpointing \ --mask_time_prob=0.65 \ --mask_time_length=10 ``` The experiment was run on 8 GPU V100 (16 GB RAM each) for 7 days. In case you have more than 8 GPUs available for a higher effective `batch_size`, it is recommended to increase the `learning_rate` to `0.005` for faster convergence. The results of this run can be seen [here](https://wandb.ai/patrickvonplaten/pretraining-wav2vec2/reports/Wav2Vec2-Large--VmlldzoxMTAwODM4?accessToken=wm3qzcnldrwsa31tkvf2pdmilw3f63d4twtffs86ou016xjbyilh55uoi3mo1qzc) and the checkpoint pretrained for 120,000 steps can be accessed [here](https://huggingface.co/patrickvonplaten/wav2vec2-large-repro-960h-libri-120k-steps)
transformers/examples/pytorch/speech-pretraining/README.md/0
{ "file_path": "transformers/examples/pytorch/speech-pretraining/README.md", "repo_id": "transformers", "token_count": 2600 }
302
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for text classification.""" # You can also adapt this script on your own text classification task. Pointers for this are left as comments. import logging import os import random import sys import warnings from dataclasses import dataclass, field from typing import List, Optional import datasets import evaluate import numpy as np from datasets import Value, load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.40.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") logger = logging.getLogger(__name__) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) do_regression: bool = field( default=None, metadata={ "help": "Whether to do regression instead of classification. If None, will be inferred from the dataset." }, ) text_column_names: Optional[str] = field( default=None, metadata={ "help": ( "The name of the text column in the input dataset or a CSV/JSON file. " 'If not specified, will use the "sentence" column for single/multi-label classification task.' ) }, ) text_column_delimiter: Optional[str] = field( default=" ", metadata={"help": "THe delimiter to use to join text columns into a single sentence."} ) train_split_name: Optional[str] = field( default=None, metadata={ "help": 'The name of the train split in the input dataset. If not specified, will use the "train" split when do_train is enabled' }, ) validation_split_name: Optional[str] = field( default=None, metadata={ "help": 'The name of the validation split in the input dataset. If not specified, will use the "validation" split when do_eval is enabled' }, ) test_split_name: Optional[str] = field( default=None, metadata={ "help": 'The name of the test split in the input dataset. If not specified, will use the "test" split when do_predict is enabled' }, ) remove_splits: Optional[str] = field( default=None, metadata={"help": "The splits to remove from the dataset. Multiple splits should be separated by commas."}, ) remove_columns: Optional[str] = field( default=None, metadata={"help": "The columns to remove from the dataset. Multiple columns should be separated by commas."}, ) label_column_name: Optional[str] = field( default=None, metadata={ "help": ( "The name of the label column in the input dataset or a CSV/JSON file. " 'If not specified, will use the "label" column for single/multi-label classification task' ) }, ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=True, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) shuffle_train_dataset: bool = field( default=False, metadata={"help": "Whether to shuffle the train dataset or not."} ) shuffle_seed: int = field( default=42, metadata={"help": "Random seed that will be used to shuffle the train dataset."} ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) metric_name: Optional[str] = field(default=None, metadata={"help": "The metric to use for evaluation."}) train_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the training data."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the validation data."} ) test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) def __post_init__(self): if self.dataset_name is None: if self.train_file is None or self.validation_file is None: raise ValueError(" training/validation file or a dataset name.") train_extension = self.train_file.split(".")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." validation_extension = self.validation_file.split(".")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) ignore_mismatched_sizes: bool = field( default=False, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) def get_label_list(raw_dataset, split="train") -> List[str]: """Get the list of labels from a multi-label dataset""" if isinstance(raw_dataset[split]["label"][0], list): label_list = [label for sample in raw_dataset[split]["label"] for label in sample] label_list = list(set(label_list)) else: label_list = raw_dataset[split].unique("label") # we will treat the label list as a list of string instead of int, consistent with model.config.label2id label_list = [str(label) for label in label_list] return label_list def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_classification", model_args, data_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files, or specify a dataset name # to load from huggingface/datasets. In ether case, you can specify a the key of the column(s) containing the text and # the key of the column containing the label. If multiple columns are specified for the text, they will be joined together # for the actual text value. # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) # Try print some info about the dataset logger.info(f"Dataset loaded: {raw_datasets}") logger.info(raw_datasets) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. data_files = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file if training_args.do_predict: if data_args.test_file is not None: train_extension = data_args.train_file.split(".")[-1] test_extension = data_args.test_file.split(".")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." data_files["test"] = data_args.test_file else: raise ValueError("Need either a dataset name or a test file for `do_predict`.") for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}") if data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files raw_datasets = load_dataset( "csv", data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) else: # Loading a dataset from local json files raw_datasets = load_dataset( "json", data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets. if data_args.remove_splits is not None: for split in data_args.remove_splits.split(","): logger.info(f"removing split {split}") raw_datasets.pop(split) if data_args.train_split_name is not None: logger.info(f"using {data_args.train_split_name} as train set") raw_datasets["train"] = raw_datasets[data_args.train_split_name] raw_datasets.pop(data_args.train_split_name) if data_args.validation_split_name is not None: logger.info(f"using {data_args.validation_split_name} as validation set") raw_datasets["validation"] = raw_datasets[data_args.validation_split_name] raw_datasets.pop(data_args.validation_split_name) if data_args.test_split_name is not None: logger.info(f"using {data_args.test_split_name} as test set") raw_datasets["test"] = raw_datasets[data_args.test_split_name] raw_datasets.pop(data_args.test_split_name) if data_args.remove_columns is not None: for split in raw_datasets.keys(): for column in data_args.remove_columns.split(","): logger.info(f"removing column {column} from split {split}") raw_datasets[split].remove_columns(column) if data_args.label_column_name is not None and data_args.label_column_name != "label": for key in raw_datasets.keys(): raw_datasets[key] = raw_datasets[key].rename_column(data_args.label_column_name, "label") # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = ( raw_datasets["train"].features["label"].dtype in ["float32", "float64"] if data_args.do_regression is None else data_args.do_regression ) is_multi_label = False if is_regression: label_list = None num_labels = 1 # regession requires float as label type, let's cast it if needed for split in raw_datasets.keys(): if raw_datasets[split].features["label"].dtype not in ["float32", "float64"]: logger.warning( f"Label type for {split} set to float32, was {raw_datasets[split].features['label'].dtype}" ) features = raw_datasets[split].features features.update({"label": Value("float32")}) try: raw_datasets[split] = raw_datasets[split].cast(features) except TypeError as error: logger.error( f"Unable to cast {split} set to float32, please check the labels are correct, or maybe try with --do_regression=False" ) raise error else: # classification if raw_datasets["train"].features["label"].dtype == "list": # multi-label classification is_multi_label = True logger.info("Label type is list, doing multi-label classification") # Trying to find the number of labels in a multi-label classification task # We have to deal with common cases that labels appear in the training set but not in the validation/test set. # So we build the label list from the union of labels in train/val/test. label_list = get_label_list(raw_datasets, split="train") for split in ["validation", "test"]: if split in raw_datasets: val_or_test_labels = get_label_list(raw_datasets, split=split) diff = set(val_or_test_labels).difference(set(label_list)) if len(diff) > 0: # add the labels that appear in val/test but not in train, throw a warning logger.warning( f"Labels {diff} in {split} set but not in training set, adding them to the label list" ) label_list += list(diff) # if label is -1, we throw a warning and remove it from the label list for label in label_list: if label == -1: logger.warning("Label -1 found in label list, removing it.") label_list.remove(label) label_list.sort() num_labels = len(label_list) if num_labels <= 1: raise ValueError("You need more than one label to do classification.") # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task="text-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) if is_regression: config.problem_type = "regression" logger.info("setting problem type to regression") elif is_multi_label: config.problem_type = "multi_label_classification" logger.info("setting problem type to multi label classification") else: config.problem_type = "single_label_classification" logger.info("setting problem type to single label classification") tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # for training ,we will update the config with label infos, # if do_train is not set, we will use the label infos in the config if training_args.do_train and not is_regression: # classification, training label_to_id = {v: i for i, v in enumerate(label_list)} # update config with label infos if model.config.label2id != label_to_id: logger.warning( "The label2id key in the model config.json is not equal to the label2id key of this " "run. You can ignore this if you are doing finetuning." ) model.config.label2id = label_to_id model.config.id2label = {id: label for label, id in label_to_id.items()} elif not is_regression: # classification, but not training logger.info("using label infos in the model config") logger.info("label2id: {}".format(model.config.label2id)) label_to_id = model.config.label2id else: # regression label_to_id = None if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def multi_labels_to_ids(labels: List[str]) -> List[float]: ids = [0.0] * len(label_to_id) # BCELoss requires float as target type for label in labels: ids[label_to_id[label]] = 1.0 return ids def preprocess_function(examples): if data_args.text_column_names is not None: text_column_names = data_args.text_column_names.split(",") # join together text columns into "sentence" column examples["sentence"] = examples[text_column_names[0]] for column in text_column_names[1:]: for i in range(len(examples[column])): examples["sentence"][i] += data_args.text_column_delimiter + examples[column][i] # Tokenize the texts result = tokenizer(examples["sentence"], padding=padding, max_length=max_seq_length, truncation=True) if label_to_id is not None and "label" in examples: if is_multi_label: result["label"] = [multi_labels_to_ids(l) for l in examples["label"]] else: result["label"] = [(label_to_id[str(l)] if l != -1 else -1) for l in examples["label"]] return result # Running the preprocessing pipeline on all the datasets with training_args.main_process_first(desc="dataset map pre-processing"): raw_datasets = raw_datasets.map( preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset", ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset.") train_dataset = raw_datasets["train"] if data_args.shuffle_train_dataset: logger.info("Shuffling the training dataset") train_dataset = train_dataset.shuffle(seed=data_args.shuffle_seed) if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation or test dataset if validation is not defined.") else: logger.warning("Validation dataset not found. Falling back to test dataset for validation.") eval_dataset = raw_datasets["test"] else: eval_dataset = raw_datasets["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = raw_datasets["test"] # remove label column if it exists if data_args.max_predict_samples is not None: max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") if data_args.metric_name is not None: metric = ( evaluate.load(data_args.metric_name, config_name="multilabel", cache_dir=model_args.cache_dir) if is_multi_label else evaluate.load(data_args.metric_name, cache_dir=model_args.cache_dir) ) logger.info(f"Using metric {data_args.metric_name} for evaluation.") else: if is_regression: metric = evaluate.load("mse", cache_dir=model_args.cache_dir) logger.info("Using mean squared error (mse) as regression score, you can use --metric_name to overwrite.") else: if is_multi_label: metric = evaluate.load("f1", config_name="multilabel", cache_dir=model_args.cache_dir) logger.info( "Using multilabel F1 for multi-label classification task, you can use --metric_name to overwrite." ) else: metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir) logger.info("Using accuracy as classification score, you can use --metric_name to overwrite.") def compute_metrics(p: EvalPrediction): preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions if is_regression: preds = np.squeeze(preds) result = metric.compute(predictions=preds, references=p.label_ids) elif is_multi_label: preds = np.array([np.where(p > 0, 1, 0) for p in preds]) # convert logits to multi-hot encoding # Micro F1 is commonly used in multi-label classification result = metric.compute(predictions=preds, references=p.label_ids, average="micro") else: preds = np.argmax(preds, axis=1) result = metric.compute(predictions=preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if # we already did the padding. if data_args.pad_to_max_length: data_collator = default_data_collator elif training_args.fp16: data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) else: data_collator = None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(eval_dataset=eval_dataset) max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict: logger.info("*** Predict ***") # Removing the `label` columns if exists because it might contains -1 and Trainer won't like that. if "label" in predict_dataset.features: predict_dataset = predict_dataset.remove_columns("label") predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions if is_regression: predictions = np.squeeze(predictions) elif is_multi_label: # Convert logits to multi-hot encoding. We compare the logits to 0 instead of 0.5, because the sigmoid is not applied. # You can also pass `preprocess_logits_for_metrics=lambda logits, labels: nn.functional.sigmoid(logits)` to the Trainer # and set p > 0.5 below (less efficient in this case) predictions = np.array([np.where(p > 0, 1, 0) for p in predictions]) else: predictions = np.argmax(predictions, axis=1) output_predict_file = os.path.join(training_args.output_dir, "predict_results.txt") if trainer.is_world_process_zero(): with open(output_predict_file, "w") as writer: logger.info("***** Predict results *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") elif is_multi_label: # recover from multi-hot encoding item = [label_list[i] for i in range(len(item)) if item[i] == 1] writer.write(f"{index}\t{item}\n") else: item = label_list[item] writer.write(f"{index}\t{item}\n") logger.info("Predict results saved at {}".format(output_predict_file)) kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/pytorch/text-classification/run_classification.py/0
{ "file_path": "transformers/examples/pytorch/text-classification/run_classification.py", "repo_id": "transformers", "token_count": 14065 }
303
#!/usr/bin/env python # coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for sequence to sequence. """ # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. import logging import os import sys import warnings from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, DataCollatorForSeq2Seq, HfArgumentParser, M2M100Tokenizer, MBart50Tokenizer, MBart50TokenizerFast, MBartTokenizer, MBartTokenizerFast, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.40.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt") logger = logging.getLogger(__name__) # A list of all multilingual tokenizer which require src_lang and tgt_lang attributes. MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer] @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ source_lang: str = field(default=None, metadata={"help": "Source language id for translation."}) target_lang: str = field(default=None, metadata={"help": "Target language id for translation."}) dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."}) validation_file: Optional[str] = field( default=None, metadata={ "help": "An optional input evaluation data file to evaluate the metrics (sacrebleu) on a jsonlines file." }, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to evaluate the metrics (sacrebleu) on a jsonlines file."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to model maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) num_beams: Optional[int] = field( default=1, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " "which is used during ``evaluate`` and ``predict``." ) }, ) ignore_pad_token_for_loss: bool = field( default=True, metadata={ "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." }, ) source_prefix: Optional[str] = field( default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} ) forced_bos_token: Optional[str] = field( default=None, metadata={ "help": ( "The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for" " multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to" " be the target language token.(Usually it is the target language token)" ) }, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") elif self.source_lang is None or self.target_lang is None: raise ValueError("Need to specify the source language and the target language.") # accepting both json and jsonl file extensions, as # many jsonlines files actually have a .json extension valid_extensions = ["json", "jsonl"] if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in valid_extensions, "`train_file` should be a jsonlines file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in valid_extensions, "`validation_file` should be a jsonlines file." if self.val_max_target_length is None: self.val_max_target_length = self.max_target_length def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_translation", model_args, data_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") if data_args.source_prefix is None and model_args.model_name_or_path in [ "google-t5/t5-small", "google-t5/t5-base", "google-t5/t5-large", "google-t5/t5-3b", "google-t5/t5-11b", ]: logger.warning( "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with " "`--source_prefix 'translate English to German: ' `" ) # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For translation, only JSON files are supported, with one field named "translation" containing two keys for the # source and target languages (unless you adapt what follows). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] if extension == "jsonl": builder_name = "json" # the "json" builder reads both .json and .jsonl files else: builder_name = extension # e.g. "parquet" raw_datasets = load_dataset( builder_name, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) # Set decoder_start_token_id if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): if isinstance(tokenizer, MBartTokenizer): model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang] else: model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") prefix = data_args.source_prefix if data_args.source_prefix is not None else "" # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: column_names = raw_datasets["train"].column_names elif training_args.do_eval: column_names = raw_datasets["validation"].column_names elif training_args.do_predict: column_names = raw_datasets["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # For translation we set the codes of our source and target languages (only useful for mBART, the others will # ignore those attributes). if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)): assert data_args.target_lang is not None and data_args.source_lang is not None, ( f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and " "--target_lang arguments." ) tokenizer.src_lang = data_args.source_lang tokenizer.tgt_lang = data_args.target_lang # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument. forced_bos_token_id = ( tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None ) model.config.forced_bos_token_id = forced_bos_token_id # Get the language codes for input/target. source_lang = data_args.source_lang.split("_")[0] target_lang = data_args.target_lang.split("_")[0] # Check the whether the source target length fits in the model, if it has absolute positional embeddings if ( hasattr(model.config, "max_position_embeddings") and not hasattr(model.config, "relative_attention_max_distance") and model.config.max_position_embeddings < data_args.max_source_length ): raise ValueError( f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has" f" {model.config.max_position_embeddings} position encodings. Consider either reducing" f" `--max_source_length` to {model.config.max_position_embeddings} or using a model with larger position " "embeddings" ) # Temporarily set max_target_length for training. max_target_length = data_args.max_target_length padding = "max_length" if data_args.pad_to_max_length else False if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): logger.warning( "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for " f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" ) def preprocess_function(examples): inputs = [ex[source_lang] for ex in examples["translation"]] targets = [ex[target_lang] for ex in examples["translation"]] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True) # Tokenize targets with the `text_target` keyword argument labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and data_args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) with training_args.main_process_first(desc="train dataset map pre-processing"): train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) if training_args.do_eval: max_target_length = data_args.val_max_target_length if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = raw_datasets["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) with training_args.main_process_first(desc="validation dataset map pre-processing"): eval_dataset = eval_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) if training_args.do_predict: max_target_length = data_args.val_max_target_length if "test" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = raw_datasets["test"] if data_args.max_predict_samples is not None: max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) with training_args.main_process_first(desc="prediction dataset map pre-processing"): predict_dataset = predict_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on prediction dataset", ) # Data collator label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id if data_args.pad_to_max_length: data_collator = default_data_collator else: data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if training_args.fp16 else None, ) # Metric metric = evaluate.load("sacrebleu", cache_dir=model_args.cache_dir) def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [[label.strip()] for label in labels] return preds, labels def compute_metrics(eval_preds): preds, labels = eval_preds if isinstance(preds, tuple): preds = preds[0] # Replace -100s used for padding as we can't decode them preds = np.where(preds != -100, preds, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) result = metric.compute(predictions=decoded_preds, references=decoded_labels) result = {"bleu": result["score"]} prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] result["gen_len"] = np.mean(prediction_lens) result = {k: round(v, 4) for k, v in result.items()} return result # Initialize our Trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics if training_args.predict_with_generate else None, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} max_length = ( training_args.generation_max_length if training_args.generation_max_length is not None else data_args.val_max_target_length ) num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval") max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict: logger.info("*** Predict ***") predict_results = trainer.predict( predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams ) metrics = predict_results.metrics max_predict_samples = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) ) metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) if trainer.is_world_process_zero(): if training_args.predict_with_generate: predictions = predict_results.predictions predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id) predictions = tokenizer.batch_decode( predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True ) predictions = [pred.strip() for pred in predictions] output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt") with open(output_prediction_file, "w", encoding="utf-8") as writer: writer.write("\n".join(predictions)) kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None] if len(languages) > 0: kwargs["language"] = languages if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/pytorch/translation/run_translation.py/0
{ "file_path": "transformers/examples/pytorch/translation/run_translation.py", "repo_id": "transformers", "token_count": 12554 }
304
from dataclasses import dataclass, field from typing import Optional @dataclass class TrainingArguments: """ Configuration for training model. """ model_ckpt: Optional[str] = field( default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be trained."} ) save_dir: Optional[str] = field( default="./", metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) dataset_name_train: Optional[str] = field( default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path of training dataset."} ) dataset_name_valid: Optional[str] = field( default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} ) train_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for training."}) valid_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for evaluation."}) weight_decay: Optional[float] = field(default=0.1, metadata={"help": "Value of weight decay."}) shuffle_buffer: Optional[int] = field( default=10000, metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) learning_rate: Optional[float] = field(default=2e-4, metadata={"help": "Learning rate fo training."}) lr_scheduler_type: Optional[str] = field(default="cosine", metadata={"help": "Learning rate."}) num_warmup_steps: Optional[int] = field( default=750, metadata={"help": "Number of warmup steps in the learning rate schedule."} ) gradient_accumulation_steps: Optional[int] = field( default=16, metadata={"help": "Number of gradient accumulation steps."} ) gradient_checkpointing: Optional[bool] = field( default=True, metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) max_train_steps: Optional[int] = field(default=50000, metadata={"help": "Maximum number of training steps."}) max_eval_steps: Optional[int] = field( default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) seq_length: Optional[int] = field(default=1024, metadata={"help": "Sequence lengths used for training."}) seed: Optional[int] = field(default=1, metadata={"help": "Training seed."}) save_checkpoint_steps: Optional[int] = field( default=1024, metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."}, ) resume_from_checkpoint: Optional[str] = field( default=None, metadata={"help": "States path if the training should continue from a checkpoint folder."} ) tokenized: Optional[bool] = field(default=False, metadata={"help": "If True the data is pretokenized."}) @dataclass class EvaluationArguments: """ Configuration for evaluating model. """ model_ckpt: Optional[str] = field( default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} ) dataset_name: Optional[str] = field( default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} ) batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size used for evaluation."}) max_eval_steps: Optional[int] = field( default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) seq_length: Optional[int] = field(default=1024, metadata={"help": "Length of sequences to be evaluated."}) seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."}) @dataclass class HumanEvalArguments: """ Configuration for running evaluation on HumanEval dataset. """ model_ckpt: Optional[str] = field( default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} ) num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."}) num_tasks: Optional[int] = field( default=None, metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."}, ) do_sample: Optional[bool] = field( default=True, metadata={"help": "Sample from the language model's output distribution."} ) temperature: Optional[float] = field(default=0.2, metadata={"help": "Sampling temperature used for generation."}) max_new_tokens: Optional[int] = field(default=256, metadata={"help": "Maximum number of newly generated tokens."}) top_k: Optional[int] = field(default=0, metadata={"help": "Top-k parameter used for generation."}) top_p: Optional[float] = field(default=0.95, metadata={"help": "Top-p parameter used for nucleus sampling."}) batch_size: Optional[int] = field(default=10, metadata={"help": "Number of generations to run in parallel."}) n_samples: Optional[int] = field( default=200, metadata={"help": "Number of completions to generate for each sample."} ) seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."}) output_file: Optional[str] = field( default="eval_results.json", metadata={"help": "Random seed used for evaluation."} ) HF_ALLOW_CODE_EVAL: Optional[str] = field( default="0", metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) device_int: Optional[int] = field( default=-1, metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) }, ) @dataclass class PreprocessingArguments: """ Configuration for preprocessing data. """ num_workers: Optional[int] = field( default=None, metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." }, ) dataset_name: Optional[str] = field( default="transformersbook/codeparrot", metadata={"help": "Folder or name of dataset to process."} ) output_dir: Optional[str] = field( default="codeparrot-clean", metadata={"help": "Folder to save processed processed dataset."} ) samples_per_file: Optional[int] = field( default=100_000, metadata={"help": "Number of files to save per JSON output file."} ) text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."}) line_max: Optional[float] = field( default=1000, metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) line_mean: Optional[float] = field( default=100, metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) alpha_frac: Optional[float] = field( default=0.25, metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) min_token_ratio: Optional[float] = field( default=1.5, metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) filter_proba: Optional[float] = field( default=0.7, metadata={"help": "Probability for filtering config, test and uncommon files."} ) tokenizer: Optional[str] = field( default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."}, ) near_deduplication: Optional[bool] = field( default=False, metadata={"help": "If True, near-duplicate samples are removed."} ) jaccard_threshold: Optional[float] = field( default=0.85, metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class TokenizerTrainingArguments: """ Configuration for tokenizer training. """ base_tokenizer: Optional[str] = field( default="openai-community/gpt2", metadata={"help": "Base tokenizer to build new tokenizer from."} ) dataset_name: Optional[str] = field( default="transformersbook/codeparrot-train", metadata={"help": "Dataset to train tokenizer on."} ) text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."}) vocab_size: Optional[int] = field(default=200_000, metadata={"help": "Number of examples to train tokenizer on."}) n_examples: Optional[int] = field( default=32768, metadata={"help": "Number of examples to train the tokenizer on."} ) tokenizer_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of new tokenizer."}) push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."}) @dataclass class PretokenizationArguments: """ Configuration for data pretokenization. """ tokenizer_dir: Optional[str] = field( default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."} ) dataset_name: Optional[str] = field( default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path to the dataset to pretokenize."} ) tokenized_data_repo: Optional[str] = field( default="tokenized-codeparrot-train", metadata={"help": "Repo name of the pretokenized data."} ) num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."}) @dataclass class InitializationArguments: """ Configuration for initializing new model. """ config_name: Optional[str] = field( default="openai-community/gpt2-large", metadata={"help": "Configuration to use for model initialization."} ) tokenizer_name: Optional[str] = field( default="codeparrot/codeparrot", metadata={"help": "Tokenizer attached to model."} ) model_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of the created model."}) push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."})
transformers/examples/research_projects/codeparrot/scripts/arguments.py/0
{ "file_path": "transformers/examples/research_projects/codeparrot/scripts/arguments.py", "repo_id": "transformers", "token_count": 3566 }
305
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocessing script before training the distilled model. """ import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) logger = logging.getLogger(__name__) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30522, type=int) args = parser.parse_args() logger.info(f"Loading data from {args.data_file}") with open(args.data_file, "rb") as fp: data = pickle.load(fp) logger.info("Counting occurrences for MLM.") counter = Counter() for tk_ids in data: counter.update(tk_ids) counts = [0] * args.vocab_size for k, v in counter.items(): counts[k] = v logger.info(f"Dump to {args.token_counts_dump}") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
transformers/examples/research_projects/distillation/scripts/token_counts.py/0
{ "file_path": "transformers/examples/research_projects/distillation/scripts/token_counts.py", "repo_id": "transformers", "token_count": 725 }
306
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Vision-Text dual encoder model training examples > Note: This example is experimental and might not give the best possible results The following example showcases how to train a CLIP like vision-text dual encoder model using a pre-trained vision and text encoder using the JAX/Flax backend. Such a model can be used for natural language image search and potentially zero-shot image classification. The model is inspired by the [CLIP](https://openai.com/blog/clip/) approach, introduced by Alec Radford et al. The idea is to train a vision encoder and a text encoder jointly to project the representation of images and their captions into the same embedding space, such that the caption embeddings are located near the embeddings of the images they describe. JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. In this example we will use the vision model from [CLIP](https://huggingface.co/models?filter=clip) as the image encoder and [`FacebookAI/roberta-base`](https://huggingface.co/FacebookAI/roberta-base) as the text encoder. Note that one can also use the [ViT](https://huggingface.co/models?filter=vit) model as image encoder and any other BERT or ROBERTa model as text encoder. To train the model on languages other than English one should choose a text encoder trained on the desired language and a image-text dataset in that language. One such dataset is [WIT](https://github.com/google-research-datasets/wit). Let's start by creating a model repository to save the trained model and logs. Here we call the model `"clip-roberta-base"`, but you can change the model name as you like. You can do this either directly on [huggingface.co](https://huggingface.co/new) (assuming that you are logged in) or via the command line: ```bash huggingface-cli repo create clip-roberta-base ``` Next we clone the model repository to add the tokenizer and model files. ```bash git clone https://huggingface.co/<your-username>/clip-roberta-base ``` To ensure that all tensorboard traces will be uploaded correctly, we need to track them. You can run the following command inside your model repo to do so. ```bash cd clip-roberta-base git lfs track "*tfevents*" ``` Great, we have set up our model repository. During training, we will automatically push the training logs and model weights to the repo. Next, let's add a symbolic link to the `run_hybrid_clip.py`. ```bash export MODEL_DIR="./clip-roberta-base ln -s ~/transformers/examples/research_projects/jax-projects/hybrid_clip/run_hybrid_clip.py run_hybrid_clip.py ``` ## How to use the `FlaxHybridCLIP` model: The `FlaxHybridCLIP` class let's you load any text and vision encoder model to create a dual encoder. Here is an example of how to load the model using pre-trained text and vision models. ```python from modeling_hybrid_clip import FlaxHybridCLIP model = FlaxHybridCLIP.from_text_vision_pretrained("google-bert/bert-base-uncased", "openai/clip-vit-base-patch32") # save the model model.save_pretrained("bert-clip") # load the saved model model = FlaxHybridCLIP.from_pretrained("bert-clip") ``` If the checkpoints are in PyTorch then one could pass `text_from_pt=True` and `vision_from_pt=True`. This will load the model PyTorch checkpoints convert them to flax and load the model. ```python model = FlaxHybridCLIP.from_text_vision_pretrained("google-bert/bert-base-uncased", "openai/clip-vit-base-patch32", text_from_pt=True, vision_from_pt=True) ``` This loads both the text and vision encoders using pre-trained weights, the projection layers are randomly initialized except for CLIP's vision model. If you use CLIP to initialize the vision model then the vision projection weights are also loaded using the pre-trained weights. ## Prepare the dataset We will use the MS-COCO dataset to train our dual encoder model. MS-COCO contains over 82,000 images, each of which has at least 5 different caption annotations. The dataset is usually used for image captioning tasks, but we can repurpose the image-caption pairs to train our dual encoder model for image search. ### Download and extract the data. It consists of two compressed folders: one with images, and the other—with associated image captions. Note that the compressed images folder is 13GB in size. ```bash wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip wget http://images.cocodataset.org/zips/train2014.zip unzip annotations_trainval2014.zip unzip train2014.zip mkdir coco_dataset mv train2014 coco_dataset/ mv annotations coco_dataset/ ``` ### Prepare dataset files and split the dataset. ```python import json import collections images_dir = "coco_dataset/train2014" annotation_file = "coco_dataset/annotations/captions_train2014.json" with open(annotation_file, "r") as f: annotations = json.load(f)["annotations"] image_path_to_caption = collections.defaultdict(list) for element in annotations: caption = f"{element['caption'].lower().rstrip('.')}" image_path = images_dir + "/COCO_train2014_" + "%012d.jpg" % (element["image_id"]) image_path_to_caption[image_path].append(caption) lines = [] for image_path, captions in image_path_to_caption.items(): lines.append(json.dumps({"image_path": image_path, "captions": captions})) train_lines = lines[:-8000] valid_line = lines[-8000:] with open("coco_dataset/train_dataset.json", "w") as f: f.write("\n".join(train_lines)) with open("coco_dataset/valid_dataset.json", "w") as f: f.write("\n".join(valid_line)) ``` > Note: The data loading and processing part of this script can still be improved for maximum performance. In particular one should decode the images beforehand and use those instead decoding them each time. If the dataset is small or if you have huge disk space the you could also pre-process all the dataset beforehand and then use it. ## Train the model Next we can run the example script to train the model: ```bash python run_hybrid_clip.py \ --output_dir ${MODEL_DIR} \ --text_model_name_or_path="FacebookAI/roberta-base" \ --vision_model_name_or_path="openai/clip-vit-base-patch32" \ --tokenizer_name="FacebookAI/roberta-base" \ --train_file="coco_dataset/train_dataset.json" \ --validation_file="coco_dataset/validation_dataset.json" \ --do_train --do_eval \ --num_train_epochs="40" --max_seq_length 96 \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="64" \ --learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \ --overwrite_output_dir \ --preprocessing_num_workers 32 \ --push_to_hub ``` This should finish in ~1h50 mins with min validation loss 2.43. Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/RUNPYd1yRgSD5kZSb9hDig/#scalars)
transformers/examples/research_projects/jax-projects/hybrid_clip/README.md/0
{ "file_path": "transformers/examples/research_projects/jax-projects/hybrid_clip/README.md", "repo_id": "transformers", "token_count": 2322 }
307
## MM-IMDb Based on the script [`run_mmimdb.py`](https://github.com/huggingface/transformers/blob/main/examples/research_projects/mm-imdb/run_mmimdb.py). [MM-IMDb](http://lisi1.unal.edu.co/mmimdb/) is a Multimodal dataset with around 26,000 movies including images, plots and other metadata. ### Training on MM-IMDb ```bash python run_mmimdb.py \ --data_dir /path/to/mmimdb/dataset/ \ --model_type bert \ --model_name_or_path google-bert/bert-base-uncased \ --output_dir /path/to/save/dir/ \ --do_train \ --do_eval \ --max_seq_len 512 \ --gradient_accumulation_steps 20 \ --num_image_embeds 3 \ --num_train_epochs 100 \ --patience 5 ```
transformers/examples/research_projects/mm-imdb/README.md/0
{ "file_path": "transformers/examples/research_projects/mm-imdb/README.md", "repo_id": "transformers", "token_count": 287 }
308
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Bart + Beam Search to ONNX Author: [@fatcat-z](https://github.com/fatcat-z) This folder contains an example of exporting Bart + Beam Search generation (`BartForConditionalGeneration`) to ONNX. Beam Search contains a for-loop workflow, so we need to make them TorchScript-compatible for exporting to ONNX. This example shows how to make a Bart model be TorchScript-compatible by wrapping up it into a new model. In addition, some changes were made to the `beam_search()` function to make it TorchScript-compatible. ## How to run the example To make sure you can successfully run the latest versions of the example scripts, you have to **install the library from source** and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/transformers cd transformers pip install '.[onnxruntime]' ``` Then cd in this example folder and run ```bash pip install -r requirements.txt ``` Now you can run the example command below to get the example ONNX file: ```bash python run_onnx_exporter.py --model_name_or_path facebook/bart-base ```
transformers/examples/research_projects/onnx/summarization/README.md/0
{ "file_path": "transformers/examples/research_projects/onnx/summarization/README.md", "repo_id": "transformers", "token_count": 463 }
309
#! /usr/bin/env python3 # coding=utf-8 # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Example command with bag of words: python run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95 Example command with discriminator: python run_pplm.py -D sentiment --class_label 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95 """ import argparse import json from operator import add from typing import List, Optional, Tuple, Union import numpy as np import torch from pplm_classification_head import ClassificationHead from torch import nn from tqdm import trange from transformers import GPT2LMHeadModel, GPT2Tokenizer from transformers.file_utils import cached_path PPLM_BOW = 1 PPLM_DISCRIM = 2 PPLM_BOW_DISCRIM = 3 SMALL_CONST = 1e-15 BIG_CONST = 1e10 BAG_OF_WORDS_ARCHIVE_MAP = { "legal": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt", "military": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt", "politics": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt", "religion": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt", "science": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt", "space": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt", "technology": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt", } DISCRIMINATOR_MODELS_PARAMS = { "clickbait": { "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifier_head.pt", "class_size": 2, "embed_size": 1024, "class_vocab": {"non_clickbait": 0, "clickbait": 1}, "default_class": 1, "pretrained_model": "openai-community/gpt2-medium", }, "sentiment": { "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/SST_classifier_head.pt", "class_size": 5, "embed_size": 1024, "class_vocab": {"very_positive": 2, "very_negative": 3}, "default_class": 3, "pretrained_model": "openai-community/gpt2-medium", }, } def top_k_filter(logits, k, probs=False): """ Masks everything but the k top entries as -infinity (1e10). Used to mask logits such that e^-infinity -> 0 won't contribute to the sum of the denominator. """ if k == 0: return logits else: values = torch.topk(logits, k)[0] batch_mins = values[:, -1].view(-1, 1).expand_as(logits) if probs: return torch.where(logits < batch_mins, torch.ones_like(logits) * 0.0, logits) return torch.where(logits < batch_mins, torch.ones_like(logits) * -BIG_CONST, logits) def perturb_past( past, model, last, unpert_past=None, unpert_logits=None, accumulated_hidden=None, grad_norms=None, stepsize=0.01, one_hot_bows_vectors=None, classifier=None, class_label=None, loss_type=0, num_iterations=3, horizon_length=1, window_length=0, decay=False, gamma=1.5, kl_scale=0.01, device="cuda", ): # Generate inital perturbed past grad_accumulator = [(np.zeros(p.shape).astype("float32")) for p in past] if accumulated_hidden is None: accumulated_hidden = 0 if decay: decay_mask = torch.arange(0.0, 1.0 + SMALL_CONST, 1.0 / (window_length))[1:] else: decay_mask = 1.0 # TODO fix this comment (SUMANTH) # Generate a mask is gradient perturbated is based on a past window _, _, _, curr_length, _ = past[0].shape if curr_length > window_length and window_length > 0: ones_key_val_shape = tuple(past[0].shape[:-2]) + (window_length,) + tuple(past[0].shape[-1:]) zeros_key_val_shape = tuple(past[0].shape[:-2]) + (curr_length - window_length,) + tuple(past[0].shape[-1:]) ones_mask = torch.ones(ones_key_val_shape) ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3) ones_mask = ones_mask.permute(0, 1, 2, 4, 3) window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)), dim=-2).to(device) else: window_mask = torch.ones_like(past[0]).to(device) # accumulate perturbations for num_iterations loss_per_iter = [] new_accumulated_hidden = None for i in range(num_iterations): print("Iteration ", i + 1) curr_perturbation = [torch.from_numpy(p_).requires_grad_(True).to(device=device) for p_ in grad_accumulator] # make sure p_.grad is not None for p_ in curr_perturbation: p_.retain_grad() # Compute hidden using perturbed past perturbed_past = list(map(add, past, curr_perturbation)) _, _, _, curr_length, _ = curr_perturbation[0].shape lm_output = model(last, past_key_values=perturbed_past) all_logits, all_hidden = lm_output["logits"], lm_output["hidden_states"] hidden = all_hidden[-1] new_accumulated_hidden = accumulated_hidden + torch.sum(hidden, dim=1).detach() # TODO: Check the layer-norm consistency of this with trained discriminator (Sumanth) logits = all_logits[:, -1, :] probs = nn.functional.softmax(logits, dim=-1) loss = 0.0 loss_list = [] if loss_type == PPLM_BOW or loss_type == PPLM_BOW_DISCRIM: for one_hot_bow in one_hot_bows_vectors: bow_logits = torch.mm(probs, torch.t(one_hot_bow)) bow_loss = -torch.log(torch.sum(bow_logits)) loss += bow_loss loss_list.append(bow_loss) print(" pplm_bow_loss:", loss.data.cpu().numpy()) if loss_type == 2 or loss_type == 3: ce_loss = nn.CrossEntropyLoss() # TODO why we need to do this assignment and not just using unpert_past? (Sumanth) curr_unpert_past = unpert_past curr_probs = torch.unsqueeze(probs, dim=1) wte = model.resize_token_embeddings() for _ in range(horizon_length): inputs_embeds = torch.matmul(curr_probs, wte.weight.data) lm_output = model(past_key_values=curr_unpert_past, inputs_embeds=inputs_embeds) curr_all_logits, curr_unpert_past, curr_all_hidden = ( lm_output["logits"], lm_output["past_key_values"], lm_output["hidden_states"], ) curr_logits = curr_all_logits[:, -1, :] curr_probs = nn.functional.softmax(curr_logits, dim=-1) curr_probs = torch.unsqueeze(curr_probs, dim=1) curr_hidden = curr_all_hidden[-1] new_accumulated_hidden = new_accumulated_hidden + torch.sum(curr_hidden, dim=1) prediction = classifier(new_accumulated_hidden / (curr_length + 1 + horizon_length)) label = torch.tensor(prediction.shape[0] * [class_label], device=device, dtype=torch.long) discrim_loss = ce_loss(prediction, label) print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy()) loss += discrim_loss loss_list.append(discrim_loss) kl_loss = 0.0 if kl_scale > 0.0: unpert_probs = nn.functional.softmax(unpert_logits[:, -1, :], dim=-1) unpert_probs = unpert_probs + SMALL_CONST * (unpert_probs <= SMALL_CONST).float().to(device).detach() correction = SMALL_CONST * (probs <= SMALL_CONST).float().to(device).detach() corrected_probs = probs + correction.detach() kl_loss = kl_scale * ((corrected_probs * (corrected_probs / unpert_probs).log()).sum()) print(" kl_loss", kl_loss.data.cpu().numpy()) loss += kl_loss loss_per_iter.append(loss.data.cpu().numpy()) print(" pplm_loss", (loss - kl_loss).data.cpu().numpy()) # compute gradients loss.backward() # calculate gradient norms if grad_norms is not None and loss_type == PPLM_BOW: grad_norms = [ torch.max(grad_norms[index], torch.norm(p_.grad * window_mask)) for index, p_ in enumerate(curr_perturbation) ] else: grad_norms = [ (torch.norm(p_.grad * window_mask) + SMALL_CONST) for index, p_ in enumerate(curr_perturbation) ] # normalize gradients grad = [ -stepsize * (p_.grad * window_mask / grad_norms[index] ** gamma).data.cpu().numpy() for index, p_ in enumerate(curr_perturbation) ] # accumulate gradient grad_accumulator = list(map(add, grad, grad_accumulator)) # reset gradients, just to make sure for p_ in curr_perturbation: p_.grad.data.zero_() # removing past from the graph new_past = [] for p_ in past: new_past.append(p_.detach()) past = new_past # apply the accumulated perturbations to the past grad_accumulator = [torch.from_numpy(p_).requires_grad_(True).to(device=device) for p_ in grad_accumulator] pert_past = list(map(add, past, grad_accumulator)) return pert_past, new_accumulated_hidden, grad_norms, loss_per_iter def get_classifier( name: Optional[str], class_label: Union[str, int], device: str ) -> Tuple[Optional[ClassificationHead], Optional[int]]: if name is None: return None, None params = DISCRIMINATOR_MODELS_PARAMS[name] classifier = ClassificationHead(class_size=params["class_size"], embed_size=params["embed_size"]).to(device) if "url" in params: resolved_archive_file = cached_path(params["url"]) elif "path" in params: resolved_archive_file = params["path"] else: raise ValueError("Either url or path have to be specified in the discriminator model parameters") classifier.load_state_dict(torch.load(resolved_archive_file, map_location=device)) classifier.eval() if isinstance(class_label, str): if class_label in params["class_vocab"]: label_id = params["class_vocab"][class_label] else: label_id = params["default_class"] print("class_label {} not in class_vocab".format(class_label)) print("available values are: {}".format(params["class_vocab"])) print("using default class {}".format(label_id)) elif isinstance(class_label, int): if class_label in set(params["class_vocab"].values()): label_id = class_label else: label_id = params["default_class"] print("class_label {} not in class_vocab".format(class_label)) print("available values are: {}".format(params["class_vocab"])) print("using default class {}".format(label_id)) else: label_id = params["default_class"] return classifier, label_id def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str], tokenizer) -> List[List[List[int]]]: bow_indices = [] for id_or_path in bag_of_words_ids_or_paths: if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP: filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path]) else: filepath = id_or_path with open(filepath, "r") as f: words = f.read().strip().split("\n") bow_indices.append([tokenizer.encode(word.strip(), add_prefix_space=True) for word in words]) return bow_indices def build_bows_one_hot_vectors(bow_indices, tokenizer, device="cuda"): if bow_indices is None: return None one_hot_bows_vectors = [] for single_bow in bow_indices: single_bow = list(filter(lambda x: len(x) <= 1, single_bow)) single_bow = torch.tensor(single_bow).to(device) num_words = single_bow.shape[0] one_hot_bow = torch.zeros(num_words, tokenizer.vocab_size).to(device) one_hot_bow.scatter_(1, single_bow, 1) one_hot_bows_vectors.append(one_hot_bow) return one_hot_bows_vectors def full_text_generation( model, tokenizer, context=None, num_samples=1, device="cuda", bag_of_words=None, discrim=None, class_label=None, length=100, stepsize=0.02, temperature=1.0, top_k=10, sample=False, num_iterations=3, grad_length=10000, horizon_length=1, window_length=0, decay=False, gamma=1.5, gm_scale=0.9, kl_scale=0.01, repetition_penalty=1.0, **kwargs, ): classifier, class_id = get_classifier(discrim, class_label, device) bow_indices = [] if bag_of_words: bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer) if bag_of_words and classifier: print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.") loss_type = PPLM_BOW_DISCRIM elif bag_of_words: loss_type = PPLM_BOW print("Using PPLM-BoW") elif classifier is not None: loss_type = PPLM_DISCRIM print("Using PPLM-Discrim") else: raise Exception("Specify either a bag of words or a discriminator") unpert_gen_tok_text, _, _ = generate_text_pplm( model=model, tokenizer=tokenizer, context=context, device=device, length=length, sample=sample, perturb=False, repetition_penalty=repetition_penalty, ) if device == "cuda": torch.cuda.empty_cache() pert_gen_tok_texts = [] discrim_losses = [] losses_in_time = [] for i in range(num_samples): pert_gen_tok_text, discrim_loss, loss_in_time = generate_text_pplm( model=model, tokenizer=tokenizer, context=context, device=device, perturb=True, bow_indices=bow_indices, classifier=classifier, class_label=class_id, loss_type=loss_type, length=length, stepsize=stepsize, temperature=temperature, top_k=top_k, sample=sample, num_iterations=num_iterations, grad_length=grad_length, horizon_length=horizon_length, window_length=window_length, decay=decay, gamma=gamma, gm_scale=gm_scale, kl_scale=kl_scale, repetition_penalty=repetition_penalty, ) pert_gen_tok_texts.append(pert_gen_tok_text) if classifier is not None: discrim_losses.append(discrim_loss.data.cpu().numpy()) losses_in_time.append(loss_in_time) if device == "cuda": torch.cuda.empty_cache() return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time def generate_text_pplm( model, tokenizer, context=None, past=None, device="cuda", perturb=True, bow_indices=None, classifier=None, class_label=None, loss_type=0, length=100, stepsize=0.02, temperature=1.0, top_k=10, sample=False, num_iterations=3, grad_length=10000, horizon_length=1, window_length=0, decay=False, gamma=1.5, gm_scale=0.9, kl_scale=0.01, repetition_penalty=1.0, ): output_so_far = None if context: context_t = torch.tensor(context, device=device, dtype=torch.long) while len(context_t.shape) < 2: context_t = context_t.unsqueeze(0) output_so_far = context_t # collect one hot vectors for bags of words one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices, tokenizer, device) grad_norms = None last = None unpert_discrim_loss = 0 loss_in_time = [] for i in trange(length, ascii=True): # Get past/probs for current output, except for last word # Note that GPT takes 2 inputs: past + current_token # run model forward to obtain unperturbed if past is None and output_so_far is not None: last = output_so_far[:, -1:] if output_so_far.shape[1] > 1: past = model(output_so_far[:, :-1])["past_key_values"] lm_output = model(output_so_far) unpert_logits, unpert_past, unpert_all_hidden = ( lm_output["logits"], lm_output["past_key_values"], lm_output["hidden_states"], ) unpert_last_hidden = unpert_all_hidden[-1] # check if we are abowe grad max length if i >= grad_length: current_stepsize = stepsize * 0 else: current_stepsize = stepsize # modify the past if necessary if not perturb or num_iterations == 0: pert_past = past else: accumulated_hidden = unpert_last_hidden[:, :-1, :] accumulated_hidden = torch.sum(accumulated_hidden, dim=1) if past is not None: pert_past, _, grad_norms, loss_this_iter = perturb_past( past, model, last, unpert_past=unpert_past, unpert_logits=unpert_logits, accumulated_hidden=accumulated_hidden, grad_norms=grad_norms, stepsize=current_stepsize, one_hot_bows_vectors=one_hot_bows_vectors, classifier=classifier, class_label=class_label, loss_type=loss_type, num_iterations=num_iterations, horizon_length=horizon_length, window_length=window_length, decay=decay, gamma=gamma, kl_scale=kl_scale, device=device, ) loss_in_time.append(loss_this_iter) else: pert_past = past lm_output = model(last, past_key_values=pert_past) pert_logits, past = ( lm_output["logits"], lm_output["past_key_values"], ) pert_logits = pert_logits[:, -1, :] / temperature # + SMALL_CONST for token_idx in set(output_so_far[0].tolist()): if pert_logits[0, token_idx] < 0: pert_logits[0, token_idx] *= repetition_penalty else: pert_logits[0, token_idx] /= repetition_penalty pert_probs = nn.functional.softmax(pert_logits, dim=-1) if classifier is not None: ce_loss = nn.CrossEntropyLoss() prediction = classifier(torch.mean(unpert_last_hidden, dim=1)) label = torch.tensor([class_label], device=device, dtype=torch.long) unpert_discrim_loss = ce_loss(prediction, label) print("unperturbed discrim loss", unpert_discrim_loss.data.cpu().numpy()) else: unpert_discrim_loss = 0 # Fuse the modified model and original model if perturb: unpert_probs = nn.functional.softmax(unpert_logits[:, -1, :], dim=-1) pert_probs = (pert_probs**gm_scale) * (unpert_probs ** (1 - gm_scale)) # + SMALL_CONST pert_probs = top_k_filter(pert_probs, k=top_k, probs=True) # + SMALL_CONST # rescale if torch.sum(pert_probs) <= 1: pert_probs = pert_probs / torch.sum(pert_probs) else: pert_logits = top_k_filter(pert_logits, k=top_k) # + SMALL_CONST pert_probs = nn.functional.softmax(pert_logits, dim=-1) # sample or greedy if sample: last = torch.multinomial(pert_probs, num_samples=1) else: _, last = torch.topk(pert_probs, k=1, dim=-1) # update context/output_so_far appending the new token output_so_far = last if output_so_far is None else torch.cat((output_so_far, last), dim=1) print(tokenizer.decode(output_so_far.tolist()[0])) return output_so_far, unpert_discrim_loss, loss_in_time def set_generic_model_params(discrim_weights, discrim_meta): if discrim_weights is None: raise ValueError("When using a generic discriminator, discrim_weights need to be specified") if discrim_meta is None: raise ValueError("When using a generic discriminator, discrim_meta need to be specified") with open(discrim_meta, "r") as discrim_meta_file: meta = json.load(discrim_meta_file) meta["path"] = discrim_weights DISCRIMINATOR_MODELS_PARAMS["generic"] = meta def run_pplm_example( pretrained_model="openai-community/gpt2-medium", cond_text="", uncond=False, num_samples=1, bag_of_words=None, discrim=None, discrim_weights=None, discrim_meta=None, class_label=-1, length=100, stepsize=0.02, temperature=1.0, top_k=10, sample=False, num_iterations=3, grad_length=10000, horizon_length=1, window_length=0, decay=False, gamma=1.5, gm_scale=0.9, kl_scale=0.01, seed=0, no_cuda=False, colorama=False, repetition_penalty=1.0, ): # set Random seed torch.manual_seed(seed) np.random.seed(seed) # set the device device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu" if discrim == "generic": set_generic_model_params(discrim_weights, discrim_meta) if discrim is not None: pretrained_model = DISCRIMINATOR_MODELS_PARAMS[discrim]["pretrained_model"] print("discrim = {}, pretrained_model set to discriminator's = {}".format(discrim, pretrained_model)) # load pretrained model model = GPT2LMHeadModel.from_pretrained(pretrained_model, output_hidden_states=True) model.to(device) model.eval() # load tokenizer tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) # Freeze GPT-2 weights for param in model.parameters(): param.requires_grad = False # figure out conditioning text if uncond: tokenized_cond_text = tokenizer.encode([tokenizer.bos_token]) else: raw_text = cond_text while not raw_text: print("Did you forget to add `--cond_text`? ") raw_text = input("Model prompt >>> ") tokenized_cond_text = tokenizer.encode(tokenizer.bos_token + raw_text) print("= Prefix of sentence =") print(tokenizer.decode(tokenized_cond_text)) print() # generate unperturbed and perturbed texts # full_text_generation returns: # unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation( model=model, tokenizer=tokenizer, context=tokenized_cond_text, device=device, num_samples=num_samples, bag_of_words=bag_of_words, discrim=discrim, class_label=class_label, length=length, stepsize=stepsize, temperature=temperature, top_k=top_k, sample=sample, num_iterations=num_iterations, grad_length=grad_length, horizon_length=horizon_length, window_length=window_length, decay=decay, gamma=gamma, gm_scale=gm_scale, kl_scale=kl_scale, repetition_penalty=repetition_penalty, ) # untokenize unperturbed text unpert_gen_text = tokenizer.decode(unpert_gen_tok_text.tolist()[0]) print("=" * 80) print("= Unperturbed generated text =") print(unpert_gen_text) print() generated_texts = [] bow_word_ids = set() if bag_of_words and colorama: bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer) for single_bow_list in bow_indices: # filtering all words in the list composed of more than 1 token filtered = list(filter(lambda x: len(x) <= 1, single_bow_list)) # w[0] because we are sure w has only 1 item because previous fitler bow_word_ids.update(w[0] for w in filtered) # iterate through the perturbed texts for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts): try: # untokenize unperturbed text if colorama: import colorama pert_gen_text = "" for word_id in pert_gen_tok_text.tolist()[0]: if word_id in bow_word_ids: pert_gen_text += "{}{}{}".format( colorama.Fore.RED, tokenizer.decode([word_id]), colorama.Style.RESET_ALL, ) else: pert_gen_text += tokenizer.decode([word_id]) else: pert_gen_text = tokenizer.decode(pert_gen_tok_text.tolist()[0]) print("= Perturbed generated text {} =".format(i + 1)) print(pert_gen_text) print() except Exception as exc: print("Ignoring error while generating perturbed text:", exc) # keep the prefix, perturbed seq, original seq for each index generated_texts.append((tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text)) return if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pretrained_model", "-M", type=str, default="openai-community/gpt2-medium", help="pretrained model name or path to local checkpoint", ) parser.add_argument("--cond_text", type=str, default="The lake", help="Prefix texts to condition on") parser.add_argument("--uncond", action="store_true", help="Generate from end-of-text as prefix") parser.add_argument( "--num_samples", type=int, default=1, help="Number of samples to generate from the modified latents", ) parser.add_argument( "--bag_of_words", "-B", type=str, default=None, help=( "Bags of words used for PPLM-BoW. " "Either a BOW id (see list in code) or a filepath. " "Multiple BoWs separated by ;" ), ) parser.add_argument( "--discrim", "-D", type=str, default=None, choices=("clickbait", "sentiment", "toxicity", "generic"), help="Discriminator to use", ) parser.add_argument( "--discrim_weights", type=str, default=None, help="Weights for the generic discriminator", ) parser.add_argument( "--discrim_meta", type=str, default=None, help="Meta information for the generic discriminator", ) parser.add_argument( "--class_label", type=int, default=-1, help="Class label used for the discriminator", ) parser.add_argument("--length", type=int, default=100) parser.add_argument("--stepsize", type=float, default=0.02) parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--top_k", type=int, default=10) parser.add_argument("--sample", action="store_true", help="Generate from end-of-text as prefix") parser.add_argument("--num_iterations", type=int, default=3) parser.add_argument("--grad_length", type=int, default=10000) parser.add_argument( "--window_length", type=int, default=0, help="Length of past which is being optimized; 0 corresponds to infinite window length", ) parser.add_argument( "--horizon_length", type=int, default=1, help="Length of future to optimize over", ) parser.add_argument("--decay", action="store_true", help="whether to decay or not") parser.add_argument("--gamma", type=float, default=1.5) parser.add_argument("--gm_scale", type=float, default=0.9) parser.add_argument("--kl_scale", type=float, default=0.01) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--no_cuda", action="store_true", help="no cuda") parser.add_argument("--colorama", action="store_true", help="colors keywords") parser.add_argument( "--repetition_penalty", type=float, default=1.0, help="Penalize repetition. More than 1.0 -> less repetition", ) args = parser.parse_args() run_pplm_example(**vars(args))
transformers/examples/research_projects/pplm/run_pplm.py/0
{ "file_path": "transformers/examples/research_projects/pplm/run_pplm.py", "repo_id": "transformers", "token_count": 13443 }
310
import os from functools import partial from glob import glob import faiss from datasets import Features, Sequence, Value, concatenate_datasets, load_dataset, load_from_disk from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast def split_text(text, n=100, character=" "): """Split the text every ``n``-th occurrence of ``character``""" text = text.split(character) return [character.join(text[i : i + n]).strip() for i in range(0, len(text), n)] def split_documents(documents): """Split documents into passages""" titles, texts = [], [] for title, text in zip(documents["title"], documents["text"]): if text is not None: for passage in split_text(text): titles.append(title if title is not None else "") texts.append(passage) return {"title": titles, "text": texts} def embed_update(ctx_encoder, total_processes, device, process_num, shard_dir, csv_path): kb_dataset = load_dataset( "csv", data_files=[csv_path], split="train", delimiter="\t", column_names=["title", "text"] ) kb_dataset = kb_dataset.map( split_documents, batched=True, num_proc=1 ) # if you want you can load already splitted csv. kb_list = [kb_dataset.shard(total_processes, i, contiguous=True) for i in range(total_processes)] data_shrad = kb_list[process_num] arrow_folder = "data_" + str(process_num) passages_path = os.path.join(shard_dir, arrow_folder) context_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") ctx_encoder = ctx_encoder.to(device=device) def embed( documents: dict, ctx_encoder: DPRContextEncoder, ctx_tokenizer: DPRContextEncoderTokenizerFast, device ) -> dict: """Compute the DPR embeddings of document passages""" input_ids = ctx_tokenizer( documents["title"], documents["text"], truncation=True, padding="longest", return_tensors="pt" )["input_ids"] embeddings = ctx_encoder(input_ids.to(device=device), return_dict=True).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} new_features = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))} ) # optional, save as float32 instead of float64 to save space dataset = data_shrad.map( partial(embed, ctx_encoder=ctx_encoder, ctx_tokenizer=context_tokenizer, device=device), batched=True, batch_size=16, features=new_features, ) dataset.save_to_disk(passages_path) def add_index(shard_dir, index_path): data_shard_list = [] for shard_address in glob(str(shard_dir) + "/*/"): data_shard_list.append(load_from_disk(shard_address)) concat = concatenate_datasets(data_shard_list) faiss.omp_set_num_threads(96) index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) concat.add_faiss_index("embeddings", custom_index=index) concat.get_index("embeddings").save( index_path ) # since we load the index in to memory,we can directly update the index in the disk
transformers/examples/research_projects/rag-end2end-retriever/kb_encode_utils.py/0
{ "file_path": "transformers/examples/research_projects/rag-end2end-retriever/kb_encode_utils.py", "repo_id": "transformers", "token_count": 1231 }
311
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class RagFinetuneExampleTests(TestCasePlus): def _create_dummy_data(self, data_dir): os.makedirs(data_dir, exist_ok=True) contents = {"source": "What is love ?", "target": "life"} n_lines = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: content = "\n".join([contents[field]] * n_lines[split]) with open(os.path.join(data_dir, f"{split}.{field}"), "w") as f: f.write(content) def _run_finetune(self, gpus: int, distributed_retriever: str = "pytorch"): tmp_dir = self.get_auto_remove_tmp_dir() output_dir = os.path.join(tmp_dir, "output") data_dir = os.path.join(tmp_dir, "data") self._create_dummy_data(data_dir=data_dir) testargs = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"--gpus={gpus}") if is_apex_available(): testargs.append("--fp16") else: testargs.append("--gpus=0") testargs.append("--distributed_backend=ddp_cpu") testargs.append("--num_processes=2") cmd = [sys.executable, str(Path(finetune_rag.__file__).resolve())] + testargs execute_subprocess_async(cmd, env=self.get_env()) metrics_save_path = os.path.join(output_dir, "metrics.json") with open(metrics_save_path) as f: result = json.load(f) return result @require_torch_gpu def test_finetune_gpu(self): result = self._run_finetune(gpus=1) self.assertGreaterEqual(result["test"][0]["test_avg_em"], 0.2) @require_torch_multi_gpu def test_finetune_multigpu(self): result = self._run_finetune(gpus=2) self.assertGreaterEqual(result["test"][0]["test_avg_em"], 0.2) @require_torch_gpu @require_ray def test_finetune_gpu_ray_retrieval(self): result = self._run_finetune(gpus=1, distributed_retriever="ray") self.assertGreaterEqual(result["test"][0]["test_avg_em"], 0.2) @require_torch_multi_gpu @require_ray def test_finetune_multigpu_ray_retrieval(self): result = self._run_finetune(gpus=1, distributed_retriever="ray") self.assertGreaterEqual(result["test"][0]["test_avg_em"], 0.2)
transformers/examples/research_projects/rag/_test_finetune_rag.py/0
{ "file_path": "transformers/examples/research_projects/rag/_test_finetune_rag.py", "repo_id": "transformers", "token_count": 1994 }
312
# Robust Speech Challenge 🤗 Welcome to the robust speech recognition challenge 🎙️ ! The goal of this event is to build **robust**, **real-world** speech recognition (ASR) systems in as many languages as possible 🌏🌍🌎. If necessary and available, free access to a V100S 32 GB GPU will kindly be provided by the [OVHcloud team](https://www.ovhcloud.com/) 🚀. This document summarizes all the relevant information required for the speech community event 📋. To sign-up, please see [this forum post](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) 🤗. Please make sure to: - Read it in detail - Fill the google form - Join our Discord server in the #join-sprint channel. ## Table of Contents - [TLDR;](#tldr) - [Important dates](#important-dates) - [How to install pytorch, transformers, datasets](#how-to-install-relevant-libraries) - [Data and Preprocessing](#data-and-preprocessing) - [How to fine-tune an acoustic model](#how-to-finetune-an-acoustic-model) - [How to fine-tune with OVH could](#how-to-finetune-with-ovh-cloud) - [How to combine n-gram language models with acoustic model](#how-to-combine-n-gram-with-acoustic-model) - [Evaluation](#evaluation) - [Prizes](#prizes) - [Communication and Problems](#communication-and-problems) - [Talks](#talks) - [General Tips & Tricks](#general-tips-and-tricks) ## TLDR Participants are encouraged to leverage pre-trained speech recognition checkpoints, preferably [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53), to train a speech recognition system in a language of their choice. Speech recognition systems should be trained using **PyTorch**, **🤗 Transformers**, and, **🤗 Datasets**. For more information on how to install the above libraries, please read through [How to install pytorch, transformers, datasets](#how-to-install-relevant-libraries). Participants can make use of whatever data they think is useful to build a speech recognition system for **real-world** audio data - **except** the Common Voice `"test"` split of their chosen language. The section [Data and preprocessing](#data-and-preprocessing) explains in more detail what audio data can be used, how to find suitable audio data, and how the audio data can be processed. For training, it is recommended to use the [official training script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py) or a modification thereof. A step-by-step guide on how to fine-tune an acoustic model for a speech recognition system can be found under [How to fine-tune an acoustic model](#how-to-finetune-an-acoustic-model). If possible it is encouraged to fine-tune the acoustic models on local GPU machines, but if those are not available, the OVH could team kindly provides a limited number of GPUs for the event. Simply fill out [this google form](https://forms.gle/GFZkMkKLiufi75g28) to get access to a GPU. For more information on how to train an acoustic model on one of OVH's GPU - see [How to fine-tune a speech recognition model with OVHcould](#how-to-fine-tune-with-ovh-cloud). The performance of speech recognition system can often significantly be improved by adding a language model for decoding. For more information on how to add a language model, please take a look at [How to combine n-gram language models with speech recognition models](#how-to-combine-n-gram-with-model). During the event, the speech recognition system will be evaluated on both the Common Voice `"test"` split of the participants' chosen language as well as the *real-world* `"dev"` data provided by the Hugging Face team. At the end of the robust speech recognition challenge, the speech recognition system will also be evaluated on the *real-world* `"test"` data provided by the Hugging Face team. Each participant should add an `eval.py` script to her/his model repository in a specific format that lets one easily evaluate the speech recognition system on both Common Voice's `"test"` data as well as the *real-world* audio data. Please read through the [Evaluation](#evaluation) section to make sure your evaluation script is in the correct format. Speech recognition systems with evaluation scripts in an incorrect format can sadly not be considered for the Challenge. At the end of the event, the best performing speech recognition system will receive a prize 🏆 - more information regarding the prizes can be found under [Prizes](#prizes). We believe that framing the event as a competition is more fun, but at the core, the event is about creating speech recognition systems in as many languages as possible as a community. This can be achieved by working together, helping each other to solve bugs, share important findings, etc...🤗 **Note**: Please, read through the section on [Communication & Problems](#communication-and-problems) to make sure you know how to ask for help, etc... All important announcements will be made on discord. Please make sure that you've joined [this discord channel](https://discord.gg/SHr5wC7m) Also, please make sure that you have been added to the [Speech Event Organization](https://huggingface.co/speech-recognition-community-v2). You should have received an invite by email. If you didn't receive an invite, please contact the organizers, *e.g.* Anton, Patrick, or Omar directly on discord. ## Important dates ![timeline](https://github.com/patrickvonplaten/scientific_images/raw/master/Robush%20Speech%20Challenge.png) ## Data and preprocessing In this section, we will quickly go over how to find suitable training data and how to preprocess it. To begin with, **all data except Common Voice's `"test"` data can be used as training data.** The exception includes all Common Voice versions as the test data split of later Common Voice versions often overlaps with the one of previous versions, *e.g.* the test data of Common Voice 7 in English is to a big part identical to the test data of Common Voice 6 in English: ```python load_dataset("mozilla-foundation/common_voice_7_0", "en", split="test") ``` includes more or less the same data as ```python load_dataset("mozilla-foundation/common_voice_6_1", "en", split="test") ``` However, we strongly encourage participants to make use of Common Voice's other splits, *e.g.* `"train"` and `"validation"`. For most languages, the Common Voice dataset offers already a decent amount of training data. It is usually always advantageous to collect additional data. To do so, the participants are in a first step encouraged to search the Hugging Face Hub for additional audio data, for example by selecting the category ["speech-processing"](https://huggingface.co/datasets?task_categories=task_categories:speech-processing&sort=downloads). All datasets that are available on the Hub can be downloaded via the 🤗 Datasets library in the same way Common Voice is downloaded. If one wants to combine multiple datasets for training, it might make sense to take a look at the [`interleave_datasets`](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=interleave#datasets.interleave_datasets) function. In addition, participants can also make use of their audio data. Here, please make sure that you **are allowed to use the audio data**. E.g., if audio data is taken from media platforms, such as YouTube, it should be verified that the media platform and the owner of the data have given her/his approval to use the audio data in the context of machine learning research. If you are not sure whether the data you want to use has the appropriate licensing, please contact the Hugging Face team on discord. Next, let's talk about preprocessing. Audio data and transcriptions have to be brought into the correct format when training the acoustic model (example shown in [How to fine-tune an acoustic model](#how-to-finetune-an-acoustic-model)). It is recommended that this is done by using 🤗 Datasets `.map()` function as shown [here](https://github.com/huggingface/transformers/blob/9a2dabae7002258e41419491c73dd43ad61b5de7/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py#L444). As can be see we can pass some characters that will be removed from the transcriptions, *e.g.*: `--chars_to_ignore , ? . ! - \; \: \" “ % ‘ ” � \` on the official ["Single GPU Example"](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition#single-gpu-ctc). The participants are free to modify this preprocessing by removing more characters or even replacing characters as it is done in the [official blog post](https://github.com/huggingface/transformers/blob/9a2dabae7002258e41419491c73dd43ad61b5de7/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py#L444). **However**, there are some rules regarding what characters are allowed to be removed/replaced and which are not. These rules are not this straightforward and therefore often have to be evaluated case-by-case. It is allowed (and recommended) to normalize the data to only have lower-case characters. It is also allowed (and recommended) to remove typographical symbols and punctuation marks. A list of such symbols can *e.g.* be found [here](https://en.wikipedia.org/wiki/List_of_typographical_symbols_and_punctuation_marks) - however here we already must be careful. We should **not** remove a symbol that would change the meaning of the words, *e.g.* in English, we should not remove the single quotation mark `'` since it would change the meaning of the word `"it's"` to `"its"` which would then be incorrect. So the golden rule here is to not remove any characters that could change the meaning of a word into another word. This is not always obvious and should be given some consideration. As another example, it is fine to remove the "Hyphen-minus" sign "`-`" since it doesn't change the meaning of a word to another one. *E.g.* "`fine-tuning`" would be changed to "`finetuning`" which has still the same meaning. Since those choices are not always obvious when in doubt feel free to ask on Discord or even better post your question on the forum, as was done, *e.g.* [here](https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586). ## How to install relevant libraries The following libraries are required to fine-tune a speech model with 🤗 Transformers and 🤗 Datasets in PyTorch. - [PyTorch](https://pytorch.org/) - [Transformers](https://github.com/huggingface/transformers) - [Datasets](https://github.com/huggingface/datasets) We recommend installing the above libraries in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Create a virtual environment with the version of Python you're going to use and activate it. You should be able to run the command: ```bash python3 -m venv <your-venv-name> ``` You can activate your venv by running ```bash source ~/<your-venv-name>/bin/activate ``` To begin with please make sure you have PyTorch and CUDA correctly installed. The following command should return ``True``: ```bash python -c "import torch; print(torch.cuda.is_available())" ``` If the above command doesn't print ``True``, in the first step, please follow the instructions [here](https://pytorch.org/) to install PyTorch with CUDA. We strongly recommend making use of the provided PyTorch examples scripts in [transformers/examples/pytorch/speech-recognition](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) to train your speech recognition system. In all likelihood, you will adjust one of the example scripts, so we recommend forking and cloning the 🤗 Transformers repository as follows. 1. Fork the [repository](https://github.com/huggingface/transformers) by clicking on the 'Fork' button on the repository's page. This creates a copy of the code under your GitHub user account. 2. Clone your fork to your local disk, and add the base repository as a remote: ```bash $ git clone https://github.com/<your Github handle>/transformers.git $ cd transformers $ git remote add upstream https://github.com/huggingface/transformers.git ``` 3. Create a new branch to hold your development changes. This is especially useful to share code changes with your team: ```bash $ git checkout -b a-descriptive-name-for-my-project ``` 4. Set up a PyTorch environment by running the following command your virtual environment: ```bash $ pip install -e ".[torch-speech]" ``` (If transformers was already installed in the virtual environment, remove it with `pip uninstall transformers` before reinstalling it in editable mode with the `-e` flag.) If you have already cloned that repo, you might need to `git pull` to get the most recent changes in the `transformers` library. Running this command will automatically install `torch` and the most relevant libraries required for fine-tuning a speech recognition system. Next, you should also install the 🤗 Datasets library. We strongly recommend installing the library from source to profit from the most current additions during the community week. Simply run the following steps: ```bash $ cd ~/ $ git clone https://github.com/huggingface/datasets.git $ cd datasets $ pip install -e ".[streaming]" ``` If you plan on contributing a specific dataset during the community week, please fork the datasets repository and follow the instructions [here](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-create-a-pull-request). To verify that all libraries are correctly installed, you can run the following command in a Python shell. It verifies that both `transformers` and `datasets` have been correclty installed. ```python from transformers import AutoModelForCTC, AutoProcessor from datasets import load_dataset dummy_dataset = load_dataset("common_voice", "ab", split="test") model = AutoModelForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2") model.to("cuda") processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2") input_values = processor(dummy_dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=16_000).input_values input_values = input_values.to("cuda") logits = model(input_values).logits assert logits.shape[-1] == 32 ``` ## How to finetune an acoustic model In this section, we show you how to fine-tune a pre-trained [XLS-R Model](https://huggingface.co/docs/transformers/model_doc/xls_r) on the [Common Voice 7 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). We recommend fine-tuning one of the following pre-trained XLS-R checkpoints: - [300M parameters version](https://huggingface.co/facebook/wav2vec2-xls-r-300m) - [1B parameters version](https://huggingface.co/facebook/wav2vec2-xls-r-1b) - [2B parameters version](https://huggingface.co/facebook/wav2vec2-xls-r-2b) To begin with, please note that to use the Common Voice dataset, you have to accept that **your email address** and **username** are shared with the mozilla-foundation. To get access to the dataset please click on "*Access repository*" [here](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). Next, we recommended that you get familiar with the XLS-R model and its capabilities. In collaboration with [Fairseq's Wav2Vec2 team](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec), we've written ["Fine-tuning XLS-R for Multi-Lingual ASR with 🤗 Transformers"](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) which gives an in-detail explanation of how XLS-R functions and how it can be fine-tuned. The blog can also be opened and directly fine-tuned in a google colab notebook. In this section, we will explain how to fine-tune the model on a local machine. 1. **Log in** To begin with, you should check that you are correctly logged in and that you have `git-lfs` installed so that your fine-tuned model can automatically be uploaded. Run: ```bash huggingface-cli login ``` to login. It is recommended to login with your access token that can be found under your hugging face profile (icon in the top right corner on [hf.co](http://hf.co/), then Settings -> Access Tokens -> User Access Tokens -> New Token (if haven't generated one already) You can then copy-paste this token to log in locally. 2. **Create your model repository** First, let's make sure that `git-lfs` is correctly installed. To so, simply run: ```bash git-lfs -v ``` The output should show something like `git-lfs/2.13.2 (GitHub; linux amd64; go 1.15.4)`. If your console states that the `git-lfs` command was not found, please make sure to install it [here](https://git-lfs.github.com/) or simply via: ```bash sudo apt-get install git-lfs ``` Now you can create your model repository which will contain all relevant files to reproduce your training. You can either directly create the model repository on the Hub (Settings -> New Model) or via the CLI. Here we choose to use the CLI instead. Assuming that we want to call our model repository *xls-r-ab-test*, we can run the following command: ```bash huggingface-cli repo create xls-r-ab-test ``` You can now see the model on the Hub, *e.g.* under https://huggingface.co/hf-test/xls-r-ab-test . Let's clone the repository so that we can define our training script inside. ```bash git lfs install git clone https://huggingface.co/hf-test/xls-r-ab-test ``` 3. **Add your training script and `run`-command to the repository** We encourage participants to add all relevant files for training directly to the directory so that everything is fully reproducible. Let's first copy-paste the official training script from our clone of `transformers` to our just created directory: ```bash cp ~/transformers/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py ./ ``` Next, we'll create a bash file to define the hyper-parameters and configurations for training. More detailed information on different settings (single-GPU vs. multi-GPU) can be found [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition#connectionist-temporal-classification). For demonstration purposes, we will use a dummy XLS-R model `model_name_or_path="hf-test/xls-r-dummy"` on the very low-resource language of "Abkhaz" of [Common Voice 7](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0): `dataset_config_name="ab"` for just a single epoch. Before starting to train, let's make sure we have installed all the required libraries. You might want to run: ```bash pip install -r ~/transformers/examples/pytorch/speech-recognition/requirements.txt ``` Alright, finally we can define the training script. We'll simply use some dummy hyper-parameters and configurations for demonstration purposes. Note that we add the flag `--use_auth_token` so that datasets requiring access, such as [Common Voice 7](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) can be downloaded. In addition, we add the `--push_to_hub` flag to make use of the [Trainers `push_to-hub` functionality](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.push_to_hub) so that your model will be automatically uploaded to the Hub. Let's copy the following code snippet in a file called `run.sh` ```bash echo '''python run_speech_recognition_ctc.py \ --dataset_name="mozilla-foundation/common_voice_7_0" \ --model_name_or_path="hf-test/xls-r-dummy" \ --dataset_config_name="ab" \ --output_dir="./" \ --overwrite_output_dir \ --max_steps="10" \ --per_device_train_batch_size="2" \ --learning_rate="3e-4" \ --save_total_limit="1" \ --evaluation_strategy="steps" \ --text_column_name="sentence" \ --length_column_name="input_length" \ --save_steps="5" \ --layerdrop="0.0" \ --freeze_feature_encoder \ --gradient_checkpointing \ --fp16 \ --group_by_length \ --push_to_hub \ --use_auth_token \ --do_train --do_eval''' > run.sh ``` 4. **Start training** Now all that is left to do is to start training the model by executing the run file. ```bash bash run.sh ``` The training should not take more than a couple of minutes. During the training intermediate saved checkpoints are automatically uploaded to your model repository as can be seen [on this commit](https://huggingface.co/hf-test/xls-r-ab-test/commit/0eb19a0fca4d7d163997b59663d98cd856022aa6) . At the end of the training, the [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer) automatically creates a nice model card and all relevant files are uploaded. 5. **Tips for real model training** The above steps illustrate how a model can technically be fine-tuned. However as you can see on the model card [hf-test/xls-r-ab-test](https://huggingface.co/hf-test/xls-r-ab-test), our demonstration has a very poor performance which is not surprising given that we trained for just 10 steps on a randomly initialized model. For real model training, it is recommended to use one of the actual pre-trained XLS-R models: - [300M parameters version](https://huggingface.co/facebook/wav2vec2-xls-r-300m) - [1B parameters version](https://huggingface.co/facebook/wav2vec2-xls-r-1b) - [2B parameters version](https://huggingface.co/facebook/wav2vec2-xls-r-2b) Also, the hyper-parameters should be carefully chosen depending on the dataset. As an example, we will fine-tune the 300M parameters model on Swedish on a single TITAN RTX 24GB GPU. The model will be called `"xls-r-300m-sv"`. Following the above steps we first create the model: ```bash huggingface-cli repo create xls-r-300m-sv ``` , clone it locally (assuming the `<username>` is `hf-test`) ```bash git clone hf-test/xls-r-300m-sv ``` , and, define the following hyperparameters for training ```bash echo '''python run_speech_recognition_ctc.py \ --dataset_name="mozilla-foundation/common_voice_7_0" \ --model_name_or_path="facebook/wav2vec2-xls-r-300m" \ --dataset_config_name="sv-SE" \ --output_dir="./" \ --overwrite_output_dir \ --num_train_epochs="50" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="8" \ --gradient_accumulation_steps="4" \ --learning_rate="7.5e-5" \ --warmup_steps="2000" \ --length_column_name="input_length" \ --evaluation_strategy="steps" \ --text_column_name="sentence" \ --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \ --save_steps="500" \ --eval_steps="500" \ --logging_steps="100" \ --layerdrop="0.0" \ --activation_dropout="0.1" \ --save_total_limit="3" \ --freeze_feature_encoder \ --feat_proj_dropout="0.0" \ --mask_time_prob="0.75" \ --mask_time_length="10" \ --mask_feature_prob="0.25" \ --mask_feature_length="64" \ --gradient_checkpointing \ --use_auth_token \ --fp16 \ --group_by_length \ --do_train --do_eval \ --push_to_hub''' > run.sh ``` The training takes *ca.* 7 hours and yields a reasonable test word error rate of 27% as can be seen on the automatically generated [model card](https://huggingface.co/hf-test/xls-r-300m-sv). The above-chosen hyperparameters probably work quite well on a range of different datasets and languages but are by no means optimal. It is up to you to find a good set of hyperparameters. ## How to finetune with OVH cloud [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://youtu.be/XkMnYocAEO0) For a more detailed guide on setting up OVHcloud please watch this video: https://youtu.be/XkMnYocAEO0 ### Creating an OVHCloud account *TIP*: If you haven't created a project on OVHcloud yet, make sure you've received your GPU voucher code *beforehand*, so that you can skip entering the credit card information. 1. If you're a US citizen, create an account via [OVHcloud.CA](https://ovhcloud.ca/). If you're from anywhere else in the world, create an account via [OVHcloud.COM](https://ovhcloud.com/). 2. Once logged in, click `Public Cloud` from the top menu and then click `Create your first OVH Public Cloud project`. Then enter a project name (e.g. "huggingface"), enter your voucher code, and click `Continue` -> `Create my project`. *Note: if you see a request for credit card details during the last step, and you can't skip it, then your voucher code is invalid. Please report it to the [#ovh-support](https://discord.gg/p4qqDV3M) channel on Discord.* ### Setting up an AI notebook 1. Go to the `Public Cloud` page and select `Project Management` -> `Users & Roles` from the menu on the left. 2. Click `+ Add user`. Write a user description (e.g. `AI Trainer`), and select an `AI Training Operator` user role. Click `Confirm`. 3. Write down the *username* and *password* (at the top of the screen) somewhere. They will be needed during step 7. 4. Select `AI & Machine Learning` -> `AI Training` from the menu on the left. Click `+ Launch a new job` on the AI Training page. 5. On the `Launch a new job` page: * In `1. Choose a region` select a region closest to you. * In `2. Enter the Docker image` select `Custom image` -> `baaastijn/ovh_huggingface`. * You can skip steps `3.` and `4.` if you will be using the Hugging Face Hub to store the models after training. * In `5. Configure your job` select **1** `GPU`. * Validate the info and Create the job. 6. On the `AI Training Jobs` screen wait until the job's status changes from `Pending` to `Running`. 7. Click `HTTP Access` from the Job's details page and log in with the AI training user you've created earlier. Once logged in, you can close the page and click `HTTP Access` to launch a JupyterLab notebook. 8. Awesome, now you have a free GPU-enabled Jupyter instance! **Note**: If you're an experienced Docker user, feel free to create a custom docker image with all of the needed packages like the one in step 5. The Dockerfile for it is available here: [baaastijn/Dockerimages](https://github.com/baaastijn/Dockerimages/tree/main/Hugginface_challenge_speech). Once you've built your image, push it to https://hub.docker.com/ and select it during the OVHcloud job creation. For more quick tutorials about OVHcloud AI products, check out the showcase https://vimeo.com/showcase/8903300 ## How to combine n-gram with acoustic model Having trained a speech recognition model with CTC as shown in the section above, one can further improve the model's performance by adding an **n-gram language model** to the decoding process of the model. By doing so, we are replacing the naive greedy decoding with **n-gram-boosted** beam search decoding. N-gram language models can be built on CPU in just a few minutes. *N-gram-boosted* beam search decoding noticeably slows down the inference time, but also yields significant word error rates improvements - usually between 10-40 %. You can find an in-detail blog post on how to build an *n-gram* [here](https://huggingface.co/blog/wav2vec2-with-ngram). The blog post can be opened in a google colab and by adapting three lines of the example for your use case, one can directly create an *n-gram* in the google colab. The blog post gives in-detail instructions on how to build an n-gram and how to add it to your trained speech recognition model. - why one should add an *n-gram* to her/his speech recognition system, - how to build an *n-gram*, and, - how to add the built *n-gram* the speech recognition system for seamless decoding Our previously trained model - [xls-r-300m-sv](https://huggingface.co/hf-test/xls-r-300m-sv) - enjoys a 30% word error rate reduction after having added an n-gram. As shown in the example of the blog post, we strongly advise participants to upload all files required for combining the *n-gram* with a trained speech recognition model directly into the same model repository. ## Evaluation Finally, we have arrived at the most fun part of the challenge - sitting back and watching the model transcribe audio. If possible, every participant should evaluate the speech recognition system on the test set of Common Voice 7 and ideally also on the real-world audio data (if available). For languages that have neither a Common Voice evaluation dataset nor a real world evaluation dataset, please contact the organizers on Discord so that we can work together to find some evaluation data. As a first step, one should copy the official `eval.py` script to her/his model repository. Let's use our previously trained [xls-r-300m-sv](https://huggingface.co/hf-test/xls-r-300m-sv) again as an example. Assuming that we have a clone of the model's repo under `~/xls-r-300m-sv`, we can copy the `eval.py` script to the repo. ```bash cp ~/transformers/examples/research_projects/robust-speech-event/eval.py ~/xls-r-300m-sv ``` Next, we should adapt `eval.py` so that it fits our evaluation data. Here it is important to keep the `eval.py` file in the following format: - 1. The following input arguments should not be changed and keep their original functionality/meaning (being to load the model and dataset): `"--model_id"`, `"--dataset"`, `"--config"`, `"--split"`. We recommend to not change any of the code written under `if __name__ == "__main__":`. - 2. The function `def log_results(result: Dataset, args: Dict[str, str])` should also not be changed. The function expects the above names attached to the `args` object as well as a `datasets.Dataset` object, called `result` which includes all predictions and target transcriptions under the names `"predictions"` and `"targets"` respectively. - 3. All other code can be changed and adapted. Participants are especially invited to change the `def normalize_text(text: str) -> str:` function as this might be a very language and model-training specific function. - 4. **Important**: It is not allowed to "cheat" in any way when in comes to pre-and postprocessing. In short, "cheating" refers to any of the following: - a. Somehow giving the model access to the target transcriptions to improve performance. The model is not allowed to use the target transcriptions to generate its predictions. - b. Pre-processing the target transcriptions in a way that makes the target transcriptions lose their original meaning. This corresponds to what has already been said in [Data and Preprocessing](#data-and-preprocessing) and is somewhat of a grey zone. It means that one should not remove characters that would make a word to lose its meaning. E.g., it is not allowed to replace all `e` in English with `i` and simply make the model learn that `e` and `i` are the same letter for a better word error rate. This would destroy the meaning of words such as `fell -> fill`. However, it is totally fine to normalize (*e.g.* lowercase) all letters, remove punctuation. There can be a lot of language-specific exceptions and in case you are not sure whether your target transcription pre-processing is allowed, please ask on the Discord channel. Uff, that was a lot of text describing how to make sure your `eval.py` script is in the correct format. If you have any questions, please ask openly in Discord. Great, now that we have adapted the `eval.py` script, we can lean back and run the evaluation. First, one should evaluate the model on Common Voice 7's test data. This might already have been done for your acoustic model during training but in case you added an *n-gram* language model after having fine-tuned the acoustic model, you should now see a nice improvement. The command to evaluate our test model [xls-r-300m-sv](https://huggingface.co/hf-test/xls-r-300m-sv) on Common Voice 7's test data is the following: ```bash cd xls-r-300m-sv ./eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config sv-SE --split test --log_outputs ``` To log each of the model's predictions with the target transcriptions, you can just add the `--log_outputs` flag. Running this command should automatically create the file: `mozilla-foundation_common_voice_7_0_sv-SE_test_eval_results.txt` that contains both the word- and character error rate. In a few days, we will give everybody access to some real-world audio data for as many languages as possible. If your language has real-world audio data, it will most likely have audio input of multiple minutes. 🤗Transformer's [ASR pipeline](https://huggingface.co/docs/transformers/main/en/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) supports audio chunking out-of-the-box. You only need to specify how song each audio chunk should be (`chunk_length_s`) and how much audio stride (`stride_length_s`) each chunk should use. For more information on the chunking works, please have a look at [this nice blog post](TODO: ). In the case of `xls-r-300m-sv`, the following command can be run: ```bash cd xls-r-300m-sv ./eval.py --model_id hf-test/xls-r-300m-sv --dataset <to-be-announced> --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs ``` Great, now you should have successfully evaluated your model. Finally, there is one **important** thing you should do so that your model is taken into account for the final evaluation. You should add two tags to your model, one being `robust-speech-event`, one being the ISO code of your chosen language, *e.g.* `"sv"` for the exemplary model we used above. You can find a list of all available languages and their ISO code [here](https://huggingface.co/languages). To add the tags, simply edit the README.md of your model repository and add ``` - "sv" - "robust-speech-event" ``` under `tags:` as done [here](https://huggingface.co/hf-test/xls-r-300m-sv/commit/a495fd70c96bb7d019729be9273a265c2557345e). To verify that you've added the tags correctly make sure that your model appears when clicking on [this link](https://huggingface.co/models?other=robust-speech-event). Great that's it! This should give you all the necessary information to evaluate your model. For the final evaluation, we will verify each evaluation result to determine the final score and thereby the winning models for each language. The final score is calculated as follows: ```bash FINAL_SCORE = 1/3 * WER_Common_Voice_7_test + 1/3 * WER_REAL_AUDIO_DEV + 1/3 * WER_REAL_AUDIO_TEST ``` The dataset `WER_REAL_AUDIO_TEST` is hidden and will only be published at the end of the robust speech challenge. If there is no real audio data for your language the final score will be computed solely based on the Common Voice 7 test dataset. If there is also no Common Voice 7 test dataset for your language, we will see together how to score your model - if this is the case, please don't be discouraged. We are especially excited about speech recognition systems of such low-resource languages and will make sure that we'll decide on a good approach to evaluating your model. ## Prizes TODO(Patrick, Omar, ...) ## Communication and Problems If you encounter any problems or have any questions, you should use one of the following platforms depending on your type of problem. Hugging Face is an "open-source-first" organization meaning that we'll try to solve all problems in the most public and most transparent way possible so that everybody in the community profits. The following table summarizes what platform to use for which problem. - Problem/question/bug with the 🤗 Datasets library that you think is a general problem that also impacts other people, please open an [Issues on Datasets](https://github.com/huggingface/datasets/issues/new?assignees=&labels=bug&template=bug-report.md&title=) and ping @anton-l and @patrickvonplaten. - Problem/question/bug with the 🤗 Transformers library that you think is a general problem that also impacts other people, please open an [Issues on Transformers](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title=) and ping @anton-l and @patrickvonplaten. - Problem/question with a modified, customized training script that is less likely to impact other people, please post your problem/question [on the forum](https://discuss.huggingface.co/) and ping @anton-l and @patrickvonplaten. - Questions regarding access to the OVHcloud GPU, please ask in the Discord channel **#ovh-support**. - Other questions regarding the event, rules of the event, or if you are not sure where to post your question, please ask in the Discord channel **#sprint-discussions**. ## Talks We are very excited to be hosting 2 days of talks from Kensho-Technologies, Mozilla's Common Voice, Meta AI Research and Hugging Face. ### Thursday, January 20th Speaker | Topic | Time | Video | |-------------|---------------------------------|------------------------|------------------------| | Patrick von Platen, Hugging Face | Introduction to Robust Speech Challenge | 4h30pm - 5h00pm UTC | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=X9e5Tto-Iuk) | Raymond Grossman and Jeremy Lopez, Kensho-Technologies | Pyctcdecode & Speech2text decoding | 5h30pm - 6h00pm UTC | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=mp7fHMTnK9A) ### Friday, January 21th Speaker | Topic | Time | Video | |-------------|---------------------------------|------------------------|------------------------| | Gabriel Habayeb, Mozilla Common Voice | Unlocking global speech with Mozilla Common Voice | 4h30pm - 5h00pm UTC | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=Vvn984QmAVg) | Changhan Wang, Meta AI Research | XLS-R: Large-Scale Cross-lingual Speech Representation Learning on 128 Languages | 5h30pm - 6h00pm UTC | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=ic_J7ZCROBM) ### Talks & Speakers #### Patrick von Platen, Research Engineer, Hugging Face - Talk: Introduction to Robust Speech Challenge - Abstract: In this talk, Patrick outlines the Robust Speech Challenge and gives tips and tricks on how to train and evaluate speech recognition systems with 🤗 Transformers and 🤗 Datasets, and PyTorch. - Speaker info: Patrick von Platen is a research engineer at Hugging Face and one of the core maintainers of the popular Transformers library. He specializes in speech recognition, encoder-decoder models, and long-range sequence modeling. Before joining Hugging Face, Patrick researched speech recognition at Uber AI, Cambridge University, and RWTH Aachen University. #### Raymond Grossman, Jeremy Lopez, Machine Learning Engineer, Kensho Technologies - Talk: PyCTCDecode & Speech2text decoding - Abstract: PyCTCDecode is a fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support similar to PaddlePaddle's decoder, but incorporating many new features such as byte pair encoding and real-time decoding to support models like Nvidia's Conformer-CTC or Facebook's Wav2Vec2. - Speaker info : - Raymond works as a machine learning engineer at Kensho Technologies, specializing in speech and natural language domains. Before coming to Kensho, he studied mathematics at Princeton and was an avid Kaggler under the moniker @ToTrainThemIsMyCause. - Jeremy is a machine learning engineer at Kensho Technologies and has worked on a variety of different topics including search and speech recognition. Before working at Kensho, he earned a PhD in experimental particle physics at MIT and continued doing physics research as a postdoc at the University of Colorado Boulder. #### Gabriel Habayeb, Data Engineer, Common Voice @ Mozilla - Talk: Unlocking global speech with Mozilla Common Voice - Abstract: Hear from Common Voice Data Engineer Gabriel Habayeb (Mozilla Foundation) as he talks about how Common Voice makes it easy to crowdsource voice data in global languages, as well as getting key insights into the dataset itself, how we maintain quality, use metadata - and our plans for the future! - Speaker info: Gabriel is a software developer with the Common Voice team at the Mozilla Foundation with a focus on data engineering. Before joining the Foundation, he spent the last six years working across different industries, including education, enterprise and not-for-profit organizations. #### Changhan Wang, Main author of XLS-R and Research Engineer, Meta AI Research - Talk: XLS-R: Large-Scale Cross-lingual Speech Representation Learning on 128 Languages - Abstract: In this talk, Changhan will present XLS-R, a large-scale model for cross-lingual speech representation learning based on wav2vec 2.0. XLS-R has up to 2B parameters and was trained on nearly half a million hours of publicly available speech audio in 128 languages, an order of magnitude more public data than the largest known prior work. On the CoVoST-2 speech translation benchmark, XLS-R improves the previous state of the art by an average of 7.4 BLEU over 21 translation directions into English. For speech recognition, XLS-R improves over the best known prior work on BABEL, MLS, CommonVoice as well as VoxPopuli, lowering error rates by 14-34% relative on average. XLS-R also sets a new state of the art on VoxLingua107 language identification. The XLS-R team hopes to work together with the open-source community to improve speech processing tasks for many more languages of the world. ## General Tips and Tricks - Memory efficient training: In case, you are getting out-of-memory errors on your GPU, we recommend to use [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) to replace the native memory-intensive Adam optimizer with the one of `bitsandbytes`. You can simply run the script `./run_speech_recognition_ctc_bnb.py` provided in this folder that makes use of `bitsandbytes` instead of the official one. - Dataset streaming TODO(Patrick)
transformers/examples/research_projects/robust-speech-event/README.md/0
{ "file_path": "transformers/examples/research_projects/robust-speech-event/README.md", "repo_id": "transformers", "token_count": 12255 }
313
#!/usr/bin/env bash export PYTHONPATH="../":"${PYTHONPATH}" export WANDB_PROJECT=dmar # export MAX_LEN=128 python distillation.py \ --learning_rate=3e-4 \ --do_train \ --fp16 \ --val_check_interval 0.25 \ --teacher Helsinki-NLP/opus-mt-en-ro \ --max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \ --student_decoder_layers 3 --student_encoder_layers 6 \ --freeze_encoder --freeze_embeds \ --model_name_or_path IGNORED \ --alpha_hid=3. \ --train_batch_size=$BS --eval_batch_size=$BS \ --tokenizer_name Helsinki-NLP/opus-mt-en-ro \ --warmup_steps 500 --logger_name wandb \ --fp16_opt_level O1 --task translation --normalize_hidden --num_sanity_val_steps=0 \ "$@"
transformers/examples/research_projects/seq2seq-distillation/distil_marian_enro_teacher.sh/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/distil_marian_enro_teacher.sh", "repo_id": "transformers", "token_count": 310 }
314
#!/usr/bin/env bash export PYTHONPATH="../":"${PYTHONPATH}" python distillation.py \ --teacher facebook/bart-large-xsum --data_dir xsum \ --tokenizer_name facebook/bart-large-xsum \ --student_decoder_layers 6 --student_encoder_layers 12 \ --freeze_encoder --freeze_embeds \ --learning_rate=3e-4 \ --do_train \ --do_predict \ --fp16 --fp16_opt_level=O1 \ --val_check_interval 0.1 --n_val 1000 --eval_beams 2 --length_penalty=0.5 \ --max_target_length=60 --val_max_target_length=60 --test_max_target_length=100 \ --model_name_or_path IGNORED \ --alpha_hid=3. \ --train_batch_size=16 --eval_batch_size=16 --gradient_accumulation_steps=2 \ --sortish_sampler \ --num_train_epochs=6 \ --warmup_steps 500 \ --output_dir distilbart_xsum_12_6 \ "$@"
transformers/examples/research_projects/seq2seq-distillation/train_distilbart_xsum.sh/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/train_distilbart_xsum.sh", "repo_id": "transformers", "token_count": 317 }
315
""" coding=utf-8 Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal Adapted From Facebook Inc, Detectron2 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.import copy """ import colorsys import io import cv2 import matplotlib as mpl import matplotlib.colors as mplc import matplotlib.figure as mplfigure import numpy as np import torch from matplotlib.backends.backend_agg import FigureCanvasAgg from utils import img_tensorize _SMALL_OBJ = 1000 class SingleImageViz: def __init__( self, img, scale=1.2, edgecolor="g", alpha=0.5, linestyle="-", saveas="test_out.jpg", rgb=True, pynb=False, id2obj=None, id2attr=None, pad=0.7, ): """ img: an RGB image of shape (H, W, 3). """ if isinstance(img, torch.Tensor): img = img.numpy().astype("np.uint8") if isinstance(img, str): img = img_tensorize(img) assert isinstance(img, np.ndarray) width, height = img.shape[1], img.shape[0] fig = mplfigure.Figure(frameon=False) dpi = fig.get_dpi() width_in = (width * scale + 1e-2) / dpi height_in = (height * scale + 1e-2) / dpi fig.set_size_inches(width_in, height_in) ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) ax.axis("off") ax.set_xlim(0.0, width) ax.set_ylim(height) self.saveas = saveas self.rgb = rgb self.pynb = pynb self.img = img self.edgecolor = edgecolor self.alpha = 0.5 self.linestyle = linestyle self.font_size = int(np.sqrt(min(height, width)) * scale // 3) self.width = width self.height = height self.scale = scale self.fig = fig self.ax = ax self.pad = pad self.id2obj = id2obj self.id2attr = id2attr self.canvas = FigureCanvasAgg(fig) def add_box(self, box, color=None): if color is None: color = self.edgecolor (x0, y0, x1, y1) = box width = x1 - x0 height = y1 - y0 self.ax.add_patch( mpl.patches.Rectangle( (x0, y0), width, height, fill=False, edgecolor=color, linewidth=self.font_size // 3, alpha=self.alpha, linestyle=self.linestyle, ) ) def draw_boxes(self, boxes, obj_ids=None, obj_scores=None, attr_ids=None, attr_scores=None): if len(boxes.shape) > 2: boxes = boxes[0] if len(obj_ids.shape) > 1: obj_ids = obj_ids[0] if len(obj_scores.shape) > 1: obj_scores = obj_scores[0] if len(attr_ids.shape) > 1: attr_ids = attr_ids[0] if len(attr_scores.shape) > 1: attr_scores = attr_scores[0] if isinstance(boxes, torch.Tensor): boxes = boxes.numpy() if isinstance(boxes, list): boxes = np.array(boxes) assert isinstance(boxes, np.ndarray) areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1) sorted_idxs = np.argsort(-areas).tolist() boxes = boxes[sorted_idxs] if boxes is not None else None obj_ids = obj_ids[sorted_idxs] if obj_ids is not None else None obj_scores = obj_scores[sorted_idxs] if obj_scores is not None else None attr_ids = attr_ids[sorted_idxs] if attr_ids is not None else None attr_scores = attr_scores[sorted_idxs] if attr_scores is not None else None assigned_colors = [self._random_color(maximum=1) for _ in range(len(boxes))] assigned_colors = [assigned_colors[idx] for idx in sorted_idxs] if obj_ids is not None: labels = self._create_text_labels_attr(obj_ids, obj_scores, attr_ids, attr_scores) for i in range(len(boxes)): color = assigned_colors[i] self.add_box(boxes[i], color) self.draw_labels(labels[i], boxes[i], color) def draw_labels(self, label, box, color): x0, y0, x1, y1 = box text_pos = (x0, y0) instance_area = (y1 - y0) * (x1 - x0) small = _SMALL_OBJ * self.scale if instance_area < small or y1 - y0 < 40 * self.scale: if y1 >= self.height - 5: text_pos = (x1, y0) else: text_pos = (x0, y1) height_ratio = (y1 - y0) / np.sqrt(self.height * self.width) lighter_color = self._change_color_brightness(color, brightness_factor=0.7) font_size = np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) font_size *= 0.75 * self.font_size self.draw_text( text=label, position=text_pos, color=lighter_color, ) def draw_text( self, text, position, color="g", ha="left", ): rotation = 0 font_size = self.font_size color = np.maximum(list(mplc.to_rgb(color)), 0.2) color[np.argmax(color)] = max(0.8, np.max(color)) bbox = { "facecolor": "black", "alpha": self.alpha, "pad": self.pad, "edgecolor": "none", } x, y = position self.ax.text( x, y, text, size=font_size * self.scale, family="sans-serif", bbox=bbox, verticalalignment="top", horizontalalignment=ha, color=color, zorder=10, rotation=rotation, ) def save(self, saveas=None): if saveas is None: saveas = self.saveas if saveas.lower().endswith(".jpg") or saveas.lower().endswith(".png"): cv2.imwrite( saveas, self._get_buffer()[:, :, ::-1], ) else: self.fig.savefig(saveas) def _create_text_labels_attr(self, classes, scores, attr_classes, attr_scores): labels = [self.id2obj[i] for i in classes] attr_labels = [self.id2attr[i] for i in attr_classes] labels = [ f"{label} {score:.2f} {attr} {attr_score:.2f}" for label, score, attr, attr_score in zip(labels, scores, attr_labels, attr_scores) ] return labels def _create_text_labels(self, classes, scores): labels = [self.id2obj[i] for i in classes] if scores is not None: if labels is None: labels = ["{:.0f}%".format(s * 100) for s in scores] else: labels = ["{} {:.0f}%".format(li, s * 100) for li, s in zip(labels, scores)] return labels def _random_color(self, maximum=255): idx = np.random.randint(0, len(_COLORS)) ret = _COLORS[idx] * maximum if not self.rgb: ret = ret[::-1] return ret def _get_buffer(self): if not self.pynb: s, (width, height) = self.canvas.print_to_buffer() if (width, height) != (self.width, self.height): img = cv2.resize(self.img, (width, height)) else: img = self.img else: buf = io.BytesIO() # works for cairo backend self.canvas.print_rgba(buf) width, height = self.width, self.height s = buf.getvalue() img = self.img buffer = np.frombuffer(s, dtype="uint8") img_rgba = buffer.reshape(height, width, 4) rgb, alpha = np.split(img_rgba, [3], axis=2) try: import numexpr as ne # fuse them with numexpr visualized_image = ne.evaluate("img * (1 - alpha / 255.0) + rgb * (alpha / 255.0)") except ImportError: alpha = alpha.astype("float32") / 255.0 visualized_image = img * (1 - alpha) + rgb * alpha return visualized_image.astype("uint8") def _change_color_brightness(self, color, brightness_factor): assert brightness_factor >= -1.0 and brightness_factor <= 1.0 color = mplc.to_rgb(color) polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color)) modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1]) modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2]) return modified_color # Color map _COLORS = ( np.array( [ 0.000, 0.447, 0.741, 0.850, 0.325, 0.098, 0.929, 0.694, 0.125, 0.494, 0.184, 0.556, 0.466, 0.674, 0.188, 0.301, 0.745, 0.933, 0.635, 0.078, 0.184, 0.300, 0.300, 0.300, 0.600, 0.600, 0.600, 1.000, 0.000, 0.000, 1.000, 0.500, 0.000, 0.749, 0.749, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 1.000, 0.667, 0.000, 1.000, 0.333, 0.333, 0.000, 0.333, 0.667, 0.000, 0.333, 1.000, 0.000, 0.667, 0.333, 0.000, 0.667, 0.667, 0.000, 0.667, 1.000, 0.000, 1.000, 0.333, 0.000, 1.000, 0.667, 0.000, 1.000, 1.000, 0.000, 0.000, 0.333, 0.500, 0.000, 0.667, 0.500, 0.000, 1.000, 0.500, 0.333, 0.000, 0.500, 0.333, 0.333, 0.500, 0.333, 0.667, 0.500, 0.333, 1.000, 0.500, 0.667, 0.000, 0.500, 0.667, 0.333, 0.500, 0.667, 0.667, 0.500, 0.667, 1.000, 0.500, 1.000, 0.000, 0.500, 1.000, 0.333, 0.500, 1.000, 0.667, 0.500, 1.000, 1.000, 0.500, 0.000, 0.333, 1.000, 0.000, 0.667, 1.000, 0.000, 1.000, 1.000, 0.333, 0.000, 1.000, 0.333, 0.333, 1.000, 0.333, 0.667, 1.000, 0.333, 1.000, 1.000, 0.667, 0.000, 1.000, 0.667, 0.333, 1.000, 0.667, 0.667, 1.000, 0.667, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.333, 1.000, 1.000, 0.667, 1.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.143, 0.143, 0.143, 0.857, 0.857, 0.857, 1.000, 1.000, 1.000, ] ) .astype(np.float32) .reshape(-1, 3) )
transformers/examples/research_projects/visual_bert/visualizing_image.py/0
{ "file_path": "transformers/examples/research_projects/visual_bert/visualizing_image.py", "repo_id": "transformers", "token_count": 8182 }
316
#!/usr/bin/env bash python run_asr.py \ --output_dir="./wav2vec2-large-xlsr-53-arabic-speech-corpus" \ --num_train_epochs="50" \ --per_device_train_batch_size="1" \ --per_device_eval_batch_size="1" \ --gradient_accumulation_steps="8" \ --evaluation_strategy="steps" \ --save_steps="500" \ --eval_steps="100" \ --logging_steps="50" \ --learning_rate="5e-4" \ --warmup_steps="3000" \ --model_name_or_path="elgeish/wav2vec2-large-xlsr-53-arabic" \ --fp16 \ --dataset_name="arabic_speech_corpus" \ --train_split_name="train" \ --validation_split_name="test" \ --max_duration_in_seconds="15" \ --orthography="buckwalter" \ --preprocessing_num_workers="$(nproc)" \ --group_by_length \ --freeze_feature_extractor \ --target_feature_extractor_sampling_rate \ --verbose_logging \
transformers/examples/research_projects/wav2vec2/finetune_large_xlsr_53_arabic_speech_corpus.sh/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/finetune_large_xlsr_53_arabic_speech_corpus.sh", "repo_id": "transformers", "token_count": 324 }
317
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Language modelling examples This folder contains some scripts showing examples of *language model pre-training* with the 🤗 Transformers library. For straightforward use-cases you may be able to use these scripts without modification, although we have also included comments in the code to indicate areas that you may need to adapt to your own projects. The two scripts have almost identical arguments, but they differ in the type of LM they train - a causal language model (like GPT) or a masked language model (like BERT). Masked language models generally train more quickly and perform better when fine-tuned on new tasks with a task-specific output head, like text classification. However, their ability to generate text is weaker than causal language models. ## Pre-training versus fine-tuning These scripts can be used to both *pre-train* a language model completely from scratch, as well as to *fine-tune* a language model on text from your domain of interest. To start with an existing pre-trained language model you can use the `--model_name_or_path` argument, or to train from scratch you can use the `--model_type` argument to indicate the class of model architecture to initialize. ### Multi-GPU and TPU usage By default, these scripts use a `MirroredStrategy` and will use multiple GPUs effectively if they are available. TPUs can also be used by passing the name of the TPU resource with the `--tpu` argument. ## run_mlm.py This script trains a masked language model. ### Example command ```bash python run_mlm.py \ --model_name_or_path distilbert/distilbert-base-cased \ --output_dir output \ --dataset_name wikitext \ --dataset_config_name wikitext-103-raw-v1 ``` When using a custom dataset, the validation file can be separately passed as an input argument. Otherwise some split (customizable) of training data is used as validation. ```bash python run_mlm.py \ --model_name_or_path distilbert/distilbert-base-cased \ --output_dir output \ --train_file train_file_path ``` ## run_clm.py This script trains a causal language model. ### Example command ```bash python run_clm.py \ --model_name_or_path distilbert/distilgpt2 \ --output_dir output \ --dataset_name wikitext \ --dataset_config_name wikitext-103-raw-v1 ``` When using a custom dataset, the validation file can be separately passed as an input argument. Otherwise some split (customizable) of training data is used as validation. ```bash python run_clm.py \ --model_name_or_path distilbert/distilgpt2 \ --output_dir output \ --train_file train_file_path ```
transformers/examples/tensorflow/language-modeling/README.md/0
{ "file_path": "transformers/examples/tensorflow/language-modeling/README.md", "repo_id": "transformers", "token_count": 858 }
318
#!/usr/bin/env bash # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script acquires data and converts it to fsmt model # it covers: # - allenai/wmt16-en-de-dist-12-1 # - allenai/wmt16-en-de-dist-6-1 # - allenai/wmt16-en-de-12-1 # this script needs to be run from the top level of the transformers repo if [ ! -d "src/transformers" ]; then echo "Error: This script needs to be run from the top of the transformers repo" exit 1 fi mkdir data # get data (run once) cd data gdown 'https://drive.google.com/uc?id=1x_G2cjvM1nW5hjAB8-vWxRqtQTlmIaQU' gdown 'https://drive.google.com/uc?id=1oA2aqZlVNj5FarxBlNXEHpBS4lRetTzU' gdown 'https://drive.google.com/uc?id=1Wup2D318QYBFPW_NKI1mfP_hXOfmUI9r' tar -xvzf trans_ende_12-1_0.2.tar.gz tar -xvzf trans_ende-dist_12-1_0.2.tar.gz tar -xvzf trans_ende-dist_6-1_0.2.tar.gz gdown 'https://drive.google.com/uc?id=1mNufoynJ9-Zy1kJh2TA_lHm2squji0i9' gdown 'https://drive.google.com/uc?id=1iO7um-HWoNoRKDtw27YUSgyeubn9uXqj' tar -xvzf wmt16.en-de.deep-shallow.dist.tar.gz tar -xvzf wmt16.en-de.deep-shallow.tar.gz cp wmt16.en-de.deep-shallow/data-bin/dict.*.txt trans_ende_12-1_0.2 cp wmt16.en-de.deep-shallow.dist/data-bin/dict.*.txt trans_ende-dist_12-1_0.2 cp wmt16.en-de.deep-shallow.dist/data-bin/dict.*.txt trans_ende-dist_6-1_0.2 cp wmt16.en-de.deep-shallow/bpecodes trans_ende_12-1_0.2 cp wmt16.en-de.deep-shallow.dist/bpecodes trans_ende-dist_12-1_0.2 cp wmt16.en-de.deep-shallow.dist/bpecodes trans_ende-dist_6-1_0.2 cd - # run conversions and uploads PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/trans_ende-dist_12-1_0.2/checkpoint_top5_average.pt --pytorch_dump_folder_path data/wmt16-en-de-dist-12-1 PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/trans_ende-dist_6-1_0.2/checkpoint_top5_average.pt --pytorch_dump_folder_path data/wmt16-en-de-dist-6-1 PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/trans_ende_12-1_0.2/checkpoint_top5_average.pt --pytorch_dump_folder_path data/wmt16-en-de-12-1 # upload cd data transformers-cli upload -y wmt16-en-de-dist-12-1 transformers-cli upload -y wmt16-en-de-dist-6-1 transformers-cli upload -y wmt16-en-de-12-1 cd - # if updating just small files and not the large models, here is a script to generate the right commands: perl -le 'for $f (@ARGV) { print qq[transformers-cli upload -y $_/$f --filename $_/$f] for ("wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1")}' vocab-src.json vocab-tgt.json tokenizer_config.json config.json # add/remove files as needed
transformers/scripts/fsmt/convert-allenai-wmt16.sh/0
{ "file_path": "transformers/scripts/fsmt/convert-allenai-wmt16.sh", "repo_id": "transformers", "token_count": 1372 }
319
#!/bin/bash for FILE in converted/*; do model_name=`basename $FILE` huggingface-cli repo create $model_name -y git clone https://huggingface.co/Helsinki-NLP/$model_name mv $FILE/* $model_name/ cd $model_name git add . && git commit -m "initial commit" git push cd .. done
transformers/scripts/tatoeba/upload_models.sh/0
{ "file_path": "transformers/scripts/tatoeba/upload_models.sh", "repo_id": "transformers", "token_count": 109 }
320
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import difflib import json import os import re from argparse import ArgumentParser, Namespace from dataclasses import dataclass from datetime import date from itertools import chain from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Pattern, Tuple, Union import yaml from ..models import auto as auto_module from ..models.auto.configuration_auto import model_type_to_module_name from ..utils import is_flax_available, is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand logger = logging.get_logger(__name__) # pylint: disable=invalid-name CURRENT_YEAR = date.today().year TRANSFORMERS_PATH = Path(__file__).parent.parent REPO_PATH = TRANSFORMERS_PATH.parent.parent @dataclass class ModelPatterns: """ Holds the basic information about a new model for the add-new-model-like command. Args: model_name (`str`): The model name. checkpoint (`str`): The checkpoint to use for doc examples. model_type (`str`, *optional*): The model type, the identifier used internally in the library like `bert` or `xlm-roberta`. Will default to `model_name` lowercased with spaces replaced with minuses (-). model_lower_cased (`str`, *optional*): The lowercased version of the model name, to use for the module name or function names. Will default to `model_name` lowercased with spaces and minuses replaced with underscores. model_camel_cased (`str`, *optional*): The camel-cased version of the model name, to use for the class names. Will default to `model_name` camel-cased (with spaces and minuses both considered as word separators. model_upper_cased (`str`, *optional*): The uppercased version of the model name, to use for the constant names. Will default to `model_name` uppercased with spaces and minuses replaced with underscores. config_class (`str`, *optional*): The tokenizer class associated with this model. Will default to `"{model_camel_cased}Config"`. tokenizer_class (`str`, *optional*): The tokenizer class associated with this model (leave to `None` for models that don't use a tokenizer). image_processor_class (`str`, *optional*): The image processor class associated with this model (leave to `None` for models that don't use an image processor). feature_extractor_class (`str`, *optional*): The feature extractor class associated with this model (leave to `None` for models that don't use a feature extractor). processor_class (`str`, *optional*): The processor class associated with this model (leave to `None` for models that don't use a processor). """ model_name: str checkpoint: str model_type: Optional[str] = None model_lower_cased: Optional[str] = None model_camel_cased: Optional[str] = None model_upper_cased: Optional[str] = None config_class: Optional[str] = None tokenizer_class: Optional[str] = None image_processor_class: Optional[str] = None feature_extractor_class: Optional[str] = None processor_class: Optional[str] = None def __post_init__(self): if self.model_type is None: self.model_type = self.model_name.lower().replace(" ", "-") if self.model_lower_cased is None: self.model_lower_cased = self.model_name.lower().replace(" ", "_").replace("-", "_") if self.model_camel_cased is None: # Split the model name on - and space words = self.model_name.split(" ") words = list(chain(*[w.split("-") for w in words])) # Make sure each word is capitalized words = [w[0].upper() + w[1:] for w in words] self.model_camel_cased = "".join(words) if self.model_upper_cased is None: self.model_upper_cased = self.model_name.upper().replace(" ", "_").replace("-", "_") if self.config_class is None: self.config_class = f"{self.model_camel_cased}Config" ATTRIBUTE_TO_PLACEHOLDER = { "config_class": "[CONFIG_CLASS]", "tokenizer_class": "[TOKENIZER_CLASS]", "image_processor_class": "[IMAGE_PROCESSOR_CLASS]", "feature_extractor_class": "[FEATURE_EXTRACTOR_CLASS]", "processor_class": "[PROCESSOR_CLASS]", "checkpoint": "[CHECKPOINT]", "model_type": "[MODEL_TYPE]", "model_upper_cased": "[MODEL_UPPER_CASED]", "model_camel_cased": "[MODEL_CAMELCASED]", "model_lower_cased": "[MODEL_LOWER_CASED]", "model_name": "[MODEL_NAME]", } def is_empty_line(line: str) -> bool: """ Determines whether a line is empty or not. """ return len(line) == 0 or line.isspace() def find_indent(line: str) -> int: """ Returns the number of spaces that start a line indent. """ search = re.search(r"^(\s*)(?:\S|$)", line) if search is None: return 0 return len(search.groups()[0]) def parse_module_content(content: str) -> List[str]: """ Parse the content of a module in the list of objects it defines. Args: content (`str`): The content to parse Returns: `List[str]`: The list of objects defined in the module. """ objects = [] current_object = [] lines = content.split("\n") # Doc-styler takes everything between two triple quotes in docstrings, so we need a fake """ here to go with this. end_markers = [")", "]", "}", '"""'] for line in lines: # End of an object is_valid_object = len(current_object) > 0 if is_valid_object and len(current_object) == 1: is_valid_object = not current_object[0].startswith("# Copied from") if not is_empty_line(line) and find_indent(line) == 0 and is_valid_object: # Closing parts should be included in current object if line in end_markers: current_object.append(line) objects.append("\n".join(current_object)) current_object = [] else: objects.append("\n".join(current_object)) current_object = [line] else: current_object.append(line) # Add last object if len(current_object) > 0: objects.append("\n".join(current_object)) return objects def extract_block(content: str, indent_level: int = 0) -> str: """Return the first block in `content` with the indent level `indent_level`. The first line in `content` should be indented at `indent_level` level, otherwise an error will be thrown. This method will immediately stop the search when a (non-empty) line with indent level less than `indent_level` is encountered. Args: content (`str`): The content to parse indent_level (`int`, *optional*, default to 0): The indent level of the blocks to search for Returns: `str`: The first block in `content` with the indent level `indent_level`. """ current_object = [] lines = content.split("\n") # Doc-styler takes everything between two triple quotes in docstrings, so we need a fake """ here to go with this. end_markers = [")", "]", "}", '"""'] for idx, line in enumerate(lines): if idx == 0 and indent_level > 0 and not is_empty_line(line) and find_indent(line) != indent_level: raise ValueError( f"When `indent_level > 0`, the first line in `content` should have indent level {indent_level}. Got " f"{find_indent(line)} instead." ) if find_indent(line) < indent_level and not is_empty_line(line): break # End of an object is_valid_object = len(current_object) > 0 if ( not is_empty_line(line) and not line.endswith(":") and find_indent(line) == indent_level and is_valid_object ): # Closing parts should be included in current object if line.lstrip() in end_markers: current_object.append(line) return "\n".join(current_object) else: current_object.append(line) # Add last object if len(current_object) > 0: return "\n".join(current_object) def add_content_to_text( text: str, content: str, add_after: Optional[Union[str, Pattern]] = None, add_before: Optional[Union[str, Pattern]] = None, exact_match: bool = False, ) -> str: """ A utility to add some content inside a given text. Args: text (`str`): The text in which we want to insert some content. content (`str`): The content to add. add_after (`str` or `Pattern`): The pattern to test on a line of `text`, the new content is added after the first instance matching it. add_before (`str` or `Pattern`): The pattern to test on a line of `text`, the new content is added before the first instance matching it. exact_match (`bool`, *optional*, defaults to `False`): A line is considered a match with `add_after` or `add_before` if it matches exactly when `exact_match=True`, otherwise, if `add_after`/`add_before` is present in the line. <Tip warning={true}> The arguments `add_after` and `add_before` are mutually exclusive, and one exactly needs to be provided. </Tip> Returns: `str`: The text with the new content added if a match was found. """ if add_after is None and add_before is None: raise ValueError("You need to pass either `add_after` or `add_before`") if add_after is not None and add_before is not None: raise ValueError("You can't pass both `add_after` or `add_before`") pattern = add_after if add_before is None else add_before def this_is_the_line(line): if isinstance(pattern, Pattern): return pattern.search(line) is not None elif exact_match: return pattern == line else: return pattern in line new_lines = [] for line in text.split("\n"): if this_is_the_line(line): if add_before is not None: new_lines.append(content) new_lines.append(line) if add_after is not None: new_lines.append(content) else: new_lines.append(line) return "\n".join(new_lines) def add_content_to_file( file_name: Union[str, os.PathLike], content: str, add_after: Optional[Union[str, Pattern]] = None, add_before: Optional[Union[str, Pattern]] = None, exact_match: bool = False, ): """ A utility to add some content inside a given file. Args: file_name (`str` or `os.PathLike`): The name of the file in which we want to insert some content. content (`str`): The content to add. add_after (`str` or `Pattern`): The pattern to test on a line of `text`, the new content is added after the first instance matching it. add_before (`str` or `Pattern`): The pattern to test on a line of `text`, the new content is added before the first instance matching it. exact_match (`bool`, *optional*, defaults to `False`): A line is considered a match with `add_after` or `add_before` if it matches exactly when `exact_match=True`, otherwise, if `add_after`/`add_before` is present in the line. <Tip warning={true}> The arguments `add_after` and `add_before` are mutually exclusive, and one exactly needs to be provided. </Tip> """ with open(file_name, "r", encoding="utf-8") as f: old_content = f.read() new_content = add_content_to_text( old_content, content, add_after=add_after, add_before=add_before, exact_match=exact_match ) with open(file_name, "w", encoding="utf-8") as f: f.write(new_content) def replace_model_patterns( text: str, old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns ) -> Tuple[str, str]: """ Replace all patterns present in a given text. Args: text (`str`): The text to treat. old_model_patterns (`ModelPatterns`): The patterns for the old model. new_model_patterns (`ModelPatterns`): The patterns for the new model. Returns: `Tuple(str, str)`: A tuple of with the treated text and the replacement actually done in it. """ # The order is crucially important as we will check and replace in that order. For instance the config probably # contains the camel-cased named, but will be treated before. attributes_to_check = ["config_class"] # Add relevant preprocessing classes for attr in ["tokenizer_class", "image_processor_class", "feature_extractor_class", "processor_class"]: if getattr(old_model_patterns, attr) is not None and getattr(new_model_patterns, attr) is not None: attributes_to_check.append(attr) # Special cases for checkpoint and model_type if old_model_patterns.checkpoint not in [old_model_patterns.model_type, old_model_patterns.model_lower_cased]: attributes_to_check.append("checkpoint") if old_model_patterns.model_type != old_model_patterns.model_lower_cased: attributes_to_check.append("model_type") else: text = re.sub( rf'(\s*)model_type = "{old_model_patterns.model_type}"', r'\1model_type = "[MODEL_TYPE]"', text, ) # Special case when the model camel cased and upper cased names are the same for the old model (like for GPT2) but # not the new one. We can't just do a replace in all the text and will need a special regex if old_model_patterns.model_upper_cased == old_model_patterns.model_camel_cased: old_model_value = old_model_patterns.model_upper_cased if re.search(rf"{old_model_value}_[A-Z_]*[^A-Z_]", text) is not None: text = re.sub(rf"{old_model_value}([A-Z_]*)([^a-zA-Z_])", r"[MODEL_UPPER_CASED]\1\2", text) else: attributes_to_check.append("model_upper_cased") attributes_to_check.extend(["model_camel_cased", "model_lower_cased", "model_name"]) # Now let's replace every other attribute by their placeholder for attr in attributes_to_check: text = text.replace(getattr(old_model_patterns, attr), ATTRIBUTE_TO_PLACEHOLDER[attr]) # Finally we can replace the placeholder byt the new values. replacements = [] for attr, placeholder in ATTRIBUTE_TO_PLACEHOLDER.items(): if placeholder in text: replacements.append((getattr(old_model_patterns, attr), getattr(new_model_patterns, attr))) text = text.replace(placeholder, getattr(new_model_patterns, attr)) # If we have two inconsistent replacements, we don't return anything (ex: GPT2->GPT_NEW and GPT2->GPTNew) old_replacement_values = [old for old, new in replacements] if len(set(old_replacement_values)) != len(old_replacement_values): return text, "" replacements = simplify_replacements(replacements) replacements = [f"{old}->{new}" for old, new in replacements] return text, ",".join(replacements) def simplify_replacements(replacements): """ Simplify a list of replacement patterns to make sure there are no needless ones. For instance in the sequence "Bert->BertNew, BertConfig->BertNewConfig, bert->bert_new", the replacement "BertConfig->BertNewConfig" is implied by "Bert->BertNew" so not needed. Args: replacements (`List[Tuple[str, str]]`): List of patterns (old, new) Returns: `List[Tuple[str, str]]`: The list of patterns simplified. """ if len(replacements) <= 1: # Nothing to simplify return replacements # Next let's sort replacements by length as a replacement can only "imply" another replacement if it's shorter. replacements.sort(key=lambda x: len(x[0])) idx = 0 while idx < len(replacements): old, new = replacements[idx] # Loop through all replacements after j = idx + 1 while j < len(replacements): old_2, new_2 = replacements[j] # If the replacement is implied by the current one, we can drop it. if old_2.replace(old, new) == new_2: replacements.pop(j) else: j += 1 idx += 1 return replacements def get_module_from_file(module_file: Union[str, os.PathLike]) -> str: """ Returns the module name corresponding to a module file. """ full_module_path = Path(module_file).absolute() module_parts = full_module_path.with_suffix("").parts # Find the first part named transformers, starting from the end. idx = len(module_parts) - 1 while idx >= 0 and module_parts[idx] != "transformers": idx -= 1 if idx < 0: raise ValueError(f"{module_file} is not a transformers module.") return ".".join(module_parts[idx:]) SPECIAL_PATTERNS = { "_CHECKPOINT_FOR_DOC =": "checkpoint", "_CONFIG_FOR_DOC =": "config_class", "_TOKENIZER_FOR_DOC =": "tokenizer_class", "_IMAGE_PROCESSOR_FOR_DOC =": "image_processor_class", "_FEAT_EXTRACTOR_FOR_DOC =": "feature_extractor_class", "_PROCESSOR_FOR_DOC =": "processor_class", } _re_class_func = re.compile(r"^(?:class|def)\s+([^\s:\(]+)\s*(?:\(|\:)", flags=re.MULTILINE) def remove_attributes(obj, target_attr): """Remove `target_attr` in `obj`.""" lines = obj.split(os.linesep) target_idx = None for idx, line in enumerate(lines): # search for assignment if line.lstrip().startswith(f"{target_attr} = "): target_idx = idx break # search for function/method definition elif line.lstrip().startswith(f"def {target_attr}("): target_idx = idx break # target not found if target_idx is None: return obj line = lines[target_idx] indent_level = find_indent(line) # forward pass to find the ending of the block (including empty lines) parsed = extract_block("\n".join(lines[target_idx:]), indent_level) num_lines = len(parsed.split("\n")) for idx in range(num_lines): lines[target_idx + idx] = None # backward pass to find comments or decorator for idx in range(target_idx - 1, -1, -1): line = lines[idx] if (line.lstrip().startswith("#") or line.lstrip().startswith("@")) and find_indent(line) == indent_level: lines[idx] = None else: break new_obj = os.linesep.join([x for x in lines if x is not None]) return new_obj def duplicate_module( module_file: Union[str, os.PathLike], old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns, dest_file: Optional[str] = None, add_copied_from: bool = True, attrs_to_remove: List[str] = None, ): """ Create a new module from an existing one and adapting all function and classes names from old patterns to new ones. Args: module_file (`str` or `os.PathLike`): Path to the module to duplicate. old_model_patterns (`ModelPatterns`): The patterns for the old model. new_model_patterns (`ModelPatterns`): The patterns for the new model. dest_file (`str` or `os.PathLike`, *optional*): Path to the new module. add_copied_from (`bool`, *optional*, defaults to `True`): Whether or not to add `# Copied from` statements in the duplicated module. """ if dest_file is None: dest_file = str(module_file).replace( old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased ) with open(module_file, "r", encoding="utf-8") as f: content = f.read() content = re.sub(r"# Copyright (\d+)\s", f"# Copyright {CURRENT_YEAR} ", content) objects = parse_module_content(content) # Loop and treat all objects new_objects = [] for obj in objects: # Special cases if "PRETRAINED_CONFIG_ARCHIVE_MAP = {" in obj: # docstyle-ignore obj = ( f"{new_model_patterns.model_upper_cased}_PRETRAINED_CONFIG_ARCHIVE_MAP = " + "{" + f""" "{new_model_patterns.checkpoint}": "https://huggingface.co/{new_model_patterns.checkpoint}/resolve/main/config.json", """ + "}\n" ) new_objects.append(obj) continue elif "PRETRAINED_MODEL_ARCHIVE_LIST = [" in obj: if obj.startswith("TF_"): prefix = "TF_" elif obj.startswith("FLAX_"): prefix = "FLAX_" else: prefix = "" # docstyle-ignore obj = f"""{prefix}{new_model_patterns.model_upper_cased}_PRETRAINED_MODEL_ARCHIVE_LIST = [ "{new_model_patterns.checkpoint}", # See all {new_model_patterns.model_name} models at https://huggingface.co/models?filter={new_model_patterns.model_type} ] """ new_objects.append(obj) continue special_pattern = False for pattern, attr in SPECIAL_PATTERNS.items(): if pattern in obj: obj = obj.replace(getattr(old_model_patterns, attr), getattr(new_model_patterns, attr)) new_objects.append(obj) special_pattern = True break if special_pattern: continue # Regular classes functions old_obj = obj obj, replacement = replace_model_patterns(obj, old_model_patterns, new_model_patterns) has_copied_from = re.search(r"^#\s+Copied from", obj, flags=re.MULTILINE) is not None if add_copied_from and not has_copied_from and _re_class_func.search(obj) is not None and len(replacement) > 0: # Copied from statement must be added just before the class/function definition, which may not be the # first line because of decorators. module_name = get_module_from_file(module_file) old_object_name = _re_class_func.search(old_obj).groups()[0] obj = add_content_to_text( obj, f"# Copied from {module_name}.{old_object_name} with {replacement}", add_before=_re_class_func ) # In all cases, we remove Copied from statement with indent on methods. obj = re.sub("\n[ ]+# Copied from [^\n]*\n", "\n", obj) new_objects.append(obj) content = "\n".join(new_objects) # Remove some attributes that we don't want to copy to the new file(s) if attrs_to_remove is not None: for attr in attrs_to_remove: content = remove_attributes(content, target_attr=attr) with open(dest_file, "w", encoding="utf-8") as f: f.write(content) def filter_framework_files( files: List[Union[str, os.PathLike]], frameworks: Optional[List[str]] = None ) -> List[Union[str, os.PathLike]]: """ Filter a list of files to only keep the ones corresponding to a list of frameworks. Args: files (`List[Union[str, os.PathLike]]`): The list of files to filter. frameworks (`List[str]`, *optional*): The list of allowed frameworks. Returns: `List[Union[str, os.PathLike]]`: The list of filtered files. """ if frameworks is None: frameworks = get_default_frameworks() framework_to_file = {} others = [] for f in files: parts = Path(f).name.split("_") if "modeling" not in parts: others.append(f) continue if "tf" in parts: framework_to_file["tf"] = f elif "flax" in parts: framework_to_file["flax"] = f else: framework_to_file["pt"] = f return [framework_to_file[f] for f in frameworks if f in framework_to_file] + others def get_model_files(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, Union[Path, List[Path]]]: """ Retrieves all the files associated to a model. Args: model_type (`str`): A valid model type (like "bert" or "gpt2") frameworks (`List[str]`, *optional*): If passed, will only keep the model files corresponding to the passed frameworks. Returns: `Dict[str, Union[Path, List[Path]]]`: A dictionary with the following keys: - **doc_file** -- The documentation file for the model. - **model_files** -- All the files in the model module. - **test_files** -- The test files for the model. """ module_name = model_type_to_module_name(model_type) model_module = TRANSFORMERS_PATH / "models" / module_name model_files = list(model_module.glob("*.py")) model_files = filter_framework_files(model_files, frameworks=frameworks) doc_file = REPO_PATH / "docs" / "source" / "en" / "model_doc" / f"{model_type}.md" # Basic pattern for test files test_files = [ f"test_modeling_{module_name}.py", f"test_modeling_tf_{module_name}.py", f"test_modeling_flax_{module_name}.py", f"test_tokenization_{module_name}.py", f"test_image_processing_{module_name}.py", f"test_feature_extraction_{module_name}.py", f"test_processor_{module_name}.py", ] test_files = filter_framework_files(test_files, frameworks=frameworks) # Add the test directory test_files = [REPO_PATH / "tests" / "models" / module_name / f for f in test_files] # Filter by existing files test_files = [f for f in test_files if f.exists()] return {"doc_file": doc_file, "model_files": model_files, "module_name": module_name, "test_files": test_files} _re_checkpoint_for_doc = re.compile(r"^_CHECKPOINT_FOR_DOC\s+=\s+(\S*)\s*$", flags=re.MULTILINE) def find_base_model_checkpoint( model_type: str, model_files: Optional[Dict[str, Union[Path, List[Path]]]] = None ) -> str: """ Finds the model checkpoint used in the docstrings for a given model. Args: model_type (`str`): A valid model type (like "bert" or "gpt2") model_files (`Dict[str, Union[Path, List[Path]]`, *optional*): The files associated to `model_type`. Can be passed to speed up the function, otherwise will be computed. Returns: `str`: The checkpoint used. """ if model_files is None: model_files = get_model_files(model_type) module_files = model_files["model_files"] for fname in module_files: if "modeling" not in str(fname): continue with open(fname, "r", encoding="utf-8") as f: content = f.read() if _re_checkpoint_for_doc.search(content) is not None: checkpoint = _re_checkpoint_for_doc.search(content).groups()[0] # Remove quotes checkpoint = checkpoint.replace('"', "") checkpoint = checkpoint.replace("'", "") return checkpoint # TODO: Find some kind of fallback if there is no _CHECKPOINT_FOR_DOC in any of the modeling file. return "" def get_default_frameworks(): """ Returns the list of frameworks (PyTorch, TensorFlow, Flax) that are installed in the environment. """ frameworks = [] if is_torch_available(): frameworks.append("pt") if is_tf_available(): frameworks.append("tf") if is_flax_available(): frameworks.append("flax") return frameworks _re_model_mapping = re.compile("MODEL_([A-Z_]*)MAPPING_NAMES") def retrieve_model_classes(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, List[str]]: """ Retrieve the model classes associated to a given model. Args: model_type (`str`): A valid model type (like "bert" or "gpt2") frameworks (`List[str]`, *optional*): The frameworks to look for. Will default to `["pt", "tf", "flax"]`, passing a smaller list will restrict the classes returned. Returns: `Dict[str, List[str]]`: A dictionary with one key per framework and the list of model classes associated to that framework as values. """ if frameworks is None: frameworks = get_default_frameworks() modules = { "pt": auto_module.modeling_auto if is_torch_available() else None, "tf": auto_module.modeling_tf_auto if is_tf_available() else None, "flax": auto_module.modeling_flax_auto if is_flax_available() else None, } model_classes = {} for framework in frameworks: new_model_classes = [] if modules[framework] is None: raise ValueError(f"You selected {framework} in the frameworks, but it is not installed.") model_mappings = [attr for attr in dir(modules[framework]) if _re_model_mapping.search(attr) is not None] for model_mapping_name in model_mappings: model_mapping = getattr(modules[framework], model_mapping_name) if model_type in model_mapping: new_model_classes.append(model_mapping[model_type]) if len(new_model_classes) > 0: # Remove duplicates model_classes[framework] = list(set(new_model_classes)) return model_classes def retrieve_info_for_model(model_type, frameworks: Optional[List[str]] = None): """ Retrieves all the information from a given model_type. Args: model_type (`str`): A valid model type (like "bert" or "gpt2") frameworks (`List[str]`, *optional*): If passed, will only keep the info corresponding to the passed frameworks. Returns: `Dict`: A dictionary with the following keys: - **frameworks** (`List[str]`): The list of frameworks that back this model type. - **model_classes** (`Dict[str, List[str]]`): The model classes implemented for that model type. - **model_files** (`Dict[str, Union[Path, List[Path]]]`): The files associated with that model type. - **model_patterns** (`ModelPatterns`): The various patterns for the model. """ if model_type not in auto_module.MODEL_NAMES_MAPPING: raise ValueError(f"{model_type} is not a valid model type.") model_name = auto_module.MODEL_NAMES_MAPPING[model_type] config_class = auto_module.configuration_auto.CONFIG_MAPPING_NAMES[model_type] archive_map = auto_module.configuration_auto.CONFIG_ARCHIVE_MAP_MAPPING_NAMES.get(model_type, None) if model_type in auto_module.tokenization_auto.TOKENIZER_MAPPING_NAMES: tokenizer_classes = auto_module.tokenization_auto.TOKENIZER_MAPPING_NAMES[model_type] tokenizer_class = tokenizer_classes[0] if tokenizer_classes[0] is not None else tokenizer_classes[1] else: tokenizer_class = None image_processor_class = auto_module.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES.get(model_type, None) feature_extractor_class = auto_module.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES.get(model_type, None) processor_class = auto_module.processing_auto.PROCESSOR_MAPPING_NAMES.get(model_type, None) model_files = get_model_files(model_type, frameworks=frameworks) model_camel_cased = config_class.replace("Config", "") available_frameworks = [] for fname in model_files["model_files"]: if "modeling_tf" in str(fname): available_frameworks.append("tf") elif "modeling_flax" in str(fname): available_frameworks.append("flax") elif "modeling" in str(fname): available_frameworks.append("pt") if frameworks is None: frameworks = get_default_frameworks() frameworks = [f for f in frameworks if f in available_frameworks] model_classes = retrieve_model_classes(model_type, frameworks=frameworks) # Retrieve model upper-cased name from the constant name of the pretrained archive map. if archive_map is None: model_upper_cased = model_camel_cased.upper() else: parts = archive_map.split("_") idx = 0 while idx < len(parts) and parts[idx] != "PRETRAINED": idx += 1 if idx < len(parts): model_upper_cased = "_".join(parts[:idx]) else: model_upper_cased = model_camel_cased.upper() model_patterns = ModelPatterns( model_name, checkpoint=find_base_model_checkpoint(model_type, model_files=model_files), model_type=model_type, model_camel_cased=model_camel_cased, model_lower_cased=model_files["module_name"], model_upper_cased=model_upper_cased, config_class=config_class, tokenizer_class=tokenizer_class, image_processor_class=image_processor_class, feature_extractor_class=feature_extractor_class, processor_class=processor_class, ) return { "frameworks": frameworks, "model_classes": model_classes, "model_files": model_files, "model_patterns": model_patterns, } def clean_frameworks_in_init( init_file: Union[str, os.PathLike], frameworks: Optional[List[str]] = None, keep_processing: bool = True ): """ Removes all the import lines that don't belong to a given list of frameworks or concern tokenizers/feature extractors/image processors/processors in an init. Args: init_file (`str` or `os.PathLike`): The path to the init to treat. frameworks (`List[str]`, *optional*): If passed, this will remove all imports that are subject to a framework not in frameworks keep_processing (`bool`, *optional*, defaults to `True`): Whether or not to keep the preprocessing (tokenizer, feature extractor, image processor, processor) imports in the init. """ if frameworks is None: frameworks = get_default_frameworks() names = {"pt": "torch"} to_remove = [names.get(f, f) for f in ["pt", "tf", "flax"] if f not in frameworks] if not keep_processing: to_remove.extend(["sentencepiece", "tokenizers", "vision"]) if len(to_remove) == 0: # Nothing to do return remove_pattern = "|".join(to_remove) re_conditional_imports = re.compile(rf"^\s*if not is_({remove_pattern})_available\(\):\s*$") re_try = re.compile(r"\s*try:") re_else = re.compile(r"\s*else:") re_is_xxx_available = re.compile(rf"is_({remove_pattern})_available") with open(init_file, "r", encoding="utf-8") as f: content = f.read() lines = content.split("\n") new_lines = [] idx = 0 while idx < len(lines): # Conditional imports in try-except-else blocks if (re_conditional_imports.search(lines[idx]) is not None) and (re_try.search(lines[idx - 1]) is not None): # Remove the preceding `try:` new_lines.pop() idx += 1 # Iterate until `else:` while is_empty_line(lines[idx]) or re_else.search(lines[idx]) is None: idx += 1 idx += 1 indent = find_indent(lines[idx]) while find_indent(lines[idx]) >= indent or is_empty_line(lines[idx]): idx += 1 # Remove the import from utils elif re_is_xxx_available.search(lines[idx]) is not None: line = lines[idx] for framework in to_remove: line = line.replace(f", is_{framework}_available", "") line = line.replace(f"is_{framework}_available, ", "") line = line.replace(f"is_{framework}_available,", "") line = line.replace(f"is_{framework}_available", "") if len(line.strip()) > 0: new_lines.append(line) idx += 1 # Otherwise we keep the line, except if it's a tokenizer import and we don't want to keep it. elif keep_processing or ( re.search(r'^\s*"(tokenization|processing|feature_extraction|image_processing)', lines[idx]) is None and re.search(r"^\s*from .(tokenization|processing|feature_extraction|image_processing)", lines[idx]) is None ): new_lines.append(lines[idx]) idx += 1 else: idx += 1 with open(init_file, "w", encoding="utf-8") as f: f.write("\n".join(new_lines)) def add_model_to_main_init( old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns, frameworks: Optional[List[str]] = None, with_processing: bool = True, ): """ Add a model to the main init of Transformers. Args: old_model_patterns (`ModelPatterns`): The patterns for the old model. new_model_patterns (`ModelPatterns`): The patterns for the new model. frameworks (`List[str]`, *optional*): If specified, only the models implemented in those frameworks will be added. with_processsing (`bool`, *optional*, defaults to `True`): Whether the tokenizer/feature extractor/processor of the model should also be added to the init or not. """ with open(TRANSFORMERS_PATH / "__init__.py", "r", encoding="utf-8") as f: content = f.read() lines = content.split("\n") idx = 0 new_lines = [] framework = None while idx < len(lines): new_framework = False if not is_empty_line(lines[idx]) and find_indent(lines[idx]) == 0: framework = None elif lines[idx].lstrip().startswith("if not is_torch_available"): framework = "pt" new_framework = True elif lines[idx].lstrip().startswith("if not is_tf_available"): framework = "tf" new_framework = True elif lines[idx].lstrip().startswith("if not is_flax_available"): framework = "flax" new_framework = True if new_framework: # For a new framework, we need to skip until the else: block to get where the imports are. while lines[idx].strip() != "else:": new_lines.append(lines[idx]) idx += 1 # Skip if we are in a framework not wanted. if framework is not None and frameworks is not None and framework not in frameworks: new_lines.append(lines[idx]) idx += 1 elif re.search(rf'models.{old_model_patterns.model_lower_cased}( |")', lines[idx]) is not None: block = [lines[idx]] indent = find_indent(lines[idx]) idx += 1 while find_indent(lines[idx]) > indent: block.append(lines[idx]) idx += 1 if lines[idx].strip() in [")", "]", "],"]: block.append(lines[idx]) idx += 1 block = "\n".join(block) new_lines.append(block) add_block = True if not with_processing: processing_classes = [ old_model_patterns.tokenizer_class, old_model_patterns.image_processor_class, old_model_patterns.feature_extractor_class, old_model_patterns.processor_class, ] # Only keep the ones that are not None processing_classes = [c for c in processing_classes if c is not None] for processing_class in processing_classes: block = block.replace(f' "{processing_class}",', "") block = block.replace(f', "{processing_class}"', "") block = block.replace(f" {processing_class},", "") block = block.replace(f", {processing_class}", "") if processing_class in block: add_block = False if add_block: new_lines.append(replace_model_patterns(block, old_model_patterns, new_model_patterns)[0]) else: new_lines.append(lines[idx]) idx += 1 with open(TRANSFORMERS_PATH / "__init__.py", "w", encoding="utf-8") as f: f.write("\n".join(new_lines)) def insert_tokenizer_in_auto_module(old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns): """ Add a tokenizer to the relevant mappings in the auto module. Args: old_model_patterns (`ModelPatterns`): The patterns for the old model. new_model_patterns (`ModelPatterns`): The patterns for the new model. """ if old_model_patterns.tokenizer_class is None or new_model_patterns.tokenizer_class is None: return with open(TRANSFORMERS_PATH / "models" / "auto" / "tokenization_auto.py", "r", encoding="utf-8") as f: content = f.read() lines = content.split("\n") idx = 0 # First we get to the TOKENIZER_MAPPING_NAMES block. while not lines[idx].startswith(" TOKENIZER_MAPPING_NAMES = OrderedDict("): idx += 1 idx += 1 # That block will end at this prompt: while not lines[idx].startswith("TOKENIZER_MAPPING = _LazyAutoMapping"): # Either all the tokenizer block is defined on one line, in which case, it ends with ")," if lines[idx].endswith(","): block = lines[idx] # Otherwise it takes several lines until we get to a ")," else: block = [] while not lines[idx].startswith(" ),"): block.append(lines[idx]) idx += 1 block = "\n".join(block) idx += 1 # If we find the model type and tokenizer class in that block, we have the old model tokenizer block if f'"{old_model_patterns.model_type}"' in block and old_model_patterns.tokenizer_class in block: break new_block = block.replace(old_model_patterns.model_type, new_model_patterns.model_type) new_block = new_block.replace(old_model_patterns.tokenizer_class, new_model_patterns.tokenizer_class) new_lines = lines[:idx] + [new_block] + lines[idx:] with open(TRANSFORMERS_PATH / "models" / "auto" / "tokenization_auto.py", "w", encoding="utf-8") as f: f.write("\n".join(new_lines)) AUTO_CLASSES_PATTERNS = { "configuration_auto.py": [ ' ("{model_type}", "{model_name}"),', ' ("{model_type}", "{config_class}"),', ' ("{model_type}", "{pretrained_archive_map}"),', ], "feature_extraction_auto.py": [' ("{model_type}", "{feature_extractor_class}"),'], "image_processing_auto.py": [' ("{model_type}", "{image_processor_class}"),'], "modeling_auto.py": [' ("{model_type}", "{any_pt_class}"),'], "modeling_tf_auto.py": [' ("{model_type}", "{any_tf_class}"),'], "modeling_flax_auto.py": [' ("{model_type}", "{any_flax_class}"),'], "processing_auto.py": [' ("{model_type}", "{processor_class}"),'], } def add_model_to_auto_classes( old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns, model_classes: Dict[str, List[str]] ): """ Add a model to the relevant mappings in the auto module. Args: old_model_patterns (`ModelPatterns`): The patterns for the old model. new_model_patterns (`ModelPatterns`): The patterns for the new model. model_classes (`Dict[str, List[str]]`): A dictionary framework to list of model classes implemented. """ for filename in AUTO_CLASSES_PATTERNS: # Extend patterns with all model classes if necessary new_patterns = [] for pattern in AUTO_CLASSES_PATTERNS[filename]: if re.search("any_([a-z]*)_class", pattern) is not None: framework = re.search("any_([a-z]*)_class", pattern).groups()[0] if framework in model_classes: new_patterns.extend( [ pattern.replace("{" + f"any_{framework}_class" + "}", cls) for cls in model_classes[framework] ] ) elif "{config_class}" in pattern: new_patterns.append(pattern.replace("{config_class}", old_model_patterns.config_class)) elif "{image_processor_class}" in pattern: if ( old_model_patterns.image_processor_class is not None and new_model_patterns.image_processor_class is not None ): new_patterns.append( pattern.replace("{image_processor_class}", old_model_patterns.image_processor_class) ) elif "{feature_extractor_class}" in pattern: if ( old_model_patterns.feature_extractor_class is not None and new_model_patterns.feature_extractor_class is not None ): new_patterns.append( pattern.replace("{feature_extractor_class}", old_model_patterns.feature_extractor_class) ) elif "{processor_class}" in pattern: if old_model_patterns.processor_class is not None and new_model_patterns.processor_class is not None: new_patterns.append(pattern.replace("{processor_class}", old_model_patterns.processor_class)) else: new_patterns.append(pattern) # Loop through all patterns. for pattern in new_patterns: full_name = TRANSFORMERS_PATH / "models" / "auto" / filename old_model_line = pattern new_model_line = pattern for attr in ["model_type", "model_name"]: old_model_line = old_model_line.replace("{" + attr + "}", getattr(old_model_patterns, attr)) new_model_line = new_model_line.replace("{" + attr + "}", getattr(new_model_patterns, attr)) if "pretrained_archive_map" in pattern: old_model_line = old_model_line.replace( "{pretrained_archive_map}", f"{old_model_patterns.model_upper_cased}_PRETRAINED_CONFIG_ARCHIVE_MAP" ) new_model_line = new_model_line.replace( "{pretrained_archive_map}", f"{new_model_patterns.model_upper_cased}_PRETRAINED_CONFIG_ARCHIVE_MAP" ) new_model_line = new_model_line.replace( old_model_patterns.model_camel_cased, new_model_patterns.model_camel_cased ) add_content_to_file(full_name, new_model_line, add_after=old_model_line) # Tokenizers require special handling insert_tokenizer_in_auto_module(old_model_patterns, new_model_patterns) DOC_OVERVIEW_TEMPLATE = """## Overview The {model_name} model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>. <INSERT SHORT SUMMARY HERE> The abstract from the paper is the following: *<INSERT PAPER ABSTRACT HERE>* Tips: <INSERT TIPS ABOUT MODEL HERE> This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>). The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>). """ def duplicate_doc_file( doc_file: Union[str, os.PathLike], old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns, dest_file: Optional[Union[str, os.PathLike]] = None, frameworks: Optional[List[str]] = None, ): """ Duplicate a documentation file and adapts it for a new model. Args: module_file (`str` or `os.PathLike`): Path to the doc file to duplicate. old_model_patterns (`ModelPatterns`): The patterns for the old model. new_model_patterns (`ModelPatterns`): The patterns for the new model. dest_file (`str` or `os.PathLike`, *optional*): Path to the new doc file. Will default to the a file named `{new_model_patterns.model_type}.md` in the same folder as `module_file`. frameworks (`List[str]`, *optional*): If passed, will only keep the model classes corresponding to this list of frameworks in the new doc file. """ with open(doc_file, "r", encoding="utf-8") as f: content = f.read() content = re.sub(r"<!--\s*Copyright (\d+)\s", f"<!--Copyright {CURRENT_YEAR} ", content) if frameworks is None: frameworks = get_default_frameworks() if dest_file is None: dest_file = Path(doc_file).parent / f"{new_model_patterns.model_type}.md" # Parse the doc file in blocks. One block per section/header lines = content.split("\n") blocks = [] current_block = [] for line in lines: if line.startswith("#"): blocks.append("\n".join(current_block)) current_block = [line] else: current_block.append(line) blocks.append("\n".join(current_block)) new_blocks = [] in_classes = False for block in blocks: # Copyright if not block.startswith("#"): new_blocks.append(block) # Main title elif re.search(r"^#\s+\S+", block) is not None: new_blocks.append(f"# {new_model_patterns.model_name}\n") # The config starts the part of the doc with the classes. elif not in_classes and old_model_patterns.config_class in block.split("\n")[0]: in_classes = True new_blocks.append(DOC_OVERVIEW_TEMPLATE.format(model_name=new_model_patterns.model_name)) new_block, _ = replace_model_patterns(block, old_model_patterns, new_model_patterns) new_blocks.append(new_block) # In classes elif in_classes: in_classes = True block_title = block.split("\n")[0] block_class = re.search(r"^#+\s+(\S.*)$", block_title).groups()[0] new_block, _ = replace_model_patterns(block, old_model_patterns, new_model_patterns) if "Tokenizer" in block_class: # We only add the tokenizer if necessary if old_model_patterns.tokenizer_class != new_model_patterns.tokenizer_class: new_blocks.append(new_block) elif "ImageProcessor" in block_class: # We only add the image processor if necessary if old_model_patterns.image_processor_class != new_model_patterns.image_processor_class: new_blocks.append(new_block) elif "FeatureExtractor" in block_class: # We only add the feature extractor if necessary if old_model_patterns.feature_extractor_class != new_model_patterns.feature_extractor_class: new_blocks.append(new_block) elif "Processor" in block_class: # We only add the processor if necessary if old_model_patterns.processor_class != new_model_patterns.processor_class: new_blocks.append(new_block) elif block_class.startswith("Flax"): # We only add Flax models if in the selected frameworks if "flax" in frameworks: new_blocks.append(new_block) elif block_class.startswith("TF"): # We only add TF models if in the selected frameworks if "tf" in frameworks: new_blocks.append(new_block) elif len(block_class.split(" ")) == 1: # We only add PyTorch models if in the selected frameworks if "pt" in frameworks: new_blocks.append(new_block) else: new_blocks.append(new_block) with open(dest_file, "w", encoding="utf-8") as f: f.write("\n".join(new_blocks)) def insert_model_in_doc_toc(old_model_patterns, new_model_patterns): """ Insert the new model in the doc TOC, in the same section as the old model. Args: old_model_patterns (`ModelPatterns`): The patterns for the old model. new_model_patterns (`ModelPatterns`): The patterns for the new model. """ toc_file = REPO_PATH / "docs" / "source" / "en" / "_toctree.yml" with open(toc_file, "r", encoding="utf8") as f: content = yaml.safe_load(f) # Get to the model API doc api_idx = 0 while content[api_idx]["title"] != "API": api_idx += 1 api_doc = content[api_idx]["sections"] model_idx = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 model_doc = api_doc[model_idx]["sections"] # Find the base model in the Toc old_model_type = old_model_patterns.model_type section_idx = 0 while section_idx < len(model_doc): sections = [entry["local"] for entry in model_doc[section_idx]["sections"]] if f"model_doc/{old_model_type}" in sections: break section_idx += 1 if section_idx == len(model_doc): old_model = old_model_patterns.model_name new_model = new_model_patterns.model_name print(f"Did not find {old_model} in the table of content, so you will need to add {new_model} manually.") return # Add the new model in the same toc toc_entry = {"local": f"model_doc/{new_model_patterns.model_type}", "title": new_model_patterns.model_name} model_doc[section_idx]["sections"].append(toc_entry) model_doc[section_idx]["sections"] = sorted(model_doc[section_idx]["sections"], key=lambda s: s["title"].lower()) api_doc[model_idx]["sections"] = model_doc content[api_idx]["sections"] = api_doc with open(toc_file, "w", encoding="utf-8") as f: f.write(yaml.dump(content, allow_unicode=True)) def create_new_model_like( model_type: str, new_model_patterns: ModelPatterns, add_copied_from: bool = True, frameworks: Optional[List[str]] = None, old_checkpoint: Optional[str] = None, ): """ Creates a new model module like a given model of the Transformers library. Args: model_type (`str`): The model type to duplicate (like "bert" or "gpt2") new_model_patterns (`ModelPatterns`): The patterns for the new model. add_copied_from (`bool`, *optional*, defaults to `True`): Whether or not to add "Copied from" statements to all classes in the new model modeling files. frameworks (`List[str]`, *optional*): If passed, will limit the duplicate to the frameworks specified. old_checkpoint (`str`, *optional*): The name of the base checkpoint for the old model. Should be passed along when it can't be automatically recovered from the `model_type`. """ # Retrieve all the old model info. model_info = retrieve_info_for_model(model_type, frameworks=frameworks) model_files = model_info["model_files"] old_model_patterns = model_info["model_patterns"] if old_checkpoint is not None: old_model_patterns.checkpoint = old_checkpoint if len(old_model_patterns.checkpoint) == 0: raise ValueError( "The old model checkpoint could not be recovered from the model type. Please pass it to the " "`old_checkpoint` argument." ) keep_old_processing = True for processing_attr in ["image_processor_class", "feature_extractor_class", "processor_class", "tokenizer_class"]: if getattr(old_model_patterns, processing_attr) != getattr(new_model_patterns, processing_attr): keep_old_processing = False model_classes = model_info["model_classes"] # 1. We create the module for our new model. old_module_name = model_files["module_name"] module_folder = TRANSFORMERS_PATH / "models" / new_model_patterns.model_lower_cased os.makedirs(module_folder, exist_ok=True) files_to_adapt = model_files["model_files"] if keep_old_processing: files_to_adapt = [ f for f in files_to_adapt if "tokenization" not in str(f) and "processing" not in str(f) and "feature_extraction" not in str(f) and "image_processing" not in str(f) ] os.makedirs(module_folder, exist_ok=True) for module_file in files_to_adapt: new_module_name = module_file.name.replace( old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased ) dest_file = module_folder / new_module_name duplicate_module( module_file, old_model_patterns, new_model_patterns, dest_file=dest_file, add_copied_from=add_copied_from and "modeling" in new_module_name, ) clean_frameworks_in_init( module_folder / "__init__.py", frameworks=frameworks, keep_processing=not keep_old_processing ) # 2. We add our new model to the models init and the main init add_content_to_file( TRANSFORMERS_PATH / "models" / "__init__.py", f" {new_model_patterns.model_lower_cased},", add_after=f" {old_module_name},", exact_match=True, ) add_model_to_main_init( old_model_patterns, new_model_patterns, frameworks=frameworks, with_processing=not keep_old_processing ) # 3. Add test files files_to_adapt = model_files["test_files"] if keep_old_processing: files_to_adapt = [ f for f in files_to_adapt if "tokenization" not in str(f) and "processor" not in str(f) and "feature_extraction" not in str(f) and "image_processing" not in str(f) ] def disable_fx_test(filename: Path) -> bool: with open(filename) as fp: content = fp.read() new_content = re.sub(r"fx_compatible\s*=\s*True", "fx_compatible = False", content) with open(filename, "w") as fp: fp.write(new_content) return content != new_content disabled_fx_test = False tests_folder = REPO_PATH / "tests" / "models" / new_model_patterns.model_lower_cased os.makedirs(tests_folder, exist_ok=True) with open(tests_folder / "__init__.py", "w"): pass for test_file in files_to_adapt: new_test_file_name = test_file.name.replace( old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased ) dest_file = test_file.parent.parent / new_model_patterns.model_lower_cased / new_test_file_name duplicate_module( test_file, old_model_patterns, new_model_patterns, dest_file=dest_file, add_copied_from=False, attrs_to_remove=["pipeline_model_mapping", "is_pipeline_test_to_skip"], ) disabled_fx_test = disabled_fx_test | disable_fx_test(dest_file) if disabled_fx_test: print( "The tests for symbolic tracing with torch.fx were disabled, you can add those once symbolic tracing works" " for your new model." ) # 4. Add model to auto classes add_model_to_auto_classes(old_model_patterns, new_model_patterns, model_classes) # 5. Add doc file doc_file = REPO_PATH / "docs" / "source" / "en" / "model_doc" / f"{old_model_patterns.model_type}.md" duplicate_doc_file(doc_file, old_model_patterns, new_model_patterns, frameworks=frameworks) insert_model_in_doc_toc(old_model_patterns, new_model_patterns) # 6. Warn the user for duplicate patterns if old_model_patterns.model_type == old_model_patterns.checkpoint: print( "The model you picked has the same name for the model type and the checkpoint name " f"({old_model_patterns.model_type}). As a result, it's possible some places where the new checkpoint " f"should be, you have {new_model_patterns.model_type} instead. You should search for all instances of " f"{new_model_patterns.model_type} in the new files and check they're not badly used as checkpoints." ) elif old_model_patterns.model_lower_cased == old_model_patterns.checkpoint: print( "The model you picked has the same name for the model type and the checkpoint name " f"({old_model_patterns.model_lower_cased}). As a result, it's possible some places where the new " f"checkpoint should be, you have {new_model_patterns.model_lower_cased} instead. You should search for " f"all instances of {new_model_patterns.model_lower_cased} in the new files and check they're not badly " "used as checkpoints." ) if ( old_model_patterns.model_type == old_model_patterns.model_lower_cased and new_model_patterns.model_type != new_model_patterns.model_lower_cased ): print( "The model you picked has the same name for the model type and the lowercased model name " f"({old_model_patterns.model_lower_cased}). As a result, it's possible some places where the new " f"model type should be, you have {new_model_patterns.model_lower_cased} instead. You should search for " f"all instances of {new_model_patterns.model_lower_cased} in the new files and check they're not badly " "used as the model type." ) if not keep_old_processing and old_model_patterns.tokenizer_class is not None: print( "The constants at the start of the new tokenizer file created needs to be manually fixed. If your new " "model has a tokenizer fast, you will also need to manually add the converter in the " "`SLOW_TO_FAST_CONVERTERS` constant of `convert_slow_tokenizer.py`." ) def add_new_model_like_command_factory(args: Namespace): return AddNewModelLikeCommand(config_file=args.config_file, path_to_repo=args.path_to_repo) class AddNewModelLikeCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): add_new_model_like_parser = parser.add_parser("add-new-model-like") add_new_model_like_parser.add_argument( "--config_file", type=str, help="A file with all the information for this model creation." ) add_new_model_like_parser.add_argument( "--path_to_repo", type=str, help="When not using an editable install, the path to the Transformers repo." ) add_new_model_like_parser.set_defaults(func=add_new_model_like_command_factory) def __init__(self, config_file=None, path_to_repo=None, *args): if config_file is not None: with open(config_file, "r", encoding="utf-8") as f: config = json.load(f) self.old_model_type = config["old_model_type"] self.model_patterns = ModelPatterns(**config["new_model_patterns"]) self.add_copied_from = config.get("add_copied_from", True) self.frameworks = config.get("frameworks", get_default_frameworks()) self.old_checkpoint = config.get("old_checkpoint", None) else: ( self.old_model_type, self.model_patterns, self.add_copied_from, self.frameworks, self.old_checkpoint, ) = get_user_input() self.path_to_repo = path_to_repo def run(self): if self.path_to_repo is not None: # Adapt constants global TRANSFORMERS_PATH global REPO_PATH REPO_PATH = Path(self.path_to_repo) TRANSFORMERS_PATH = REPO_PATH / "src" / "transformers" create_new_model_like( model_type=self.old_model_type, new_model_patterns=self.model_patterns, add_copied_from=self.add_copied_from, frameworks=self.frameworks, old_checkpoint=self.old_checkpoint, ) def get_user_field( question: str, default_value: Optional[str] = None, is_valid_answer: Optional[Callable] = None, convert_to: Optional[Callable] = None, fallback_message: Optional[str] = None, ) -> Any: """ A utility function that asks a question to the user to get an answer, potentially looping until it gets a valid answer. Args: question (`str`): The question to ask the user. default_value (`str`, *optional*): A potential default value that will be used when the answer is empty. is_valid_answer (`Callable`, *optional*): If set, the question will be asked until this function returns `True` on the provided answer. convert_to (`Callable`, *optional*): If set, the answer will be passed to this function. If this function raises an error on the procided answer, the question will be asked again. fallback_message (`str`, *optional*): A message that will be displayed each time the question is asked again to the user. Returns: `Any`: The answer provided by the user (or the default), passed through the potential conversion function. """ if not question.endswith(" "): question = question + " " if default_value is not None: question = f"{question} [{default_value}] " valid_answer = False while not valid_answer: answer = input(question) if default_value is not None and len(answer) == 0: answer = default_value if is_valid_answer is not None: valid_answer = is_valid_answer(answer) elif convert_to is not None: try: answer = convert_to(answer) valid_answer = True except Exception: valid_answer = False else: valid_answer = True if not valid_answer: print(fallback_message) return answer def convert_to_bool(x: str) -> bool: """ Converts a string to a bool. """ if x.lower() in ["1", "y", "yes", "true"]: return True if x.lower() in ["0", "n", "no", "false"]: return False raise ValueError(f"{x} is not a value that can be converted to a bool.") def get_user_input(): """ Ask the user for the necessary inputs to add the new model. """ model_types = list(auto_module.configuration_auto.MODEL_NAMES_MAPPING.keys()) # Get old model type valid_model_type = False while not valid_model_type: old_model_type = input( "What is the model you would like to duplicate? Please provide the lowercase `model_type` (e.g. roberta): " ) if old_model_type in model_types: valid_model_type = True else: print(f"{old_model_type} is not a valid model type.") near_choices = difflib.get_close_matches(old_model_type, model_types) if len(near_choices) >= 1: if len(near_choices) > 1: near_choices = " or ".join(near_choices) print(f"Did you mean {near_choices}?") old_model_info = retrieve_info_for_model(old_model_type) old_tokenizer_class = old_model_info["model_patterns"].tokenizer_class old_image_processor_class = old_model_info["model_patterns"].image_processor_class old_feature_extractor_class = old_model_info["model_patterns"].feature_extractor_class old_processor_class = old_model_info["model_patterns"].processor_class old_frameworks = old_model_info["frameworks"] old_checkpoint = None if len(old_model_info["model_patterns"].checkpoint) == 0: old_checkpoint = get_user_field( "We couldn't find the name of the base checkpoint for that model, please enter it here." ) model_name = get_user_field( "What is the name (with no special casing) for your new model in the paper (e.g. RoBERTa)? " ) default_patterns = ModelPatterns(model_name, model_name) model_type = get_user_field( "What identifier would you like to use for the `model_type` of this model? ", default_value=default_patterns.model_type, ) model_lower_cased = get_user_field( "What lowercase name would you like to use for the module (folder) of this model? ", default_value=default_patterns.model_lower_cased, ) model_camel_cased = get_user_field( "What prefix (camel-cased) would you like to use for the model classes of this model (e.g. Roberta)? ", default_value=default_patterns.model_camel_cased, ) model_upper_cased = get_user_field( "What prefix (upper-cased) would you like to use for the constants relative to this model? ", default_value=default_patterns.model_upper_cased, ) config_class = get_user_field( "What will be the name of the config class for this model? ", default_value=f"{model_camel_cased}Config" ) checkpoint = get_user_field( "Please give a checkpoint identifier (on the model Hub) for this new model (e.g. facebook/FacebookAI/roberta-base): " ) old_processing_classes = [ c for c in [old_image_processor_class, old_feature_extractor_class, old_tokenizer_class, old_processor_class] if c is not None ] old_processing_classes = ", ".join(old_processing_classes) keep_processing = get_user_field( f"Will your new model use the same processing class as {old_model_type} ({old_processing_classes}) (yes/no)? ", convert_to=convert_to_bool, fallback_message="Please answer yes/no, y/n, true/false or 1/0. ", ) if keep_processing: image_processor_class = old_image_processor_class feature_extractor_class = old_feature_extractor_class processor_class = old_processor_class tokenizer_class = old_tokenizer_class else: if old_tokenizer_class is not None: tokenizer_class = get_user_field( "What will be the name of the tokenizer class for this model? ", default_value=f"{model_camel_cased}Tokenizer", ) else: tokenizer_class = None if old_image_processor_class is not None: image_processor_class = get_user_field( "What will be the name of the image processor class for this model? ", default_value=f"{model_camel_cased}ImageProcessor", ) else: image_processor_class = None if old_feature_extractor_class is not None: feature_extractor_class = get_user_field( "What will be the name of the feature extractor class for this model? ", default_value=f"{model_camel_cased}FeatureExtractor", ) else: feature_extractor_class = None if old_processor_class is not None: processor_class = get_user_field( "What will be the name of the processor class for this model? ", default_value=f"{model_camel_cased}Processor", ) else: processor_class = None model_patterns = ModelPatterns( model_name, checkpoint, model_type=model_type, model_lower_cased=model_lower_cased, model_camel_cased=model_camel_cased, model_upper_cased=model_upper_cased, config_class=config_class, tokenizer_class=tokenizer_class, image_processor_class=image_processor_class, feature_extractor_class=feature_extractor_class, processor_class=processor_class, ) add_copied_from = get_user_field( "Should we add # Copied from statements when creating the new modeling file (yes/no)? ", convert_to=convert_to_bool, default_value="yes", fallback_message="Please answer yes/no, y/n, true/false or 1/0.", ) all_frameworks = get_user_field( "Should we add a version of your new model in all the frameworks implemented by" f" {old_model_type} ({old_frameworks}) (yes/no)? ", convert_to=convert_to_bool, default_value="yes", fallback_message="Please answer yes/no, y/n, true/false or 1/0.", ) if all_frameworks: frameworks = None else: frameworks = get_user_field( "Please enter the list of framworks you want (pt, tf, flax) separated by spaces", is_valid_answer=lambda x: all(p in ["pt", "tf", "flax"] for p in x.split(" ")), ) frameworks = list(set(frameworks.split(" "))) return (old_model_type, model_patterns, add_copied_from, frameworks, old_checkpoint)
transformers/src/transformers/commands/add_new_model_like.py/0
{ "file_path": "transformers/src/transformers/commands/add_new_model_like.py", "repo_id": "transformers", "token_count": 30696 }
321
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Seq2Seq TF Hub checkpoint.""" import argparse from . import ( BertConfig, BertGenerationConfig, BertGenerationDecoder, BertGenerationEncoder, load_tf_weights_in_bert_generation, logging, ) logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_hub_path, pytorch_dump_path, is_encoder_named_decoder, vocab_size, is_encoder): # Initialise PyTorch model bert_config = BertConfig.from_pretrained( "google-bert/bert-large-cased", vocab_size=vocab_size, max_position_embeddings=512, is_decoder=True, add_cross_attention=True, ) bert_config_dict = bert_config.to_dict() del bert_config_dict["type_vocab_size"] config = BertGenerationConfig(**bert_config_dict) if is_encoder: model = BertGenerationEncoder(config) else: model = BertGenerationDecoder(config) print(f"Building PyTorch model from configuration: {config}") # Load weights from tf checkpoint load_tf_weights_in_bert_generation( model, tf_hub_path, model_class="bert", is_encoder_named_decoder=is_encoder_named_decoder, is_encoder=is_encoder, ) # Save pytorch-model print(f"Save PyTorch model and config to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_hub_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_named_decoder", action="store_true", help="If decoder has to be renamed to encoder in PyTorch model.", ) parser.add_argument("--is_encoder", action="store_true", help="If model is an encoder.") parser.add_argument("--vocab_size", default=50358, type=int, help="Vocab size of model") args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_hub_path, args.pytorch_dump_path, args.is_encoder_named_decoder, args.vocab_size, is_encoder=args.is_encoder, )
transformers/src/transformers/convert_tf_hub_seq_to_seq_bert_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/convert_tf_hub_seq_to_seq_bert_to_pytorch.py", "repo_id": "transformers", "token_count": 1134 }
322
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers pkgs_to_check_at_runtime = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def dep_version_check(pkg, hint=None): require_version(deps[pkg], hint)
transformers/src/transformers/dependency_versions_check.py/0
{ "file_path": "transformers/src/transformers/dependency_versions_check.py", "repo_id": "transformers", "token_count": 759 }
323
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import List, Tuple import numpy as np import tensorflow as tf from ..tf_utils import stable_softmax from ..utils import add_start_docstrings from ..utils.logging import get_logger logger = get_logger(__name__) TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`tf.Tensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search. cur_len (`int`): The current length of valid input sequence tokens. In the TF implementation, the input_ids' sequence length is the maximum length generate can produce, and we need to know which of its tokens are valid. kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `tf.Tensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class TFLogitsProcessor: """Abstract base class for all logit processors that can be applied during generation.""" @add_start_docstrings(TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: """TF method for processing logits.""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class TFLogitsWarper: """Abstract base class for all logit warpers that can be applied during generation with multinomial sampling.""" @add_start_docstrings(TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: """TF method for warping logits.""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class TFLogitsProcessorList(list): """ This class can be used to create a list of [`TFLogitsProcessor`] to subsequently process a `scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each [`TFLogitsProcessor`] to the inputs. """ @add_start_docstrings(TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int, **kwargs) -> tf.Tensor: for processor in self: function_args = inspect.signature(processor.__call__).parameters if len(function_args) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( f"Make sure that all the required parameters: {list(function_args.keys())} for " f"{processor.__class__} are passed to the logits processor." ) scores = processor(input_ids, scores, cur_len, **kwargs) else: scores = processor(input_ids, scores, cur_len) return scores class TFTemperatureLogitsWarper(TFLogitsWarper): r""" [`TFLogitsWarper`] for temperature (exponential scaling output probability distribution). Args: temperature (`float`): The value used to module the logits distribution. """ def __init__(self, temperature: float): if not isinstance(temperature, float) or not (temperature > 0): raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}") self.temperature = temperature def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: scores = scores / self.temperature return scores class TFTopKLogitsWarper(TFLogitsWarper): r""" [`TFLogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. Args: top_k (`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. filter_value (`float`, *optional*, defaults to -inf): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): if not isinstance(top_k, int) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}") self.top_k = max(top_k, min_tokens_to_keep) self.filter_value = filter_value def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: top_k = min(self.top_k, scores.shape[-1]) # Safety check # Boolean mask containing all tokens with a probability less than the last token of the top-k indices_to_remove = scores < tf.math.top_k(scores, k=top_k)[0][..., -1:] next_scores = tf.where(indices_to_remove, self.filter_value, scores) return next_scores class TFTopPLogitsWarper(TFLogitsWarper): """ [`TFLogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to <= prob_cut_off. Args: top_p (`float`): If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. filter_value (`float`, *optional*, defaults to -inf): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): if not isinstance(top_p, float) or (top_p < 0 or top_p > 1.0): raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}") if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1): raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}") self.top_p = top_p self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: topk_scores, topk_indices = tf.math.top_k(scores, scores.shape[-1]) mask_scores = tf.fill(scores.shape, self.filter_value) cumulative_probs = tf.math.cumsum(stable_softmax(topk_scores, axis=-1), axis=-1) score_mask = cumulative_probs < self.top_p # Also include the token that is higher than top_p (the first false = shift and insert a True on the left) score_mask = tf.concat((tf.ones([score_mask.shape[0], 1], dtype=tf.bool), score_mask[:, :-1]), axis=-1) # Ensure min tokens to keep score_mask = tf.concat( ( tf.ones([score_mask.shape[0], self.min_tokens_to_keep], dtype=tf.bool), score_mask[:, self.min_tokens_to_keep :], ), axis=-1, ) # Mask the values that do not fit the criteria topk_next_scores = tf.where(score_mask, topk_scores, mask_scores) # Undo the topk sorting: converts the 2D matrix of per-row original indices of shape (batch_size, vocab_size) # to a 3D tensor of shape (batch_size, vocab_size, 2) containing the original score coordinate, from which we # can scatter (i.e. `scatter_indices[row, col, :]` is a tensor containing `[row, topk_indices[row, col]]`) scatter_rows = tf.tile(tf.expand_dims(tf.range(topk_indices.shape[0]), axis=-1), [1, topk_indices.shape[-1]]) scatter_indices = tf.stack((scatter_rows, topk_indices), axis=-1) next_scores = tf.scatter_nd(scatter_indices, topk_next_scores, shape=topk_next_scores.shape) return next_scores class TFMinLengthLogitsProcessor(TFLogitsProcessor): r""" [`TFLogitsProcessor`] enforcing a min-length by setting EOS probability to 0. Args: min_length (`int`): The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`. eos_token_id (`int`): The id of the *end-of-sequence* token. """ def __init__(self, min_length: int, eos_token_id: int): if not isinstance(min_length, int) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(eos_token_id, int) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}") self.min_length = min_length self.eos_token_id = eos_token_id def _apply_eos_token_mask(self, scores: tf.Tensor) -> tf.Tensor: eos_token_id_mask = tf.range(scores.shape[-1]) == self.eos_token_id scores = tf.where(eos_token_id_mask, float("-inf"), scores) return scores def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: # applies eos token masking if the first argument is true scores = tf.cond( tf.less(cur_len, self.min_length), lambda: self._apply_eos_token_mask(scores), lambda: tf.identity(scores), ) return scores class TFRepetitionPenaltyLogitsProcessor(TFLogitsProcessor): r""" [`TFLogitsProcessor`] enforcing an exponential penalty on repeated sequences. Args: repetition_penalty (`float`): The parameter for repetition penalty. 1.0 means no penalty. See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. """ def __init__(self, penalty: float): if not isinstance(penalty, float) or not (penalty > 0): raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") self.penalty = penalty def _create_score_penalties(self, input_ids: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: # We want to populate the penalties in the positions of `input_ids`. Since XLA can't handle shapes unknown # before runtime, `tf.unique` can't be used. Therefore, we may have redundant updates, when a given row has # the same token multiple times. # Gathers the penalties to apply logit_penalties = tf.gather(logits, input_ids, axis=1, batch_dims=1) logit_penalties = tf.where(logit_penalties > 0, 1 / self.penalty, logit_penalties) logit_penalties = tf.where(logit_penalties < 0, self.penalty, logit_penalties) # Scatters the penalties token_penalties = tf.ones(logits.shape) batch_size = input_ids.shape[0] seq_len = tf.shape(input_ids)[1] # the sequence length has dynamic size, hence the dynamic shape indexable_prev_input_ids = tf.concat( ( tf.expand_dims(tf.repeat(tf.range(batch_size), seq_len), axis=-1), tf.expand_dims(tf.reshape(input_ids, [-1]), axis=-1), ), axis=1, ) token_penalties = tf.tensor_scatter_nd_update( token_penalties, indices=indexable_prev_input_ids, updates=tf.reshape(logit_penalties, [-1]) ) return token_penalties def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: score_penalties = self._create_score_penalties(input_ids[:, :cur_len], scores) scores = tf.math.multiply(scores, score_penalties) return scores class TFNoBadWordsLogitsProcessor(TFLogitsProcessor): """ [`TFLogitsProcessor`] that enforces that specified sequences will never be sampled. Args: bad_words_ids (`List[List[int]]`): List of list of token ids that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, make sure to set `add_prefix_space=True` when initializing the tokenizer, and use `tokenizer(bad_words, add_special_tokens=False).input_ids`. The `add_prefix_space` argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours come from `pre tokenizers`. Read more [here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers). eos_token_id (`int`): The id of the *end-of-sequence* token. """ def __init__(self, bad_words_ids: List[List[int]], eos_token_id: int): if not isinstance(bad_words_ids, List) or len(bad_words_ids) == 0: raise ValueError(f"`bad_words_ids` has to be a non-empty list, but is {bad_words_ids}.") if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids): raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.") if any( any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids) for bad_word_ids in bad_words_ids ): raise ValueError( f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}." ) # stores the information about bad words in three tensors: # 1. a rectangular tensor with the forbidden sequences (padded with `-1`), for full data comparisons self.bad_word_seqs_ids = tf.ragged.constant(bad_words_ids).to_tensor(default_value=-1) # 2. a tensor with the unpadded length of each forbidden sequence, for quick length comparisons bad_word_seqs_len = [len(bad_words) for bad_words in bad_words_ids] if any(word_len == 0 for word_len in bad_word_seqs_len): raise ValueError(f"Banned words token sequences {bad_words_ids} cannot have an empty list") self.bad_word_seqs_len = tf.convert_to_tensor(bad_word_seqs_len, dtype=tf.int32) # 3. a tensor containing the last token for each sequence, for easy access to the tokens that may be banned self.seq_forbidden_tokens = tf.convert_to_tensor([bad_words[-1] for bad_words in bad_words_ids]) def _calc_row_banned_bad_tokens(self, row_input_ids: tf.Tensor) -> tf.Tensor: def _tokens_match(bad_word_seq_number): def _len_one(): # If the bad sequence only has one token, always mask it return tf.cond( tf.math.equal(self.bad_word_seqs_len[bad_word_seq_number], 1), lambda: tf.ones((), dtype=tf.bool), _len_greater_than_cur_len, ) def _len_greater_than_cur_len(): # Otherwise, if the bad sequence is longer than the current length they can't ever match return tf.cond( tf.math.greater(self.bad_word_seqs_len[bad_word_seq_number], tf.shape(row_input_ids)[0]), lambda: tf.zeros((), dtype=tf.bool), _match_found, ) def _match_found(): # Finaly, runs the actual comparison. Can only be called if the previous comparisons do not yield # an answer (otherwise we get indexing exceptions) compare_len = self.bad_word_seqs_len[bad_word_seq_number] - 1 return tf.cond( tf.math.reduce_all( tf.math.equal( row_input_ids[-compare_len:], self.bad_word_seqs_ids[bad_word_seq_number, :compare_len] ) ), lambda: tf.ones((), dtype=tf.bool), lambda: tf.zeros((), dtype=tf.bool), ) match = _len_one() return match # Compares the current row against all bad word sequences, obtaining a mask with the matches. match_mask = tf.map_fn(_tokens_match, tf.range(self.bad_word_seqs_ids.shape[0]), fn_output_signature=tf.bool) row_banned_tokens = self.seq_forbidden_tokens[match_mask] return row_banned_tokens def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: # We want to mask some banned tokens, at a score level. Since the banned tokens depend on the previous # `input_ids`, they may have a different length for each row, and they may even be empty for some rows. # To remain simple and XLA-compatible, we work on a per-row fashion. # TODO (Joao): this function might trigger XLA retracing as `cur_len` increases. Fix it if it becomes # a frequent choke point. (make `cur_len` a tensor?) def _get_row_updated_score(row_inputs: Tuple[tf.Tensor]) -> tf.Tensor: row_input_ids, row_score = row_inputs banned_tokens = self._calc_row_banned_bad_tokens(row_input_ids[:cur_len]) banned_tokens_mask = tf.scatter_nd( indices=tf.expand_dims(banned_tokens, axis=-1), updates=tf.ones_like(banned_tokens, dtype=tf.bool), shape=row_score.shape, ) row_score = tf.where(banned_tokens_mask, -float("inf"), row_score) return row_score scores = tf.map_fn(_get_row_updated_score, (input_ids, scores), fn_output_signature=tf.float32) return scores class TFNoRepeatNGramLogitsProcessor(TFLogitsProcessor): r""" [`TFLogitsProcessor`] that enforces no repetition of n-grams. See [Fairseq](https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345). Args: ngram_size (`int`): All ngrams of size `ngram_size` can only occur once. """ def __init__(self, ngram_size: int): if not isinstance(ngram_size, int) or ngram_size <= 0: raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}") self.ngram_size = ngram_size def calc_banned_ngram_tokens(self, input_ids, num_hypos, cur_len): # Copied from fairseq for no_repeat_ngram in beam_search if cur_len + 1 < self.ngram_size: # return no banned tokens if we haven't generated ngram_size tokens yet return [[] for _ in range(num_hypos)] generated_ngrams = [{} for _ in range(num_hypos)] prev_input_ids = input_ids[:, :cur_len] for idx in range(num_hypos): gen_tokens = prev_input_ids[idx].numpy().tolist() generated_ngram = generated_ngrams[idx] for ngram in zip(*[gen_tokens[i:] for i in range(self.ngram_size)]): prev_ngram_tuple = tuple(ngram[:-1]) generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] def _get_generated_ngrams(hypo_idx): # Before decoding the next token, prevent decoding of ngrams that have already appeared start_idx = cur_len + 1 - self.ngram_size ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].numpy().tolist()) return generated_ngrams[hypo_idx].get(ngram_idx, []) banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)] return banned_tokens def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: # TODO (joao): enable XLA on this logits processor. See discussion and attempts in # https://github.com/huggingface/transformers/pull/16974 if not tf.executing_eagerly(): raise NotImplementedError("TFNoRepeatNGramLogitsProcessor is only implemented for eager execution.") batch_size, vocab_size = scores.shape banned_tokens = self.calc_banned_ngram_tokens(input_ids, batch_size, cur_len) # create banned_tokens boolean mask banned_tokens_indices_mask = [] for banned_tokens_slice in banned_tokens: banned_tokens_indices_mask.append( [True if token in banned_tokens_slice else False for token in range(vocab_size)] ) scores = tf.where(tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf"), scores) return scores class TFForcedBOSTokenLogitsProcessor(TFLogitsProcessor): r""" [`TFLogitsProcessor`] that enforces the specified token as the first generated token. Args: bos_token_id (`int`): The id of the token to force as the first generated token. """ def __init__(self, bos_token_id: int): if bos_token_id < 0: raise ValueError(f"The forced bos token id must be a non-negative integer, got {bos_token_id}") self.bos_token_id = bos_token_id def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: if cur_len == 1: batch_size, num_tokens = scores.shape # sets the score to 0 in the bos_token_id column scores = tf.zeros((batch_size, 1)) # sets the score to -inf everywhere else if self.bos_token_id > 0: scores = tf.concat((tf.broadcast_to(-float("inf"), (batch_size, self.bos_token_id)), scores), axis=-1) if self.bos_token_id < (num_tokens - 1): scores = tf.concat( (scores, tf.broadcast_to(-float("inf"), (batch_size, (num_tokens - 1) - self.bos_token_id))), axis=-1, ) return scores class TFForcedEOSTokenLogitsProcessor(TFLogitsProcessor): r""" [`TFLogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached. Args: max_length (`int`): The maximum length of the sequence to be generated. eos_token_id (`int`): The id of the token to force as the last generated token when `max_length` is reached. """ def __init__(self, max_length: int, eos_token_id: int): self.max_length = max_length if eos_token_id < 0: raise ValueError(f"The forced eos token id must be a non-negative integer, got {eos_token_id}") self.eos_token_id = eos_token_id def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: if cur_len == self.max_length - 1: batch_size, num_tokens = scores.shape # sets the score to 0 in the eos_token_id column scores = tf.zeros((batch_size, 1)) # sets the score to -inf everywhere else if self.eos_token_id > 0: scores = tf.concat((tf.broadcast_to(-float("inf"), (batch_size, self.eos_token_id)), scores), axis=-1) if self.eos_token_id < (num_tokens - 1): scores = tf.concat( (scores, tf.broadcast_to(-float("inf"), (batch_size, (num_tokens - 1) - self.eos_token_id))), axis=-1, ) return scores class TFSuppressTokensAtBeginLogitsProcessor(TFLogitsProcessor): r""" [`TFSuppressTokensAtBeginLogitsProcessor`] suppresses a list of tokens as soon as the `generate` function starts generating using `begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` at not sampled at the begining of the generation. """ def __init__(self, begin_suppress_tokens, begin_index): self.begin_suppress_tokens = list(begin_suppress_tokens) self.begin_index = begin_index def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: scores = tf.cond( tf.equal(cur_len, self.begin_index), lambda: tf.tensor_scatter_nd_update( scores, indices=[[i, token] for i in range(scores.shape[0]) for token in self.begin_suppress_tokens], updates=[-float("inf") for _ in range(scores.shape[0] * len(self.begin_suppress_tokens))], ), lambda: scores, ) return scores class TFSuppressTokensLogitsProcessor(TFLogitsProcessor): r"""This processor can be used to suppress a list of tokens. The processor will set their log probs to `-inf` so that they are not sampled.""" def __init__(self, suppress_tokens): self.suppress_tokens = list(suppress_tokens) def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: scores = tf.tensor_scatter_nd_update( scores, indices=[[i, token] for i in range(scores.shape[0]) for token in self.suppress_tokens], updates=[-float("inf") for _ in range(scores.shape[0] * len(self.suppress_tokens))], ) return scores class TFForceTokensLogitsProcessor(TFLogitsProcessor): r"""This processor takes a list of pairs of integers which indicates a mapping from generation indices to token indices that will be forced before sampling. The processor will set their log probs to `0` and all other tokens to `-inf` so that they are sampled at their corresponding index.""" def __init__(self, force_token_map: List[List[int]]): force_token_map = dict(force_token_map) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have an negative value. force_token_array = np.ones((max(force_token_map.keys()) + 1), dtype=np.int32) * -1 for index, token in force_token_map.items(): if token is not None: force_token_array[index] = token self.force_token_array = tf.convert_to_tensor(force_token_array, dtype=tf.int32) def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: def _force_token(generation_idx): batch_size = scores.shape[0] current_token = self.force_token_array[generation_idx] new_scores = tf.ones_like(scores, dtype=scores.dtype) * -float("inf") indices = tf.stack((tf.range(batch_size), tf.tile([current_token], [batch_size])), axis=1) updates = tf.zeros((batch_size,), dtype=scores.dtype) new_scores = tf.tensor_scatter_nd_update(new_scores, indices, updates) return new_scores scores = tf.cond( tf.greater_equal(cur_len, tf.shape(self.force_token_array)[0]), # If the current length is geq than the length of force_token_array, the processor does nothing. lambda: tf.identity(scores), # Otherwise, it may force a certain token. lambda: tf.cond( tf.greater_equal(self.force_token_array[cur_len], 0), # Only valid (positive) tokens are forced lambda: _force_token(cur_len), # Otherwise, the processor does nothing. lambda: scores, ), ) return scores
transformers/src/transformers/generation/tf_logits_process.py/0
{ "file_path": "transformers/src/transformers/generation/tf_logits_process.py", "repo_id": "transformers", "token_count": 12055 }
324
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Integrations with other Python libraries. """ import functools import importlib.metadata import importlib.util import json import numbers import os import pickle import shutil import sys import tempfile from dataclasses import asdict, fields from pathlib import Path from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union import numpy as np import packaging.version from .. import __version__ as version from ..utils import flatten_dict, is_datasets_available, is_pandas_available, is_torch_available, logging logger = logging.get_logger(__name__) if is_torch_available(): import torch # comet_ml requires to be imported before any ML frameworks _has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED" if _has_comet: try: import comet_ml # noqa: F401 if hasattr(comet_ml, "config") and comet_ml.config.get_config("comet.api_key"): _has_comet = True else: if os.getenv("COMET_MODE", "").upper() != "DISABLED": logger.warning("comet_ml is installed but `COMET_API_KEY` is not set.") _has_comet = False except (ImportError, ValueError): _has_comet = False _has_neptune = ( importlib.util.find_spec("neptune") is not None or importlib.util.find_spec("neptune-client") is not None ) if TYPE_CHECKING and _has_neptune: try: _neptune_version = importlib.metadata.version("neptune") logger.info(f"Neptune version {_neptune_version} available.") except importlib.metadata.PackageNotFoundError: try: _neptune_version = importlib.metadata.version("neptune-client") logger.info(f"Neptune-client version {_neptune_version} available.") except importlib.metadata.PackageNotFoundError: _has_neptune = False from ..trainer_callback import ProgressCallback, TrainerCallback # noqa: E402 from ..trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy # noqa: E402 from ..training_args import ParallelMode # noqa: E402 from ..utils import ENV_VARS_TRUE_VALUES, is_torch_xla_available # noqa: E402 # Integration functions: def is_wandb_available(): # any value of WANDB_DISABLED disables wandb if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES: logger.warning( "Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the " "--report_to flag to control the integrations used for logging result (for instance --report_to none)." ) return False return importlib.util.find_spec("wandb") is not None def is_clearml_available(): return importlib.util.find_spec("clearml") is not None def is_comet_available(): return _has_comet def is_tensorboard_available(): return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None def is_optuna_available(): return importlib.util.find_spec("optuna") is not None def is_ray_available(): return importlib.util.find_spec("ray") is not None def is_ray_tune_available(): if not is_ray_available(): return False return importlib.util.find_spec("ray.tune") is not None def is_sigopt_available(): return importlib.util.find_spec("sigopt") is not None def is_azureml_available(): if importlib.util.find_spec("azureml") is None: return False if importlib.util.find_spec("azureml.core") is None: return False return importlib.util.find_spec("azureml.core.run") is not None def is_mlflow_available(): if os.getenv("DISABLE_MLFLOW_INTEGRATION", "FALSE").upper() == "TRUE": return False return importlib.util.find_spec("mlflow") is not None def is_dagshub_available(): return None not in [importlib.util.find_spec("dagshub"), importlib.util.find_spec("mlflow")] def is_neptune_available(): return _has_neptune def is_codecarbon_available(): return importlib.util.find_spec("codecarbon") is not None def is_flytekit_available(): return importlib.util.find_spec("flytekit") is not None def is_flyte_deck_standard_available(): if not is_flytekit_available(): return False return importlib.util.find_spec("flytekitplugins.deck") is not None def is_dvclive_available(): return importlib.util.find_spec("dvclive") is not None def hp_params(trial): if is_optuna_available(): import optuna if isinstance(trial, optuna.Trial): return trial.params if is_ray_tune_available(): if isinstance(trial, dict): return trial if is_sigopt_available(): if isinstance(trial, dict): return trial if is_wandb_available(): if isinstance(trial, dict): return trial raise RuntimeError(f"Unknown type for trial {trial.__class__}") def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: import optuna if trainer.args.process_index == 0: def _objective(trial, checkpoint_dir=None): checkpoint = None if checkpoint_dir: for subdir in os.listdir(checkpoint_dir): if subdir.startswith(PREFIX_CHECKPOINT_DIR): checkpoint = os.path.join(checkpoint_dir, subdir) trainer.objective = None if trainer.args.world_size > 1: if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.") trainer._hp_search_setup(trial) torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) trainer.train(resume_from_checkpoint=checkpoint) else: trainer.train(resume_from_checkpoint=checkpoint, trial=trial) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) return trainer.objective timeout = kwargs.pop("timeout", None) n_jobs = kwargs.pop("n_jobs", 1) directions = direction if isinstance(direction, list) else None direction = None if directions is not None else direction study = optuna.create_study(direction=direction, directions=directions, **kwargs) study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs) if not study._is_multi_objective(): best_trial = study.best_trial return BestRun(str(best_trial.number), best_trial.value, best_trial.params) else: best_trials = study.best_trials return [BestRun(str(best.number), best.values, best.params) for best in best_trials] else: for i in range(n_trials): trainer.objective = None args_main_rank = list(pickle.dumps(trainer.args)) if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.") torch.distributed.broadcast_object_list(args_main_rank, src=0) args = pickle.loads(bytes(args_main_rank)) for key, value in asdict(args).items(): if key != "local_rank": setattr(trainer.args, key, value) trainer.train(resume_from_checkpoint=None) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) return None def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: import ray import ray.train def _objective(trial: dict, local_trainer): try: from transformers.utils.notebook import NotebookProgressCallback if local_trainer.pop_callback(NotebookProgressCallback): local_trainer.add_callback(ProgressCallback) except ModuleNotFoundError: pass local_trainer.objective = None checkpoint = ray.train.get_checkpoint() if checkpoint: # Upon trial resume, the local_trainer's objective gets reset to None. # If `local_trainer.train` is a noop (training has already reached # the target number of epochs/steps), then this would # trigger an unnecessary extra checkpoint at the end of training. # -> Set the objective to a dummy value upon resume as a workaround. local_trainer.objective = "objective" with checkpoint.as_directory() as checkpoint_dir: checkpoint_path = next(Path(checkpoint_dir).glob(f"{PREFIX_CHECKPOINT_DIR}*")).as_posix() local_trainer.train(resume_from_checkpoint=checkpoint_path, trial=trial) else: local_trainer.train(trial=trial) # If there hasn't been any evaluation during the training loop. if getattr(local_trainer, "objective", None) is None: metrics = local_trainer.evaluate() local_trainer.objective = local_trainer.compute_objective(metrics) metrics.update({"objective": local_trainer.objective, "done": True}) with tempfile.TemporaryDirectory() as temp_checkpoint_dir: local_trainer._tune_save_checkpoint(checkpoint_dir=temp_checkpoint_dir) checkpoint = ray.train.Checkpoint.from_directory(temp_checkpoint_dir) ray.train.report(metrics, checkpoint=checkpoint) if not trainer._memory_tracker.skip_memory_metrics: from ..trainer_utils import TrainerMemoryTracker logger.warning( "Memory tracking for your Trainer is currently " "enabled. Automatically disabling the memory tracker " "since the memory tracker is not serializable." ) trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True) # The model and TensorBoard writer do not pickle so we have to remove them (if they exists) # while doing the ray hp search. _tb_writer = trainer.pop_callback(TensorBoardCallback) trainer.model = None # Setup default `resources_per_trial`. if "resources_per_trial" not in kwargs: # Default to 1 CPU and 1 GPU (if applicable) per trial. kwargs["resources_per_trial"] = {"cpu": 1} if trainer.args.n_gpu > 0: kwargs["resources_per_trial"]["gpu"] = 1 resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "") logger.info( "No `resources_per_trial` arg was passed into " "`hyperparameter_search`. Setting it to a default value " f"of {resource_msg} for each trial." ) # Make sure each trainer only uses GPUs that were allocated per trial. gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0) trainer.args._n_gpu = gpus_per_trial # Setup default `progress_reporter`. if "progress_reporter" not in kwargs: from ray.tune import CLIReporter kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"]) if "scheduler" in kwargs: from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining # Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting. if isinstance( kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining) ) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == IntervalStrategy.NO): raise RuntimeError( "You are using {cls} as a scheduler but you haven't enabled evaluation during training. " "This means your trials will not report intermediate results to Ray Tune, and " "can thus not be stopped early or used to exploit other trials parameters. " "If this is what you want, do not use {cls}. If you would like to use {cls}, " "make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the " "Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__) ) trainable = ray.tune.with_parameters(_objective, local_trainer=trainer) @functools.wraps(trainable) def dynamic_modules_import_trainable(*args, **kwargs): """ Wrapper around `tune.with_parameters` to ensure datasets_modules are loaded on each Actor. Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565. Assumes that `_objective`, defined above, is a function. """ if is_datasets_available(): import datasets.load dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py") # load dynamic_modules from path spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path) datasets_modules = importlib.util.module_from_spec(spec) sys.modules[spec.name] = datasets_modules spec.loader.exec_module(datasets_modules) return trainable(*args, **kwargs) # special attr set by tune.with_parameters if hasattr(trainable, "__mixins__"): dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__ analysis = ray.tune.run( dynamic_modules_import_trainable, config=trainer.hp_space(None), num_samples=n_trials, **kwargs, ) best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3], scope=trainer.args.ray_scope) best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config, analysis) if _tb_writer is not None: trainer.add_callback(_tb_writer) return best_run def run_hp_search_sigopt(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: import sigopt if trainer.args.process_index == 0: if importlib.metadata.version("sigopt") >= "8.0.0": sigopt.set_project("huggingface") experiment = sigopt.create_experiment( name="huggingface-tune", type="offline", parameters=trainer.hp_space(None), metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}], parallel_bandwidth=1, budget=n_trials, ) logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}") for run in experiment.loop(): with run: trainer.objective = None if trainer.args.world_size > 1: if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") trainer._hp_search_setup(run.run) torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) trainer.train(resume_from_checkpoint=None) else: trainer.train(resume_from_checkpoint=None, trial=run.run) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) run.log_metric("objective", trainer.objective) best = list(experiment.get_best_runs())[0] best_run = BestRun(best.id, best.values["objective"].value, best.assignments) else: from sigopt import Connection conn = Connection() proxies = kwargs.pop("proxies", None) if proxies is not None: conn.set_proxies(proxies) experiment = conn.experiments().create( name="huggingface-tune", parameters=trainer.hp_space(None), metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}], parallel_bandwidth=1, observation_budget=n_trials, project="huggingface", ) logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}") while experiment.progress.observation_count < experiment.observation_budget: suggestion = conn.experiments(experiment.id).suggestions().create() trainer.objective = None if trainer.args.world_size > 1: if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") trainer._hp_search_setup(suggestion) torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) trainer.train(resume_from_checkpoint=None) else: trainer.train(resume_from_checkpoint=None, trial=suggestion) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) values = [{"name": "objective", "value": trainer.objective}] obs = conn.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=values) logger.info(f"[suggestion_id, observation_id]: [{suggestion.id}, {obs.id}]") experiment = conn.experiments(experiment.id).fetch() best = list(conn.experiments(experiment.id).best_assignments().fetch().iterate_pages())[0] best_run = BestRun(best.id, best.value, best.assignments) return best_run else: for i in range(n_trials): trainer.objective = None args_main_rank = list(pickle.dumps(trainer.args)) if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") torch.distributed.broadcast_object_list(args_main_rank, src=0) args = pickle.loads(bytes(args_main_rank)) for key, value in asdict(args).items(): if key != "local_rank": setattr(trainer.args, key, value) trainer.train(resume_from_checkpoint=None) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) return None def run_hp_search_wandb(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: from ..integrations import is_wandb_available if not is_wandb_available(): raise ImportError("This function needs wandb installed: `pip install wandb`") import wandb # add WandbCallback if not already added in trainer callbacks reporting_to_wandb = False for callback in trainer.callback_handler.callbacks: if isinstance(callback, WandbCallback): reporting_to_wandb = True break if not reporting_to_wandb: trainer.add_callback(WandbCallback()) trainer.args.report_to = ["wandb"] best_trial = {"run_id": None, "objective": None, "hyperparameters": None} sweep_id = kwargs.pop("sweep_id", None) project = kwargs.pop("project", None) name = kwargs.pop("name", None) entity = kwargs.pop("entity", None) metric = kwargs.pop("metric", "eval/loss") sweep_config = trainer.hp_space(None) sweep_config["metric"]["goal"] = direction sweep_config["metric"]["name"] = metric if name: sweep_config["name"] = name def _objective(): run = wandb.run if wandb.run else wandb.init() trainer.state.trial_name = run.name run.config.update({"assignments": {}, "metric": metric}) config = wandb.config trainer.objective = None trainer.train(resume_from_checkpoint=None, trial=vars(config)["_items"]) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) format_metrics = rewrite_logs(metrics) if metric not in format_metrics: logger.warning( f"Provided metric {metric} not found. This might result in unexpected sweeps charts. The available" f" metrics are {format_metrics.keys()}" ) best_score = False if best_trial["run_id"] is not None: if direction == "minimize": best_score = trainer.objective < best_trial["objective"] elif direction == "maximize": best_score = trainer.objective > best_trial["objective"] if best_score or best_trial["run_id"] is None: best_trial["run_id"] = run.id best_trial["objective"] = trainer.objective best_trial["hyperparameters"] = dict(config) return trainer.objective sweep_id = wandb.sweep(sweep_config, project=project, entity=entity) if not sweep_id else sweep_id logger.info(f"wandb sweep id - {sweep_id}") wandb.agent(sweep_id, function=_objective, count=n_trials) return BestRun(best_trial["run_id"], best_trial["objective"], best_trial["hyperparameters"]) def get_available_reporting_integrations(): integrations = [] if is_azureml_available() and not is_mlflow_available(): integrations.append("azure_ml") if is_comet_available(): integrations.append("comet_ml") if is_dagshub_available(): integrations.append("dagshub") if is_dvclive_available(): integrations.append("dvclive") if is_mlflow_available(): integrations.append("mlflow") if is_neptune_available(): integrations.append("neptune") if is_tensorboard_available(): integrations.append("tensorboard") if is_wandb_available(): integrations.append("wandb") if is_codecarbon_available(): integrations.append("codecarbon") if is_clearml_available(): integrations.append("clearml") return integrations def rewrite_logs(d): new_d = {} eval_prefix = "eval_" eval_prefix_len = len(eval_prefix) test_prefix = "test_" test_prefix_len = len(test_prefix) for k, v in d.items(): if k.startswith(eval_prefix): new_d["eval/" + k[eval_prefix_len:]] = v elif k.startswith(test_prefix): new_d["test/" + k[test_prefix_len:]] = v else: new_d["train/" + k] = v return new_d class TensorBoardCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard). Args: tb_writer (`SummaryWriter`, *optional*): The writer to use. Will instantiate one if not set. """ def __init__(self, tb_writer=None): has_tensorboard = is_tensorboard_available() if not has_tensorboard: raise RuntimeError( "TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or" " install tensorboardX." ) if has_tensorboard: try: from torch.utils.tensorboard import SummaryWriter # noqa: F401 self._SummaryWriter = SummaryWriter except ImportError: try: from tensorboardX import SummaryWriter self._SummaryWriter = SummaryWriter except ImportError: self._SummaryWriter = None else: self._SummaryWriter = None self.tb_writer = tb_writer def _init_summary_writer(self, args, log_dir=None): log_dir = log_dir or args.logging_dir if self._SummaryWriter is not None: self.tb_writer = self._SummaryWriter(log_dir=log_dir) def on_train_begin(self, args, state, control, **kwargs): if not state.is_world_process_zero: return log_dir = None if state.is_hyper_param_search: trial_name = state.trial_name if trial_name is not None: log_dir = os.path.join(args.logging_dir, trial_name) if self.tb_writer is None: self._init_summary_writer(args, log_dir) if self.tb_writer is not None: self.tb_writer.add_text("args", args.to_json_string()) if "model" in kwargs: model = kwargs["model"] if hasattr(model, "config") and model.config is not None: model_config_json = model.config.to_json_string() self.tb_writer.add_text("model_config", model_config_json) def on_log(self, args, state, control, logs=None, **kwargs): if not state.is_world_process_zero: return if self.tb_writer is None: self._init_summary_writer(args) if self.tb_writer is not None: logs = rewrite_logs(logs) for k, v in logs.items(): if isinstance(v, (int, float)): self.tb_writer.add_scalar(k, v, state.global_step) else: logger.warning( "Trainer is attempting to log a value of " f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' "This invocation of Tensorboard's writer.add_scalar() " "is incorrect so we dropped this attribute." ) self.tb_writer.flush() def on_train_end(self, args, state, control, **kwargs): if self.tb_writer: self.tb_writer.close() self.tb_writer = None class WandbCallback(TrainerCallback): """ A [`TrainerCallback`] that logs metrics, media, model checkpoints to [Weight and Biases](https://www.wandb.com/). """ def __init__(self): has_wandb = is_wandb_available() if not has_wandb: raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.") if has_wandb: import wandb self._wandb = wandb self._initialized = False # log model if os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}): DeprecationWarning( f"Setting `WANDB_LOG_MODEL` as {os.getenv('WANDB_LOG_MODEL')} is deprecated and will be removed in " "version 5 of transformers. Use one of `'end'` or `'checkpoint'` instead." ) logger.info(f"Setting `WANDB_LOG_MODEL` from {os.getenv('WANDB_LOG_MODEL')} to `end` instead") self._log_model = "end" else: self._log_model = os.getenv("WANDB_LOG_MODEL", "false").lower() def setup(self, args, state, model, **kwargs): """ Setup the optional Weights & Biases (*wandb*) integration. One can subclass and override this method to customize the setup if needed. Find more information [here](https://docs.wandb.ai/guides/integrations/huggingface). You can also override the following environment variables: Environment: - **WANDB_LOG_MODEL** (`str`, *optional*, defaults to `"false"`): Whether to log model and checkpoints during training. Can be `"end"`, `"checkpoint"` or `"false"`. If set to `"end"`, the model will be uploaded at the end of training. If set to `"checkpoint"`, the checkpoint will be uploaded every `args.save_steps` . If set to `"false"`, the model will not be uploaded. Use along with [`~transformers.TrainingArguments.load_best_model_at_end`] to upload best model. <Deprecated version="5.0"> Setting `WANDB_LOG_MODEL` as `bool` will be deprecated in version 5 of 🤗 Transformers. </Deprecated> - **WANDB_WATCH** (`str`, *optional* defaults to `"false"`): Can be `"gradients"`, `"all"`, `"parameters"`, or `"false"`. Set to `"all"` to log gradients and parameters. - **WANDB_PROJECT** (`str`, *optional*, defaults to `"huggingface"`): Set this to a custom string to store results in a different project. - **WANDB_DISABLED** (`bool`, *optional*, defaults to `False`): Whether to disable wandb entirely. Set `WANDB_DISABLED=true` to disable. """ if self._wandb is None: return self._initialized = True if state.is_world_process_zero: logger.info( 'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"' ) combined_dict = {**args.to_dict()} if hasattr(model, "config") and model.config is not None: model_config = model.config.to_dict() combined_dict = {**model_config, **combined_dict} trial_name = state.trial_name init_args = {} if trial_name is not None: init_args["name"] = trial_name init_args["group"] = args.run_name else: if not (args.run_name is None or args.run_name == args.output_dir): init_args["name"] = args.run_name if self._wandb.run is None: self._wandb.init( project=os.getenv("WANDB_PROJECT", "huggingface"), **init_args, ) # add config parameters (run may have been created manually) self._wandb.config.update(combined_dict, allow_val_change=True) # define default x-axis (for latest wandb versions) if getattr(self._wandb, "define_metric", None): self._wandb.define_metric("train/global_step") self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True) # keep track of model topology and gradients, unsupported on TPU _watch_model = os.getenv("WANDB_WATCH", "false") if not is_torch_xla_available() and _watch_model in ("all", "parameters", "gradients"): self._wandb.watch(model, log=_watch_model, log_freq=max(100, state.logging_steps)) self._wandb.run._label(code="transformers_trainer") def on_train_begin(self, args, state, control, model=None, **kwargs): if self._wandb is None: return hp_search = state.is_hyper_param_search if hp_search: self._wandb.finish() self._initialized = False args.run_name = None if not self._initialized: self.setup(args, state, model, **kwargs) def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs): if self._wandb is None: return if self._log_model in ("end", "checkpoint") and self._initialized and state.is_world_process_zero: from ..trainer import Trainer fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer) with tempfile.TemporaryDirectory() as temp_dir: fake_trainer.save_model(temp_dir) metadata = ( { k: v for k, v in dict(self._wandb.summary).items() if isinstance(v, numbers.Number) and not k.startswith("_") } if not args.load_best_model_at_end else { f"eval/{args.metric_for_best_model}": state.best_metric, "train/total_floss": state.total_flos, } ) logger.info("Logging model artifacts. ...") model_name = ( f"model-{self._wandb.run.id}" if (args.run_name is None or args.run_name == args.output_dir) else f"model-{self._wandb.run.name}" ) artifact = self._wandb.Artifact(name=model_name, type="model", metadata=metadata) for f in Path(temp_dir).glob("*"): if f.is_file(): with artifact.new_file(f.name, mode="wb") as fa: fa.write(f.read_bytes()) self._wandb.run.log_artifact(artifact) def on_log(self, args, state, control, model=None, logs=None, **kwargs): single_value_scalars = [ "train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss", "total_flos", ] if self._wandb is None: return if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: for k, v in logs.items(): if k in single_value_scalars: self._wandb.run.summary[k] = v non_scalar_logs = {k: v for k, v in logs.items() if k not in single_value_scalars} non_scalar_logs = rewrite_logs(non_scalar_logs) self._wandb.log({**non_scalar_logs, "train/global_step": state.global_step}) def on_save(self, args, state, control, **kwargs): if self._log_model == "checkpoint" and self._initialized and state.is_world_process_zero: checkpoint_metadata = { k: v for k, v in dict(self._wandb.summary).items() if isinstance(v, numbers.Number) and not k.startswith("_") } ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. ...") checkpoint_name = ( f"checkpoint-{self._wandb.run.id}" if (args.run_name is None or args.run_name == args.output_dir) else f"checkpoint-{self._wandb.run.name}" ) artifact = self._wandb.Artifact(name=checkpoint_name, type="model", metadata=checkpoint_metadata) artifact.add_dir(artifact_path) self._wandb.log_artifact(artifact, aliases=[f"checkpoint-{state.global_step}"]) class CometCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.ml/site/). """ def __init__(self): if not _has_comet: raise RuntimeError("CometCallback requires comet-ml to be installed. Run `pip install comet-ml`.") self._initialized = False self._log_assets = False def setup(self, args, state, model): """ Setup the optional Comet.ml integration. Environment: - **COMET_MODE** (`str`, *optional*, defaults to `ONLINE`): Whether to create an online, offline experiment or disable Comet logging. Can be `OFFLINE`, `ONLINE`, or `DISABLED`. - **COMET_PROJECT_NAME** (`str`, *optional*): Comet project name for experiments. - **COMET_OFFLINE_DIRECTORY** (`str`, *optional*): Folder to use for saving offline experiments when `COMET_MODE` is `OFFLINE`. - **COMET_LOG_ASSETS** (`str`, *optional*, defaults to `TRUE`): Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be `TRUE`, or `FALSE`. For a number of configurable items in the environment, see [here](https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables). """ self._initialized = True log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper() if log_assets in {"TRUE", "1"}: self._log_assets = True if state.is_world_process_zero: comet_mode = os.getenv("COMET_MODE", "ONLINE").upper() experiment = None experiment_kwargs = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")} if comet_mode == "ONLINE": experiment = comet_ml.Experiment(**experiment_kwargs) experiment.log_other("Created from", "transformers") logger.info("Automatic Comet.ml online logging enabled") elif comet_mode == "OFFLINE": experiment_kwargs["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./") experiment = comet_ml.OfflineExperiment(**experiment_kwargs) experiment.log_other("Created from", "transformers") logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished") if experiment is not None: experiment._set_model_graph(model, framework="transformers") experiment._log_parameters(args, prefix="args/", framework="transformers") if hasattr(model, "config"): experiment._log_parameters(model.config, prefix="config/", framework="transformers") def on_train_begin(self, args, state, control, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) def on_log(self, args, state, control, model=None, logs=None, **kwargs): if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: experiment = comet_ml.config.get_global_experiment() if experiment is not None: experiment._log_metrics(logs, step=state.global_step, epoch=state.epoch, framework="transformers") def on_train_end(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero: experiment = comet_ml.config.get_global_experiment() if experiment is not None: if self._log_assets is True: logger.info("Logging checkpoints. This may take time.") experiment.log_asset_folder( args.output_dir, recursive=True, log_file_name=True, step=state.global_step ) experiment.end() class AzureMLCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/). """ def __init__(self, azureml_run=None): if not is_azureml_available(): raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.") self.azureml_run = azureml_run def on_init_end(self, args, state, control, **kwargs): from azureml.core.run import Run if self.azureml_run is None and state.is_world_process_zero: self.azureml_run = Run.get_context() def on_log(self, args, state, control, logs=None, **kwargs): if self.azureml_run and state.is_world_process_zero: for k, v in logs.items(): if isinstance(v, (int, float)): self.azureml_run.log(k, v, description=k) class MLflowCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`. """ def __init__(self): if not is_mlflow_available(): raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.") import mlflow self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH self._initialized = False self._auto_end_run = False self._log_artifacts = False self._ml_flow = mlflow def setup(self, args, state, model): """ Setup the optional MLflow integration. Environment: - **HF_MLFLOW_LOG_ARTIFACTS** (`str`, *optional*): Whether to use MLflow `.log_artifact()` facility to log artifacts. This only makes sense if logging to a remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in [`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote storage will just copy the files to your artifact location. - **MLFLOW_TRACKING_URI** (`str`, *optional*): Whether to store runs at a specific path or remote server. Unset by default, which skips setting the tracking URI entirely. - **MLFLOW_EXPERIMENT_NAME** (`str`, *optional*, defaults to `None`): Whether to use an MLflow experiment_name under which to launch the run. Default to `None` which will point to the `Default` experiment in MLflow. Otherwise, it is a case sensitive name of the experiment to be activated. If an experiment with this name does not exist, a new experiment with this name is created. - **MLFLOW_TAGS** (`str`, *optional*): A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example: `os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'`. - **MLFLOW_NESTED_RUN** (`str`, *optional*): Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current run. - **MLFLOW_RUN_ID** (`str`, *optional*): Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint. When `MLFLOW_RUN_ID` environment variable is set, `start_run` attempts to resume a run with the specified run ID and other parameters are ignored. - **MLFLOW_FLATTEN_PARAMS** (`str`, *optional*, defaults to `False`): Whether to flatten the parameters dictionary before logging. """ self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._tracking_uri = os.getenv("MLFLOW_TRACKING_URI", None) self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None) self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._run_id = os.getenv("MLFLOW_RUN_ID", None) self._async_log = False # "synchronous" flag is only available with mlflow version >= 2.8.0 # https://github.com/mlflow/mlflow/pull/9705 # https://github.com/mlflow/mlflow/releases/tag/v2.8.0 if packaging.version.parse(importlib.metadata.version("mlflow")) >= packaging.version.parse("2.8.0"): self._async_log = True logger.debug( f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run}," f" tags={self._nested_run}, tracking_uri={self._tracking_uri}" ) if state.is_world_process_zero: if not self._ml_flow.is_tracking_uri_set(): if self._tracking_uri: self._ml_flow.set_tracking_uri(self._tracking_uri) logger.debug(f"MLflow tracking URI is set to {self._tracking_uri}") else: logger.debug( "Environment variable `MLFLOW_TRACKING_URI` is not provided and therefore will not be" " explicitly set." ) else: logger.debug(f"MLflow tracking URI is set to {self._ml_flow.get_tracking_uri()}") if self._ml_flow.active_run() is None or self._nested_run or self._run_id: if self._experiment_name: # Use of set_experiment() ensure that Experiment is created if not exists self._ml_flow.set_experiment(self._experiment_name) self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run) logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}") self._auto_end_run = True combined_dict = args.to_dict() if hasattr(model, "config") and model.config is not None: model_config = model.config.to_dict() combined_dict = {**model_config, **combined_dict} combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict # remove params that are too long for MLflow for name, value in list(combined_dict.items()): # internally, all values are converted to str in MLflow if len(str(value)) > self._MAX_PARAM_VAL_LENGTH: logger.warning( f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s' " log_param() only accepts values no longer than 250 characters so we dropped this attribute." " You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and" " avoid this message." ) del combined_dict[name] # MLflow cannot log more than 100 values in one go, so we have to split it combined_dict_items = list(combined_dict.items()) for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH): if self._async_log: self._ml_flow.log_params( dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]), synchronous=False ) else: self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH])) mlflow_tags = os.getenv("MLFLOW_TAGS", None) if mlflow_tags: mlflow_tags = json.loads(mlflow_tags) self._ml_flow.set_tags(mlflow_tags) self._initialized = True def on_train_begin(self, args, state, control, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) def on_log(self, args, state, control, logs, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: metrics = {} for k, v in logs.items(): if isinstance(v, (int, float)): metrics[k] = v else: logger.warning( f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. ' "MLflow's log_metric() only accepts float and int types so we dropped this attribute." ) if self._async_log: self._ml_flow.log_metrics(metrics=metrics, step=state.global_step, synchronous=False) else: self._ml_flow.log_metrics(metrics=metrics, step=state.global_step) def on_train_end(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero: if self._auto_end_run and self._ml_flow.active_run(): self._ml_flow.end_run() def on_save(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero and self._log_artifacts: ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.") self._ml_flow.pyfunc.log_model( ckpt_dir, artifacts={"model_path": artifact_path}, python_model=self._ml_flow.pyfunc.PythonModel(), ) def __del__(self): # if the previous run is not terminated correctly, the fluent API will # not let you start a new run before the previous one is killed if ( self._auto_end_run and callable(getattr(self._ml_flow, "active_run", None)) and self._ml_flow.active_run() is not None ): self._ml_flow.end_run() class DagsHubCallback(MLflowCallback): """ A [`TrainerCallback`] that logs to [DagsHub](https://dagshub.com/). Extends [`MLflowCallback`] """ def __init__(self): super().__init__() if not is_dagshub_available(): raise ImportError("DagsHubCallback requires dagshub to be installed. Run `pip install dagshub`.") from dagshub.upload import Repo self.Repo = Repo def setup(self, *args, **kwargs): """ Setup the DagsHub's Logging integration. Environment: - **HF_DAGSHUB_LOG_ARTIFACTS** (`str`, *optional*): Whether to save the data and model artifacts for the experiment. Default to `False`. """ self.log_artifacts = os.getenv("HF_DAGSHUB_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self.name = os.getenv("HF_DAGSHUB_MODEL_NAME") or "main" self.remote = os.getenv("MLFLOW_TRACKING_URI") self.repo = self.Repo( owner=self.remote.split(os.sep)[-2], name=self.remote.split(os.sep)[-1].split(".")[0], branch=os.getenv("BRANCH") or "main", ) self.path = Path("artifacts") if self.remote is None: raise RuntimeError( "DagsHubCallback requires the `MLFLOW_TRACKING_URI` environment variable to be set. Did you run" " `dagshub.init()`?" ) super().setup(*args, **kwargs) def on_train_end(self, args, state, control, **kwargs): if self.log_artifacts: if getattr(self, "train_dataloader", None): torch.save(self.train_dataloader.dataset, os.path.join(args.output_dir, "dataset.pt")) self.repo.directory(str(self.path)).add_dir(args.output_dir) class NeptuneMissingConfiguration(Exception): def __init__(self): super().__init__( """ ------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to `NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and `project` by saving them as environment variables or passing them to the callback. """ ) class NeptuneCallback(TrainerCallback): """TrainerCallback that sends the logs to [Neptune](https://app.neptune.ai). Args: api_token (`str`, *optional*): Neptune API token obtained upon registration. You can leave this argument out if you have saved your token to the `NEPTUNE_API_TOKEN` environment variable (strongly recommended). See full setup instructions in the [docs](https://docs.neptune.ai/setup/installation). project (`str`, *optional*): Name of an existing Neptune project, in the form "workspace-name/project-name". You can find and copy the name in Neptune from the project settings -> Properties. If None (default), the value of the `NEPTUNE_PROJECT` environment variable is used. name (`str`, *optional*): Custom name for the run. base_namespace (`str`, optional, defaults to "finetuning"): In the Neptune run, the root namespace that will contain all of the metadata logged by the callback. log_parameters (`bool`, *optional*, defaults to `True`): If True, logs all Trainer arguments and model parameters provided by the Trainer. log_checkpoints (`str`, *optional*): If "same", uploads checkpoints whenever they are saved by the Trainer. If "last", uploads only the most recently saved checkpoint. If "best", uploads the best checkpoint (among the ones saved by the Trainer). If `None`, does not upload checkpoints. run (`Run`, *optional*): Pass a Neptune run object if you want to continue logging to an existing run. Read more about resuming runs in the [docs](https://docs.neptune.ai/logging/to_existing_object). **neptune_run_kwargs (*optional*): Additional keyword arguments to be passed directly to the [`neptune.init_run()`](https://docs.neptune.ai/api/neptune#init_run) function when a new run is created. For instructions and examples, see the [Transformers integration guide](https://docs.neptune.ai/integrations/transformers) in the Neptune documentation. """ integration_version_key = "source_code/integrations/transformers" model_parameters_key = "model_parameters" trial_name_key = "trial" trial_params_key = "trial_params" trainer_parameters_key = "trainer_parameters" flat_metrics = {"train/epoch"} def __init__( self, *, api_token: Optional[str] = None, project: Optional[str] = None, name: Optional[str] = None, base_namespace: str = "finetuning", run=None, log_parameters: bool = True, log_checkpoints: Optional[str] = None, **neptune_run_kwargs, ): if not is_neptune_available(): raise ValueError( "NeptuneCallback requires the Neptune client library to be installed. " "To install the library, run `pip install neptune`." ) try: from neptune import Run from neptune.internal.utils import verify_type except ImportError: from neptune.new.internal.utils import verify_type from neptune.new.metadata_containers.run import Run verify_type("api_token", api_token, (str, type(None))) verify_type("project", project, (str, type(None))) verify_type("name", name, (str, type(None))) verify_type("base_namespace", base_namespace, str) verify_type("run", run, (Run, type(None))) verify_type("log_parameters", log_parameters, bool) verify_type("log_checkpoints", log_checkpoints, (str, type(None))) self._base_namespace_path = base_namespace self._log_parameters = log_parameters self._log_checkpoints = log_checkpoints self._initial_run: Optional[Run] = run self._run = None self._is_monitoring_run = False self._run_id = None self._force_reset_monitoring_run = False self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs} self._volatile_checkpoints_dir = None self._should_upload_checkpoint = self._log_checkpoints is not None self._recent_checkpoint_path = None if self._log_checkpoints in {"last", "best"}: self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}" self._should_clean_recently_uploaded_checkpoint = True else: self._target_checkpoints_namespace = "checkpoints" self._should_clean_recently_uploaded_checkpoint = False def _stop_run_if_exists(self): if self._run: self._run.stop() del self._run self._run = None def _initialize_run(self, **additional_neptune_kwargs): try: from neptune import init_run from neptune.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException except ImportError: from neptune.new import init_run from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException self._stop_run_if_exists() try: run_params = additional_neptune_kwargs.copy() run_params.update(self._init_run_kwargs) self._run = init_run(**run_params) self._run_id = self._run["sys/id"].fetch() except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e: raise NeptuneMissingConfiguration() from e def _use_initial_run(self): self._run = self._initial_run self._is_monitoring_run = True self._run_id = self._run["sys/id"].fetch() self._initial_run = None def _ensure_run_with_monitoring(self): if self._initial_run is not None: self._use_initial_run() else: if not self._force_reset_monitoring_run and self._is_monitoring_run: return if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run: self._initialize_run(with_id=self._run_id) self._is_monitoring_run = True else: self._initialize_run() self._force_reset_monitoring_run = False def _ensure_at_least_run_without_monitoring(self): if self._initial_run is not None: self._use_initial_run() else: if not self._run: self._initialize_run( with_id=self._run_id, capture_stdout=False, capture_stderr=False, capture_hardware_metrics=False, capture_traceback=False, ) self._is_monitoring_run = False @property def run(self): if self._run is None: self._ensure_at_least_run_without_monitoring() return self._run @property def _metadata_namespace(self): return self.run[self._base_namespace_path] def _log_integration_version(self): self.run[NeptuneCallback.integration_version_key] = version def _log_trainer_parameters(self, args): self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict() def _log_model_parameters(self, model): from neptune.utils import stringify_unsupported if model and hasattr(model, "config") and model.config is not None: self._metadata_namespace[NeptuneCallback.model_parameters_key] = stringify_unsupported( model.config.to_dict() ) def _log_hyper_param_search_parameters(self, state): if state and hasattr(state, "trial_name"): self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name if state and hasattr(state, "trial_params") and state.trial_params is not None: self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params def _log_model_checkpoint(self, source_directory: str, checkpoint: str): target_path = relative_path = os.path.join(source_directory, checkpoint) if self._volatile_checkpoints_dir is not None: consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint) try: # Remove leading ../ from a relative path. cpkt_path = relative_path.replace("..", "").lstrip(os.path.sep) copy_path = os.path.join(consistent_checkpoint_path, cpkt_path) shutil.copytree(relative_path, copy_path) target_path = consistent_checkpoint_path except IOError as e: logger.warning( "NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'. " "Could fail trying to upload.".format(e) ) self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path) if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None: self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path) self._recent_checkpoint_path = relative_path def on_init_end(self, args, state, control, **kwargs): self._volatile_checkpoints_dir = None if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None): self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name if self._log_checkpoints == "best" and not args.load_best_model_at_end: raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.") def on_train_begin(self, args, state, control, model=None, **kwargs): if not state.is_world_process_zero: return self._ensure_run_with_monitoring() self._force_reset_monitoring_run = True self._log_integration_version() if self._log_parameters: self._log_trainer_parameters(args) self._log_model_parameters(model) if state.is_hyper_param_search: self._log_hyper_param_search_parameters(state) def on_train_end(self, args, state, control, **kwargs): self._stop_run_if_exists() def __del__(self): if self._volatile_checkpoints_dir is not None: shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True) self._stop_run_if_exists() def on_save(self, args, state, control, **kwargs): if self._should_upload_checkpoint: self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}") def on_evaluate(self, args, state, control, metrics=None, **kwargs): if self._log_checkpoints == "best": best_metric_name = args.metric_for_best_model if not best_metric_name.startswith("eval_"): best_metric_name = f"eval_{best_metric_name}" metric_value = metrics.get(best_metric_name) operator = np.greater if args.greater_is_better else np.less self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric) @classmethod def get_run(cls, trainer): for callback in trainer.callback_handler.callbacks: if isinstance(callback, cls): return callback.run raise Exception("The trainer doesn't have a NeptuneCallback configured.") def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs): if not state.is_world_process_zero: return if logs is not None: for name, value in rewrite_logs(logs).items(): if isinstance(value, (int, float)): if name in NeptuneCallback.flat_metrics: self._metadata_namespace[name] = value else: self._metadata_namespace[name].log(value, step=state.global_step) class CodeCarbonCallback(TrainerCallback): """ A [`TrainerCallback`] that tracks the CO2 emission of training. """ def __init__(self): if not is_codecarbon_available(): raise RuntimeError( "CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`." ) import codecarbon self._codecarbon = codecarbon self.tracker = None def on_init_end(self, args, state, control, **kwargs): if self.tracker is None and state.is_local_process_zero: # CodeCarbon will automatically handle environment variables for configuration self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir) def on_train_begin(self, args, state, control, model=None, **kwargs): if self.tracker and state.is_local_process_zero: self.tracker.start() def on_train_end(self, args, state, control, **kwargs): if self.tracker and state.is_local_process_zero: self.tracker.stop() class ClearMLCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [ClearML](https://clear.ml/). Environment: - **CLEARML_PROJECT** (`str`, *optional*, defaults to `HuggingFace Transformers`): ClearML project name. - **CLEARML_TASK** (`str`, *optional*, defaults to `Trainer`): ClearML task name. - **CLEARML_LOG_MODEL** (`bool`, *optional*, defaults to `False`): Whether to log models as artifacts during training. """ log_suffix = "" _hparams_section = "Transformers" _model_config_section = "Model Configuration" _ignore_hparams_overrides = "_ignore_hparams_ui_overrides_" _ignoge_model_config_overrides = "_ignore_model_config_ui_overrides_" _model_config_description = "The configuration of model number {}." _model_config_description_note = ( "Note that, when cloning this task and running it remotely," " the configuration might be applied to another model instead of this one." " To avoid this, initialize the task externally by calling `Task.init`" " before the `ClearMLCallback` is instantiated." ) _train_run_counter = 0 _model_connect_counter = 0 _task_created_in_callback = False _should_close_on_train_end = None def __init__(self): if is_clearml_available(): import clearml self._clearml = clearml else: raise RuntimeError("ClearMLCallback requires 'clearml' to be installed. Run `pip install clearml`.") self._initialized = False self._clearml_task = None self._log_model = False self._checkpoints_saved = [] def setup(self, args, state, model, tokenizer, **kwargs): if self._clearml is None: return if self._initialized: return ClearMLCallback._train_run_counter += 1 ClearMLCallback._model_connect_counter += 1 ClearMLCallback.log_suffix = ( "" if ClearMLCallback._train_run_counter == 1 else "_" + str(ClearMLCallback._train_run_counter) ) if state.is_world_process_zero: logger.info("Automatic ClearML logging enabled.") if self._clearml_task is None: if ClearMLCallback._should_close_on_train_end is None: if not self._clearml.Task.running_locally() or self._clearml.Task.current_task(): ClearMLCallback._should_close_on_train_end = False else: ClearMLCallback._should_close_on_train_end = True # This might happen when running inside of a pipeline, where the task is already initialized # from outside of Hugging Face if self._clearml.Task.running_locally() and self._clearml.Task.current_task(): self._clearml_task = self._clearml.Task.current_task() self._log_model = os.getenv( "CLEARML_LOG_MODEL", "FALSE" if not ClearMLCallback._task_created_in_callback else "TRUE", ).upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}) logger.info("External ClearML Task has been connected.") else: self._clearml_task = self._clearml.Task.init( project_name=os.getenv("CLEARML_PROJECT", "HuggingFace Transformers"), task_name=os.getenv("CLEARML_TASK", "Trainer"), auto_connect_frameworks={"tensorboard": False, "pytorch": False}, output_uri=True, ) self._log_model = os.getenv("CLEARML_LOG_MODEL", "TRUE").upper() in ENV_VARS_TRUE_VALUES.union( {"TRUE"} ) ClearMLCallback._task_created_in_callback = True logger.info("ClearML Task has been initialized.") self._initialized = True suffixed_hparams_section = ClearMLCallback._hparams_section + ClearMLCallback.log_suffix ignore_hparams_config_section = suffixed_hparams_section + "/" + ClearMLCallback._ignore_hparams_overrides if self._clearml.Task.running_locally(): self._copy_training_args_as_hparams(args, suffixed_hparams_section) self._clearml_task.set_parameter( name=ignore_hparams_config_section, value=True, value_type=bool, description=( "If True, ignore Transformers hyperparameters overrides done in the UI/backend " + "when running remotely. Otherwise, the overrides will be applied when running remotely" ), ) elif not self._clearml_task.get_parameter(ignore_hparams_config_section, default=True, cast=True): self._clearml_task.connect(args, suffixed_hparams_section) else: self._copy_training_args_as_hparams( args, ClearMLCallback._hparams_section + ClearMLCallback.log_suffix ) if getattr(model, "config", None) is not None: ignore_model_config_section = ( suffixed_hparams_section + "/" + ClearMLCallback._ignoge_model_config_overrides ) configuration_object_description = ClearMLCallback._model_config_description.format( ClearMLCallback._model_connect_counter ) if ClearMLCallback._model_connect_counter != ClearMLCallback._train_run_counter: configuration_object_description += " " + ClearMLCallback._model_config_description_note if self._clearml.Task.running_locally(): self._clearml_task.set_parameter( name=ignore_model_config_section, value=True, value_type=bool, description=( "If True, ignore Transformers model configuration overrides done in the UI/backend " + "when running remotely. Otherwise, the overrides will be applied when running remotely" ), ) self._clearml_task.set_configuration_object( name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix, config_dict=model.config.to_dict(), description=configuration_object_description, ) elif not self._clearml_task.get_parameter(ignore_model_config_section, default=True, cast=True): model.config = model.config.from_dict( self._clearml_task.get_configuration_object_as_dict( ClearMLCallback._model_config_section + ClearMLCallback.log_suffix ) ) else: self._clearml_task.set_configuration_object( name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix, config_dict=model.config.to_dict(), description=configuration_object_description, ) def on_train_begin(self, args, state, control, model=None, tokenizer=None, **kwargs): if self._clearml is None: return self._checkpoints_saved = [] if state.is_hyper_param_search: self._initialized = False if not self._initialized: self.setup(args, state, model, tokenizer, **kwargs) def on_train_end(self, args, state, control, **kwargs): if ClearMLCallback._should_close_on_train_end: self._clearml_task.close() ClearMLCallback._train_run_counter = 0 def on_log(self, args, state, control, model=None, tokenizer=None, logs=None, **kwargs): if self._clearml is None: return if not self._initialized: self.setup(args, state, model, tokenizer, **kwargs) if state.is_world_process_zero: eval_prefix = "eval_" eval_prefix_len = len(eval_prefix) test_prefix = "test_" test_prefix_len = len(test_prefix) single_value_scalars = [ "train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss", "total_flos", "epoch", ] for k, v in logs.items(): if isinstance(v, (int, float)): if k in single_value_scalars: self._clearml_task.get_logger().report_single_value( name=k + ClearMLCallback.log_suffix, value=v ) elif k.startswith(eval_prefix): self._clearml_task.get_logger().report_scalar( title="eval" + ClearMLCallback.log_suffix, series=k[eval_prefix_len:], value=v, iteration=state.global_step, ) elif k.startswith(test_prefix): self._clearml_task.get_logger().report_scalar( title="test" + ClearMLCallback.log_suffix, series=k[test_prefix_len:], value=v, iteration=state.global_step, ) else: self._clearml_task.get_logger().report_scalar( title="train" + ClearMLCallback.log_suffix, series=k, value=v, iteration=state.global_step, ) else: logger.warning( "Trainer is attempting to log a value of " f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' "This invocation of ClearML logger's report_scalar() " "is incorrect so we dropped this attribute." ) def on_save(self, args, state, control, **kwargs): if self._log_model and self._clearml_task and state.is_world_process_zero: ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) name = ckpt_dir + ClearMLCallback.log_suffix logger.info(f"Logging checkpoint artifact `{name}`. This may take some time.") output_model = self._clearml.OutputModel(task=self._clearml_task, name=name) output_model.connect(task=self._clearml_task, name=name) output_model.update_weights_package( weights_path=artifact_path, target_filename=ckpt_dir, iteration=state.global_step, auto_delete_file=False, ) self._checkpoints_saved.append(output_model) while args.save_total_limit and args.save_total_limit < len(self._checkpoints_saved): try: self._clearml.model.Model.remove( self._checkpoints_saved[0], delete_weights_file=True, force=True, raise_on_errors=True, ) except Exception as e: logger.warning( "Could not remove checkpoint `{}` after going over the `save_total_limit`. Error is: {}".format( self._checkpoints_saved[0].name, e ) ) break self._checkpoints_saved = self._checkpoints_saved[1:] def _copy_training_args_as_hparams(self, training_args, prefix): as_dict = { field.name: getattr(training_args, field.name) for field in fields(training_args) if field.init and not field.name.endswith("_token") } flat_dict = {str(k): v for k, v in self._clearml.utilities.proxy_object.flatten_dictionary(as_dict).items()} self._clearml_task._arguments.copy_from_dict(flat_dict, prefix=prefix) class FlyteCallback(TrainerCallback): """A [`TrainerCallback`] that sends the logs to [Flyte](https://flyte.org/). NOTE: This callback only works within a Flyte task. Args: save_log_history (`bool`, *optional*, defaults to `True`): When set to True, the training logs are saved as a Flyte Deck. sync_checkpoints (`bool`, *optional*, defaults to `True`): When set to True, checkpoints are synced with Flyte and can be used to resume training in the case of an interruption. Example: ```python # Note: This example skips over some setup steps for brevity. from flytekit import current_context, task @task def train_hf_transformer(): cp = current_context().checkpoint trainer = Trainer(..., callbacks=[FlyteCallback()]) output = trainer.train(resume_from_checkpoint=cp.restore()) ``` """ def __init__(self, save_log_history: bool = True, sync_checkpoints: bool = True): super().__init__() if not is_flytekit_available(): raise ImportError("FlyteCallback requires flytekit to be installed. Run `pip install flytekit`.") if not is_flyte_deck_standard_available() or not is_pandas_available(): logger.warning( "Syncing log history requires both flytekitplugins-deck-standard and pandas to be installed. " "Run `pip install flytekitplugins-deck-standard pandas` to enable this feature." ) save_log_history = False from flytekit import current_context self.cp = current_context().checkpoint self.save_log_history = save_log_history self.sync_checkpoints = sync_checkpoints def on_save(self, args, state, control, **kwargs): if self.sync_checkpoints and state.is_world_process_zero: ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) logger.info(f"Syncing checkpoint in {ckpt_dir} to Flyte. This may take time.") self.cp.save(artifact_path) def on_train_end(self, args, state, control, **kwargs): if self.save_log_history: import pandas as pd from flytekit import Deck from flytekitplugins.deck.renderer import TableRenderer log_history_df = pd.DataFrame(state.log_history) Deck("Log History", TableRenderer().to_html(log_history_df)) class DVCLiveCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [DVCLive](https://www.dvc.org/doc/dvclive). Use the environment variables below in `setup` to configure the integration. To customize this callback beyond those environment variables, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface). Args: live (`dvclive.Live`, *optional*, defaults to `None`): Optional Live instance. If None, a new instance will be created using **kwargs. log_model (Union[Literal["all"], bool], *optional*, defaults to `None`): Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True`, the final checkpoint is logged at the end of training. If set to `"all"`, the entire [`TrainingArguments`]'s `output_dir` is logged at each checkpoint. """ def __init__( self, live: Optional[Any] = None, log_model: Optional[Union[Literal["all"], bool]] = None, **kwargs, ): if not is_dvclive_available(): raise RuntimeError("DVCLiveCallback requires dvclive to be installed. Run `pip install dvclive`.") from dvclive import Live self._initialized = False self.live = None if isinstance(live, Live): self.live = live elif live is not None: raise RuntimeError(f"Found class {live.__class__} for live, expected dvclive.Live") self._log_model = log_model if self._log_model is None: log_model_env = os.getenv("HF_DVCLIVE_LOG_MODEL", "FALSE") if log_model_env.upper() in ENV_VARS_TRUE_VALUES: self._log_model = True elif log_model_env.lower() == "all": self._log_model = "all" def setup(self, args, state, model): """ Setup the optional DVCLive integration. To customize this callback beyond the environment variables below, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface). Environment: - **HF_DVCLIVE_LOG_MODEL** (`str`, *optional*): Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True` or *1*, the final checkpoint is logged at the end of training. If set to `all`, the entire [`TrainingArguments`]'s `output_dir` is logged at each checkpoint. """ from dvclive import Live self._initialized = True if state.is_world_process_zero: if not self.live: self.live = Live() self.live.log_params(args.to_dict()) def on_train_begin(self, args, state, control, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) def on_log(self, args, state, control, model=None, logs=None, **kwargs): if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: from dvclive.plots import Metric from dvclive.utils import standardize_metric_name for key, value in logs.items(): if Metric.could_log(value): self.live.log_metric(standardize_metric_name(key, "dvclive.huggingface"), value) else: logger.warning( "Trainer is attempting to log a value of " f'"{value}" of type {type(value)} for key "{key}" as a scalar. ' "This invocation of DVCLive's Live.log_metric() " "is incorrect so we dropped this attribute." ) self.live.next_step() def on_save(self, args, state, control, **kwargs): if self._log_model == "all" and self._initialized and state.is_world_process_zero: self.live.log_artifact(args.output_dir) def on_train_end(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero: from transformers.trainer import Trainer if self._log_model is True: fake_trainer = Trainer(args=args, model=kwargs.get("model"), tokenizer=kwargs.get("tokenizer")) name = "best" if args.load_best_model_at_end else "last" output_dir = os.path.join(args.output_dir, name) fake_trainer.save_model(output_dir) self.live.log_artifact(output_dir, name=name, type="model", copy=True) self.live.end() INTEGRATION_TO_CALLBACK = { "azure_ml": AzureMLCallback, "comet_ml": CometCallback, "mlflow": MLflowCallback, "neptune": NeptuneCallback, "tensorboard": TensorBoardCallback, "wandb": WandbCallback, "codecarbon": CodeCarbonCallback, "clearml": ClearMLCallback, "dagshub": DagsHubCallback, "flyte": FlyteCallback, "dvclive": DVCLiveCallback, } def get_reporting_integration_callbacks(report_to): for integration in report_to: if integration not in INTEGRATION_TO_CALLBACK: raise ValueError( f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported." ) return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to]
transformers/src/transformers/integrations/integration_utils.py/0
{ "file_path": "transformers/src/transformers/integrations/integration_utils.py", "repo_id": "transformers", "token_count": 38650 }
325
/*! ************************************************************************************************** * Deformable DETR * Copyright (c) 2020 SenseTime. All Rights Reserved. * Licensed under the Apache License, Version 2.0 [see LICENSE for details] ************************************************************************************************** * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 ************************************************************************************************** */ #include <vector> #include <cuda.h> #include <cuda_runtime.h> #include <cstdio> #include <algorithm> #include <cstring> #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <THC/THCAtomics.cuh> #define CUDA_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ i < (n); \ i += blockDim.x * gridDim.x) at::Tensor ms_deform_attn_cuda_forward( const at::Tensor &value, const at::Tensor &spatial_shapes, const at::Tensor &level_start_index, const at::Tensor &sampling_loc, const at::Tensor &attn_weight, const int im2col_step) { AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous"); AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous"); AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous"); AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous"); AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous"); AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor"); AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor"); AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor"); AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor"); AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor"); const int batch = value.size(0); const int spatial_size = value.size(1); const int num_heads = value.size(2); const int channels = value.size(3); const int num_levels = spatial_shapes.size(0); const int num_query = sampling_loc.size(1); const int num_point = sampling_loc.size(4); const int im2col_step_ = std::min(batch, im2col_step); AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_); auto output = at::zeros({batch, num_query, num_heads, channels}, value.options()); const int batch_n = im2col_step_; auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels}); auto per_value_size = spatial_size * num_heads * channels; auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2; auto per_attn_weight_size = num_query * num_heads * num_levels * num_point; for (int n = 0; n < batch/im2col_step_; ++n) { auto columns = output_n.select(0, n); AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] { ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(), value.data<scalar_t>() + n * im2col_step_ * per_value_size, spatial_shapes.data<int64_t>(), level_start_index.data<int64_t>(), sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size, attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size, batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point, columns.data<scalar_t>()); })); } output = output.view({batch, num_query, num_heads*channels}); return output; } std::vector<at::Tensor> ms_deform_attn_cuda_backward( const at::Tensor &value, const at::Tensor &spatial_shapes, const at::Tensor &level_start_index, const at::Tensor &sampling_loc, const at::Tensor &attn_weight, const at::Tensor &grad_output, const int im2col_step) { AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous"); AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous"); AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous"); AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous"); AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous"); AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous"); AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor"); AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor"); AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor"); AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor"); AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor"); AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor"); const int batch = value.size(0); const int spatial_size = value.size(1); const int num_heads = value.size(2); const int channels = value.size(3); const int num_levels = spatial_shapes.size(0); const int num_query = sampling_loc.size(1); const int num_point = sampling_loc.size(4); const int im2col_step_ = std::min(batch, im2col_step); AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_); auto grad_value = at::zeros_like(value); auto grad_sampling_loc = at::zeros_like(sampling_loc); auto grad_attn_weight = at::zeros_like(attn_weight); const int batch_n = im2col_step_; auto per_value_size = spatial_size * num_heads * channels; auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2; auto per_attn_weight_size = num_query * num_heads * num_levels * num_point; auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels}); for (int n = 0; n < batch/im2col_step_; ++n) { auto grad_output_g = grad_output_n.select(0, n); AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] { ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(), grad_output_g.data<scalar_t>(), value.data<scalar_t>() + n * im2col_step_ * per_value_size, spatial_shapes.data<int64_t>(), level_start_index.data<int64_t>(), sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size, attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size, batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size, grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size, grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size); })); } return { grad_value, grad_sampling_loc, grad_attn_weight }; } const int CUDA_NUM_THREADS = 1024; inline int GET_BLOCKS(const int N, const int num_threads) { return (N + num_threads - 1) / num_threads; } template <typename scalar_t> __device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data, const int &height, const int &width, const int &nheads, const int &channels, const scalar_t &h, const scalar_t &w, const int &m, const int &c) { const int h_low = floor(h); const int w_low = floor(w); const int h_high = h_low + 1; const int w_high = w_low + 1; const scalar_t lh = h - h_low; const scalar_t lw = w - w_low; const scalar_t hh = 1 - lh, hw = 1 - lw; const int w_stride = nheads * channels; const int h_stride = width * w_stride; const int h_low_ptr_offset = h_low * h_stride; const int h_high_ptr_offset = h_low_ptr_offset + h_stride; const int w_low_ptr_offset = w_low * w_stride; const int w_high_ptr_offset = w_low_ptr_offset + w_stride; const int base_ptr = m * channels + c; scalar_t v1 = 0; if (h_low >= 0 && w_low >= 0) { const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; v1 = bottom_data[ptr1]; } scalar_t v2 = 0; if (h_low >= 0 && w_high <= width - 1) { const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; v2 = bottom_data[ptr2]; } scalar_t v3 = 0; if (h_high <= height - 1 && w_low >= 0) { const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; v3 = bottom_data[ptr3]; } scalar_t v4 = 0; if (h_high <= height - 1 && w_high <= width - 1) { const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; v4 = bottom_data[ptr4]; } const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); return val; } template <typename scalar_t> __device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data, const int &height, const int &width, const int &nheads, const int &channels, const scalar_t &h, const scalar_t &w, const int &m, const int &c, const scalar_t &top_grad, const scalar_t &attn_weight, scalar_t* &grad_value, scalar_t* grad_sampling_loc, scalar_t* grad_attn_weight) { const int h_low = floor(h); const int w_low = floor(w); const int h_high = h_low + 1; const int w_high = w_low + 1; const scalar_t lh = h - h_low; const scalar_t lw = w - w_low; const scalar_t hh = 1 - lh, hw = 1 - lw; const int w_stride = nheads * channels; const int h_stride = width * w_stride; const int h_low_ptr_offset = h_low * h_stride; const int h_high_ptr_offset = h_low_ptr_offset + h_stride; const int w_low_ptr_offset = w_low * w_stride; const int w_high_ptr_offset = w_low_ptr_offset + w_stride; const int base_ptr = m * channels + c; const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; const scalar_t top_grad_value = top_grad * attn_weight; scalar_t grad_h_weight = 0, grad_w_weight = 0; scalar_t v1 = 0; if (h_low >= 0 && w_low >= 0) { const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; v1 = bottom_data[ptr1]; grad_h_weight -= hw * v1; grad_w_weight -= hh * v1; atomicAdd(grad_value+ptr1, w1*top_grad_value); } scalar_t v2 = 0; if (h_low >= 0 && w_high <= width - 1) { const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; v2 = bottom_data[ptr2]; grad_h_weight -= lw * v2; grad_w_weight += hh * v2; atomicAdd(grad_value+ptr2, w2*top_grad_value); } scalar_t v3 = 0; if (h_high <= height - 1 && w_low >= 0) { const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; v3 = bottom_data[ptr3]; grad_h_weight += hw * v3; grad_w_weight -= lh * v3; atomicAdd(grad_value+ptr3, w3*top_grad_value); } scalar_t v4 = 0; if (h_high <= height - 1 && w_high <= width - 1) { const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; v4 = bottom_data[ptr4]; grad_h_weight += lw * v4; grad_w_weight += lh * v4; atomicAdd(grad_value+ptr4, w4*top_grad_value); } const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); *grad_attn_weight = top_grad * val; *grad_sampling_loc = width * grad_w_weight * top_grad_value; *(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value; } template <typename scalar_t> __device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data, const int &height, const int &width, const int &nheads, const int &channels, const scalar_t &h, const scalar_t &w, const int &m, const int &c, const scalar_t &top_grad, const scalar_t &attn_weight, scalar_t* &grad_value, scalar_t* grad_sampling_loc, scalar_t* grad_attn_weight) { const int h_low = floor(h); const int w_low = floor(w); const int h_high = h_low + 1; const int w_high = w_low + 1; const scalar_t lh = h - h_low; const scalar_t lw = w - w_low; const scalar_t hh = 1 - lh, hw = 1 - lw; const int w_stride = nheads * channels; const int h_stride = width * w_stride; const int h_low_ptr_offset = h_low * h_stride; const int h_high_ptr_offset = h_low_ptr_offset + h_stride; const int w_low_ptr_offset = w_low * w_stride; const int w_high_ptr_offset = w_low_ptr_offset + w_stride; const int base_ptr = m * channels + c; const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; const scalar_t top_grad_value = top_grad * attn_weight; scalar_t grad_h_weight = 0, grad_w_weight = 0; scalar_t v1 = 0; if (h_low >= 0 && w_low >= 0) { const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; v1 = bottom_data[ptr1]; grad_h_weight -= hw * v1; grad_w_weight -= hh * v1; atomicAdd(grad_value+ptr1, w1*top_grad_value); } scalar_t v2 = 0; if (h_low >= 0 && w_high <= width - 1) { const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; v2 = bottom_data[ptr2]; grad_h_weight -= lw * v2; grad_w_weight += hh * v2; atomicAdd(grad_value+ptr2, w2*top_grad_value); } scalar_t v3 = 0; if (h_high <= height - 1 && w_low >= 0) { const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; v3 = bottom_data[ptr3]; grad_h_weight += hw * v3; grad_w_weight -= lh * v3; atomicAdd(grad_value+ptr3, w3*top_grad_value); } scalar_t v4 = 0; if (h_high <= height - 1 && w_high <= width - 1) { const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; v4 = bottom_data[ptr4]; grad_h_weight += lw * v4; grad_w_weight += lh * v4; atomicAdd(grad_value+ptr4, w4*top_grad_value); } const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); atomicAdd(grad_attn_weight, top_grad * val); atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value); atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value); } template <typename scalar_t> __global__ void ms_deformable_im2col_gpu_kernel(const int n, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *data_col) { CUDA_KERNEL_LOOP(index, n) { int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; scalar_t *data_col_ptr = data_col + index; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; scalar_t col = 0; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride); for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight; } data_weight_ptr += 1; data_loc_w_ptr += 2; } } *data_col_ptr = col; } } template <typename scalar_t, unsigned int blockSize> __global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; __shared__ scalar_t cache_grad_attn_weight[blockSize]; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); if (tid == 0) { scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; int sid=2; for (unsigned int tid = 1; tid < blockSize; ++tid) { _grad_w += cache_grad_sampling_loc[sid]; _grad_h += cache_grad_sampling_loc[sid + 1]; _grad_a += cache_grad_attn_weight[tid]; sid += 2; } *grad_sampling_loc = _grad_w; *(grad_sampling_loc + 1) = _grad_h; *grad_attn_weight = _grad_a; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t, unsigned int blockSize> __global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; __shared__ scalar_t cache_grad_attn_weight[blockSize]; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); for (unsigned int s=blockSize/2; s>0; s>>=1) { if (tid < s) { const unsigned int xid1 = tid << 1; const unsigned int xid2 = (tid + s) << 1; cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; } __syncthreads(); } if (tid == 0) { *grad_sampling_loc = cache_grad_sampling_loc[0]; *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; *grad_attn_weight = cache_grad_attn_weight[0]; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { extern __shared__ int _s[]; scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); if (tid == 0) { scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; int sid=2; for (unsigned int tid = 1; tid < blockDim.x; ++tid) { _grad_w += cache_grad_sampling_loc[sid]; _grad_h += cache_grad_sampling_loc[sid + 1]; _grad_a += cache_grad_attn_weight[tid]; sid += 2; } *grad_sampling_loc = _grad_w; *(grad_sampling_loc + 1) = _grad_h; *grad_attn_weight = _grad_a; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { extern __shared__ int _s[]; scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) { if (tid < s) { const unsigned int xid1 = tid << 1; const unsigned int xid2 = (tid + s) << 1; cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; if (tid + (s << 1) < spre) { cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; } } __syncthreads(); } if (tid == 0) { *grad_sampling_loc = cache_grad_sampling_loc[0]; *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; *grad_attn_weight = cache_grad_attn_weight[0]; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { extern __shared__ int _s[]; scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) { if (tid < s) { const unsigned int xid1 = tid << 1; const unsigned int xid2 = (tid + s) << 1; cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; if (tid + (s << 1) < spre) { cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; } } __syncthreads(); } if (tid == 0) { atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]); atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]); atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]); } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_gm(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear_gm( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, grad_sampling_loc, grad_attn_weight); } data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> void ms_deformable_im2col_cuda(cudaStream_t stream, const scalar_t* data_value, const int64_t* data_spatial_shapes, const int64_t* data_level_start_index, const scalar_t* data_sampling_loc, const scalar_t* data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t* data_col) { const int num_kernels = batch_size * num_query * num_heads * channels; const int num_actual_kernels = batch_size * num_query * num_heads * channels; const int num_threads = CUDA_NUM_THREADS; ms_deformable_im2col_gpu_kernel<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err)); } } template <typename scalar_t> void ms_deformable_col2im_cuda(cudaStream_t stream, const scalar_t* grad_col, const scalar_t* data_value, const int64_t * data_spatial_shapes, const int64_t * data_level_start_index, const scalar_t * data_sampling_loc, const scalar_t * data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t* grad_value, scalar_t* grad_sampling_loc, scalar_t* grad_attn_weight) { const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels; const int num_kernels = batch_size * num_query * num_heads * channels; const int num_actual_kernels = batch_size * num_query * num_heads * channels; if (channels > 1024) { if ((channels & 1023) == 0) { ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, num_threads*3*sizeof(scalar_t), stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } else { ms_deformable_col2im_gpu_kernel_gm<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } } else{ switch(channels) { case 1: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 2: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 4: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 8: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 16: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 32: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 64: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 128: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 256: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 512: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 1024: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; default: if (channels < 64) { ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, num_threads*3*sizeof(scalar_t), stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } else { ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, num_threads*3*sizeof(scalar_t), stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } } } cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err)); } }
transformers/src/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cuh/0
{ "file_path": "transformers/src/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cuh", "repo_id": "transformers", "token_count": 34691 }
326
// File from https://github.com/mlpen/YOSO/blob/main/encoders/backbones/efficient_attentions/yoso/yoso_v1/cuda/fast_lsh_cumulation.cu #include <torch/extension.h> #include <ATen/ATen.h> #include "fast_lsh_cumulation.h" #include "fast_lsh_cumulation_cuda.h" #include "common_cuda.h" #include "common.h" #include <vector> ////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////// std::vector<at::Tensor> fast_hash_ver1_kernel( at::Tensor query_mask, at::Tensor query_vector, at::Tensor key_mask, at::Tensor key_vector, int num_hash_f, int hash_code_len, bool use_cuda ) { int batch_size = query_vector.size(0); int num_query = query_vector.size(1); int num_key = key_vector.size(1); int vector_dim = query_vector.size(2); int num_hash_per_part = vector_dim / hash_code_len; int num_part = max(1, ceil_divide(num_hash_f, num_hash_per_part)); at::Tensor Dmat = 2 * at::randint(0, 2, {batch_size, 3, num_part, vector_dim}, query_mask.options()) - 1; at::Tensor query_hash_code = at::zeros({batch_size, num_query, num_hash_f}, query_mask.options()); at::Tensor key_hash_code = at::zeros({batch_size, num_key, num_hash_f}, key_mask.options()); int *query_mask_ptr = query_mask.data_ptr<int>(); float *query_vector_ptr = query_vector.data_ptr<float>(); int *key_mask_ptr = key_mask.data_ptr<int>(); float *key_vector_ptr = key_vector.data_ptr<float>(); int *Dmat_ptr = Dmat.data_ptr<int>(); int *query_hash_code_ptr = query_hash_code.data_ptr<int>(); int *key_hash_code_ptr = key_hash_code.data_ptr<int>(); if (use_cuda) { { dim3 threads(vector_dim); dim3 blocks(num_part, num_query, batch_size); int shared_mem = vector_dim * sizeof(float); fast_hash_ver1_cuda_kernel<<<blocks, threads, shared_mem>>>( query_mask_ptr, query_vector_ptr, Dmat_ptr, query_hash_code_ptr, batch_size, num_query, vector_dim, num_part, num_hash_f, hash_code_len ); } { dim3 threads(vector_dim); dim3 blocks(num_part, num_key, batch_size); int shared_mem = vector_dim * sizeof(float); fast_hash_ver1_cuda_kernel<<<blocks, threads, shared_mem>>>( key_mask_ptr, key_vector_ptr, Dmat_ptr, key_hash_code_ptr, batch_size, num_key, vector_dim, num_part, num_hash_f, hash_code_len ); } } return {query_hash_code, key_hash_code}; } at::Tensor lsh_cumulation_ver1_kernel( at::Tensor query_mask, at::Tensor query_hash_code, at::Tensor key_mask, at::Tensor key_hash_code, at::Tensor value, int hashtable_capacity, bool use_cuda ) { int batch_size = query_hash_code.size(0); int num_hash_f = query_hash_code.size(2); int num_query = query_hash_code.size(1); int num_key = key_hash_code.size(1); int value_dim = value.size(2); at::Tensor hashtable_value = at::empty({batch_size, num_hash_f, hashtable_capacity, WARP_SIZE}, value.options()); at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); if (use_cuda) { int threads_x = WARP_SIZE; int threads_y = OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE; int block_x_step1 = num_key / threads_y; int block_x_step2 = num_query / threads_y; int block_y = batch_size; dim3 threads(threads_x, threads_y); dim3 blocks_step1(block_x_step1, block_y); dim3 blocks_step2(block_x_step2, block_y); int *query_mask_ptr = query_mask.data_ptr<int>(); int *query_hash_code_ptr = query_hash_code.data_ptr<int>(); int *key_mask_ptr = key_mask.data_ptr<int>(); int *key_hash_code_ptr = key_hash_code.data_ptr<int>(); float *value_ptr = value.data_ptr<float>(); float *hashtable_value_ptr = hashtable_value.data_ptr<float>(); float *cumulation_value_ptr = cumulation_value.data_ptr<float>(); for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { cudaMemset(hashtable_value_ptr, 0, (batch_size * num_hash_f * hashtable_capacity * WARP_SIZE) * sizeof(float)); lsh_cumulation_ver1_step1_cuda_kernel<<<blocks_step1, threads>>>( key_mask_ptr, key_hash_code_ptr, value_ptr, hashtable_value_ptr, batch_size, num_hash_f, hashtable_capacity, num_key, value_dim, value_offset ); lsh_cumulation_ver1_step2_cuda_kernel<<<blocks_step2, threads>>>( query_mask_ptr, query_hash_code_ptr, hashtable_value_ptr, cumulation_value_ptr, batch_size, num_hash_f, hashtable_capacity, num_query, value_dim, value_offset ); } } return cumulation_value; } at::Tensor lsh_weighted_cumulation_ver1_kernel( at::Tensor query_mask, at::Tensor query_hash_code, at::Tensor query_weight, at::Tensor key_mask, at::Tensor key_hash_code, at::Tensor key_weight, at::Tensor value, int hashtable_capacity, bool use_cuda ) { int batch_size = query_hash_code.size(0); int num_hash_f = query_hash_code.size(2); int num_query = query_hash_code.size(1); int num_key = key_hash_code.size(1); int value_dim = value.size(2); int weight_dim = query_weight.size(2); at::Tensor hashtable_value = at::zeros({batch_size, num_hash_f, hashtable_capacity, WARP_SIZE}, value.options()); at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); if (use_cuda) { int threads_x = WARP_SIZE; int threads_y = OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE; int block_x_step1 = num_key / threads_y; int block_x_step2 = num_query / threads_y; int block_y = batch_size; dim3 threads(threads_x, threads_y); dim3 blocks_step1(block_x_step1, block_y); dim3 blocks_step2(block_x_step2, block_y); int *query_mask_ptr = query_mask.data_ptr<int>(); int *query_hash_code_ptr = query_hash_code.data_ptr<int>(); float *query_weight_ptr = query_weight.data_ptr<float>(); int *key_mask_ptr = key_mask.data_ptr<int>(); int *key_hash_code_ptr = key_hash_code.data_ptr<int>(); float *key_weight_ptr = key_weight.data_ptr<float>(); float *value_ptr = value.data_ptr<float>(); float *hashtable_value_ptr = hashtable_value.data_ptr<float>(); float *cumulation_value_ptr = cumulation_value.data_ptr<float>(); for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) { for (int weight_idx = 0; weight_idx < weight_dim; weight_idx++) { cudaMemset(hashtable_value_ptr, 0, (batch_size * num_hash_f * hashtable_capacity * WARP_SIZE) * sizeof(float)); lsh_weighted_cumulation_ver1_step1_cuda_kernel<<<blocks_step1, threads>>>( key_mask_ptr, key_hash_code_ptr, key_weight_ptr, value_ptr, hashtable_value_ptr, batch_size, num_hash_f, hashtable_capacity, num_key, value_dim, weight_dim, value_offset, weight_idx ); lsh_weighted_cumulation_ver1_step2_cuda_kernel<<<blocks_step2, threads>>>( query_mask_ptr, query_hash_code_ptr, query_weight_ptr, hashtable_value_ptr, cumulation_value_ptr, batch_size, num_hash_f, hashtable_capacity, num_query, value_dim, weight_dim, value_offset, weight_idx ); } } } return cumulation_value; } at::Tensor lsh_weighted_cumulation_ver2_kernel( at::Tensor query_mask, at::Tensor query_hash_code, at::Tensor query_weight, at::Tensor key_mask, at::Tensor key_hash_code, at::Tensor key_weight, at::Tensor value, int hashtable_capacity, bool use_cuda ) { int batch_size = query_hash_code.size(0); int num_hash_f = query_hash_code.size(2); int num_query = query_hash_code.size(1); int num_key = key_hash_code.size(1); int value_dim = value.size(2); int weight_dim = query_weight.size(2); at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options()); at::Tensor key_sorted_idxes = at::zeros({batch_size, num_hash_f, num_key}, query_hash_code.options()); at::Tensor query_info = at::zeros({batch_size, num_query, 2, num_hash_f}, query_hash_code.options()); at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); if (use_cuda) { int *query_mask_ptr = query_mask.data_ptr<int>(); int *query_hash_code_ptr = query_hash_code.data_ptr<int>(); float *query_weight_ptr = query_weight.data_ptr<float>(); int *key_mask_ptr = key_mask.data_ptr<int>(); int *key_hash_code_ptr = key_hash_code.data_ptr<int>(); float *key_weight_ptr = key_weight.data_ptr<float>(); float *value_ptr = value.data_ptr<float>(); int *count_sort_table_ptr = count_sort_table.data_ptr<int>(); int *key_sorted_idxes_ptr = key_sorted_idxes.data_ptr<int>(); int *query_info_ptr = query_info.data_ptr<int>(); float *cumulation_value_ptr = cumulation_value.data_ptr<float>(); { dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); dim3 blocks_step13(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK)); dim3 blocks_step2(num_hash_f, batch_size); int shared_mem = hashtable_capacity * sizeof(float); count_sort_step1_cuda_kernel<<<blocks_step13, threads_step13>>>( key_mask_ptr, key_hash_code_ptr, count_sort_table_ptr, batch_size, num_hash_f, hashtable_capacity, num_key ); count_sort_step2_cuda_kernel<<<blocks_step2, threads_step2, shared_mem>>>( count_sort_table_ptr, batch_size, num_hash_f, hashtable_capacity ); count_sort_step3_cuda_kernel<<<blocks_step13, threads_step13>>>( key_mask_ptr, key_hash_code_ptr, count_sort_table_ptr, key_sorted_idxes_ptr, batch_size, num_hash_f, hashtable_capacity, num_key ); } { dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); dim3 blocks(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); extract_query_info_cuda_kernel<<<blocks, threads>>>( query_mask_ptr, query_hash_code_ptr, count_sort_table_ptr, query_info_ptr, batch_size, num_hash_f, hashtable_capacity, num_query ); } { dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE); dim3 blocks(num_query, num_hash_f, batch_size); int shared_mem = (weight_dim + WARP_SIZE) * sizeof(float); lsh_weighted_cumulation_ver2_step2_cuda_kernel<<<blocks, threads, shared_mem>>>( query_mask_ptr, query_info_ptr, key_sorted_idxes_ptr, query_weight_ptr, key_weight_ptr, value_ptr, cumulation_value_ptr, batch_size, num_hash_f, num_query, num_key, value_dim, weight_dim ); } } return cumulation_value; } at::Tensor lsh_weighted_cumulation_ver3_kernel( at::Tensor query_mask, at::Tensor query_hash_code, at::Tensor query_weight, at::Tensor key_mask, at::Tensor key_hash_code, at::Tensor key_weight, at::Tensor value, int hashtable_capacity, bool use_cuda ) { int batch_size = query_hash_code.size(0); int num_hash_f = query_hash_code.size(2); int num_query = query_hash_code.size(1); int num_key = key_hash_code.size(1); int value_dim = value.size(2); int weight_dim = query_weight.size(2); at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options()); at::Tensor query_sorted_idxes = at::zeros({batch_size, num_hash_f, num_query}, query_hash_code.options()); at::Tensor key_info = at::zeros({batch_size, num_key, 2, num_hash_f}, query_hash_code.options()); at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); if (use_cuda) { int *query_mask_ptr = query_mask.data_ptr<int>(); int *query_hash_code_ptr = query_hash_code.data_ptr<int>(); float *query_weight_ptr = query_weight.data_ptr<float>(); int *key_mask_ptr = key_mask.data_ptr<int>(); int *key_hash_code_ptr = key_hash_code.data_ptr<int>(); float *key_weight_ptr = key_weight.data_ptr<float>(); float *value_ptr = value.data_ptr<float>(); int *count_sort_table_ptr = count_sort_table.data_ptr<int>(); int *query_sorted_idxes_ptr = query_sorted_idxes.data_ptr<int>(); int *key_info_ptr = key_info.data_ptr<int>(); float *cumulation_value_ptr = cumulation_value.data_ptr<float>(); { dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); dim3 blocks_step13(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK)); dim3 blocks_step2(num_hash_f, batch_size); int shared_mem = hashtable_capacity * sizeof(float); count_sort_step1_cuda_kernel<<<blocks_step13, threads_step13>>>( query_mask_ptr, query_hash_code_ptr, count_sort_table_ptr, batch_size, num_hash_f, hashtable_capacity, num_query ); count_sort_step2_cuda_kernel<<<blocks_step2, threads_step2, shared_mem>>>( count_sort_table_ptr, batch_size, num_hash_f, hashtable_capacity ); count_sort_step3_cuda_kernel<<<blocks_step13, threads_step13>>>( query_mask_ptr, query_hash_code_ptr, count_sort_table_ptr, query_sorted_idxes_ptr, batch_size, num_hash_f, hashtable_capacity, num_query ); } { dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); dim3 blocks(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); extract_query_info_cuda_kernel<<<blocks, threads>>>( key_mask_ptr, key_hash_code_ptr, count_sort_table_ptr, key_info_ptr, batch_size, num_hash_f, hashtable_capacity, num_key ); } { dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE); dim3 blocks(num_key, num_hash_f, batch_size); int shared_mem = (weight_dim + value_dim + WARP_SIZE) * sizeof(float); lsh_weighted_cumulation_ver3_step2_cuda_kernel<<<blocks, threads, shared_mem>>>( query_sorted_idxes_ptr, key_mask_ptr, key_info_ptr, query_weight_ptr, key_weight_ptr, value_ptr, cumulation_value_ptr, batch_size, num_hash_f, num_query, num_key, value_dim, weight_dim ); } } return cumulation_value; } at::Tensor lsh_weighted_cumulation_ver4_kernel( at::Tensor query_mask, at::Tensor query_hash_code, at::Tensor query_weight, at::Tensor key_mask, at::Tensor key_hash_code, at::Tensor key_weight, at::Tensor value, int hashtable_capacity, bool use_cuda ) { int batch_size = query_hash_code.size(0); int num_hash_f = query_hash_code.size(2); int num_query = query_hash_code.size(1); int num_key = key_hash_code.size(1); int value_dim = value.size(2); int weight_dim = query_weight.size(2); at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options()); at::Tensor query_sorted_idxes = at::zeros({batch_size, num_hash_f, num_query}, query_hash_code.options()); at::Tensor key_info = at::zeros({batch_size, num_key, 2, num_hash_f}, query_hash_code.options()); at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options()); if (use_cuda) { int *query_mask_ptr = query_mask.data_ptr<int>(); int *query_hash_code_ptr = query_hash_code.data_ptr<int>(); float *query_weight_ptr = query_weight.data_ptr<float>(); int *key_mask_ptr = key_mask.data_ptr<int>(); int *key_hash_code_ptr = key_hash_code.data_ptr<int>(); float *key_weight_ptr = key_weight.data_ptr<float>(); float *value_ptr = value.data_ptr<float>(); int *count_sort_table_ptr = count_sort_table.data_ptr<int>(); int *query_sorted_idxes_ptr = query_sorted_idxes.data_ptr<int>(); int *key_info_ptr = key_info.data_ptr<int>(); float *cumulation_value_ptr = cumulation_value.data_ptr<float>(); { dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); dim3 blocks_step13(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK)); dim3 blocks_step2(num_hash_f, batch_size); int shared_mem = hashtable_capacity * sizeof(float); count_sort_step1_cuda_kernel<<<blocks_step13, threads_step13>>>( query_mask_ptr, query_hash_code_ptr, count_sort_table_ptr, batch_size, num_hash_f, hashtable_capacity, num_query ); count_sort_step2_cuda_kernel<<<blocks_step2, threads_step2, shared_mem>>>( count_sort_table_ptr, batch_size, num_hash_f, hashtable_capacity ); count_sort_step3_cuda_kernel<<<blocks_step13, threads_step13>>>( query_mask_ptr, query_hash_code_ptr, count_sort_table_ptr, query_sorted_idxes_ptr, batch_size, num_hash_f, hashtable_capacity, num_query ); } { dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f)); dim3 blocks(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size); extract_query_info_cuda_kernel<<<blocks, threads>>>( key_mask_ptr, key_hash_code_ptr, count_sort_table_ptr, key_info_ptr, batch_size, num_hash_f, hashtable_capacity, num_key ); } { dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE); dim3 blocks(num_key, batch_size); int shared_mem = (weight_dim + value_dim + 2 * num_hash_f) * sizeof(float); lsh_weighted_cumulation_ver4_step2_cuda_kernel<<<blocks, threads, shared_mem>>>( query_sorted_idxes_ptr, key_mask_ptr, key_info_ptr, query_weight_ptr, key_weight_ptr, value_ptr, cumulation_value_ptr, batch_size, num_hash_f, num_query, num_key, value_dim, weight_dim ); } } return cumulation_value; }
transformers/src/transformers/kernels/yoso/fast_lsh_cumulation.cu/0
{ "file_path": "transformers/src/transformers/kernels/yoso/fast_lsh_cumulation.cu", "repo_id": "transformers", "token_count": 8662 }
327
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_albert"] = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_albert_fast"] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_albert"] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_albert"] = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_albert"] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/albert/__init__.py/0
{ "file_path": "transformers/src/transformers/models/albert/__init__.py", "repo_id": "transformers", "token_count": 2259 }
328
# coding=utf-8 # Copyright 2022 WenXiang ZhongzhiCheng LedellWu LiuGuang BoWenZhang The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for AltCLIP """ import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class AltCLIPProcessor(ProcessorMixin): r""" Constructs a AltCLIP processor which wraps a CLIP image processor and a XLM-Roberta tokenizer into a single processor. [`AltCLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`XLMRobertaTokenizerFast`]. See the [`~AltCLIPProcessor.__call__`] and [`~AltCLIPProcessor.decode`] for more information. Args: image_processor ([`CLIPImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`XLMRobertaTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "CLIPImageProcessor" tokenizer_class = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__(self, text=None, images=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to XLMRobertaTokenizerFast's [`~XLMRobertaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) if images is not None: image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs) if text is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
transformers/src/transformers/models/altclip/processing_altclip.py/0
{ "file_path": "transformers/src/transformers/models/altclip/processing_altclip.py", "repo_id": "transformers", "token_count": 2484 }
329
# coding=utf-8 # Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class BartTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" BART tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import BartTokenizerFast >>> tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base") >>> tokenizer("Hello world")["input_ids"] [0, 31414, 232, 2] >>> tokenizer(" Hello world")["input_ids"] [0, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (BART tokenizer detect beginning of words by the preceding space). trim_offsets (`bool`, *optional*, defaults to `True`): Whether the post processing step should trim offsets to avoid including whitespaces. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = BartTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, trim_offsets=True, **kwargs, ): # we have to specify that this tokens is special otherwise adding it will reset the normalized flag to `False` in `add_special_tokens` mask_token = ( AddedToken(mask_token, lstrip=True, normalized=True, special=True) if isinstance(mask_token, str) else mask_token ) super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` tokenizer_component = "post_processor" tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) if tokenizer_component_instance: state = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: state["sep"] = tuple(state["sep"]) if "cls" in state: state["cls"] = tuple(state["cls"]) changes_to_apply = False if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: state["add_prefix_space"] = add_prefix_space changes_to_apply = True if state.get("trim_offsets", trim_offsets) != trim_offsets: state["trim_offsets"] = trim_offsets changes_to_apply = True if changes_to_apply: component_class = getattr(processors, state.pop("type")) new_value = component_class(**state) setattr(self.backend_tokenizer, tokenizer_component, new_value) @property def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. BART tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily comprise the space before the *<mask>*. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def mask_token(self, value): """ Overriding the default behavior of the mask token to have it eat the space before it. This is needed to preserve backward compatibility with all the previously used models based on Bart. """ # Mask token behave like a normal word, i.e. include the space before it # So we set lstrip to True value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value self._mask_token = value def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BART does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
transformers/src/transformers/models/bart/tokenization_bart_fast.py/0
{ "file_path": "transformers/src/transformers/models/bart/tokenization_bart_fast.py", "repo_id": "transformers", "token_count": 5760 }
330
# coding=utf-8 # Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team. # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for BERTweet""" import html import os import re from shutil import copyfile from typing import List, Optional, Tuple import regex from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/vocab.txt", }, "merges_file": { "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/bpe.codes", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "vinai/bertweet-base": 128, } def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class BertweetTokenizer(PreTrainedTokenizer): """ Constructs a BERTweet tokenizer, using Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. normalization (`bool`, *optional*, defaults to `False`): Whether or not to apply a normalization preprocess. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, normalization=False, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): try: from emoji import demojize self.demojizer = demojize except ImportError: logger.warning( "emoji is not installed, thus not converting emoticons or emojis into text. Install emoji: pip3" " install emoji==0.6.0" ) self.demojizer = None self.vocab_file = vocab_file self.merges_file = merges_file self.encoder = {} self.encoder[str(bos_token)] = 0 self.encoder[str(pad_token)] = 1 self.encoder[str(eos_token)] = 2 self.encoder[str(unk_token)] = 3 self.add_from_file(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:-1]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} self.normalization = normalization self.tweetPreprocessor = TweetTokenizer() self.special_puncts = {"’": "'", "…": "..."} super().__init__( normalization=normalization, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERTweet sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" if self.normalization: # Perform Tweet normalization before performing BPE text = self.normalizeTweet(text) split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def normalizeTweet(self, tweet): """ Normalize a raw Tweet """ for punct in self.special_puncts: tweet = tweet.replace(punct, self.special_puncts[punct]) tokens = self.tweetPreprocessor.tokenize(tweet) normTweet = " ".join([self.normalizeToken(token) for token in tokens]) normTweet = ( normTweet.replace("cannot ", "can not ") .replace("n't ", " n't ") .replace("n 't ", " n't ") .replace("ca n't", "can't") .replace("ai n't", "ain't") ) normTweet = ( normTweet.replace("'m ", " 'm ") .replace("'re ", " 're ") .replace("'s ", " 's ") .replace("'ll ", " 'll ") .replace("'d ", " 'd ") .replace("'ve ", " 've ") ) normTweet = ( normTweet.replace(" p . m .", " p.m.") .replace(" p . m ", " p.m ") .replace(" a . m .", " a.m.") .replace(" a . m ", " a.m ") ) return " ".join(normTweet.split()) def normalizeToken(self, token): """ Normalize tokens in a Tweet """ lowercased_token = token.lower() if token.startswith("@"): return "@USER" elif lowercased_token.startswith("http") or lowercased_token.startswith("www"): return "HTTPURL" elif len(token) == 1: if token in self.special_puncts: return self.special_puncts[token] if self.demojizer is not None: return self.demojizer(token) else: return token else: return token def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) out_merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file): copyfile(self.merges_file, out_merge_file) return out_vocab_file, out_merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far) def add_from_file(self, f): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: with open(f, "r", encoding="utf-8") as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") return lines = f.readlines() for lineTmp in lines: line = lineTmp.strip() idx = line.rfind(" ") if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") word = line[:idx] self.encoder[word] = len(self.encoder) # Natural Language Toolkit: Twitter Tokenizer # # Copyright (C) 2001-2020 NLTK Project # Author: Christopher Potts <[email protected]> # Ewan Klein <[email protected]> (modifications) # Pierpaolo Pantone <> (modifications) # URL: http://nltk.org/ # For license information, see LICENSE.TXT # """ Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this: 1. The tuple regex_strings defines a list of regular expression strings. 2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re. 3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of the class Tokenizer. 4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it is set to False, then the tokenizer will lowercase everything except for emoticons. """ ###################################################################### # # import regex # https://github.com/nltk/nltk/issues/2409 # import html # ###################################################################### # The following strings are components in the regular expression # that is used for tokenizing. It's important that phone_number # appears first in the final regex (since it can contain whitespace). # It also could matter that tags comes after emoticons, due to the # possibility of having text like # # <:| and some text >:) # # Most importantly, the final element should always be last, since it # does a last ditch whitespace-based tokenization of whatever is left. # ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ? # This particular element is used in a couple ways, so we define it # with a name: # docstyle-ignore EMOTICONS = r""" (?: [<>]? [:;=8] # eyes [\-o\*\']? # optional nose [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth | [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth [\-o\*\']? # optional nose [:;=8] # eyes [<>]? | <3 # heart )""" # URL pattern due to John Gruber, modified by Tom Winzig. See # https://gist.github.com/winzig/8894715 # docstyle-ignore URLS = r""" # Capture 1: entire matched URL (?: https?: # URL protocol and colon (?: /{1,3} # 1-3 slashes | # or [a-z0-9%] # Single letter or digit or '%' # (Trying not to match e.g. "URI::Escape") ) | # or # looks like domain name followed by a slash: [a-z0-9.\-]+[.] (?:[a-z]{2,13}) / ) (?: # One or more: [^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[] | # or \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | \([^\s]+?\) # balanced parens, non-recursive: (...) )+ (?: # End with: \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | \([^\s]+?\) # balanced parens, non-recursive: (...) | # or [^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars ) | # OR, the following to match naked domains: (?: (?<!@) # not preceded by a @, avoid matching foo@_gmail.com_ [a-z0-9]+ (?:[.\-][a-z0-9]+)* [.] (?:[a-z]{2,13}) \b /? (?!@) # not succeeded by a @, # avoid matching "foo.na" in "[email protected]" ) """ # docstyle-ignore # The components of the tokenizer: REGEXPS = ( URLS, # Phone numbers: r""" (?: (?: # (international) \+?[01] [ *\-.\)]* )? (?: # (area code) [\(]? \d{3} [ *\-.\)]* )? \d{3} # exchange [ *\-.\)]* \d{4} # base )""", # ASCII Emoticons EMOTICONS, # HTML tags: r"""<[^>\s]+>""", # ASCII Arrows r"""[\-]+>|<[\-]+""", # Twitter username: r"""(?:@[\w_]+)""", # Twitter hashtags: r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""", # email addresses r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""", # docstyle-ignore # Remaining word types: r""" (?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes. | (?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals. | (?:[\w_]+) # Words without apostrophes or dashes. | (?:\.(?:\s*\.){1,}) # Ellipsis dots. | (?:\S) # Everything else that isn't whitespace. """, ) ###################################################################### # This is the core tokenizing regex: WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE) # WORD_RE performs poorly on these patterns: HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}") # The emoticon string gets its own regex so that we can preserve case for # them as needed: EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE) # These are for regularizing HTML entities to Unicode: ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);") ###################################################################### # Functions for converting html entities ###################################################################### def _str_to_unicode(text, encoding=None, errors="strict"): if encoding is None: encoding = "utf-8" if isinstance(text, bytes): return text.decode(encoding, errors) return text def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"): """ Remove entities from text by converting them to their corresponding unicode character. Args: text: A unicode string or a byte string encoded in the given *encoding* (which defaults to 'utf-8'). keep (list): List of entity names which should not be replaced. This supports both numeric entities (`&#nnnn;` and `&#hhhh;`) and named entities (such as `&nbsp;` or `&gt;`). remove_illegal (bool): If `True`, entities that can't be converted are removed. Otherwise, entities that can't be converted are kept "as is". Returns: A unicode string with the entities removed. See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py Examples: ```python >>> from nltk.tokenize.casual import _replace_html_entities >>> _replace_html_entities(b"Price: &pound;100") 'Price: \\xa3100' >>> print(_replace_html_entities(b"Price: &pound;100")) Price: £100 ```""" def _convert_entity(match): entity_body = match.group(3) if match.group(1): try: if match.group(2): number = int(entity_body, 16) else: number = int(entity_body, 10) # Numeric character references in the 80-9F range are typically # interpreted by browsers as representing the characters mapped # to bytes 80-9F in the Windows-1252 encoding. For more info # see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets if 0x80 <= number <= 0x9F: return bytes((number,)).decode("cp1252") except ValueError: number = None else: if entity_body in keep: return match.group(0) else: number = html.entities.name2codepoint.get(entity_body) if number is not None: try: return chr(number) except (ValueError, OverflowError): pass return "" if remove_illegal else match.group(0) return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding)) ###################################################################### class TweetTokenizer: r""" Examples: ```python >>> # Tokenizer for tweets. >>> from nltk.tokenize import TweetTokenizer >>> tknzr = TweetTokenizer() >>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--" >>> tknzr.tokenize(s0) ['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--'] >>> # Examples using *strip_handles* and *reduce_len parameters*: >>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True) >>> s1 = "@remy: This is waaaaayyyy too much for you!!!!!!" >>> tknzr.tokenize(s1) [':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!'] ```""" def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False): self.preserve_case = preserve_case self.reduce_len = reduce_len self.strip_handles = strip_handles def tokenize(self, text): """ Args: text: str Returns: list(str) A tokenized list of strings; concatenating this list returns the original string if `preserve_case=False` """ # Fix HTML character entities: text = _replace_html_entities(text) # Remove username handles if self.strip_handles: text = remove_handles(text) # Normalize word lengthening if self.reduce_len: text = reduce_lengthening(text) # Shorten problematic sequences of characters safe_text = HANG_RE.sub(r"\1\1\1", text) # Tokenize: words = WORD_RE.findall(safe_text) # Possibly alter the case, but avoid changing emoticons like :D into :d: if not self.preserve_case: words = [x if EMOTICON_RE.search(x) else x.lower() for x in words] return words ###################################################################### # Normalization Functions ###################################################################### def reduce_lengthening(text): """ Replace repeated character sequences of length 3 or greater with sequences of length 3. """ pattern = regex.compile(r"(.)\1{2,}") return pattern.sub(r"\1\1\1", text) def remove_handles(text): """ Remove Twitter username handles from text. """ pattern = regex.compile( r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)" ) # Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly return pattern.sub(" ", text) ###################################################################### # Tokenization Function ###################################################################### def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False): """ Convenience function for wrapping the tokenizer. """ return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize( text ) ###############################################################################
transformers/src/transformers/models/bertweet/tokenization_bertweet.py/0
{ "file_path": "transformers/src/transformers/models/bertweet/tokenization_bertweet.py", "repo_id": "transformers", "token_count": 12290 }
331
# coding=utf-8 # Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for BioGPT.""" import json import os from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/vocab.json", }, "merges_file": {"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/merges.txt"}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/biogpt": 1024, } def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class BioGptTokenizer(PreTrainedTokenizer): """ Construct an FAIRSEQ Transformer tokenizer. Moses tokenization followed by Byte-Pair Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Merges file. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>", eos_token="</s>", sep_token="</s>", pad_token="<pad>", **kwargs, ): try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use BioGptTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.lang = "en" self.sm = sacremoses # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.cache_moses_detokenizer = {} """ Initialisation""" with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, unk_token=unk_token, pad_token=pad_token, **kwargs, ) @property def vocab_size(self): """Returns vocab size""" return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer return self.cache_moses_tokenizer[lang].tokenize( text, aggressive_dash_splits=True, return_str=False, escape=True ) def moses_detokenize(self, tokens, lang): if lang not in self.cache_moses_detokenizer: moses_detokenizer = self.sm.MosesDetokenizer(lang=lang) self.cache_moses_detokenizer[lang] = moses_detokenizer return self.cache_moses_detokenizer[lang].detokenize(tokens) def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def _tokenize(self, text, bypass_tokenizer=False): """Returns a tokenized string.""" if bypass_tokenizer: text = text.split() else: text = self.moses_tokenize(text, self.lang) split_tokens = [] for token in text: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" # remove BPE tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens] tokens = "".join(tokens).split() # detokenize text = self.moses_detokenize(tokens, self.lang) return text def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BioGPT sequence has the following format: - single sequence: `</s> X ` - pair of sequences: `</s> A </s> B ` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.sep_token_id] + token_ids_0 sep = [self.sep_token_id] return sep + token_ids_0 + sep + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # no bos used in fairseq if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) return [1] + ([0] * len(token_ids_0)) def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ Transformer sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] # no bos used in fairseq if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses
transformers/src/transformers/models/biogpt/tokenization_biogpt.py/0
{ "file_path": "transformers/src/transformers/models/biogpt/tokenization_biogpt.py", "repo_id": "transformers", "token_count": 6244 }
332
# coding=utf-8 # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BlenderbotSmall model.""" import copy import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_blenderbot_small import BlenderbotSmallConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "BlenderbotSmallConfig" BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/blenderbot_small-90M", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small ] # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids # Copied from transformers.models.blenderbot.modeling_blenderbot.BlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall class BlenderbotSmallLearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): super().__init__(num_embeddings, embedding_dim) def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions) # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BlenderbotSmall class BlenderbotSmallAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[BlenderbotSmallConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL class BlenderbotSmallEncoderLayer(nn.Module): def __init__(self, config: BlenderbotSmallConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, layer_head_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # TODO: Implement attention with SDPA for TimeSeriesTransformer. BLENDERBOT_SMALL_ATTENTION_CLASSES = { "eager": BlenderbotSmallAttention, } # Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL class BlenderbotSmallDecoderLayer(nn.Module): def __init__(self, config: BlenderbotSmallConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class BlenderbotSmallPreTrainedModel(PreTrainedModel): config_class = BlenderbotSmallConfig base_model_prefix = "model" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, "decoder_input_ids": input_ids, } return dummy_inputs BLENDERBOT_SMALL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BLENDERBOT_SMALL_GENERATION_EXAMPLE = r""" Conversation example: ```python >>> from transformers import AutoTokenizer, BlenderbotSmallForConditionalGeneration >>> mname = "facebook/blenderbot_small-90M" >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname) >>> tokenizer = AutoTokenizer.from_pretrained(mname) >>> UTTERANCE = "My friends are cool but they eat too many carbs." >>> print("Human: ", UTTERANCE) Human: My friends are cool but they eat too many carbs. >>> inputs = tokenizer([UTTERANCE], return_tensors="pt") >>> reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]) Bot: what kind of carbs do they eat? i don't know much about carbs. >>> REPLY = "I'm not sure" >>> print("Human: ", REPLY) Human: I'm not sure >>> NEXT_UTTERANCE = ( ... "My friends are cool but they eat too many carbs.__end__ __start__what kind of carbs do they eat? " ... "i don't know much about carbs__end__ " ... "__start__ I'm not sure." ... ) >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt") >>> next_reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0]) Bot: they eat a lot of carbs. carbs are high in fat, protein, and fats. ``` """ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`BlenderbotSmallEncoderLayer`]. Args: config: BlenderbotSmallConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, embed_dim, ) self.layers = nn.ModuleList([BlenderbotSmallEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm_embedding = nn.LayerNorm(embed_dim) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotSmallDecoderLayer`] Args: config: BlenderbotSmallConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, ) self.layers = nn.ModuleList([BlenderbotSmallDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) # BlenderbotSmall applies layer norm on hidden_states inputs_embeds = self.layernorm_embedding(inputs_embeds) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare BlenderbotSmall Model outputting raw hidden-states without any specific head on top.", BLENDERBOT_SMALL_START_DOCSTRING, ) class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel): _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"] def __init__(self, config: BlenderbotSmallConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) self.encoder = BlenderbotSmallEncoder(config, self.shared) self.decoder = BlenderbotSmallDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, BlenderbotSmallModel >>> model = BlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") # Batch size 1 >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 3, 512] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The BlenderbotSmall Model with a language modeling head. Can be used for summarization.", BLENDERBOT_SMALL_START_DOCSTRING, ) class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel): base_model_prefix = "model" _keys_to_ignore_on_load_missing = ["final_logits_bias"] _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: BlenderbotSmallConfig): super().__init__(config) self.model = BlenderbotSmallModel(config) self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) self._resize_final_logits_bias(new_embeddings.weight.shape[0]) return new_embeddings def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if decoder_input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = decoder_input_ids.shape[1] - 1 decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->BlenderbotSmall class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = BlenderbotSmallDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall, facebook/bart-base->facebook/blenderbot_small-90M class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model = BlenderbotSmallDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: Example: ```python >>> from transformers import AutoTokenizer, BlenderbotSmallForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> model = BlenderbotSmallForCausalLM.from_pretrained("facebook/blenderbot_small-90M", add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs ): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past_key_values: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py/0
{ "file_path": "transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py", "repo_id": "transformers", "token_count": 32333 }
333
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert BLIP-2 checkpoints from the original repository. URL: https://github.com/salesforce/LAVIS/tree/main/projects/blip2 """ import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install -U git+https://github.com/nielsrogge/LAVIS.git@blip2_float32 # to make sure we can compare both original and HF implementation in float32 from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, Blip2Config, Blip2ForConditionalGeneration, Blip2Processor, Blip2VisionConfig, BlipImageProcessor, OPTConfig, T5Config, set_seed, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def load_demo_image(): url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") return image # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding")) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding")) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight")) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias")) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight")) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias")) for i in range(config.vision_config.num_hidden_layers): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",)) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias")) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight")) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val def read_in_q_v_bias(state_dict, config): for i in range(config.vision_config.num_hidden_layers): # read in original q and v biases q_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias") v_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias") # next, set bias in the state dict qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) state_dict[f"vision_model.encoder.layers.{i}.self_attn.qkv.bias"] = qkv_bias def get_blip2_config(model_name, eos_token_id): image_size = 364 if "coco" in model_name else 224 vision_config = Blip2VisionConfig(image_size=image_size).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: text_config = OPTConfig.from_pretrained("facebook/opt-2.7b", eos_token_id=eos_token_id).to_dict() elif "opt-6.7b" in model_name: text_config = OPTConfig.from_pretrained("facebook/opt-6.7b", eos_token_id=eos_token_id).to_dict() elif "t5-xl" in model_name: text_config = T5Config.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1).to_dict() elif "t5-xxl" in model_name: text_config = T5Config.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1).to_dict() config = Blip2Config(vision_config=vision_config, text_config=text_config) return config, image_size @torch.no_grad() def convert_blip2_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): """ Copy/paste/tweak model's weights to Transformers design. """ tokenizer = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b") if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl") ) eos_token_id = tokenizer("\n", add_special_tokens=False).input_ids[0] config, image_size = get_blip2_config(model_name, eos_token_id=eos_token_id) hf_model = Blip2ForConditionalGeneration(config).eval() model_name_to_original = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } name, type = model_name_to_original[model_name] # note: this script is tested on 2 GPUs, as models are compared in float32, # which requires quite some memory. Hence loading both on a # separate device is the easiest to compare hf_model_device = "cuda:0" if torch.cuda.is_available() else "cpu" lavis_device = "cuda:1" if torch.cuda.is_available() else "cpu" # load original model print("Loading original model...") original_model, vis_processors, _ = load_model_and_preprocess( name=name, model_type=type, is_eval=True, device=lavis_device ) original_model.eval() print("Done!") # update state dict keys state_dict = original_model.state_dict() rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("Qformer.bert"): key = key.replace("Qformer.bert", "qformer") if "attention.self" in key: key = key.replace("self", "attention") if "opt_proj" in key: key = key.replace("opt_proj", "language_projection") if "t5_proj" in key: key = key.replace("t5_proj", "language_projection") if key.startswith("opt"): key = key.replace("opt", "language") if key.startswith("t5"): key = key.replace("t5", "language") state_dict[key] = val # read in qv biases read_in_q_v_bias(state_dict, config) missing_keys, unexpected_keys = hf_model.load_state_dict(state_dict, strict=False) assert len(missing_keys) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] image = load_demo_image() original_pixel_values = vis_processors["eval"](image).unsqueeze(0).to(lavis_device) input_ids = tokenizer(["\n"], return_tensors="pt").input_ids.to(hf_model_device) # create processor image_processor = BlipImageProcessor( size={"height": image_size, "width": image_size}, image_mean=OPENAI_CLIP_MEAN, image_std=OPENAI_CLIP_STD ) processor = Blip2Processor(image_processor=image_processor, tokenizer=tokenizer) pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(hf_model_device) # make sure processor creates exact same pixel values assert torch.allclose(pixel_values, original_pixel_values.to(pixel_values.device)) original_model.to(lavis_device) hf_model.to(hf_model_device) with torch.no_grad(): if "opt" in model_name: original_logits = original_model({"image": original_pixel_values, "text_input": [""]}).logits logits = hf_model(pixel_values, input_ids).logits else: original_logits = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits labels = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100) logits = hf_model(pixel_values, input_ids, labels=labels).logits assert original_logits.shape == logits.shape print("First values of original logits:", original_logits[0, :3, :3]) print("First values of HF logits:", logits[0, :3, :3]) # assert values assert torch.allclose(original_logits.to(logits.device), logits, atol=1e-4) print("Looks ok!") print("Generating a caption...") prompt = "Question: what object is in this image? Answer:" input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(hf_model_device) set_seed(42) original_outputs = original_model.generate( {"image": original_pixel_values, "prompt": prompt}, use_nucleus_sampling=True ) outputs = hf_model.generate( pixel_values, input_ids, do_sample=True, num_beams=5, max_length=30, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1.0, temperature=1, ) output_text = processor.batch_decode(outputs, skip_special_tokens=True) output_text = [text.strip() for text in output_text] print("Original generation:", original_outputs) print("HF generation:", output_text) if pytorch_dump_folder_path is not None: processor.save_pretrained(pytorch_dump_folder_path) hf_model.save_pretrained(pytorch_dump_folder_path) if push_to_hub: processor.push_to_hub(f"nielsr/{model_name}") hf_model.push_to_hub(f"nielsr/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() choices = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) args = parser.parse_args() convert_blip2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py", "repo_id": "transformers", "token_count": 5162 }
334
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Bros checkpoints.""" import argparse import bros # original repo import torch from transformers import BrosConfig, BrosModel, BrosProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_configs(model_name): bros_config = BrosConfig.from_pretrained(model_name) return bros_config def remove_ignore_keys_(state_dict): ignore_keys = [ "embeddings.bbox_sinusoid_emb.inv_freq", ] for k in ignore_keys: state_dict.pop(k, None) def rename_key(name): if name == "embeddings.bbox_projection.weight": name = "bbox_embeddings.bbox_projection.weight" if name == "embeddings.bbox_sinusoid_emb.x_pos_emb.inv_freq": name = "bbox_embeddings.bbox_sinusoid_emb.x_pos_emb.inv_freq" if name == "embeddings.bbox_sinusoid_emb.y_pos_emb.inv_freq": name = "bbox_embeddings.bbox_sinusoid_emb.y_pos_emb.inv_freq" return name def convert_state_dict(orig_state_dict, model): # rename keys for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) orig_state_dict[rename_key(key)] = val # remove ignore keys remove_ignore_keys_(orig_state_dict) return orig_state_dict def convert_bros_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): # load original model original_model = bros.BrosModel.from_pretrained(model_name).eval() # load HuggingFace Model bros_config = get_configs(model_name) model = BrosModel.from_pretrained(model_name, config=bros_config) model.eval() state_dict = original_model.state_dict() new_state_dict = convert_state_dict(state_dict, model) model.load_state_dict(new_state_dict) # verify results # original BROS model require 4 points (8 float values) for each bbox, prepare bbox with [batch_size, seq_len, 8] shape bbox = torch.tensor( [ [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.4396, 0.6720, 0.4659, 0.6720, 0.4659, 0.6850, 0.4396, 0.6850], [0.4698, 0.6720, 0.4843, 0.6720, 0.4843, 0.6850, 0.4698, 0.6850], [0.4698, 0.6720, 0.4843, 0.6720, 0.4843, 0.6850, 0.4698, 0.6850], [0.2047, 0.6870, 0.2730, 0.6870, 0.2730, 0.7000, 0.2047, 0.7000], [0.2047, 0.6870, 0.2730, 0.6870, 0.2730, 0.7000, 0.2047, 0.7000], [1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000], ] ] ) processor = BrosProcessor.from_pretrained(model_name) encoding = processor("His name is Rocco.", return_tensors="pt") encoding["bbox"] = bbox original_hidden_states = original_model(**encoding).last_hidden_state # pixel_values = processor(image, return_tensors="pt").pixel_values last_hidden_states = model(**encoding).last_hidden_state assert torch.allclose(original_hidden_states, last_hidden_states, atol=1e-4) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model.push_to_hub("jinho8345/" + model_name.split("/")[-1], commit_message="Update model") processor.push_to_hub("jinho8345/" + model_name.split("/")[-1], commit_message="Update model") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jinho8345/bros-base-uncased", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) args = parser.parse_args() convert_bros_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/bros/convert_bros_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/bros/convert_bros_to_pytorch.py", "repo_id": "transformers", "token_count": 2040 }
335
# coding=utf-8 # Copyright Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for CANINE.""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "nielsr/canine-s": 2048, } # Unicode defines 1,114,112 total “codepoints” UNICODE_VOCAB_SIZE = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py PAD = 0 CLS = 0xE000 SEP = 0xE001 BOS = 0xE002 MASK = 0xE003 RESERVED = 0xE004 # Maps special codepoints to human-readable names. SPECIAL_CODEPOINTS: Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. SPECIAL_CODEPOINTS_BY_NAME: Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class CanineTokenizer(PreTrainedTokenizer): r""" Construct a CANINE tokenizer (i.e. a character splitter). It turns text into a sequence of characters, and then converts each character into its Unicode code point. [`CanineTokenizer`] inherits from [`PreTrainedTokenizer`]. Refer to superclass [`PreTrainedTokenizer`] for usage examples and documentation concerning parameters. Args: model_max_length (`int`, *optional*, defaults to 2048): The maximum sentence length the model accepts. """ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, bos_token=chr(CLS), eos_token=chr(SEP), sep_token=chr(SEP), cls_token=chr(CLS), pad_token=chr(PAD), mask_token=chr(MASK), add_prefix_space=False, model_max_length=2048, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token # Creates a mapping for looking up the IDs of special symbols. self._special_codepoints: Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): self._special_codepoints[name] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. self._special_codepoint_strings: Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } self._unicode_vocab_size = UNICODE_VOCAB_SIZE self._num_special_tokens = len(self._special_codepoints) super().__init__( bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, model_max_length=model_max_length, **kwargs, ) @property def vocab_size(self) -> int: return self._unicode_vocab_size def get_vocab(self): vocab = {chr(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: """Tokenize a string (i.e. perform character splitting).""" return list(text) def _convert_token_to_id(self, token: str) -> int: """Converts a token (i.e. a Unicode character) in an id (i.e. its integer Unicode code point value).""" try: return ord(token) except TypeError: raise ValueError(f"invalid token: '{token}'") def _convert_id_to_token(self, index: int) -> str: """ Converts a Unicode code point (integer) in a token (str). In case it's a special code point, convert to human-readable format. """ try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(index) except TypeError: raise ValueError(f"invalid id: {index}") def convert_tokens_to_string(self, tokens): return "".join(tokens) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CANINE sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] result = cls + token_ids_0 + sep if token_ids_1 is not None: result += token_ids_1 + sep return result def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) result = [1] + ([0] * len(token_ids_0)) + [1] if token_ids_1 is not None: result += ([0] * len(token_ids_1)) + [1] return result def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CANINE sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] result = len(cls + token_ids_0 + sep) * [0] if token_ids_1 is not None: result += len(token_ids_1 + sep) * [1] return result # CanineTokenizer has no vocab file def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None): return ()
transformers/src/transformers/models/canine/tokenization_canine.py/0
{ "file_path": "transformers/src/transformers/models/canine/tokenization_canine.py", "repo_id": "transformers", "token_count": 3965 }
336
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from clip import load from transformers import CLIPConfig, CLIPModel def copy_attn_layer(hf_attn_layer, pt_attn_layer): q_proj, k_proj, v_proj = pt_attn_layer.in_proj_weight.chunk(3, dim=0) q_proj_bias, k_proj_bias, v_proj_bias = pt_attn_layer.in_proj_bias.chunk(3, dim=0) out_proj_weights = pt_attn_layer.out_proj.weight out_proj_bias = pt_attn_layer.out_proj.bias hf_attn_layer.q_proj.weight.data = q_proj hf_attn_layer.q_proj.bias.data = q_proj_bias hf_attn_layer.k_proj.weight.data = k_proj hf_attn_layer.k_proj.bias.data = k_proj_bias hf_attn_layer.v_proj.weight.data = v_proj hf_attn_layer.v_proj.bias.data = v_proj_bias hf_attn_layer.out_proj.weight = out_proj_weights hf_attn_layer.out_proj.bias = out_proj_bias def copy_mlp(hf_mlp, pt_mlp): copy_linear(hf_mlp.fc1, pt_mlp.c_fc) copy_linear(hf_mlp.fc2, pt_mlp.c_proj) def copy_linear(hf_linear, pt_linear): hf_linear.weight = pt_linear.weight hf_linear.bias = pt_linear.bias def copy_layer(hf_layer, pt_layer): # copy layer norms copy_linear(hf_layer.layer_norm1, pt_layer.ln_1) copy_linear(hf_layer.layer_norm2, pt_layer.ln_2) # copy MLP copy_mlp(hf_layer.mlp, pt_layer.mlp) # copy attn copy_attn_layer(hf_layer.self_attn, pt_layer.attn) def copy_layers(hf_layers, pt_layers): for hf_layer, pt_layer in zip(hf_layers, pt_layers): copy_layer(hf_layer, pt_layer) def copy_encoder(hf_encoder, pt_model): # copy embeds hf_encoder.embeddings.token_embedding.weight = pt_model.token_embedding.weight hf_encoder.embeddings.position_embedding.weight.data = pt_model.positional_embedding # copy layer norm copy_linear(hf_encoder.final_layer_norm, pt_model.ln_final) # copy hidden layers copy_layers(hf_encoder.encoder.layers, pt_model.transformer.resblocks) def copy_text_model_and_projection(hf_model, pt_model): # copy projection hf_model.text_projection.weight.data = pt_model.text_projection.data.T # copy text encoder copy_encoder(hf_model.text_model, pt_model) def copy_vison_model_and_projection(hf_model, pt_model): # copy projection hf_model.visual_projection.weight.data = pt_model.visual.proj.data.T # copy layer norms copy_linear(hf_model.vision_model.pre_layrnorm, pt_model.visual.ln_pre) copy_linear(hf_model.vision_model.post_layernorm, pt_model.visual.ln_post) # copy embeds hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_model.visual.conv1.weight.data hf_model.vision_model.embeddings.class_embedding = pt_model.visual.class_embedding hf_model.vision_model.embeddings.position_embedding.weight.data = pt_model.visual.positional_embedding.data # copy encoder copy_layers(hf_model.vision_model.encoder.layers, pt_model.visual.transformer.resblocks) @torch.no_grad() def convert_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = CLIPConfig.from_pretrained(config_path) else: config = CLIPConfig(projection_dim=512, text_config={}, vision_config={}) hf_model = CLIPModel(config).eval() pt_model, _ = load(checkpoint_path, device="cpu", jit=False) pt_model = pt_model.eval() copy_text_model_and_projection(hf_model, pt_model) copy_vison_model_and_projection(hf_model, pt_model) hf_model.logit_scale = pt_model.logit_scale input_ids = torch.arange(0, 77).unsqueeze(0) pixel_values = torch.randn(1, 3, 224, 224) hf_outputs = hf_model(input_ids=input_ids, pixel_values=pixel_values, return_dict=True) hf_logits_per_image = hf_outputs.logits_per_image hf_logits_per_text = hf_outputs.logits_per_text pt_logits_per_image, pt_logits_per_text = pt_model(pixel_values, input_ids) assert torch.allclose(hf_logits_per_image, pt_logits_per_image, atol=1e-3) assert torch.allclose(hf_logits_per_text, pt_logits_per_text, atol=1e-3) hf_model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") args = parser.parse_args() convert_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
transformers/src/transformers/models/clip/convert_clip_original_pytorch_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/clip/convert_clip_original_pytorch_to_hf.py", "repo_id": "transformers", "token_count": 2176 }
337
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Weights conversion script for CLVP """ import argparse import os import torch from huggingface_hub import hf_hub_download from transformers import ClvpConfig, ClvpModelForConditionalGeneration _MODELS = { "clvp": "https://huggingface.co/jbetker/tortoise-tts-v2/blob/main/.models/clvp2.pth", "decoder": "https://huggingface.co/jbetker/tortoise-tts-v2/blob/main/.models/autoregressive.pth", } dim = 1024 sub_dim = dim // 16 CLVP_ENCODERS_MAPPING = { "text_transformer.transformer.attn_layers": "text_encoder_model", "speech_transformer.transformer.attn_layers": "speech_encoder_model", "text_transformer.transformer.norm": "text_encoder_model.final_layer_norm", "speech_transformer.transformer.norm": "speech_encoder_model.final_layer_norm", "to_text_latent": "text_encoder_model.projection", "to_speech_latent": "speech_encoder_model.projection", "text_emb": "text_encoder_model.token_embedding", "speech_emb": "speech_encoder_model.token_embedding", "1.wrap.net.0": "mlp.fc1", "1.wrap.net.3": "mlp.fc2", "1.wrap": "self_attn", "to_out": "out_proj", "to_q": "q_proj", "to_k": "k_proj", "to_v": "v_proj", "temperature": "logit_scale", } CLVP_DECODER_MAPPING = { "conditioning_encoder.init": "conditioning_encoder.mel_conv", "conditioning_encoder.attn": "conditioning_encoder.mel_attn_blocks", "mel_attn_blocks": "group_norms", ".norm.weight": ".weight", ".norm.bias": ".bias", "text_embedding": "conditioning_encoder.text_token_embedding", "text_pos_embedding.emb": "conditioning_encoder.text_position_embedding", "final_norm": "speech_decoder_model.final_norm", "mel_head": "speech_decoder_model.lm_head", "gpt.ln_f": "speech_decoder_model.model.decoder.layer_norm", "mel_embedding": "speech_decoder_model.model.decoder.input_embeds_layer", "mel_pos_embedding.emb": "speech_decoder_model.model.decoder.position_embeds_layer", "gpt.h": "speech_decoder_model.model.decoder.layers", "ln_1": "input_layernorm", "ln_2": "post_attention_layernorm", } def update_index(present_index): if present_index % 2 == 0: return int(present_index / 2) else: return int((present_index - 1) / 2) def convert_encoder_weights(original_weights): converted_weights = {} original_weights_keys = sorted(original_weights.keys()) for original_key in original_weights_keys: updated_key = original_key # for input_rmsnorm.weight and post_attention_rmsnorm.weight if "0.0.g" in updated_key: present_index = updated_key.split(".")[4] if int(present_index) % 2 == 0: updated_key = updated_key.replace("0.0.g", "input_rmsnorm.weight") else: updated_key = updated_key.replace("0.0.g", "post_attention_rmsnorm.weight") if "transformer.attn_layers.layers" in updated_key: present_index = updated_key.split(".")[4] updated_index = update_index(int(present_index)) updated_key = updated_key.replace( f"transformer.attn_layers.layers.{present_index}", f"transformer.attn_layers.layers.{updated_index}" ) for k, v in CLVP_ENCODERS_MAPPING.items(): if k in updated_key: updated_key = updated_key.replace(k, v) converted_weights[updated_key] = original_weights.pop(original_key) return converted_weights def convert_decoder_weights(original_weights): converted_weights = {} original_weights_keys = sorted(original_weights.keys()) for original_key in original_weights_keys: updated_key = original_key if len(updated_key.split(".")) > 3: index, attr = updated_key.split(".")[2], updated_key.split(".")[-1] # for decoder attention if "attn.c_attn" in updated_key: if attr == "weight": slice1, slice2, slice3 = original_weights[updated_key].squeeze(-1).T.split(split_size=dim, dim=0) else: slice1, slice2, slice3 = original_weights[updated_key].split(split_size=dim, dim=0) converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.q_proj.{attr}"] = slice1 converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.k_proj.{attr}"] = slice2 converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.v_proj.{attr}"] = slice3 continue if "attn.c_proj" in updated_key: converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.out_proj.{attr}"] = ( original_weights[updated_key].squeeze(-1).T ) continue if "attn.bias" in updated_key or "attn.masked_bias" in updated_key or "text_head" in updated_key: original_weights.pop(updated_key) continue # conditional encoder attention if "qkv" in updated_key: if attr == "weight": slice1, slice2, slice3 = original_weights[updated_key].squeeze(-1).split(split_size=dim, dim=0) else: slice1, slice2, slice3 = original_weights[updated_key].split(split_size=dim, dim=0) indices = torch.arange(dim) index1, index2, index3 = ( indices.unfold(0, sub_dim, sub_dim * 3).flatten(), indices[sub_dim:].unfold(0, sub_dim, sub_dim * 3).flatten(), indices[2 * sub_dim :].unfold(0, sub_dim, sub_dim * 3).flatten(), ) converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.q_proj.{attr}"] = torch.concatenate( [slice1[index1], slice2[index3], slice3[index2]], axis=0, ) converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.k_proj.{attr}"] = torch.concatenate( [slice1[index2], slice2[index1], slice3[index3]], axis=0, ) converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.v_proj.{attr}"] = torch.concatenate( [slice1[index3], slice2[index2], slice3[index1]], axis=0, ) continue if "proj_out" in updated_key: converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.out_proj.{attr}"] = original_weights[ updated_key ].squeeze(-1) continue for k, v in CLVP_DECODER_MAPPING.items(): if k in updated_key: updated_key = updated_key.replace(k, v) converted_weights[updated_key] = original_weights.pop(original_key) return converted_weights def _download(url: str, root: str): repo_id = f"{url.split('/')[3]}/{url.split('/')[4]}" filename = f"{url.split('/')[-2]}/{url.split('/')[-1]}" hf_hub_download( repo_id=repo_id, filename=filename, force_filename=root, local_dir_use_symlinks=False, ) def convert_clvp_weights(checkpoint_path, pytorch_dump_folder_path): converted_checkpoint = {} for each_model_name, each_model_url in _MODELS.items(): each_model_path = os.path.join(checkpoint_path, each_model_url.split("/")[-1]) if not os.path.exists(each_model_path): print(f"\n{each_model_name} was not found! Downloading it to {each_model_path}") _download(url=each_model_url, root=each_model_path) if each_model_name == "clvp": clvp_checkpoint = torch.load(each_model_path, map_location="cpu") else: decoder_checkpoint = torch.load(each_model_path, map_location="cpu") # Converting the weights converted_checkpoint.update(**convert_encoder_weights(clvp_checkpoint)) converted_checkpoint.update(**convert_decoder_weights(decoder_checkpoint)) config = ClvpConfig.from_pretrained("susnato/clvp_dev") model = ClvpModelForConditionalGeneration(config) model.load_state_dict(converted_checkpoint, strict=True) model.save_pretrained(pytorch_dump_folder_path) print(f"Model saved at {pytorch_dump_folder_path}!") if __name__ == "__main__": parser = argparse.ArgumentParser() # # Required parameters parser.add_argument( "--checkpoint_path", type=str, help="Path to the folder of downloaded checkpoints. (Please enter full path)" ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model. (Please enter full path)", ) args = parser.parse_args() convert_clvp_weights(args.checkpoint_path, args.pytorch_dump_folder_path)
transformers/src/transformers/models/clvp/convert_clvp_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/clvp/convert_clvp_to_hf.py", "repo_id": "transformers", "token_count": 4095 }
338
# coding=utf-8 # Copyright 2024 Cohere team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is based on the LLama model definition file in transformers """PyTorch Cohere model.""" import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, StaticCache from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_cohere import CohereConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "CohereConfig" # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) class CohereLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-5, bias=False): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) if bias else None self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) mean = hidden_states.mean(-1, keepdim=True) variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True) hidden_states = (hidden_states - mean) * torch.rsqrt(variance + self.variance_epsilon) hidden_states = self.weight.to(torch.float32) * hidden_states if self.bias is not None: hidden_states = hidden_states + self.bias.to(torch.float32) return hidden_states.to(input_dtype) ALL_LAYERNORM_LAYERS.append(CohereLayerNorm) class CohereRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): super().__init__() self.scaling_factor = scaling_factor self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) @torch.no_grad() def forward(self, x, position_ids): # x: [bs, num_attention_heads, seq_len, head_size] inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.repeat_interleave(freqs, 2, dim=-1) cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def rotate_half(x): # Split and rotate x1 = x[..., ::2] x2 = x[..., 1::2] rot_x = torch.stack([-x2, x1], dim=-1).flatten(-2) return rot_x # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere class CohereMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] # Ignore copy def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) # Copied from transformers.models.llama.modeling_llama.LlamaAttention Llama->Cohere class CohereAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: CohereConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) self._init_rope() # Ignore copy def _init_rope(self): self.rotary_emb = CohereRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) # Ignore copy def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) past_key_value = getattr(self, "past_key_value", past_key_value) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; position_ids needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 Llama->Cohere class CohereFlashAttention2(CohereAttention): """ Cohere flash attention module. This module inherits from `CohereAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) past_key_value = getattr(self, "past_key_value", past_key_value) if past_key_value is not None: # sin and cos are specific to RoPE models; position_ids needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # Ignore copy # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (CohereLayerNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in CohereFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention Llama->Cohere class CohereSdpaAttention(CohereAttention): """ Cohere attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `CohereAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from CohereAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "CohereModel is using CohereSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) # In case static cache is used, it is an instance attribute. past_key_value = getattr(self, "past_key_value", past_key_value) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask # if attention_mask is not None and cache_position is not None: if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and causal_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value COHERE_ATTENTION_CLASSES = { "eager": CohereAttention, "flash_attention_2": CohereFlashAttention2, "sdpa": CohereSdpaAttention, } class CohereDecoderLayer(nn.Module): def __init__(self, config: CohereConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = COHERE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = CohereMLP(config) self.input_layernorm = CohereLayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states_attention, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) # Fully Connected hidden_states_mlp = self.mlp(hidden_states) # Add everything together hidden_states = residual + hidden_states_attention + hidden_states_mlp outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs COHERE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CohereConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Cohere Model outputting raw hidden-states without any specific head on top.", COHERE_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->Cohere class CoherePreTrainedModel(PreTrainedModel): config_class = CohereConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["CohereDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None): if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache: raise ValueError( "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" ) for layer in self.model.layers: device = layer.input_layernorm.weight.device if hasattr(self.config, "_pre_quantization_dtype"): dtype = self.config._pre_quantization_dtype else: dtype = layer.self_attn.o_proj.weight.dtype layer.self_attn.past_key_value = cache_cls( self.config, max_batch_size, max_cache_len, device=device, dtype=dtype ) def _reset_cache(self): for layer in self.model.layers: layer.self_attn.past_key_value = None COHERE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Cohere Model outputting raw hidden-states without any specific head on top.", COHERE_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaModel with Llama->Cohere class CohereModel(CoherePreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`CohereDecoderLayer`] Args: config: CohereConfig """ # Ignore copy def __init__(self, config: CohereConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [CohereDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = CohereLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False # Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class. # NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_position_embeddings`. causal_mask = torch.full( (config.max_position_embeddings, config.max_position_embeddings), fill_value=True, dtype=torch.bool ) self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # Ignore copy @add_start_docstrings_to_model_forward(COHERE_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) past_seen_tokens = 0 if use_cache: # kept for BC (cache positions) if not isinstance(past_key_values, StaticCache): past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_seen_tokens = past_key_values.get_seq_length() if cache_position is None: if isinstance(past_key_values, StaticCache): raise ValueError("cache_position is a required argument when using StaticCache.") cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = ( next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache ) if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 def _update_causal_mask(self, attention_mask, input_tensor, cache_position): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] if hasattr(self.layers[0].self_attn, "past_key_value"): # static cache target_length = self.config.max_position_embeddings else: # dynamic cache target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1 ) causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) elif attention_mask.dim() == 4: # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with # cache. In that case, the 4D attention mask attends to the newest tokens only. if attention_mask.shape[-2] < cache_position[0] + sequence_length: offset = cache_position[0] else: offset = 0 mask_shape = attention_mask.shape mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype causal_mask[ : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3] ] = mask_slice if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" ): # TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400). is_tracing = ( torch.jit.is_tracing() or isinstance(input_tensor, torch.fx.Proxy) or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) ) if not is_tracing and torch.any(attention_mask != 1): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with Llama->Cohere class CohereForCausalLM(CoherePreTrainedModel): _tied_weights_keys = ["lm_head.weight"] # Ignore copy def __init__(self, config): super().__init__(config) self.model = CohereModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.logit_scale = config.logit_scale self.tie_word_embeddings = config.tie_word_embeddings # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model # Ignore copy @add_start_docstrings_to_model_forward(COHERE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >> from transformers import AutoTokenizer, CohereForCausalLM >> model = CohereForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01") >> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01") >> prompt = "Hey, are you conscious? Can you talk to me?" >> inputs = tokenizer(prompt, return_tensors="pt") >> # Generate >> generate_ids = model.generate(inputs.input_ids, max_length=30) >> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits * self.logit_scale logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs ): # With static cache, the `past_key_values` is None # TODO joao: standardize interface for the different Cache classes and remove of this if has_static_cache = False if past_key_values is None: past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None) has_static_cache = past_key_values is not None past_length = 0 if past_key_values is not None: if isinstance(past_key_values, Cache): past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() max_cache_length = ( torch.tensor(past_key_values.get_max_length(), device=input_ids.device) if past_key_values.get_max_length() is not None else None ) cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 # TODO: use `next_tokens` directly instead. model_inputs = {"input_ids": input_ids.contiguous()} input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] if cache_position is None: cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) else: cache_position = cache_position[-input_length:] if has_static_cache: past_key_values = None model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
transformers/src/transformers/models/cohere/modeling_cohere.py/0
{ "file_path": "transformers/src/transformers/models/cohere/modeling_cohere.py", "repo_id": "transformers", "token_count": 24775 }
339
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ConvNeXT model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/convnext-tiny-224": "https://huggingface.co/facebook/convnext-tiny-224/resolve/main/config.json", # See all ConvNeXT models at https://huggingface.co/models?filter=convnext } class ConvNextConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ConvNextModel`]. It is used to instantiate an ConvNeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ConvNeXT [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_size (`int`, optional, defaults to 4): Patch size to use in the patch embedding layer. num_stages (`int`, optional, defaults to 4): The number of stages in the model. hidden_sizes (`List[int]`, *optional*, defaults to [96, 192, 384, 768]): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to [3, 3, 9, 3]): Depth (number of blocks) for each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. layer_scale_init_value (`float`, *optional*, defaults to 1e-6): The initial value for the layer scale. drop_path_rate (`float`, *optional*, defaults to 0.0): The drop rate for stochastic depth. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import ConvNextConfig, ConvNextModel >>> # Initializing a ConvNext convnext-tiny-224 style configuration >>> configuration = ConvNextConfig() >>> # Initializing a model (with random weights) from the convnext-tiny-224 style configuration >>> model = ConvNextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "convnext" def __init__( self, num_channels=3, patch_size=4, num_stages=4, hidden_sizes=None, depths=None, hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-12, layer_scale_init_value=1e-6, drop_path_rate=0.0, image_size=224, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.patch_size = patch_size self.num_stages = num_stages self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes self.depths = [3, 3, 9, 3] if depths is None else depths self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.image_size = image_size self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) class ConvNextOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-5
transformers/src/transformers/models/convnext/configuration_convnext.py/0
{ "file_path": "transformers/src/transformers/models/convnext/configuration_convnext.py", "repo_id": "transformers", "token_count": 2386 }
340
# coding=utf-8 # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CPMAnt""" import math from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_cpmant import CpmAntConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openbmb/cpm-ant-10b" _CONFIG_FOR_DOC = "CpmAntConfig" CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openbmb/cpm-ant-10b", # See all CPMAnt models at https://huggingface.co/models?filter=cpmant ] class CpmAntLayerNorm(nn.Module): """ We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details." """ def __init__(self, config: CpmAntConfig): super().__init__() self.eps = config.eps self.dim_norm = config.hidden_size self.weight = nn.Parameter(torch.empty(config.hidden_size)) def forward(self, hidden_states: torch.Tensor): """ Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) """ if hidden_states.size(-1) != self.dim_norm: raise AssertionError("hidden_states.size(-1) != self.dim_norm") old_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight return hidden_states class CpmAntAttention(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.dim_model = config.hidden_size self.num_heads = config.num_attention_heads self.dim_head = config.dim_head self.project_q = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) self.project_k = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) self.project_v = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False) self.attention_out = nn.Linear(self.num_heads * self.dim_head, self.dim_model, bias=False) self.softmax = torch.nn.Softmax(dim=-1) if config.dropout_p is not None: self.dropout = torch.nn.Dropout(p=config.dropout_p) else: self.dropout = None def forward( self, hidden_q: torch.Tensor, hidden_kv: torch.Tensor, attention_mask: torch.BoolTensor, position_bias: torch.Tensor, output_attentions: Optional[bool] = False, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_q (`torch.Tensor`): Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)): Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)` attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Avoid invalid areas to participate in the calculation of self-attention. position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Provide positional information to self-attention block. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*): Cached past key and value projection states. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ batch_size = hidden_q.size(0) len_q = hidden_q.size(1) len_k = hidden_kv.size(1) query = self.project_q(hidden_q) key = self.project_k(hidden_kv) value = self.project_v(hidden_kv) query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3) key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) if past_key_values is not None: key = torch.cat([past_key_values[0], key], dim=-2) value = torch.cat([past_key_values[1], value], dim=-2) len_k = key.size(-2) # (batch_size, num_heads, len_q, dim_head) @ (batch_size, num_heads, dim_head, len_k) -> (batch_size, num_heads, len_q, len_k) score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head) score = score + position_bias score = torch.masked_fill( score, attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype), ) score = self.softmax(score) score = torch.masked_fill( score, attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), torch.scalar_tensor(0, device=score.device, dtype=score.dtype), ) if output_attentions: attn_weights = score else: attn_weights = None if self.dropout is not None: score = self.dropout(score) # (batch_size, num_heads, len_q, len_k) @ (batch_size, num_heads, len_k, dim_head) -> (batch_size, num_heads, len_q, dim_head) score = torch.matmul(score, value) score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3) score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head) score = self.attention_out(score) past_key_values = None if use_cache: past_key_values = (key, value) return score, attn_weights, past_key_values class CpmAntSelfAttentionBlock(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.layernorm_before_attention = CpmAntLayerNorm(config) self.self_attention = CpmAntAttention(config) if config.dropout_p: self.dropout = torch.nn.Dropout(config.dropout_p) else: self.dropout = None def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_bias: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Avoid invalid areas to participate in the calculation of self-attention. position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): Provide positional information to self-attention block. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. past_key_values (`Tuple(torch.FloatTensor)`, *optional*): Cached past key and value projection states. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ outputs = self.layernorm_before_attention(hidden_states) outputs = self.self_attention( outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache ) outputs, attn_weights, current_key_value = outputs if self.dropout is not None: outputs = self.dropout(outputs) hidden_states = hidden_states + outputs return hidden_states, attn_weights, current_key_value class CpmAntDenseGatedACT(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.w_0 = nn.Linear(config.hidden_size, config.dim_ff, bias=False) self.w_1 = nn.Linear(config.hidden_size, config.dim_ff, bias=False) self.act = torch.nn.GELU() def forward(self, hidden_states: torch.Tensor): """Transform an input tensor from one feature space to another via a nonlinear operation Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) """ gate_score = self.act(self.w_0(hidden_states)) hidden_states = self.w_1(hidden_states) hidden_states = gate_score * hidden_states return hidden_states class CpmAntFeedForward(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.w_in = CpmAntDenseGatedACT(config) if config.dropout_p is not None: self.dropout = torch.nn.Dropout(config.dropout_p) else: self.dropout = None self.w_out = nn.Linear(config.dim_ff, config.hidden_size, bias=False) def forward(self, hidden_states: torch.Tensor): """ Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) """ hidden_states = self.w_in(hidden_states) if self.dropout is not None: hidden_states = self.dropout(hidden_states) hidden_states = self.w_out(hidden_states) return hidden_states class CpmAntFFNBlock(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.layernorm_before_ffn = CpmAntLayerNorm(config) self.ffn = CpmAntFeedForward(config) if config.dropout_p: self.dropout = torch.nn.Dropout(config.dropout_p) else: self.dropout = None def forward( self, hidden_states: torch.Tensor, ): """ Args: hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): Hidden states before feed forward layer. """ ln_outputs = self.layernorm_before_ffn(hidden_states) outputs = self.ffn(ln_outputs) if self.dropout is not None: outputs = self.dropout(outputs) hidden_states = hidden_states + outputs return hidden_states class CpmAntTransformerBlock(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.self_att = CpmAntSelfAttentionBlock(config) self.ffn = CpmAntFFNBlock(config) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_bias: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_states (`torch.Tensor`): Input to the layer of shape `(batch, seq_len, dim_model)` attention_mask (`torch.Tensor`): Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` position_bias (`torch.Tensor`): Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): Cached past key and value projection states use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ hidden_states = self.self_att( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, past_key_values=past_key_values, use_cache=use_cache, ) hidden_states, attn_weights, current_key_value = hidden_states hidden_states = self.ffn(hidden_states) return hidden_states, attn_weights, current_key_value class CpmAntEncoder(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.num_layers = config.num_hidden_layers self.layers = nn.ModuleList([CpmAntTransformerBlock(config) for ith in range(self.num_layers)]) self.output_layernorm = CpmAntLayerNorm(config) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_bias: torch.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: Optional[bool] = None, ): """ Args: hidden_states (`torch.Tensor`): Input to the layer of shape `(batch, seq_len, dim_model)` attention_mask (`torch.Tensor`): Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` position_bias (`torch.Tensor`): Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): Cached past key and value projection states use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None current_key_values = () if use_cache else None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, position_bias, output_attentions=output_attentions, past_key_values=past_key_values[i] if past_key_values else None, use_cache=use_cache, ) hidden_states, attn_weights, current_key_value = layer_outputs if output_attentions: all_self_attns += (attn_weights,) if current_key_value is not None: current_key_values = current_key_values + (current_key_value,) hidden_states = self.output_layernorm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) return hidden_states, current_key_values, all_hidden_states, all_self_attns # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->CPMAnt class CpmAntIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class CpmAntSegmentPositionEmbedding(nn.Module): def __init__(self, config: CpmAntConfig): super().__init__() self.num_heads = config.num_attention_heads self.num_buckets = config.position_bias_num_buckets self.max_distance = config.position_bias_max_distance self.num_segments = config.segment_types self.relative_attention_bias = nn.Parameter( torch.empty( config.segment_types * config.segment_types + config.position_bias_num_buckets, config.num_attention_heads, ) ) def forward( self, key_pos: torch.Tensor, query_pos: torch.Tensor, key_segment: torch.Tensor, query_segment: torch.Tensor, ): with torch.no_grad(): batch = key_pos.size(0) keylen = key_pos.size(1) querylen = query_pos.size(1) if key_pos.size(0) != query_pos.size(0): raise AssertionError( f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!" ) if keylen != key_segment.size(1) or querylen != query_segment.size(1): raise AssertionError( f"keylen should be equal to key_segment.size(1), but got {keylen} and {key_segment.size(1)}!" ) if querylen != query_segment.size(1): raise AssertionError( f"querylen should be equal to query_segment.size(1), but got {querylen} and {query_segment.szie(1)}!" ) key_pos = key_pos.view(batch, -1, keylen) query_pos = query_pos.view(batch, querylen, -1) key_segment = key_segment.view(batch, -1, keylen) query_segment = query_segment.view(batch, querylen, -1) relative_position_bucket = self._segment_relative_position_bucket(query_segment, key_segment) relative_position_bucket = relative_position_bucket + self.num_buckets # (batch, len_q, len_k) absolute_position_bucket = self._position_bucket( torch.arange(keylen, dtype=torch.int32, device=relative_position_bucket.device)[None, :] - torch.arange(querylen, dtype=torch.int32, device=relative_position_bucket.device)[:, None], num_buckets=self.num_buckets, max_distance=self.max_distance, ) relative_position_bucket = torch.where( (key_segment == query_segment), absolute_position_bucket[None, :, :], relative_position_bucket, ) # (batch, len_q, len_k, num_heads) embeds = F.embedding(relative_position_bucket, self.relative_attention_bias) # (batch, num_heads, len_q, len_k) embeds = embeds.permute(0, 3, 1, 2).contiguous() return embeds def _segment_relative_position_bucket(self, query_segment, key_segment): return query_segment * self.num_segments + key_segment def _position_bucket(self, relative_position, num_buckets=32, max_distance=128): relative_buckets = 0 # always bidirectional in CPMAnt num_buckets //= 2 relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets relative_position = torch.abs(relative_position) max_exact = num_buckets // 2 is_small = relative_position < max_exact relative_postion_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.int32) relative_postion_if_large = torch.min( relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1), ) relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large) return relative_buckets # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->CPMAnt class CpmAntOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class CpmAntPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CpmAntConfig base_model_prefix = "cpmant" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, CpmAntLayerNorm): module.weight.data.fill_(1.0) elif isinstance(module, CpmAntSegmentPositionEmbedding): module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std) CPMANT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters config ([`~CpmAntConfig`]): Model configuration class with all the parameters of the Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CPMANT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare CPMAnt Model outputting raw hidden-states without any specific head on top.", CPMANT_START_DOCSTRING, ) class CpmAntModel(CpmAntPreTrainedModel): def __init__(self, config: CpmAntConfig): super().__init__(config) self.encoder = CpmAntEncoder(config) self.segment_embedding = nn.Embedding(config.segment_types, config.hidden_size) self.input_embedding = nn.Embedding( config.vocab_size + config.prompt_types * config.prompt_length, config.hidden_size ) self.position_bias = CpmAntSegmentPositionEmbedding(config) self.prompt_length = config.prompt_length self.vocab_size = config.vocab_size self.post_init() def get_input_embeddings(self): return self.input_embedding def set_input_embeddings(self, embeddings, **kwargs): self.input_embedding = embeddings def _prepare_attention_mask(self, input_ids, span, context, length): batch = input_ids.size(0) seqlen = input_ids.size(1) device = input_ids.device directional_mask_2d = torch.arange(seqlen, device=device) <= torch.arange(seqlen, device=device).view(-1, 1) attention_mask = context[:, None, :] | ( context[:, :, None].logical_not() & directional_mask_2d.view(1, seqlen, seqlen) ) attention_mask = attention_mask & (span[:, None, :] == span[:, :, None]) # mask for left padding mask_1d = ( torch.tensor(list(range(seqlen - self.prompt_length))[::-1], device=device)[None, :].repeat(batch, 1) < length[:, None] ) mask_1d = torch.cat((torch.ones(batch, self.prompt_length, device=device).bool(), mask_1d), dim=1) attention_mask = mask_1d.view(batch, seqlen, 1) & mask_1d.view(batch, 1, seqlen) & attention_mask return attention_mask @add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache # add prompts ahead if input_ids.dtype != torch.int32: input_ids = input_ids.to(torch.int32) dtype, device = input_ids.dtype, input_ids.device segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device) length = (segment != 0).sum(-1).to(dtype=dtype, device=device) input_ids = torch.cat( ( torch.arange( self.prompt_length * 2 + self.vocab_size, self.prompt_length * 3 + self.vocab_size, dtype=dtype, device=device, ).repeat(input_ids.size(0), 1), input_ids, ), dim=1, ) batch, seq_length = input_ids.size() segment = torch.cat((torch.zeros(batch, self.prompt_length, dtype=dtype, device=device), segment), dim=1) context = torch.full((batch, seq_length), 1, dtype=dtype, device=device) position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) span = torch.full((batch, seq_length), 0, dtype=dtype, device=device) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * self.encoder.num_layers) input_ids = input_ids.contiguous() hidden_states = self.input_embedding(input_ids) segment_states = self.segment_embedding(segment) hidden_states = hidden_states + segment_states else: past_length = past_key_values[0][0].size(-2) segment_states = self.segment_embedding(segment) hidden_states = self.input_embedding(input_ids) + segment_states[:, -1:, :] attention_mask = self._prepare_attention_mask(input_ids, span, context, length) position_bias = self.position_bias(position, position, segment, segment) attention_mask = attention_mask[:, past_length:, :] position_bias = position_bias[:, :, past_length:, :] hidden_states = hidden_states[:, past_length:, :] hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder( hidden_states, attention_mask, position_bias, output_attentions, output_hidden_states, past_key_values, use_cache, ) if past_length == 0: hidden_states = hidden_states[:, self.prompt_length :, :] # drop the prompt if all_attentions is not None: new_attentions = () for attention in all_attentions: new_attentions += (attention[:, :, self.prompt_length :, self.prompt_length :],) all_attentions = new_attentions if all_hidden_states is not None: new_hidden_states = () for hidden_state in all_hidden_states: new_hidden_states += (hidden_state[:, self.prompt_length :, :],) all_hidden_states = new_hidden_states if not return_dict: return tuple( v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """ The CPMAnt Model with a language modeling head on top (linear layer with weights tied to the input embeddings). """, CPMANT_START_DOCSTRING, ) class CpmAntForCausalLM(CpmAntPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: CpmAntConfig): super().__init__(config) self.cpmant = CpmAntModel(config) # lm_head.weight is tied to cpmant.input_embedding.weight self.lm_head = nn.Linear( config.hidden_size, config.vocab_size + config.prompt_types * config.prompt_length, bias=False ) self.post_init() @add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, attention_mask: Optional[torch.Tensor] = None, # dummy parameter for text-generation pipeline **kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): CPMAnt will process attention mask automatically, this parameter is a dummy parameter for text-generation pipeline. Example: Text Generation with CpmAntForCausalLM. ```python >>> from transformers import CPMAntTokenizer, CpmAntForCausalLM >>> texts = "今天天气不错," >>> model = CpmAntForCausalLM.from_pretrained("openbmb/cpm-ant-10b") >>> tokenizer = CPMAntTokenizer.from_pretrained("openbmb/cpm-ant-10b") >>> input_ids = tokenizer(texts, return_tensors="pt") >>> outputs = model.generate(**input_ids) >>> output_texts = tokenizer.batch_decode(outputs) >>> print(output_texts) ['今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的'] ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_output = self.cpmant( input_ids, output_attentions, output_hidden_states, past_key_values, use_cache, return_dict ) hidden_states = model_output.last_hidden_state if return_dict else model_output[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: loss_func = CrossEntropyLoss() loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1)) if not return_dict: output = (logits,) + model_output[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=model_output.past_key_values, hidden_states=model_output.hidden_states, attentions=model_output.attentions, ) def get_input_embeddings(self): return self.cpmant.input_embedding def set_input_embeddings(self, embeddings): self.cpmant.input_embedding = embeddings def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, **kwargs): input_ids = input_ids.int() # save the memory usage of dummy attention mask if "attention_mask" in kwargs: kwargs["attention_mask"] = torch.zeros(1, 1) return { "input_ids": input_ids, "use_cache": kwargs["use_cache"], "past_key_values": kwargs.get("past_key_values", None), } def _reorder_cache(self, past_key_values, beam_idx): past_key_values = [list(each) if each is not None else each for each in past_key_values] for key_value_layer in past_key_values: key_value_layer[0] = key_value_layer[0][beam_idx] key_value_layer[1] = key_value_layer[1][beam_idx] return past_key_values
transformers/src/transformers/models/cpmant/modeling_cpmant.py/0
{ "file_path": "transformers/src/transformers/models/cpmant/modeling_cpmant.py", "repo_id": "transformers", "token_count": 16764 }
341
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Wav2Vec2 checkpoint.""" import argparse import os from functools import reduce import fairseq import torch from datasets import load_dataset from transformers import Wav2Vec2Processor, logging from transformers.models.data2vec.configuration_data2vec_audio import Data2VecAudioConfig # Copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_audio.py from transformers.models.data2vec.data2vec_audio import Data2VecAudioModel as Dummy # noqa: F401 from transformers.models.data2vec.modeling_data2vec_audio import Data2VecAudioForCTC, Data2VecAudioModel logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "models.0.layer_norm": "feature_projection.layer_norm", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } TOP_LEVEL_KEYS = [ "lm_head", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model, is_headless): unused_weights = [] fairseq_dict = fairseq_model.state_dict() if not is_headless: feature_extractor = hf_model.data2vec_audio.feature_extractor pos_conv_embedding = hf_model.data2vec_audio.encoder.pos_conv_embed else: feature_extractor = hf_model.feature_extractor pos_conv_embedding = hf_model.encoder.pos_conv_embed for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, ) is_used = True elif "pos_conv" in name: load_pos_conv_layer( name, value, pos_conv_embedding, unused_weights, ) is_used = True else: for key, mapped_key in MAPPING.items(): if not is_headless: mapped_key = "data2vec_audio." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def access_by_string(module, path): names = path.split(".") return reduce(getattr, names, module) def set_weights(full_name, module, fsq_value, hf_weight_path): hf_weight = access_by_string(module, hf_weight_path) hf_value = hf_weight.data if fsq_value.shape != hf_value.shape: raise ValueError(f"{full_name} has size {fsq_value.shape}, but {hf_value.shape} was found.") hf_weight.data = fsq_value logger.info(f"{full_name} was correctly initialized from {hf_weight_path}.") def load_conv_layer(full_name, value, feature_extractor, unused_weights): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) weight_type = name.split(".")[-1] if type_id == 0: layer_type = "conv" elif type_id == 2: layer_type = "layer_norm" else: unused_weights.append(full_name) return set_weights(full_name, feature_extractor, value, f"conv_layers.{layer_id}.{layer_type}.{weight_type}") def load_pos_conv_layer(full_name, value, pos_conv_embeddings, unused_weights): name = full_name.split("pos_conv.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) weight_type = name.split(".")[-1] if type_id != 0: unused_weights.append(full_name) return else: layer_type = "conv" set_weights(full_name, pos_conv_embeddings, value, f"layers.{layer_id}.{layer_type}.{weight_type}") @torch.no_grad() def convert_wav2vec2_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = Data2VecAudioConfig.from_pretrained(config_path) else: config = Data2VecAudioConfig() if not is_finetuned: # Modify final_proj layer name hf_wav2vec = Data2VecAudioModel(config) data2vec_checkpoint_dir = os.path.dirname(checkpoint_path) state_dict = torch.load(checkpoint_path) state_dict["model"]["final_proj.weight"] = state_dict["model"].pop("final_proj.0.weight") state_dict["model"]["final_proj.bias"] = state_dict["model"].pop("final_proj.0.bias") converted_ckpt = os.path.join(data2vec_checkpoint_dir, "converted.pt") torch.save(state_dict, converted_ckpt) else: hf_wav2vec = Data2VecAudioForCTC(config) converted_ckpt = checkpoint_path def load_data2vec(path): model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([path]) return model[0].eval() model = load_data2vec(converted_ckpt) recursively_load_weights(model, hf_wav2vec, not is_finetuned) processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-lv60") ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") input_audio = [x["array"] for x in ds[:4]["audio"]] inputs = processor(input_audio, return_tensors="pt", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask # input_values = inputs.input_values[:, :-1] # attention_mask = inputs.attention_mask[:, :-1] hf_wav2vec.eval() model.eval() if is_finetuned: their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[ "encoder_out" ].transpose(0, 1) our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["logits"] pred_ids = torch.argmax(our_output, dim=-1) output_string = processor.batch_decode(pred_ids) print(f"Expected Output: {ds[:4]['text']}, Pred: {output_string}") else: their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[ "layer_results" ][-1][0].transpose(0, 1) our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["last_hidden_state"] print(our_output.shape, their_output.shape) max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 success = torch.allclose(our_output, their_output, atol=1e-3) print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if is_finetuned: processor.save_pretrained(pytorch_dump_folder_path) else: processor.feature_extractor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_wav2vec2_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
transformers/src/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4725 }
342
# coding=utf-8 # Copyright 2021 Microsoft and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 DeBERTa-v2 model.""" from __future__ import annotations from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_deberta_v2 import DebertaV2Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DebertaV2Config" _CHECKPOINT_FOR_DOC = "kamalkraj/deberta-v2-xlarge" TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "kamalkraj/deberta-v2-xlarge", # See all DeBERTa models at https://huggingface.co/models?filter=deberta-v2 ] # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaContextPooler with Deberta->DebertaV2 class TFDebertaV2ContextPooler(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.pooler_hidden_size, name="dense") self.dropout = TFDebertaV2StableDropout(config.pooler_dropout, name="dropout") self.config = config def call(self, hidden_states, training: bool = False): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token, training=training) pooled_output = self.dense(context_token) pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output) return pooled_output @property def output_dim(self) -> int: return self.config.hidden_size def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.pooler_hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaXSoftmax with Deberta->DebertaV2 class TFDebertaV2XSoftmax(keras.layers.Layer): """ Masked Softmax which is optimized for saving memory Args: input (`tf.Tensor`): The input tensor that will apply softmax. mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis def call(self, inputs: tf.Tensor, mask: tf.Tensor): rmask = tf.logical_not(tf.cast(mask, tf.bool)) output = tf.where(rmask, float("-inf"), inputs) output = stable_softmax(output, self.axis) output = tf.where(rmask, 0.0, output) return output # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaStableDropout with Deberta->DebertaV2 class TFDebertaV2StableDropout(keras.layers.Layer): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob, **kwargs): super().__init__(**kwargs) self.drop_prob = drop_prob @tf.custom_gradient def xdropout(self, inputs): """ Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob. """ mask = tf.cast( 1 - tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)), tf.bool, ) scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=tf.float32) if self.drop_prob > 0: inputs = tf.where(mask, 0.0, inputs) * scale def grad(upstream): if self.drop_prob > 0: return tf.where(mask, 0.0, upstream) * scale else: return upstream return inputs, grad def call(self, inputs: tf.Tensor, training: tf.Tensor = False): if training: return self.xdropout(inputs) return inputs # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaSelfOutput with Deberta->DebertaV2 class TFDebertaV2SelfOutput(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") self.config = config def call(self, hidden_states, input_tensor, training: bool = False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaAttention with Deberta->DebertaV2 class TFDebertaV2Attention(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.self = TFDebertaV2DisentangledSelfAttention(config, name="self") self.dense_output = TFDebertaV2SelfOutput(config, name="output") self.config = config def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self( hidden_states=input_tensor, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) if query_states is None: query_states = input_tensor attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=query_states, training=training ) output = (attention_output,) + self_outputs[1:] return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaIntermediate with Deberta->DebertaV2 class TFDebertaV2Intermediate(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOutput with Deberta->DebertaV2 class TFDebertaV2Output(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLayer with Deberta->DebertaV2 class TFDebertaV2Layer(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.attention = TFDebertaV2Attention(config, name="attention") self.intermediate = TFDebertaV2Intermediate(config, name="intermediate") self.bert_output = TFDebertaV2Output(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) class TFDebertaV2ConvLayer(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.kernel_size = getattr(config, "conv_kernel_size", 3) # groups = getattr(config, "conv_groups", 1) self.conv_act = get_tf_activation(getattr(config, "conv_act", "tanh")) self.padding = (self.kernel_size - 1) // 2 self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") self.config = config def build(self, input_shape=None): if self.built: return self.built = True with tf.name_scope("conv"): self.conv_kernel = self.add_weight( name="kernel", shape=[self.kernel_size, self.config.hidden_size, self.config.hidden_size], initializer=get_initializer(self.config.initializer_range), ) self.conv_bias = self.add_weight( name="bias", shape=[self.config.hidden_size], initializer=tf.zeros_initializer() ) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) def call( self, hidden_states: tf.Tensor, residual_states: tf.Tensor, input_mask: tf.Tensor, training: bool = False ) -> tf.Tensor: out = tf.nn.conv2d( tf.expand_dims(hidden_states, 1), tf.expand_dims(self.conv_kernel, 0), strides=1, padding=[[0, 0], [0, 0], [self.padding, self.padding], [0, 0]], ) out = tf.squeeze(tf.nn.bias_add(out, self.conv_bias), 1) rmask = tf.cast(1 - input_mask, tf.bool) out = tf.where(tf.broadcast_to(tf.expand_dims(rmask, -1), shape_list(out)), 0.0, out) out = self.dropout(out, training=training) out = self.conv_act(out) layer_norm_input = residual_states + out output = self.LayerNorm(layer_norm_input) if input_mask is None: output_states = output else: if len(shape_list(input_mask)) != len(shape_list(layer_norm_input)): if len(shape_list(input_mask)) == 4: input_mask = tf.squeeze(tf.squeeze(input_mask, axis=1), axis=1) input_mask = tf.cast(tf.expand_dims(input_mask, axis=2), tf.float32) output_states = output * input_mask return output_states class TFDebertaV2Encoder(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.layer = [TFDebertaV2Layer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] self.relative_attention = getattr(config, "relative_attention", False) self.config = config if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.position_buckets = getattr(config, "position_buckets", -1) self.pos_ebd_size = self.max_relative_positions * 2 if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets * 2 self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")] if "layer_norm" in self.norm_rel_ebd: self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.conv = TFDebertaV2ConvLayer(config, name="conv") if getattr(config, "conv_kernel_size", 0) > 0 else None def build(self, input_shape=None): if self.built: return self.built = True if self.relative_attention: self.rel_embeddings = self.add_weight( name="rel_embeddings.weight", shape=[self.pos_ebd_size, self.config.hidden_size], initializer=get_initializer(self.config.initializer_range), ) if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build(None) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, self.config.hidden_size]) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) def get_rel_embedding(self): rel_embeddings = self.rel_embeddings if self.relative_attention else None if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd): rel_embeddings = self.LayerNorm(rel_embeddings) return rel_embeddings def get_attention_mask(self, attention_mask): if len(shape_list(attention_mask)) <= 2: extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2) attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1) attention_mask = tf.cast(attention_mask, tf.uint8) elif len(shape_list(attention_mask)) == 3: attention_mask = tf.expand_dims(attention_mask, 1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2] relative_pos = build_relative_position( q, shape_list(hidden_states)[-2], bucket_size=self.position_buckets, max_position=self.max_relative_positions, ) return relative_pos def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: if len(shape_list(attention_mask)) <= 2: input_mask = attention_mask else: input_mask = tf.cast(tf.math.reduce_sum(attention_mask, axis=-2) > 0, dtype=tf.uint8) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) next_kv = hidden_states rel_embeddings = self.get_rel_embedding() output_states = next_kv for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) layer_outputs = layer_module( hidden_states=next_kv, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) output_states = layer_outputs[0] if i == 0 and self.conv is not None: output_states = self.conv(hidden_states, output_states, input_mask) next_kv = output_states if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if not return_dict: return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions ) def make_log_bucket_position(relative_pos, bucket_size, max_position): sign = tf.math.sign(relative_pos) mid = bucket_size // 2 abs_pos = tf.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, tf.math.abs(relative_pos)) log_pos = ( tf.math.ceil( tf.cast(tf.math.log(abs_pos / mid), tf.float32) / tf.math.log((max_position - 1) / mid) * (mid - 1) ) + mid ) bucket_pos = tf.cast( tf.where(abs_pos <= mid, tf.cast(relative_pos, tf.float32), log_pos * tf.cast(sign, tf.float32)), tf.int32 ) return bucket_pos def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1): """ Build relative position according to the query and key We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - P_k\\) Args: query_size (int): the length of query key_size (int): the length of key bucket_size (int): the size of position bucket max_position (int): the maximum allowed absolute position Return: `tf.Tensor`: A tensor with shape [1, query_size, key_size] """ q_ids = tf.range(query_size, dtype=tf.int32) k_ids = tf.range(key_size, dtype=tf.int32) rel_pos_ids = q_ids[:, None] - tf.tile(tf.expand_dims(k_ids, axis=0), [shape_list(q_ids)[0], 1]) if bucket_size > 0 and max_position > 0: rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = tf.expand_dims(rel_pos_ids, axis=0) return tf.cast(rel_pos_ids, tf.int64) def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): shapes = [ shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(query_layer)[2], shape_list(relative_pos)[-1], ] return tf.broadcast_to(c2p_pos, shapes) def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): shapes = [ shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(key_layer)[-2], shape_list(key_layer)[-2], ] return tf.broadcast_to(c2p_pos, shapes) def pos_dynamic_expand(pos_index, p2c_att, key_layer): shapes = shape_list(p2c_att)[:2] + [shape_list(pos_index)[-2], shape_list(key_layer)[-2]] return tf.broadcast_to(pos_index, shapes) def take_along_axis(x, indices): # Only a valid port of np.take_along_axis when the gather axis is -1 # TPU + gathers and reshapes don't go along well -- see https://github.com/huggingface/transformers/issues/18239 if isinstance(tf.distribute.get_strategy(), tf.distribute.TPUStrategy): # [B, S, P] -> [B, S, P, D] one_hot_indices = tf.one_hot(indices, depth=x.shape[-1], dtype=x.dtype) # if we ignore the first two dims, this is equivalent to multiplying a matrix (one hot) by a vector (x) # grossly abusing notation: [B, S, P, D] . [B, S, D] = [B, S, P] gathered = tf.einsum("ijkl,ijl->ijk", one_hot_indices, x) # GPUs, on the other hand, prefer gathers instead of large one-hot+matmuls else: gathered = tf.gather(x, indices, batch_dims=2) return gathered class TFDebertaV2DisentangledSelfAttention(keras.layers.Layer): """ Disentangled self-attention module Parameters: config (`DebertaV2Config`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaV2Config`] """ def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads _attention_head_size = config.hidden_size // config.num_attention_heads self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query_proj", use_bias=True, ) self.key_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key_proj", use_bias=True, ) self.value_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value_proj", use_bias=True, ) self.share_att_key = getattr(config, "share_att_key", False) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.position_buckets = getattr(config, "position_buckets", -1) self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_ebd_size = self.max_relative_positions if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets self.pos_dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="pos_dropout") if not self.share_att_key: if "c2p" in self.pos_att_type: self.pos_key_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_proj", use_bias=True, ) if "p2c" in self.pos_att_type: self.pos_query_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_q_proj", ) self.softmax = TFDebertaV2XSoftmax(axis=-1) self.dropout = TFDebertaV2StableDropout(config.attention_probs_dropout_prob, name="dropout") self.config = config def transpose_for_scores(self, tensor: tf.Tensor, attention_heads: int) -> tf.Tensor: tensor_shape = shape_list(tensor) # In graph mode mode, we can't reshape with -1 as the final dimension if the first dimension (batch size) is None shape = tensor_shape[:-1] + [attention_heads, tensor_shape[-1] // attention_heads] # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=shape) tensor = tf.transpose(tensor, perm=[0, 2, 1, 3]) x_shape = shape_list(tensor) tensor = tf.reshape(tensor, shape=[-1, x_shape[-2], x_shape[-1]]) return tensor def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: """ Call the module Args: hidden_states (`tf.Tensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`tf.Tensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. return_att (`bool`, optional): Whether return the attention matrix. query_states (`tf.Tensor`, optional): The *Q* state in *Attention(Q,K,V)*. relative_pos (`tf.Tensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`tf.Tensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: query_states = hidden_states query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads) key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads) value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 if "c2p" in self.pos_att_type: scale_factor += 1 if "p2c" in self.pos_att_type: scale_factor += 1 scale = tf.math.sqrt(tf.cast(shape_list(query_layer)[-1] * scale_factor, tf.float32)) attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 2, 1]) / scale) if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor) if rel_att is not None: attention_scores = attention_scores + rel_att attention_scores = tf.reshape( attention_scores, (-1, self.num_attention_heads, shape_list(attention_scores)[-2], shape_list(attention_scores)[-1]), ) # bsz x height x length x dimension attention_probs = self.softmax(attention_scores, attention_mask) attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul( tf.reshape(attention_probs, [-1, shape_list(attention_probs)[-2], shape_list(attention_probs)[-1]]), value_layer, ) context_layer = tf.transpose( tf.reshape( context_layer, [-1, self.num_attention_heads, shape_list(context_layer)[-2], shape_list(context_layer)[-1]], ), [0, 2, 1, 3], ) # Set the final dimension here explicitly. # Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing # the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput # requires final input dimension to be defined context_layer_shape = shape_list(context_layer) new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]] context_layer = tf.reshape(context_layer, new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = shape_list(query_layer)[-2] relative_pos = build_relative_position( q, shape_list(key_layer)[-2], bucket_size=self.position_buckets, max_position=self.max_relative_positions, ) shape_list_pos = shape_list(relative_pos) if len(shape_list_pos) == 2: relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0) elif len(shape_list_pos) == 3: relative_pos = tf.expand_dims(relative_pos, 1) # bsz x height x query x key elif len(shape_list_pos) != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}") att_span = self.pos_ebd_size rel_embeddings = tf.expand_dims( rel_embeddings[self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :], 0 ) if self.share_att_key: pos_query_layer = tf.tile( self.transpose_for_scores(self.query_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) pos_key_layer = tf.tile( self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) else: if "c2p" in self.pos_att_type: pos_key_layer = tf.tile( self.transpose_for_scores(self.pos_key_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) # .split(self.all_head_size, dim=-1) if "p2c" in self.pos_att_type: pos_query_layer = tf.tile( self.transpose_for_scores(self.pos_query_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) # .split(self.all_head_size, dim=-1) score = 0 # content->position if "c2p" in self.pos_att_type: scale = tf.math.sqrt(tf.cast(shape_list(pos_key_layer)[-1] * scale_factor, tf.float32)) c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 2, 1])) c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = take_along_axis( c2p_att, tf.broadcast_to( tf.squeeze(c2p_pos, 0), [shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(relative_pos)[-1]], ), ) score += c2p_att / scale # position->content if "p2c" in self.pos_att_type: scale = tf.math.sqrt(tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, tf.float32)) if shape_list(key_layer)[-2] != shape_list(query_layer)[-2]: r_pos = build_relative_position( shape_list(key_layer)[-2], shape_list(key_layer)[-2], bucket_size=self.position_buckets, max_position=self.max_relative_positions, ) r_pos = tf.expand_dims(r_pos, 0) else: r_pos = relative_pos p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 2, 1])) p2c_att = tf.transpose( take_along_axis( p2c_att, tf.broadcast_to( tf.squeeze(p2c_pos, 0), [shape_list(query_layer)[0], shape_list(key_layer)[-2], shape_list(key_layer)[-2]], ), ), [0, 2, 1], ) score += p2c_att / scale return score def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query_proj", None) is not None: with tf.name_scope(self.query_proj.name): self.query_proj.build([None, None, self.config.hidden_size]) if getattr(self, "key_proj", None) is not None: with tf.name_scope(self.key_proj.name): self.key_proj.build([None, None, self.config.hidden_size]) if getattr(self, "value_proj", None) is not None: with tf.name_scope(self.value_proj.name): self.value_proj.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "pos_dropout", None) is not None: with tf.name_scope(self.pos_dropout.name): self.pos_dropout.build(None) if getattr(self, "pos_key_proj", None) is not None: with tf.name_scope(self.pos_key_proj.name): self.pos_key_proj.build([None, None, self.config.hidden_size]) if getattr(self, "pos_query_proj", None) is not None: with tf.name_scope(self.pos_query_proj.name): self.pos_query_proj.build([None, None, self.config.hidden_size]) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaEmbeddings Deberta->DebertaV2 class TFDebertaV2Embeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.position_biased_input = getattr(config, "position_biased_input", True) self.initializer_range = config.initializer_range if self.embedding_size != config.hidden_size: self.embed_proj = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="embed_proj", use_bias=False, ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): if self.config.type_vocab_size > 0: self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) else: self.token_type_embeddings = None with tf.name_scope("position_embeddings"): if self.position_biased_input: self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) else: self.position_embeddings = None if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "embed_proj", None) is not None: with tf.name_scope(self.embed_proj.name): self.embed_proj.build([None, None, self.embedding_size]) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, mask: tf.Tensor = None, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("Need to provide either `input_ids` or `input_embeds`.") if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) final_embeddings = inputs_embeds if self.position_biased_input: position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) final_embeddings += position_embeds if self.config.type_vocab_size > 0: token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings += token_type_embeds if self.embedding_size != self.hidden_size: final_embeddings = self.embed_proj(final_embeddings) final_embeddings = self.LayerNorm(final_embeddings) if mask is not None: if len(shape_list(mask)) != len(shape_list(final_embeddings)): if len(shape_list(mask)) == 4: mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1) mask = tf.cast(tf.expand_dims(mask, axis=2), tf.float32) final_embeddings = final_embeddings * mask final_embeddings = self.dropout(final_embeddings, training=training) return final_embeddings # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPredictionHeadTransform with Deberta->DebertaV2 class TFDebertaV2PredictionHeadTransform(keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.dense = keras.layers.Dense( units=self.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.embedding_size]) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLMPredictionHead with Deberta->DebertaV2 class TFDebertaV2LMPredictionHead(keras.layers.Layer): def __init__(self, config: DebertaV2Config, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.transform = TFDebertaV2PredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOnlyMLMHead with Deberta->DebertaV2 class TFDebertaV2OnlyMLMHead(keras.layers.Layer): def __init__(self, config: DebertaV2Config, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFDebertaV2LMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaMainLayer with Deberta->DebertaV2 class TFDebertaV2MainLayer(keras.layers.Layer): config_class = DebertaV2Config def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFDebertaV2Embeddings(config, name="embeddings") self.encoder = TFDebertaV2Encoder(config, name="encoder") def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, mask=attention_mask, training=training, ) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPreTrainedModel with Deberta->DebertaV2 class TFDebertaV2PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DebertaV2Config base_model_prefix = "deberta" DEBERTA_START_DOCSTRING = r""" The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data. This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput``] instead of a plain tuple. """ @add_start_docstrings( "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.", DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaModel with Deberta->DebertaV2 class TFDebertaV2Model(TFDebertaV2PreTrainedModel): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.deberta = TFDebertaV2MainLayer(config, name="deberta") @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForMaskedLM with Deberta->DebertaV2 class TFDebertaV2ForMaskedLM(TFDebertaV2PreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFDebertaV2ForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.mlm = TFDebertaV2OnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None) @add_start_docstrings( """ DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForSequenceClassification with Deberta->DebertaV2 class TFDebertaV2ForSequenceClassification(TFDebertaV2PreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.pooler = TFDebertaV2ContextPooler(config, name="pooler") drop_out = getattr(config, "cls_dropout", None) drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out self.dropout = TFDebertaV2StableDropout(drop_out, name="cls_dropout") self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) self.output_dim = self.pooler.output_dim @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = self.pooler(sequence_output, training=training) pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.output_dim]) @add_start_docstrings( """ DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForTokenClassification with Deberta->DebertaV2 class TFDebertaV2ForTokenClassification(TFDebertaV2PreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForQuestionAnswering with Deberta->DebertaV2 class TFDebertaV2ForQuestionAnswering(TFDebertaV2PreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.qa_outputs = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, DEBERTA_START_DOCSTRING, ) class TFDebertaV2ForMultipleChoice(TFDebertaV2PreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model # _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"] # _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.pooler = TFDebertaV2ContextPooler(config, name="pooler") self.classifier = keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.output_dim = self.pooler.output_dim @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None flat_attention_mask = ( tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None ) flat_position_ids = ( tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None ) flat_inputs_embeds = ( tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.deberta( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, position_ids=flat_position_ids, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = self.pooler(sequence_output, training=training) pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.output_dim])
transformers/src/transformers/models/deberta_v2/modeling_tf_deberta_v2.py/0
{ "file_path": "transformers/src/transformers/models/deberta_v2/modeling_tf_deberta_v2.py", "repo_id": "transformers", "token_count": 36390 }
343
# coding=utf-8 # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Open-Llama model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class OpenLlamaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`OpenLlamaModel`]. It is used to instantiate an Open-Llama model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Open-Llama model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OpenLlamaModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. Example: ```python >>> from transformers import OpenLlamaModel, OpenLlamaConfig >>> # Initializing a Open-Llama open_llama-7b style configuration >>> configuration = OpenLlamaConfig() >>> # Initializing a model from the open_llama-7b style configuration >>> model = OpenLlamaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "open-llama" def __init__( self, vocab_size=100000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, use_memory_efficient_attention=True, hidden_dropout_prob=0.1, attention_dropout_prob=0.1, use_stable_embedding=True, shared_input_output_embedding=True, rope_scaling=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.use_memory_efficient_attention = kwargs.pop( "use_memorry_efficient_attention", use_memory_efficient_attention ) self.hidden_dropout_prob = hidden_dropout_prob self.attention_dropout_prob = attention_dropout_prob self.use_stable_embedding = use_stable_embedding self.shared_input_output_embedding = shared_input_output_embedding self.rope_scaling = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/deprecated/open_llama/configuration_open_llama.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/open_llama/configuration_open_llama.py", "repo_id": "transformers", "token_count": 3053 }
344
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Transformer XL model. """ from __future__ import annotations from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ....modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ....tf_utils import shape_list, stable_softmax from ....utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_transfo_xl import TransfoXLConfig from .modeling_tf_transfo_xl_utilities import TFAdaptiveSoftmaxMask logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103" _CONFIG_FOR_DOC = "TransfoXLConfig" TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "transfo-xl/transfo-xl-wt103", # See all Transformer XL models at https://huggingface.co/models?filter=transfo-xl ] class TFPositionalEmbedding(keras.layers.Layer): def __init__(self, demb, **kwargs): super().__init__(**kwargs) self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb)) def call(self, pos_seq, bsz=None): self.inv_freq = tf.cast(self.inv_freq, dtype=pos_seq.dtype) sinusoid_inp = tf.einsum("i,j->ij", pos_seq, self.inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) if bsz is not None: return tf.tile(pos_emb[:, None, :], [1, bsz, 1]) else: return pos_emb[:, None, :] class TFPositionwiseFF(keras.layers.Layer): def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs): super().__init__(**kwargs) self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.layer_1 = keras.layers.Dense( d_inner, kernel_initializer=get_initializer(init_std), activation=tf.nn.relu, name="CoreNet_._0" ) self.drop_1 = keras.layers.Dropout(dropout) self.layer_2 = keras.layers.Dense(d_model, kernel_initializer=get_initializer(init_std), name="CoreNet_._3") self.drop_2 = keras.layers.Dropout(dropout) self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") self.pre_lnorm = pre_lnorm def call(self, inp, training=False): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = self.layer_norm(inp) core_out = self.layer_1(core_out) core_out = self.drop_1(core_out, training=training) core_out = self.layer_2(core_out) core_out = self.drop_2(core_out, training=training) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = self.layer_1(inp) core_out = self.drop_1(core_out, training=training) core_out = self.layer_2(core_out) core_out = self.drop_2(core_out, training=training) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class TFRelPartialLearnableMultiHeadAttn(keras.layers.Layer): def __init__( self, n_head, d_model, d_head, dropout, dropatt=0.0, pre_lnorm=False, r_r_bias=None, r_w_bias=None, layer_norm_epsilon=1e-5, init_std=0.02, output_attentions=False, **kwargs, ): super().__init__(**kwargs) self.n_head = n_head self.d_model = d_model self.d_head = d_head self.dropout = dropout self.output_attentions = output_attentions self.qkv_net = keras.layers.Dense( 3 * n_head * d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="qkv_net" ) self.drop = keras.layers.Dropout(dropout) self.dropatt = keras.layers.Dropout(dropatt) self.o_net = keras.layers.Dense( d_model, kernel_initializer=get_initializer(init_std), use_bias=False, name="o_net" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") self.scale = 1 / (d_head**0.5) self.pre_lnorm = pre_lnorm if r_r_bias is not None and r_w_bias is not None: # Biases are shared self.r_r_bias = r_r_bias self.r_w_bias = r_w_bias else: self.r_r_bias = None self.r_w_bias = None self.r_net = keras.layers.Dense( self.n_head * self.d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="r_net" ) def build(self, input_shape): if self.r_r_bias is None or self.r_w_bias is None: # Biases are not shared self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) super().build(input_shape) def _rel_shift(self, x): x_size = shape_list(x) x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]]) x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]]) x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1]) x = tf.reshape(x, x_size) return x def call(self, w, r, attn_mask, mems, head_mask, output_attentions, training=False): qlen, rlen, bsz = shape_list(w)[0], shape_list(r)[0], shape_list(w)[1] if mems is not None: mems = tf.cast(mems, dtype=w.dtype) cat = tf.concat([mems, w], 0) if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(cat)) else: w_heads = self.qkv_net(cat) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) w_head_q = w_head_q[-qlen:] else: if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(w)) else: w_heads = self.qkv_net(w) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) klen = shape_list(w_head_k)[0] w_head_q = tf.reshape(w_head_q, (qlen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head w_head_k = tf.reshape(w_head_k, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head w_head_v = tf.reshape(w_head_v, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head r_head_k = tf.reshape(r_head_k, (rlen, self.n_head, self.d_head)) # qlen x n_head x d_head # compute attention score rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head AC = tf.einsum("ibnd,jbnd->ijbn", rw_head_q, w_head_k) # qlen x klen x bsz x n_head rr_head_q = w_head_q + self.r_r_bias BD = tf.einsum("ibnd,jnd->ijbn", rr_head_q, r_head_k) # qlen x klen x bsz x n_head BD = self._rel_shift(BD) # [qlen x klen x bsz x n_head] attn_score = AC + BD attn_score = attn_score * self.scale # compute attention probability if attn_mask is not None: attn_mask_t = attn_mask[:, :, None, None] attn_mask_t = tf.cast(attn_mask_t, dtype=attn_score.dtype) attn_score = attn_score * (1.0 - attn_mask_t) - 1e30 * attn_mask_t # [qlen x klen x bsz x n_head] attn_prob = stable_softmax(attn_score, axis=1) attn_prob = self.dropatt(attn_prob, training=training) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # compute attention vector attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, w_head_v) # [qlen x bsz x n_head x d_head] attn_vec_sizes = shape_list(attn_vec) attn_vec = tf.reshape(attn_vec, (attn_vec_sizes[0], attn_vec_sizes[1], self.n_head * self.d_head)) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out, training=training) if self.pre_lnorm: # residual connection outputs = [w + attn_out] else: # residual connection + layer normalization outputs = [self.layer_norm(w + attn_out)] if output_attentions: outputs.append(attn_prob) return outputs class TFRelPartialLearnableDecoderLayer(keras.layers.Layer): def __init__( self, n_head, d_model, d_head, d_inner, dropout, dropatt=0.0, pre_lnorm=False, r_w_bias=None, r_r_bias=None, layer_norm_epsilon=1e-5, init_std=0.02, output_attentions=False, **kwargs, ): super().__init__(**kwargs) self.dec_attn = TFRelPartialLearnableMultiHeadAttn( n_head, d_model, d_head, dropout, dropatt=dropatt, pre_lnorm=pre_lnorm, r_w_bias=r_w_bias, r_r_bias=r_r_bias, init_std=init_std, layer_norm_epsilon=layer_norm_epsilon, output_attentions=output_attentions, name="dec_attn", ) self.pos_ff = TFPositionwiseFF( d_model, d_inner, dropout, pre_lnorm=pre_lnorm, init_std=init_std, layer_norm_epsilon=layer_norm_epsilon, name="pos_ff", ) def call(self, dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=False): attn_outputs = self.dec_attn(dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=training) ff_output = self.pos_ff(attn_outputs[0], training=training) outputs = [ff_output] + attn_outputs[1:] return outputs class TFTransfoEmbeddings(keras.layers.Layer): def __init__(self, vocab_size, emb_size, init_std, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.emb_size = emb_size self.init_std = init_std def build(self, input_shape): self.weight = self.add_weight( shape=(self.vocab_size, self.emb_size), initializer=get_initializer(self.init_std), name="embeddings", ) super().build(input_shape) def call(self, inputs): return tf.gather(self.weight, inputs) class TFAdaptiveEmbedding(keras.layers.Layer): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs): super().__init__(**kwargs) self.n_token = n_token self.d_embed = d_embed self.init_std = init_std self.cutoffs = cutoffs + [n_token] self.div_val = div_val self.d_proj = d_proj self.emb_scale = d_proj**0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = [] self.emb_projs = [] if div_val == 1: raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val**i) self.emb_layers.append( TFTransfoEmbeddings( r_idx - l_idx, d_emb_i, init_std, name=f"emb_layers_._{i}", ) ) def build(self, input_shape): for i in range(len(self.cutoffs)): d_emb_i = self.d_embed // (self.div_val**i) self.emb_projs.append( self.add_weight( shape=(d_emb_i, self.d_proj), initializer=get_initializer(self.init_std), trainable=True, name=f"emb_projs_._{i}", ) ) super().build(input_shape) def call(self, inp): if self.div_val == 1: raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint else: inp_flat = tf.reshape(inp, (-1,)) emb_flat = tf.zeros([shape_list(inp_flat)[0], self.d_proj]) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) inp_i = tf.boolean_mask(inp_flat, mask_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = tf.einsum("id,de->ie", emb_i, self.emb_projs[i]) mask_idx = tf.where(mask_i) scatter = tf.scatter_nd(mask_idx, emb_i, shape_list(emb_flat)) emb_flat = tf.cast(emb_flat, dtype=scatter.dtype) emb_flat += scatter embed_shape = shape_list(inp) + [self.d_proj] embed = tf.reshape(emb_flat, embed_shape) embed *= self.emb_scale return embed @keras_serializable class TFTransfoXLMainLayer(keras.layers.Layer): config_class = TransfoXLConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.use_return_dict self.n_token = config.vocab_size self.d_embed = config.d_embed self.d_model = config.d_model self.n_head = config.n_head self.d_head = config.d_head self.untie_r = config.untie_r self.word_emb = TFAdaptiveEmbedding( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, init_std=config.init_std, name="word_emb", ) self.drop = keras.layers.Dropout(config.dropout) self.n_layer = config.n_layer self.mem_len = config.mem_len self.attn_type = config.attn_type self.layers = [] if config.attn_type == 0: # the default attention for i in range(config.n_layer): self.layers.append( TFRelPartialLearnableDecoderLayer( config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm, r_w_bias=None if self.untie_r else self.r_w_bias, r_r_bias=None if self.untie_r else self.r_r_bias, layer_norm_epsilon=config.layer_norm_epsilon, init_std=config.init_std, output_attentions=self.output_attentions, name=f"layers_._{i}", ) ) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint self.same_length = config.same_length self.clamp_len = config.clamp_len if self.attn_type == 0: # default attention self.pos_emb = TFPositionalEmbedding(self.d_model, name="pos_emb") else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint def build(self, input_shape): if not self.untie_r: self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) super().build(input_shape) def get_input_embeddings(self): return self.word_emb def set_input_embeddings(self, value): raise NotImplementedError def backward_compatible(self): self.sample_softmax = -1 def reset_memory_length(self, mem_len): self.mem_len = mem_len def _prune_heads(self, heads): raise NotImplementedError def init_mems(self, bsz): if self.mem_len > 0: mems = [] for i in range(self.n_layer): empty = tf.zeros([self.mem_len, bsz, self.d_model]) mems.append(empty) return mems else: return None def _update_mems(self, hids, mems, mlen, qlen): # does not deal with None if mems is None: return None # mems is not None assert len(hids) == len(mems), "len(hids) != len(mems)" # There are `mlen + qlen` steps that can be cached into mems new_mems = [] end_idx = mlen + tf.math.maximum(0, qlen) beg_idx = tf.math.maximum(0, end_idx - tf.convert_to_tensor(self.mem_len)) for i in range(len(hids)): mems[i] = tf.cast(mems[i], dtype=hids[i].dtype) cat = tf.concat([mems[i], hids[i]], axis=0) tf.stop_gradient(cat) new_mems.append(cat[beg_idx:end_idx]) return new_mems @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ): # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # so we transpose here from shape [bsz, len] to shape [len, bsz] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = tf.transpose(input_ids, perm=(1, 0)) qlen, bsz = shape_list(input_ids) elif inputs_embeds is not None: inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) qlen, bsz = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if mems is None: mems = self.init_mems(bsz) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layer if inputs_embeds is not None: word_emb = inputs_embeds else: word_emb = self.word_emb(input_ids) mlen = shape_list(mems[0])[0] if mems is not None else 0 klen = mlen + qlen # Compute decoder attention mask all_ones = tf.ones([qlen, klen], dtype=tf.int32) upper_mask = 1 - tf.linalg.band_part(tf.ones([qlen, klen], dtype=tf.int32), -1, mlen) if self.same_length: mask_len = klen - self.mem_len mask_shift_len = qlen - tf.nn.relu(mask_len) # Lazy clamping of negatives to zero # Use an indicator variable instead of a conditional to keep the compiler happy lower_mask = tf.linalg.band_part(all_ones, -1, 0) - ( tf.linalg.band_part(all_ones, mask_shift_len - 1, 0) * tf.cast(mask_shift_len != 0, tf.int32) ) dec_attn_mask = upper_mask + lower_mask else: dec_attn_mask = upper_mask hids = [] attentions = [] if output_attentions else None if self.attn_type == 0: # default pos_seq = tf.range(klen - 1, -1, -1.0) if self.clamp_len > 0: pos_seq = tf.minimum(pos_seq, self.clamp_len) pos_emb = self.pos_emb(pos_seq) core_out = self.drop(word_emb, training=training) pos_emb = self.drop(pos_emb, training=training) for i, layer in enumerate(self.layers): hids.append(core_out) mems_i = None if mems is None else mems[i] layer_outputs = layer( core_out, pos_emb, dec_attn_mask, mems_i, head_mask[i], output_attentions, training=training, ) core_out = layer_outputs[0] if output_attentions: attentions.append(layer_outputs[1]) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint core_out = self.drop(core_out, training=training) new_mems = self._update_mems(hids, mems, mlen, qlen) # We transpose back here to shape [bsz, len, hidden_dim] core_out = tf.transpose(core_out, perm=(1, 0, 2)) if output_hidden_states: # Transpose to library standard shape [bsz, len, hidden_dim] and add last layer hids = tuple(tf.transpose(t, perm=(1, 0, 2)) for t in hids) hids = hids + (core_out,) else: hids = None if output_attentions: # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) if not return_dict: return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) return TFTransfoXLModelOutput( last_hidden_state=core_out, mems=new_mems, hidden_states=hids, attentions=attentions, ) class TFTransfoXLPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TransfoXLConfig base_model_prefix = "transformer" @dataclass class TFTransfoXLModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFTransfoXLLMHeadModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: losses (`tf.Tensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): Language modeling losses (not reduced). prediction_scores (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ prediction_scores: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFTransfoXLSequenceClassifierOutputWithPast(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None TRANSFO_XL_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TRANSFO_XL_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems given to this model should not be passed as `input_ids` as they have already been computed. head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLModel(TFTransfoXLPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFTransfoXLMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFTransfoXLModelOutput | Tuple[tf.Tensor]: outputs = self.transformer( input_ids=input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """ The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive input embeddings) """, TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = TFTransfoXLMainLayer(config, name="transformer") self.sample_softmax = config.sample_softmax assert self.sample_softmax <= 0, ( "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" " https://github.com/huggingface/transformers/issues/3310" ) self.crit = TFAdaptiveSoftmaxMask( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, name="crit" ) def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError() def get_output_embeddings(self): """Double-check if you are using adaptive softmax.""" if len(self.crit.out_layers) > 0: return self.crit.out_layers[-1] return None def reset_memory_length(self, mem_len): self.transformer.reset_memory_length(mem_len) def init_mems(self, bsz): return self.transformer.init_mems(bsz) @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> TFTransfoXLLMHeadModelOutput | Tuple[tf.Tensor]: if input_ids is not None: bsz, tgt_len = shape_list(input_ids)[:2] else: bsz, tgt_len = shape_list(inputs_embeds)[:2] transformer_outputs = self.transformer( input_ids, mems, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, training=training, ) last_hidden = transformer_outputs[0] pred_hid = last_hidden[:, -tgt_len:] softmax_output = self.crit(pred_hid, labels, training=training) prediction_scores = softmax_output if labels is None else () if not return_dict: return (prediction_scores,) + transformer_outputs[1:] return TFTransfoXLLMHeadModelOutput( prediction_scores=prediction_scores, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): inputs = {} # if past is defined in model kwargs then use it for faster decoding if past_key_values: input_ids = tf.expand_dims(input_ids[:, -1], axis=-1) else: input_ids = input_ids return inputs # Adapted from the torch tie_weights function def tf_to_pt_weight_rename(self, tf_weight): if self.config.tie_word_embeddings and "crit.out_layers" in tf_weight: return tf_weight, tf_weight.replace("crit.out_layers", "transformer.word_emb.emb_layers") elif self.config.tie_projs and "crit.out_projs" in tf_weight: for i, tie_proj in enumerate(self.config.tie_projs): if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] return tf_weight, tf_weight.replace(f"crit.out_projs.{i}", "transformer.word_emb.emb_projs.0") elif tie_proj and self.config.div_val != 1: # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] return tf_weight, tf_weight.replace("crit.out_projs", "transformer.word_emb.emb_projs") else: return (tf_weight,) @add_start_docstrings( """ The Transfo XL Model transformer with a sequence classification head on top (linear layer). [`TFTransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1,GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.score = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_range), name="score", use_bias=False, ) self.transformer = TFTransfoXLMainLayer(config, name="transformer") def get_output_embeddings(self): # Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too. logger.warning( "Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed " "in transformers v4.32." ) return self.transformer.word_emb @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLSequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) in_logits = None if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = ( tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) - 1 ) sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None if labels is not None: if input_ids is not None: batch_size, sequence_length = shape_list(input_ids)[:2] else: batch_size, sequence_length = shape_list(inputs_embeds)[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if not tf.is_tensor(sequence_lengths): in_logits = logits[0:batch_size, sequence_lengths] loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels])) pooled_logits = in_logits if in_logits is not None else logits if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFTransfoXLSequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py", "repo_id": "transformers", "token_count": 20984 }
345
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DETA checkpoints from the original repository. URL: https://github.com/jozhang97/DETA/tree/master""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_deta_config(model_name): backbone_config = SwinConfig( embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=["stage2", "stage3", "stage4"], ) config = DetaConfig( backbone_config=backbone_config, num_queries=900, encoder_ffn_dim=2048, decoder_ffn_dim=2048, num_feature_levels=5, assign_first_stage=True, with_box_refine=True, two_stage=True, ) # set labels repo_id = "huggingface/label-files" if "o365" in model_name: num_labels = 366 filename = "object365-id2label.json" else: num_labels = 91 filename = "coco-detection-id2label.json" config.num_labels = num_labels id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight")) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight")) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias")) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight")) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias")) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight")) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias")) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias")) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_swin_q_k_v(state_dict, backbone_config): num_features = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): dim = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.query.weight"] = in_proj_weight[:dim, :] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.query.bias"] = in_proj_bias[: dim] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.key.weight"] = in_proj_weight[ dim : dim * 2, : ] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.key.bias"] = in_proj_bias[ dim : dim * 2 ] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.value.weight"] = in_proj_weight[ -dim :, : ] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.value.bias"] = in_proj_bias[-dim :] # fmt: on def read_in_decoder_q_k_v(state_dict, config): # transformer decoder self-attention layers hidden_size = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention in_proj_weight = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:hidden_size, :] state_dict[f"model.decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:hidden_size] state_dict[f"model.decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[ hidden_size : hidden_size * 2, : ] state_dict[f"model.decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size:, :] state_dict[f"model.decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size:] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_deta_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub): """ Copy/paste/tweak model's weights to our DETA structure. """ # load config config = get_deta_config(model_name) # load original state dict if model_name == "deta-swin-large": checkpoint_path = hf_hub_download(repo_id="nielsr/deta-checkpoints", filename="adet_swin_ft.pth") elif model_name == "deta-swin-large-o365": checkpoint_path = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365", filename="deta_swin_pt_o365.pth") else: raise ValueError(f"Model name {model_name} not supported") state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] # original state dict for name, param in state_dict.items(): print(name, param.shape) # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_swin_q_k_v(state_dict, config.backbone_config) read_in_decoder_q_k_v(state_dict, config) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: val = state_dict.pop(key) state_dict[key.replace("transformer.decoder", "model.decoder")] = val if "input_proj" in key: val = state_dict.pop(key) state_dict["model." + key] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: val = state_dict.pop(key) state_dict[key.replace("transformer", "model")] = val # finally, create HuggingFace model and load state dict model = DetaForObjectDetection(config) model.load_state_dict(state_dict) model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # load image processor processor = DetaImageProcessor(format="coco_detection") # verify our conversion on image img = prepare_img() encoding = processor(images=img, return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values.to(device)) # verify logits print("Logits:", outputs.logits[0, :3, :3]) print("Boxes:", outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": expected_logits = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) expected_boxes = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]]) elif model_name == "deta-swin-large-o365": expected_logits = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) expected_boxes = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]]) assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(device), atol=1e-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(device), atol=1e-4) print("Everything ok!") if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}...") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) # Push to hub if push_to_hub: print("Pushing model and processor to hub...") model.push_to_hub(f"jozhang97/{model_name}") processor.push_to_hub(f"jozhang97/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/deta/convert_deta_swin_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/deta/convert_deta_swin_to_pytorch.py", "repo_id": "transformers", "token_count": 8242 }
346
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DINOv2 model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/dinov2-base": "https://huggingface.co/facebook/dinov2-base/resolve/main/config.json", } class Dinov2Config(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Dinov2 [google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. mlp_ratio (`int`, *optional*, defaults to 4): Ratio of the hidden size of the MLPs relative to the `hidden_size`. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. layerscale_value (`float`, *optional*, defaults to 1.0): Initial value to use for layer scale. drop_path_rate (`float`, *optional*, defaults to 0.0): Stochastic depth rate per sample (when applied in the main path of residual layers). use_swiglu_ffn (`bool`, *optional*, defaults to `False`): Whether to use the SwiGLU feedforward neural network. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. apply_layernorm (`bool`, *optional*, defaults to `True`): Whether to apply layer normalization to the feature maps in case the model is used as backbone. reshape_hidden_states (`bool`, *optional*, defaults to `True`): Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size, seq_len, hidden_size)`. Example: ```python >>> from transformers import Dinov2Config, Dinov2Model >>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration >>> configuration = Dinov2Config() >>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration >>> model = Dinov2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "dinov2" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, mlp_ratio=4, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-6, image_size=224, patch_size=16, num_channels=3, qkv_bias=True, layerscale_value=1.0, drop_path_rate=0.0, use_swiglu_ffn=False, out_features=None, out_indices=None, apply_layernorm=True, reshape_hidden_states=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.layerscale_value = layerscale_value self.drop_path_rate = drop_path_rate self.use_swiglu_ffn = use_swiglu_ffn self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) self.apply_layernorm = apply_layernorm self.reshape_hidden_states = reshape_hidden_states class Dinov2OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
transformers/src/transformers/models/dinov2/configuration_dinov2.py/0
{ "file_path": "transformers/src/transformers/models/dinov2/configuration_dinov2.py", "repo_id": "transformers", "token_count": 3160 }
347
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Donut.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, pad, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, logging from ...utils.import_utils import is_vision_available logger = logging.get_logger(__name__) if is_vision_available(): import PIL class DonutImageProcessor(BaseImageProcessor): r""" Constructs a Donut image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_thumbnail (`bool`, *optional*, defaults to `True`): Whether to resize the image using thumbnail method. do_align_long_axis (`bool`, *optional*, defaults to `False`): Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees. do_pad (`bool`, *optional*, defaults to `True`): Whether to pad the image. If `random_padding` is set to `True` in `preprocess`, each image is padded with a random amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are padded to the largest image size in the batch. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Image standard deviation. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_thumbnail: bool = True, do_align_long_axis: bool = False, do_pad: bool = True, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 2560, "width": 1920} if isinstance(size, (tuple, list)): # The previous feature extractor size parameter was in (width, height) format size = size[::-1] size = get_size_dict(size) self.do_resize = do_resize self.size = size self.resample = resample self.do_thumbnail = do_thumbnail self.do_align_long_axis = do_align_long_axis self.do_pad = do_pad self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_thumbnail", "do_align_long_axis", "do_pad", "random_padding", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "return_tensors", "data_format", "input_data_format", ] def align_long_axis( self, image: np.ndarray, size: Dict[str, int], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Align the long axis of the image to the longest axis of the specified size. Args: image (`np.ndarray`): The image to be aligned. size (`Dict[str, int]`): The size `{"height": h, "width": w}` to align the long axis to. data_format (`str` or `ChannelDimension`, *optional*): The data format of the output image. If unset, the same format as the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. Returns: `np.ndarray`: The aligned image. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = size["height"], size["width"] if (output_width < output_height and input_width > input_height) or ( output_width > output_height and input_width < input_height ): image = np.rot90(image, 3) if data_format is not None: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def pad_image( self, image: np.ndarray, size: Dict[str, int], random_padding: bool = False, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pad the image to the specified size. Args: image (`np.ndarray`): The image to be padded. size (`Dict[str, int]`): The size `{"height": h, "width": w}` to pad the image to. random_padding (`bool`, *optional*, defaults to `False`): Whether to use random padding or not. data_format (`str` or `ChannelDimension`, *optional*): The data format of the output image. If unset, the same format as the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ output_height, output_width = size["height"], size["width"] input_height, input_width = get_image_size(image, channel_dim=input_data_format) delta_width = output_width - input_width delta_height = output_height - input_height if random_padding: pad_top = np.random.randint(low=0, high=delta_height + 1) pad_left = np.random.randint(low=0, high=delta_width + 1) else: pad_top = delta_height // 2 pad_left = delta_width // 2 pad_bottom = delta_height - pad_top pad_right = delta_width - pad_left padding = ((pad_top, pad_bottom), (pad_left, pad_right)) return pad(image, padding, data_format=data_format, input_data_format=input_data_format) def pad(self, *args, **kwargs): logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.") return self.pad_image(*args, **kwargs) def thumbnail( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any corresponding dimension of the specified size. Args: image (`np.ndarray`): The image to be resized. size (`Dict[str, int]`): The size `{"height": h, "width": w}` to resize the image to. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): The resampling filter to use. data_format (`Optional[Union[str, ChannelDimension]]`, *optional*): The data format of the output image. If unset, the same format as the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = size["height"], size["width"] # We always resize to the smallest of either the input or output size. height = min(input_height, output_height) width = min(input_width, output_width) if height == input_height and width == input_width: return image if input_height > input_width: width = int(input_width * height / input_height) elif input_width > input_height: height = int(input_height * width / input_width) return resize( image, size=(height, width), resample=resample, reducing_gap=2.0, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resizes `image` to `(height, width)` specified by `size` using the PIL library. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size) shortest_edge = min(size["height"], size["width"]) output_size = get_resize_output_image_size( image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format ) resized_image = resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) return resized_image def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_thumbnail: bool = None, do_align_long_axis: bool = None, do_pad: bool = None, random_padding: bool = False, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to min(size["height"], size["width"]) with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`): Whether to resize the image using thumbnail method. do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`): Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are padded to the largest image size in the batch. random_padding (`bool`, *optional*, defaults to `self.random_padding`): Whether to use random padding when padding the image. If `True`, each image in the batch with be padded with a random amount of padding on each side up to the size of the largest image in the batch. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image pixel values. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: defaults to the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size if isinstance(size, (tuple, list)): # Previous feature extractor had size in (width, height) format size = size[::-1] size = get_size_dict(size) resample = resample if resample is not None else self.resample do_thumbnail = do_thumbnail if do_thumbnail is not None else self.do_thumbnail do_align_long_axis = do_align_long_axis if do_align_long_axis is not None else self.do_align_long_axis do_pad = do_pad if do_pad is not None else self.do_pad do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_pad=do_pad, size_divisibility=size, # There is no pad divisibility in this processor, but pad requires the size arg. do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_align_long_axis: images = [self.align_long_axis(image, size=size, input_data_format=input_data_format) for image in images] if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_thumbnail: images = [self.thumbnail(image=image, size=size, input_data_format=input_data_format) for image in images] if do_pad: images = [ self.pad_image( image=image, size=size, random_padding=random_padding, input_data_format=input_data_format ) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/donut/image_processing_donut.py/0
{ "file_path": "transformers/src/transformers/models/donut/image_processing_donut.py", "repo_id": "transformers", "token_count": 9550 }
348
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DPT checkpoints from the original repository. URL: https://github.com/isl-org/DPT""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_dpt_config(checkpoint_url): config = DPTConfig() if "large" in checkpoint_url: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 config.backbone_out_indices = [5, 11, 17, 23] config.neck_hidden_sizes = [256, 512, 1024, 1024] expected_shape = (1, 384, 384) if "ade" in checkpoint_url: config.use_batch_norm_in_fusion_residual = True config.num_labels = 150 repo_id = "huggingface/label-files" filename = "ade20k-id2label.json" id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} expected_shape = [1, 150, 480, 480] return config, expected_shape def remove_ignore_keys_(state_dict): ignore_keys = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(name): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): name = name.replace("pretrained.model", "dpt.encoder") if "pretrained.model" in name: name = name.replace("pretrained.model", "dpt.embeddings") if "patch_embed" in name: name = name.replace("patch_embed", "patch_embeddings") if "pos_embed" in name: name = name.replace("pos_embed", "position_embeddings") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "proj" in name and "project" not in name: name = name.replace("proj", "projection") if "blocks" in name: name = name.replace("blocks", "layer") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "scratch.output_conv" in name: name = name.replace("scratch.output_conv", "head") if "scratch" in name: name = name.replace("scratch", "neck") if "layer1_rn" in name: name = name.replace("layer1_rn", "convs.0") if "layer2_rn" in name: name = name.replace("layer2_rn", "convs.1") if "layer3_rn" in name: name = name.replace("layer3_rn", "convs.2") if "layer4_rn" in name: name = name.replace("layer4_rn", "convs.3") if "refinenet" in name: layer_idx = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 name = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4)}") if "out_conv" in name: name = name.replace("out_conv", "projection") if "resConfUnit1" in name: name = name.replace("resConfUnit1", "residual_layer1") if "resConfUnit2" in name: name = name.replace("resConfUnit2", "residual_layer2") if "conv1" in name: name = name.replace("conv1", "convolution1") if "conv2" in name: name = name.replace("conv2", "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: name = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: name = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: name = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: name = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: name = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: name = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: name = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: name = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: name = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: name = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: name = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: name = name.replace("pretrained", "dpt") if "bn" in name: name = name.replace("bn", "batch_norm") if "head" in name: name = name.replace("head", "head.head") if "encoder.norm" in name: name = name.replace("encoder.norm", "layernorm") if "auxlayer" in name: name = name.replace("auxlayer", "auxiliary_head.head") return name # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] state_dict[f"dpt.encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"dpt.encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_dpt_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub, model_name): """ Copy/paste/tweak model's weights to our DPT structure. """ # define DPT configuration based on URL config, expected_shape = get_dpt_config(checkpoint_url) # load original state_dict from URL state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") # remove certain keys remove_ignore_keys_(state_dict) # rename keys for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val # read in qkv matrices read_in_q_k_v(state_dict, config) # load HuggingFace model model = DPTForSemanticSegmentation(config) if "ade" in checkpoint_url else DPTForDepthEstimation(config) model.load_state_dict(state_dict) model.eval() # Check outputs on an image size = 480 if "ade" in checkpoint_url else 384 image_processor = DPTImageProcessor(size=size) image = prepare_img() encoding = image_processor(image, return_tensors="pt") # forward pass outputs = model(**encoding).logits if "ade" in checkpoint_url else model(**encoding).predicted_depth # Assert logits expected_slice = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: expected_slice = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(expected_shape) assert ( torch.allclose(outputs[0, 0, :3, :3], expected_slice, atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], expected_slice) ) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(pytorch_dump_folder_path, model_name), organization="nielsr", commit_message="Add model", use_temp_dir=True, ) image_processor.push_to_hub( repo_path_or_name=Path(pytorch_dump_folder_path, model_name), organization="nielsr", commit_message="Add image processor", use_temp_dir=True, ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, required=False, help="Name of the model, in case you're pushing to the hub.", ) args = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
transformers/src/transformers/models/dpt/convert_dpt_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/dpt/convert_dpt_to_pytorch.py", "repo_id": "transformers", "token_count": 4993 }
349
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ELECTRA model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/config.json", "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/config.json", "google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/config.json", "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/config.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/config.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/config.json" ), } class ElectraConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ElectraModel`] or a [`TFElectraModel`]. It is used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`]. embedding_size (`int`, *optional*, defaults to 128): Dimensionality of the encoder layers and the pooler layer. hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 1024): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. summary_type (`str`, *optional*, defaults to `"first"`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"gelu"` for a gelu activation to the output, any other value will result in no activation. summary_last_dropout (`float`, *optional*, defaults to 0.0): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import ElectraConfig, ElectraModel >>> # Initializing a ELECTRA electra-base-uncased style configuration >>> configuration = ElectraConfig() >>> # Initializing a model (with random weights) from the electra-base-uncased style configuration >>> model = ElectraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "electra" def __init__( self, vocab_size=30522, embedding_size=128, hidden_size=256, num_hidden_layers=12, num_attention_heads=4, intermediate_size=1024, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, summary_type="first", summary_use_proj=True, summary_activation="gelu", summary_last_dropout=0.1, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_last_dropout = summary_last_dropout self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout class ElectraOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
transformers/src/transformers/models/electra/configuration_electra.py/0
{ "file_path": "transformers/src/transformers/models/electra/configuration_electra.py", "repo_id": "transformers", "token_count": 3700 }
350
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support TF Encoder-Decoder architectures""" from __future__ import annotations import inspect import re import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, get_initializer, keras, unpack_inputs, ) from ...tf_utils import shape_list from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM from .configuration_encoder_decoder import EncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "EncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). Provide for sequence to sequence training to the decoder. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `({0})`. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs`` for the decoder forward function. """ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") pad_token_id = tf.cast(pad_token_id, input_ids.dtype) if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids @add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): r""" [`TFEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder. """ config_class = EncoderDecoderConfig base_model_prefix = "encoder_decoder" load_weight_prefix = "tf_encoder_decoder_model" def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[TFPreTrainedModel] = None, decoder: Optional[TFPreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: encoder = TFAutoModel.from_config(config.encoder, name="encoder") if decoder is None: decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = keras.layers.Dense( units=self.decoder.config.hidden_size, kernel_initializer=get_initializer(config.encoder.initializer_range), name="enc_to_dec_proj", ) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) decoder_signature = set(inspect.signature(self.decoder.call).parameters.keys()) if "encoder_hidden_states" not in decoder_signature: raise ValueError( "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" ) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) def tf_to_pt_weight_rename(self, tf_weight): # Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models # (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal. # However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption # here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's # not the case, and I wasn't sure how else to go from the config to the correct MainLayer name! # This override is only needed in the case where we're crossloading weights from PT. However, since weights are # often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file. # Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it # or not. encoder_model_type = self.config.encoder.model_type if "encoder" in tf_weight and "decoder" not in tf_weight: return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),) else: return (tf_weight,) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `encoder_from_pt` should be set to `True`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `decoder_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import TFEncoderDecoderModel >>> # initialize a bert2gpt2 from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "openai-community/gpt2") >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2gpt2") >>> # load fine-tuned model >>> model = TFEncoderDecoderModel.from_pretrained("./bert2gpt2") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config kwargs_encoder["name"] = "encoder" kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) kwargs_decoder["name"] = "decoder" kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly. if encoder.name != "encoder": raise ValueError("encoder model must be created with the name `encoder`.") if decoder.name != "decoder": raise ValueError("decoder model must be created with the name `decoder`.") # instantiate config with corresponding kwargs config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @unpack_inputs @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import TFEncoderDecoderModel, BertTokenizer >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2") >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") >>> # forward >>> input_ids = tokenizer.encode( ... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf" ... ) # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) >>> # training >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("bert2gpt2") >>> model = TFEncoderDecoderModel.from_pretrained("bert2gpt2") >>> # generation >>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.bos_token_id) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # Let the user be responsible for the expected format. if encoder_outputs is not None: if return_dict and not isinstance(encoder_outputs, ModelOutput): raise ValueError( "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." ) if encoder_outputs is None: encoder_inputs = { "input_ids": input_ids, "attention_mask": attention_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "training": training, } # Add arguments to encoder from `kwargs_encoder` encoder_inputs.update(kwargs_encoder) # Handle the case where the inputs are passed as a single dict which contains `labels`. # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). if "labels" in encoder_inputs: labels = encoder_inputs.pop("labels") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_input_ids" in encoder_inputs: decoder_input_ids = encoder_inputs.pop("decoder_input_ids") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_attention_mask" in encoder_inputs: decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") encoder_outputs = self.encoder(**encoder_inputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) decoder_inputs = { "input_ids": decoder_input_ids, "attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": attention_mask, "inputs_embeds": decoder_inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "use_cache": use_cache, "past_key_values": past_key_values, "return_dict": return_dict, "training": training, } # Add arguments to decoder from `kwargs_decoder` decoder_inputs.update(kwargs_decoder) decoder_outputs = self.decoder(**decoder_inputs) logits = decoder_outputs[0] # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) loss = self.hf_compute_loss(labels, logits) if not return_dict: past_key_values = None if use_cache: past_key_values = decoder_outputs[1] # The starting index of the remaining elements in `decoder_outputs` start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) if not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs output = tuple([x for x in output if x is not None]) return output return TFSeq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None past_key_values = decoder_inputs.get("past_key_values") if past_key_values is None: past_key_values = decoder_inputs.get("past") # e.g. on TF GPT2 input_dict = { "input_ids": None, # needs to be passed to make Keras.layer.__call__ happy "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), "past_key_values": past_key_values, "use_cache": use_cache, } return input_dict def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the TFEncoderDecoderModel directly is not supported.Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past, beam_idx) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "enc_to_dec_proj", None) is not None: with tf.name_scope(self.enc_to_dec_proj.name): self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size]) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
transformers/src/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py", "repo_id": "transformers", "token_count": 13980 }
351
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def make_atom14_masks(protein: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """Construct denser atom positions (14 dimensions instead of 37).""" restype_atom14_to_atom37_list = [] restype_atom37_to_atom14_list = [] restype_atom14_mask_list = [] for rt in rc.restypes: atom_names = rc.restype_name_to_atom14_names[rc.restype_1to3[rt]] restype_atom14_to_atom37_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)} restype_atom37_to_atom14_list.append( [(atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0) for name in rc.atom_types] ) restype_atom14_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atom14_to_atom37_list.append([0] * 14) restype_atom37_to_atom14_list.append([0] * 37) restype_atom14_mask_list.append([0.0] * 14) restype_atom14_to_atom37 = torch.tensor( restype_atom14_to_atom37_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom37_to_atom14 = torch.tensor( restype_atom37_to_atom14_list, dtype=torch.int32, device=protein["aatype"].device, ) restype_atom14_mask = torch.tensor( restype_atom14_mask_list, dtype=torch.float32, device=protein["aatype"].device, ) protein_aatype = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein residx_atom14_to_atom37 = restype_atom14_to_atom37[protein_aatype] residx_atom14_mask = restype_atom14_mask[protein_aatype] protein["atom14_atom_exists"] = residx_atom14_mask protein["residx_atom14_to_atom37"] = residx_atom14_to_atom37.long() # create the gather indices for mapping back residx_atom37_to_atom14 = restype_atom37_to_atom14[protein_aatype] protein["residx_atom37_to_atom14"] = residx_atom37_to_atom14.long() # create the corresponding mask restype_atom37_mask = torch.zeros([21, 37], dtype=torch.float32, device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): restype_name = rc.restype_1to3[restype_letter] atom_names = rc.residue_atoms[restype_name] for atom_name in atom_names: atom_type = rc.atom_order[atom_name] restype_atom37_mask[restype, atom_type] = 1 residx_atom37_mask = restype_atom37_mask[protein_aatype] protein["atom37_atom_exists"] = residx_atom37_mask return protein def make_atom14_masks_np(batch: Dict[str, torch.Tensor]) -> Dict[str, np.ndarray]: batch = tree_map(lambda n: torch.tensor(n, device=batch["aatype"].device), batch, np.ndarray) out = tensor_tree_map(lambda t: np.array(t), make_atom14_masks(batch)) return out
transformers/src/transformers/models/esm/openfold_utils/data_transforms.py/0
{ "file_path": "transformers/src/transformers/models/esm/openfold_utils/data_transforms.py", "repo_id": "transformers", "token_count": 1505 }
352
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert FastSpeech2Conformer checkpoint.""" import argparse import torch from transformers import ( FastSpeech2ConformerConfig, FastSpeech2ConformerHifiGan, FastSpeech2ConformerHifiGanConfig, FastSpeech2ConformerModel, FastSpeech2ConformerWithHifiGan, FastSpeech2ConformerWithHifiGanConfig, logging, ) from .convert_fastspeech2_conformer_original_pytorch_checkpoint_to_pytorch import ( convert_espnet_state_dict_to_hf, remap_model_yaml_config, ) from .convert_hifigan import load_weights, remap_hifigan_yaml_config logging.set_verbosity_info() logger = logging.get_logger("transformers.models.FastSpeech2Conformer") def convert_FastSpeech2ConformerWithHifiGan_checkpoint( checkpoint_path, yaml_config_path, pytorch_dump_folder_path, repo_id=None, ): # Prepare the model model_params, *_ = remap_model_yaml_config(yaml_config_path) model_config = FastSpeech2ConformerConfig(**model_params) model = FastSpeech2ConformerModel(model_config) espnet_checkpoint = torch.load(checkpoint_path) hf_compatible_state_dict = convert_espnet_state_dict_to_hf(espnet_checkpoint) model.load_state_dict(hf_compatible_state_dict) # Prepare the vocoder config_kwargs = remap_hifigan_yaml_config(yaml_config_path) vocoder_config = FastSpeech2ConformerHifiGanConfig(**config_kwargs) vocoder = FastSpeech2ConformerHifiGan(vocoder_config) load_weights(espnet_checkpoint, vocoder, vocoder_config) # Prepare the model + vocoder config = FastSpeech2ConformerWithHifiGanConfig.from_sub_model_configs(model_config, vocoder_config) with_hifigan_model = FastSpeech2ConformerWithHifiGan(config) with_hifigan_model.model = model with_hifigan_model.vocoder = vocoder with_hifigan_model.save_pretrained(pytorch_dump_folder_path) if repo_id: print("Pushing to the hub...") with_hifigan_model.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument( "--yaml_config_path", required=True, default=None, type=str, help="Path to config.yaml of model to convert" ) parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output `FastSpeech2ConformerModel` PyTorch model.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) args = parser.parse_args() convert_FastSpeech2ConformerWithHifiGan_checkpoint( args.checkpoint_path, args.yaml_config_path, args.pytorch_dump_folder_path, args.push_to_hub, )
transformers/src/transformers/models/fastspeech2_conformer/convert_model_with_hifigan.py/0
{ "file_path": "transformers/src/transformers/models/fastspeech2_conformer/convert_model_with_hifigan.py", "repo_id": "transformers", "token_count": 1299 }
353
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_fnet"] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_fnet_fast"] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_fnet"] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/fnet/__init__.py/0
{ "file_path": "transformers/src/transformers/models/fnet/__init__.py", "repo_id": "transformers", "token_count": 1260 }
354
# coding=utf-8 # Copyright 2020, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Funnel Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class FunnelConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`]. block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`): The sizes of the blocks used in the model. block_repeats (`List[int]`, *optional*): If passed along, each layer of each block is repeated the number of times indicated. num_decoder_layers (`int`, *optional*, defaults to 2): The number of layers in the decoder (when not using the base model). d_model (`int`, *optional*, defaults to 768): Dimensionality of the model's hidden states. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. d_head (`int`, *optional*, defaults to 64): Dimensionality of the model's heads. d_inner (`int`, *optional*, defaults to 3072): Inner dimension in the feed-forward blocks. hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout probability used between the two layers of the feed-forward blocks. initializer_range (`float`, *optional*, defaults to 0.1): The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers. initializer_std (`float`, *optional*): The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for linear layers. layer_norm_eps (`float`, *optional*, defaults to 1e-09): The epsilon used by the layer normalization layers. pooling_type (`str`, *optional*, defaults to `"mean"`): Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block. attention_type (`str`, *optional*, defaults to `"relative_shift"`): Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter is faster on TPU. separate_cls (`bool`, *optional*, defaults to `True`): Whether or not to separate the cls token when applying pooling. truncate_seq (`bool`, *optional*, defaults to `True`): When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a sequence length that is not a multiple of 2. pool_q_only (`bool`, *optional*, defaults to `True`): Whether or not to apply the pooling only to the query or to query, key and values for the attention layers. """ model_type = "funnel" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self, vocab_size=30522, block_sizes=[4, 4, 4], block_repeats=None, num_decoder_layers=2, d_model=768, n_head=12, d_head=64, d_inner=3072, hidden_act="gelu_new", hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, initializer_range=0.1, initializer_std=None, layer_norm_eps=1e-9, pooling_type="mean", attention_type="relative_shift", separate_cls=True, truncate_seq=True, pool_q_only=True, **kwargs, ): self.vocab_size = vocab_size self.block_sizes = block_sizes self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats assert len(block_sizes) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." self.num_decoder_layers = num_decoder_layers self.d_model = d_model self.n_head = n_head self.d_head = d_head self.d_inner = d_inner self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.initializer_range = initializer_range self.initializer_std = initializer_std self.layer_norm_eps = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." self.pooling_type = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." self.attention_type = attention_type self.separate_cls = separate_cls self.truncate_seq = truncate_seq self.pool_q_only = pool_q_only super().__init__(**kwargs) @property def num_hidden_layers(self): return sum(self.block_sizes) @num_hidden_layers.setter def num_hidden_layers(self, value): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def num_blocks(self): return len(self.block_sizes) @num_blocks.setter def num_blocks(self, value): raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
transformers/src/transformers/models/funnel/configuration_funnel.py/0
{ "file_path": "transformers/src/transformers/models/funnel/configuration_funnel.py", "repo_id": "transformers", "token_count": 3437 }
355
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OpenAI GPT-2 configuration""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging logger = logging.get_logger(__name__) GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = { "openai-community/gpt2": "https://huggingface.co/openai-community/gpt2/resolve/main/config.json", "openai-community/gpt2-medium": "https://huggingface.co/openai-community/gpt2-medium/resolve/main/config.json", "openai-community/gpt2-large": "https://huggingface.co/openai-community/gpt2-large/resolve/main/config.json", "openai-community/gpt2-xl": "https://huggingface.co/openai-community/gpt2-xl/resolve/main/config.json", "distilbert/distilgpt2": "https://huggingface.co/distilbert/distilgpt2/resolve/main/config.json", } class GPT2Config(PretrainedConfig): """ This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT-2 [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50257): Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`]. n_positions (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. n_inner (`int`, *optional*): Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"gelu_new"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. summary_type (`string`, *optional*, defaults to `"cls_index"`): Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and [`TFGPT2DoubleHeadsModel`]. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and [`TFGPT2DoubleHeadsModel`]. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in for the multiple choice head in [`GPT2DoubleHeadsModel`]. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and [`TFGPT2DoubleHeadsModel`]. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_first_dropout (`float`, *optional*, defaults to 0.1): Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and [`TFGPT2DoubleHeadsModel`]. The dropout ratio to be used after the projection and activation. scale_attn_weights (`bool`, *optional*, defaults to `True`): Scale attention weights by dividing by sqrt(hidden_size).. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). bos_token_id (`int`, *optional*, defaults to 50256): Id of the beginning of sentence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 50256): Id of the end of sentence token in the vocabulary. scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): Whether to additionally scale attention weights by `1 / layer_idx + 1`. reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-product/softmax to float() when training with mixed precision. Example: ```python >>> from transformers import GPT2Config, GPT2Model >>> # Initializing a GPT2 configuration >>> configuration = GPT2Config() >>> # Initializing a model (with random weights) from the configuration >>> model = GPT2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gpt2" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=50257, n_positions=1024, n_embd=768, n_layer=12, n_head=12, n_inner=None, activation_function="gelu_new", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, summary_type="cls_index", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, scale_attn_weights=True, use_cache=True, bos_token_id=50256, eos_token_id=50256, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_first_dropout = summary_first_dropout self.summary_proj_to_labels = summary_proj_to_labels self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx self.reorder_and_upcast_attn = reorder_and_upcast_attn self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) class GPT2OnnxConfig(OnnxConfigWithPast): def __init__( self, config: PretrainedConfig, task: str = "default", patching_specs: List[PatchingSpec] = None, use_past: bool = False, ): super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) if not getattr(self._config, "pad_token_id", None): # TODO: how to do that better? self._config.pad_token_id = 0 @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} else: common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} return common_inputs @property def num_layers(self) -> int: return self._config.n_layer @property def num_attention_heads(self) -> int: return self._config.n_head def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # We need to order the input in the way they appears in the forward() ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 past_shape = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) ordered_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers) ] ordered_inputs["attention_mask"] = common_inputs["attention_mask"] if self.use_past: mask_dtype = ordered_inputs["attention_mask"].dtype ordered_inputs["attention_mask"] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) return ordered_inputs @property def default_onnx_opset(self) -> int: return 13
transformers/src/transformers/models/gpt2/configuration_gpt2.py/0
{ "file_path": "transformers/src/transformers/models/gpt2/configuration_gpt2.py", "repo_id": "transformers", "token_count": 5199 }
356
# coding=utf-8 # Copyright 2020 The Google AI Language Team Authors, Allegro.pl, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"allegro/herbert-base-cased": 514} PRETRAINED_INIT_CONFIGURATION = {} # Copied from transformers.models.xlm.tokenization_xlm.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs # Copied from transformers.models.xlm.tokenization_xlm.replace_unicode_punct def replace_unicode_punct(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl """ text = text.replace(",", ",") text = re.sub(r"。\s*", ". ", text) text = text.replace("、", ",") text = text.replace("”", '"') text = text.replace("“", '"') text = text.replace("∶", ":") text = text.replace(":", ":") text = text.replace("?", "?") text = text.replace("《", '"') text = text.replace("》", '"') text = text.replace(")", ")") text = text.replace("!", "!") text = text.replace("(", "(") text = text.replace(";", ";") text = text.replace("1", "1") text = text.replace("」", '"') text = text.replace("「", '"') text = text.replace("0", "0") text = text.replace("3", "3") text = text.replace("2", "2") text = text.replace("5", "5") text = text.replace("6", "6") text = text.replace("9", "9") text = text.replace("7", "7") text = text.replace("8", "8") text = text.replace("4", "4") text = re.sub(r".\s*", ". ", text) text = text.replace("~", "~") text = text.replace("’", "'") text = text.replace("…", "...") text = text.replace("━", "-") text = text.replace("〈", "<") text = text.replace("〉", ">") text = text.replace("【", "[") text = text.replace("】", "]") text = text.replace("%", "%") return text # Copied from transformers.models.xlm.tokenization_xlm.remove_non_printing_char def remove_non_printing_char(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl """ output = [] for char in text: cat = unicodedata.category(char) if cat.startswith("C"): continue output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class HerbertTokenizer(PreTrainedTokenizer): """ Construct a BPE tokenizer for HerBERT. Peculiarities: - uses BERT's pre-tokenizer: BaseTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of a punctuation character will be treated separately. - Such pretokenized input is BPE subtokenized This tokenizer inherits from [`XLMTokenizer`] which contains most of the methods. Users should refer to the superclass for more information regarding methods. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, tokenizer_file=None, cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sep_token="</s>", bos_token="<s>", do_lowercase_and_remove_accent=False, additional_special_tokens=[ "<special0>", "<special1>", "<special2>", "<special3>", "<special4>", "<special5>", "<special6>", "<special7>", "<special8>", "<special9>", ], lang2id=None, id2lang=None, **kwargs, ): try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use HerbertTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses # cache of sm.MosesPunctNormalizer instance self.cache_moses_punct_normalizer = {} # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.lang_with_custom_tokenizer = {"zh", "th", "ja"} # True for current supported model (v1.2.0), False for XLM-17 & 100 self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent self.lang2id = lang2id self.id2lang = id2lang if lang2id is not None and id2lang is not None: assert len(lang2id) == len(id2lang) self.ja_word_tokenizer = None self.zh_word_tokenizer = None with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( unk_token=unk_token, bos_token=bos_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, lang2id=lang2id, id2lang=id2lang, do_lowercase_and_remove_accent=do_lowercase_and_remove_accent, tokenizer_file=None, **kwargs, ) self.bert_pre_tokenizer = BasicTokenizer( do_lower_case=False, never_split=self.all_special_tokens, tokenize_chinese_chars=False, strip_accents=False, ) @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case def do_lower_case(self): return self.do_lowercase_and_remove_accent # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm def moses_punct_norm(self, text, lang): if lang not in self.cache_moses_punct_normalizer: punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) self.cache_moses_punct_normalizer[lang] = punct_normalizer else: punct_normalizer = self.cache_moses_punct_normalizer[lang] return punct_normalizer.normalize(text) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer else: moses_tokenizer = self.cache_moses_tokenizer[lang] return moses_tokenizer.tokenize(text, return_str=False, escape=False) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline def moses_pipeline(self, text, lang): text = replace_unicode_punct(text) text = self.moses_punct_norm(text, lang) text = remove_non_printing_char(text) return text # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize def ja_tokenize(self, text): if self.ja_word_tokenizer is None: try: import Mykytea self.ja_word_tokenizer = Mykytea.Mykytea( f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin" ) except (AttributeError, ImportError): logger.error( "Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper" " (https://github.com/chezou/Mykytea-python) with the following steps" ) logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea") logger.error("2. autoreconf -i") logger.error("3. ./configure --prefix=$HOME/local") logger.error("4. make && make install") logger.error("5. pip install kytea") raise return list(self.ja_word_tokenizer.getWS(text)) @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size def vocab_size(self): return len(self.encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def _tokenize(self, text): pre_tokens = self.bert_pre_tokenizer.tokenize(text) split_tokens = [] for token in pre_tokens: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = "".join(tokens).replace("</w>", " ").strip() return out_string # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos = [self.bos_token_id] sep = [self.sep_token_id] if token_ids_1 is None: return bos + token_ids_0 + sep return bos + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses
transformers/src/transformers/models/herbert/tokenization_herbert.py/0
{ "file_path": "transformers/src/transformers/models/herbert/tokenization_herbert.py", "repo_id": "transformers", "token_count": 11759 }
357
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Idefics model.""" from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ... import PreTrainedModel from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa from ...modeling_outputs import ModelOutput from ...modeling_utils import PretrainedConfig from ...pytorch_utils import ALL_LAYERNORM_LAYERS from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_idefics import IdeficsConfig from .perceiver import IdeficsPerceiverResampler from .vision import IdeficsVisionTransformer logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "IdeficsConfig" IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST = [ "HuggingFaceM4/idefics-9b", "HuggingFaceM4/idefics-80b", # See all Idefics models at https://huggingface.co/models?filter=idefics ] @dataclass class IdeficsBaseModelOutputWithPast(ModelOutput): """ Base class for Idefics model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ last_hidden_state: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class IdeficsCausalLMOutputWithPast(ModelOutput): """ Base class for Idefics causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None def expand_inputs_for_generation( input_ids, expand_size=1, is_encoder_decoder=False, attention_mask=None, encoder_outputs=None, **model_kwargs, ): expanded_return_idx = ( torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device) ) input_ids = input_ids.index_select(0, expanded_return_idx) model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None) model_kwargs["image_encoder_embeddings"] = model_kwargs.get("image_encoder_embeddings", None) model_kwargs["perceiver_embeddings"] = model_kwargs.get("perceiver_embeddings", None) model_kwargs["image_attention_mask"] = model_kwargs.get("image_attention_mask", None) if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx) if attention_mask is not None: model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx) if model_kwargs["image_attention_mask"] is not None: model_kwargs["image_attention_mask"] = model_kwargs["image_attention_mask"].index_select( 0, expanded_return_idx ) if model_kwargs["pixel_values"] is not None: model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx) elif model_kwargs["image_encoder_embeddings"] is not None: model_kwargs["image_encoder_embeddings"] = model_kwargs["image_encoder_embeddings"].index_select( 0, expanded_return_idx ) elif model_kwargs["perceiver_embeddings"] is not None: model_kwargs["perceiver_embeddings"] = model_kwargs["perceiver_embeddings"].index_select( 0, expanded_return_idx ) return input_ids, model_kwargs def prepare_inputs_for_generation(input_ids, past_key_values=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past_key_values: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) pixel_values = kwargs.get("pixel_values", None) image_encoder_embeddings = kwargs.get("image_encoder_embeddings", None) perceiver_embeddings = kwargs.get("perceiver_embeddings", None) image_attention_mask = kwargs.get("image_attention_mask", None) interpolate_pos_encoding = kwargs.get("interpolate_pos_encoding", False) return { "input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "pixel_values": pixel_values, "image_encoder_embeddings": image_encoder_embeddings, "perceiver_embeddings": perceiver_embeddings, "image_attention_mask": image_attention_mask, "interpolate_pos_encoding": interpolate_pos_encoding, } def freeze_model(model, module_exceptions=[]): mapping = { "LayerNorm": nn.LayerNorm, "Linear": nn.Linear, "Embedding": nn.Embedding, } module_exceptions_mapped = [mapping[m] for m in module_exceptions] for module in model.modules(): if module_exceptions and any(isinstance(module, t) for t in module_exceptions_mapped): module.requires_grad_(True) # Explicitely setting it to true to avoid any mistakes else: module.requires_grad_(False) return model class IdeficsDecoupledEmbedding(nn.Embedding): # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding """ Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained. If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`. """ def __init__( self, num_embeddings, num_additional_embeddings, embedding_dim, partially_freeze: Optional[bool] = False, device=None, dtype=None, padding_idx=None, **kwargs, ) -> None: """ Args: num_embeddings (`int`): Size of the dictionary of embeddings num_additional_embeddings (`int`): Number of additional embeddings. Only useful when you `partially_freeze=True`. embedding_dim (`int`): The size of each embedding vector partially_freeze: (`bool`, *optional*, defaults to `False`): If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen. padding_idx (`int`, *optional*): The padding index (needs to be less than num_embeddings) Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, `max_norm` or `norm_type`. We are not supporting these. """ if padding_idx is not None and padding_idx > num_embeddings: raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}") super().__init__( num_embeddings=num_embeddings, embedding_dim=embedding_dim, device=device, dtype=dtype, padding_idx=padding_idx, **kwargs, ) self.num_embeddings = num_embeddings self.padding_idx = padding_idx self.num_additional_embeddings = num_additional_embeddings self.partially_freeze = partially_freeze if partially_freeze: self.weight.requires_grad_(False) if self.num_additional_embeddings > 0: self.additional_embedding = nn.Embedding( num_embeddings=self.num_additional_embeddings, embedding_dim=embedding_dim, device=device, dtype=dtype, ) def forward(self, input_ids): """ we have 2 embeddings, with different indices - one pretrained self.weight and another self.additional_embedding.weight that is being trained. in order to make a lookup of the input ids, we: 1. find out the indices of the entries belonging to the 2nd embedding 2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd embedding starts from 0 and not num_embeddings 3. perform the 2nd embedding lookup 4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index 5. perform the 1st embedding lookup 6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices - i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are usually relatively short it's probably not faster or if faster not by much - but might be a good idea to measure. """ if self.num_additional_embeddings == 0: return F.embedding(input_ids, self.weight) # Clone so that we don't modify the original input_ids later on input_ids = input_ids.clone() additional_vocab_indices = torch.where(input_ids >= self.num_embeddings) input_ids_additional_vocab = input_ids[additional_vocab_indices] additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings) # for successful lookup replace input_ids with 0, the results of these will be discarded anyway input_ids[additional_vocab_indices] = 0 full_vector = F.embedding(input_ids, self.weight) # overwrite the records with high indices full_vector[additional_vocab_indices] = additional_embeddings return full_vector def extra_repr(self) -> str: return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format( self.num_embeddings, self.num_additional_embeddings, self.embedding_dim, self.partially_freeze, ) class IdeficsDecoupledLinear(nn.Linear): # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear """ Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained. If `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`. """ def __init__( self, in_features: int, out_features: int, out_additional_features: int = 0, bias: bool = True, partially_freeze: bool = True, device=None, dtype=None, ) -> None: """ out_additional_features: int. Number of additional trainable dimensions. Only makes sense when `partially_freeze=True`. partially_freeze: bool. If True, the regular `weight` will be frozen and extra parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear. """ super().__init__(in_features, out_features, bias, device, dtype) self.out_additional_features = out_additional_features self.partially_freeze = partially_freeze self.in_features = in_features self.out_features = out_features if partially_freeze: self.weight.requires_grad_(False) if bias: self.bias.requires_grad_(False) if out_additional_features > 0: self.additional_fc = nn.Linear( in_features=in_features, out_features=out_additional_features, bias=bias, device=device, dtype=dtype, ) def forward(self, input: torch.Tensor) -> torch.Tensor: output = F.linear(input, self.weight, self.bias) if self.out_additional_features > 0: additional_features = self.additional_fc(input) output = torch.cat((output, additional_features), -1) return output def extra_repr(self) -> str: """Overwriting `nn.Linear.extra_repr` to include new parameters.""" return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format( self.in_features, self.out_features, self.out_additional_features, self.bias is not None, self.partially_freeze, ) # this was adapted from LlamaRMSNorm class IdeficsRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ IdeficsRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states ALL_LAYERNORM_LAYERS.append(IdeficsRMSNorm) # this was adapted from LlamaRotaryEmbedding class IdeficsEmbedding(torch.nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # this was adapted from LlamaMLP class IdeficsMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, ): super().__init__() self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.act_fn = ACT2FN[hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # this was adapted from LlamaAttention class IdeficsAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, hidden_size: int, num_heads: int, dropout: float = 0.0, is_cross_attention: bool = False, config: PretrainedConfig = None, qk_layer_norms: bool = False, ): super().__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_dim = hidden_size // num_heads self.dropout = dropout self.is_causal = True if (self.head_dim * num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {num_heads})." ) self.is_cross_attention = is_cross_attention if not hasattr(nn.functional, "scaled_dot_product_attention"): raise ValueError("this model requires pytorch 2.0 or higher") if self.is_cross_attention: kv_input_dim = ( self.hidden_size if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim ) self.q_proj = nn.Linear( self.hidden_size, num_heads * self.head_dim, bias=False, ) self.k_proj = nn.Linear(kv_input_dim, num_heads * self.head_dim, bias=False) self.v_proj = nn.Linear( kv_input_dim, num_heads * self.head_dim, bias=False, ) else: self.q_proj = nn.Linear( self.hidden_size, num_heads * self.head_dim, bias=False, ) self.k_proj = nn.Linear( self.hidden_size, num_heads * self.head_dim, bias=False, ) self.v_proj = nn.Linear( self.hidden_size, num_heads * self.head_dim, bias=False, ) self.o_proj = nn.Linear( num_heads * self.head_dim, hidden_size, bias=False, ) self.rotary_emb = IdeficsEmbedding(self.head_dim) self.qk_layer_norms = qk_layer_norms if self.qk_layer_norms: self.q_layer_norm = IdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps) self.k_layer_norm = IdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # if key_value_states are provided this layer is used as a cross-attention layer is_cross_attention = self.is_cross_attention or key_value_states is not None bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) if not is_cross_attention: key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) else: _, kv_len, _ = key_value_states.size() # Note that, in this case, `kv_len` == `kv_seq_len` key_states = self.k_proj(key_value_states).view(bsz, kv_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = ( self.v_proj(key_value_states).view(bsz, kv_len, self.num_heads, self.head_dim).transpose(1, 2) ) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] if not is_cross_attention: cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, q_len)) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None if self.qk_layer_norms: query_states = self.q_layer_norm(query_states) key_states = self.k_layer_norm(key_states) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) attn_weights = None if output_attentions: logger.warning_once( "attn_weights are not extracted in scaled_dot_product_attention. The model returns None instead" ) return attn_output, attn_weights, past_key_value # this was adapted from LlamaDecoderLayer class IdeficsDecoderLayer(nn.Module): def __init__(self, config: IdeficsConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = IdeficsAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, dropout=config.dropout, config=config, ) self.mlp = IdeficsMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.dropout = config.dropout def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class IdeficsGatedCrossAttentionLayer(nn.Module): def __init__(self, config: IdeficsConfig): super().__init__() self.hidden_size = config.hidden_size self.cross_attn = IdeficsAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, is_cross_attention=True, dropout=config.dropout, config=config, qk_layer_norms=config.qk_layer_norms, ) self.mlp = IdeficsMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.config = config.dropout self.act_cross_attn = nn.Tanh() self.act_dense = nn.Tanh() if config.alpha_initializer == "zeros": if config.alpha_type == "vector": self.alpha_cross_attn = nn.Parameter(torch.zeros(1, 1, self.hidden_size)) self.alpha_dense = nn.Parameter(torch.zeros(1, 1, self.hidden_size)) elif config.alpha_type == "float": self.alpha_cross_attn = nn.Parameter(torch.zeros(1)) self.alpha_dense = nn.Parameter(torch.zeros(1)) else: raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") elif config.alpha_initializer == "ones": if config.alpha_type == "vector": self.alpha_cross_attn = nn.Parameter(torch.ones(1, 1, self.hidden_size)) self.alpha_dense = nn.Parameter(torch.ones(1, 1, self.hidden_size)) elif config.alpha_type == "float": self.alpha_cross_attn = nn.Parameter(torch.ones(1)) self.alpha_dense = nn.Parameter(torch.ones(1)) else: raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") elif config.alpha_initializer in {"normal", "gaussian", "random"}: if config.alpha_type == "vector": self.alpha_cross_attn = nn.Parameter( torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, self.hidden_size)) ) self.alpha_dense = nn.Parameter( torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, self.hidden_size)) ) elif config.alpha_type == "float": self.alpha_cross_attn = nn.Parameter( torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) ) self.alpha_dense = nn.Parameter(torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1))) else: raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") else: raise NotImplementedError(f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!") if not (hasattr(self, "alpha_cross_attn") and hasattr(self, "alpha_dense")): raise ValueError("Alpha parameters not initialized correctly!") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_hidden_states: Optional[torch.Tensor] = None, image_attention_mask: Optional[torch.Tensor] = None, cross_attention_gate: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, past_key_value: Optional[Tuple[torch.Tensor]] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. image_attention_mask (`torch.FloatTensor`, *optional*): image attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. cross_attention_gate (`torch.FloatTensor`, *optional*): gate of size `(batch, seq_len)` used to zero-out cross-attention output for tokens attending no images. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ if image_hidden_states is None: raise ValueError( "`image_hidden_states` is required for Idefics cross attention module which are visual features to be" " conditioned on." ) if cross_attention_gate is None: raise ValueError( "`cross_attention_gate` is required for Idefics cross attention module to zero-out the cross-attention hidden_states attending to no images." ) if past_key_value is not None: raise NotImplementedError("Past key value states are not implemented for Idefics cross attention module.") residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.cross_attn( hidden_states=hidden_states, key_value_states=image_hidden_states, attention_mask=image_attention_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training) # Fill in zeros for cross_attention hidden_states of tokens attending to no images hidden_states[cross_attention_gate == 0] = hidden_states[cross_attention_gate == 0].fill_(0) hidden_states = residual + self.act_cross_attn(self.alpha_cross_attn) * hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training) hidden_states = residual + self.act_dense(self.alpha_dense) * hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs LLAMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`IdeficsConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class IdeficsPreTrainedModel(PreTrainedModel): config_class = IdeficsConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["IdeficsDecoderLayer", "IdeficsGatedCrossAttentionLayer"] _supports_sdpa = True def _init_weights(self, module): # important: this ported version of Idefics isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed - the m4 code # base should be used for training from scratch and it contains the correct code. std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() # Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa @classmethod def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig: # We remove the checks on `is_torch_sdpa_available()` and `cls._supports_sdpa` as Falcon supports SDPA from torch==2.0.0 (no requirement on 2.1). _is_bettertransformer = getattr(cls, "use_bettertransformer", False) if _is_bettertransformer: return config if not hard_check_only: config._attn_implementation = "sdpa" return config LLAMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class IdeficsModel(IdeficsPreTrainedModel): """ Transformer decoder consisting of `config.num_hidden_layers` layers. Each layer is a [`IdeficsDecoderLayer`] Args: config: IdeficsConfig """ def __init__(self, config: IdeficsConfig): super().__init__(config) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = IdeficsDecoupledEmbedding( num_embeddings=config.vocab_size, num_additional_embeddings=config.additional_vocab_size, embedding_dim=config.hidden_size, partially_freeze=config.freeze_text_layers, padding_idx=self.padding_idx, ) self.image_size = config.vision_config.image_size self.vision_config = config.vision_config self.vision_model = IdeficsVisionTransformer(config.vision_config) # Perceiver Resampler if config.use_resampler: perceiver_config = config.perceiver_config self.perceiver_resampler = IdeficsPerceiverResampler( config, config.vision_config.embed_dim, perceiver_config.resampler_depth, perceiver_config.resampler_n_heads, perceiver_config.resampler_head_dim, perceiver_config.resampler_n_latents, ) self.layers = nn.ModuleList([IdeficsDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.cross_layer_interval = config.cross_layer_interval num_cross_layers = config.num_hidden_layers // self.cross_layer_interval self.gated_cross_attn_layers = nn.ModuleList( [IdeficsGatedCrossAttentionLayer(config) for _ in range(num_cross_layers)] ) self.gradient_checkpointing = False self.norm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) # Initialize weights and apply final processing self.post_init() self.freeze_relevant_params(config) def freeze_relevant_params(self, config=None): if config is None: config = self.config if config.freeze_text_layers: self.freeze_text_layers(config.freeze_text_module_exceptions) if config.freeze_vision_layers: freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions) def freeze_text_layers(self, module_exceptions=[]): for module in [self.layers, self.norm]: freeze_model(module, module_exceptions=module_exceptions) def freeze_vision_layers(self, module_exceptions=[]): freeze_model(self.vision_model, module_exceptions=module_exceptions) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_encoder_embeddings: Optional[torch.FloatTensor] = None, perceiver_embeddings: Optional[torch.FloatTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, return_dict: Optional[bool] = None, ) -> Union[Tuple, IdeficsBaseModelOutputWithPast]: device = input_ids.device if input_ids is not None else inputs_embeds.device output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) elif position_ids is None: position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if (pixel_values, image_encoder_embeddings, perceiver_embeddings).count(None) != 2: raise ValueError( "Exactly 1 of pixel_values, image_encoder_embeddings or perceiver_embeddings has to be not-None." ) elif pixel_values is not None: pixel_values = pixel_values.to(dtype=self.dtype, device=device) # fp16 compatibility batch_size, num_images = pixel_values.shape[:2] pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) # Get sequence from the vision encoder image_hidden_states = self.vision_model( pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding ).last_hidden_state elif image_encoder_embeddings is not None: batch_size, num_images, image_seq_len, image_hidden_size = image_encoder_embeddings.size() image_hidden_states = image_encoder_embeddings.to(dtype=self.dtype, device=device) image_hidden_states = image_hidden_states.view(batch_size * num_images, image_seq_len, image_hidden_size) if self.config.use_resampler: if perceiver_embeddings is None: perceiver_embeddings = self.perceiver_resampler(image_hidden_states) image_seq_len, image_hidden_size = perceiver_embeddings.size(1), perceiver_embeddings.size(2) else: batch_size, num_images, image_seq_len, image_hidden_size = perceiver_embeddings.size() image_hidden_states = perceiver_embeddings elif perceiver_embeddings is None: image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2) else: raise ValueError("If `perceiver_embeddings` are passed, use_resampler should be True") image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size) # # Hack to use the model in full language modeling mode # image_attention_mask = torch.zeros(batch_size, seq_length, 1, dtype=torch.long, device=image_hidden_states.device) # Make image_attention_mask compatible with hidden states text_seq_len = image_attention_mask.size(1) image_attention_mask = image_attention_mask.unsqueeze(-1) image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len) if image_hidden_states is not None: image_batch_size, image_sequence_length, _ = image_hidden_states.size() image_hidden_shape = (image_batch_size, image_sequence_length) if image_attention_mask is None: image_attention_mask = torch.ones(image_hidden_shape, device=device) image_attention_mask = self.invert_attention_mask(image_attention_mask) else: image_attention_mask = None # cross_attention_gate: # For any tokens attending to no images, the hidden_states comming out of the cross-attention should be zeroed-out. # `image_attention_mask` has shape [bsz, 1, num_images, hidden_size] with elements equal to either 0.0 or a very negative number. # If any of the elements are 0.0, then the token is attending to at least one image and the gate value is 1. Otherwise the gate value is 0. # `cross_attention_gate` has shape [bsz, seq_len] with elements equal to either 0.0 or 1.0. cross_attention_gate = ((((image_attention_mask == 0.0).any(dim=-1)).to(dtype=self.dtype)).squeeze(dim=1)).to( device ) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None def vblock( main_block, hidden_states, attention_mask, position_ids, past_key_value, image_hidden_states, image_attention_mask, cross_attention_gate, output_attentions, use_cache, layer_idx, cross_layer_interval, gated_cross_attn_layers, ): # TODO(ls): Add cross attention values to respective lists if layer_idx % cross_layer_interval == 0: xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval] outputs = xblock( hidden_states, attention_mask=attention_mask, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, cross_attention_gate=cross_attention_gate, output_attentions=output_attentions, use_cache=use_cache, past_key_value=None, # not implemented ) hidden_states = outputs[0] layer_outputs = main_block( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) return layer_outputs if self.gradient_checkpointing and self.training: past_key_value = None if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False layer_outputs = self._gradient_checkpointing_func( vblock, decoder_layer, hidden_states, attention_mask, position_ids, past_key_value, image_hidden_states, image_attention_mask, cross_attention_gate, output_attentions, use_cache, idx, self.cross_layer_interval, self.gated_cross_attn_layers, ) else: layer_outputs = vblock( decoder_layer, hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, cross_attention_gate=cross_attention_gate, output_attentions=output_attentions, use_cache=use_cache, layer_idx=idx, cross_layer_interval=self.cross_layer_interval, gated_cross_attn_layers=self.gated_cross_attn_layers, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None image_hidden_states = image_hidden_states.view(batch_size, num_images, image_seq_len, image_hidden_size) if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states] if v is not None ) return IdeficsBaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, image_hidden_states=image_hidden_states, ) class IdeficsForVisionText2Text(IdeficsPreTrainedModel): _keys_to_ignore_on_load_missing = [r"lm_head.weight"] _tied_weights_keys = ["model.embed_tokens.weight", "lm_head.weight"] def __init__(self, config, vision_model=None): super().__init__(config) self.model = IdeficsModel(config) self.lm_head = IdeficsDecoupledLinear( in_features=config.hidden_size, out_features=config.vocab_size, out_additional_features=config.additional_vocab_size, bias=False, partially_freeze=config.freeze_lm_head, ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def tie_weights(self): """ Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of IdeficsDecoupledLinear and IdeficsDecoupledEmbedding. """ output_embeddings = self.get_output_embeddings() input_embeddings = self.get_input_embeddings() if getattr(self.config, "tie_word_embeddings", True): output_embeddings.weight = input_embeddings.weight if input_embeddings.num_additional_embeddings > 0: assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): output_embeddings.out_features = input_embeddings.num_embeddings if hasattr(output_embeddings, "out_additional_features") and hasattr( input_embeddings, "num_additional_embeddings" ): output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=IdeficsCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_encoder_embeddings: Optional[torch.FloatTensor] = None, perceiver_embeddings: Optional[torch.FloatTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, return_dict: Optional[bool] = None, ) -> Union[Tuple, IdeficsCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, IdeficsForVisionText2Text >>> model = IdeficsForVisionText2Text.from_pretrained("HuggingFaceM4/idefics-9b") >>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceM4/idefics-9b") >>> prompt = "Hey, are you consciours? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_encoder_embeddings=image_encoder_embeddings, perceiver_embeddings=perceiver_embeddings, image_attention_mask=image_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: labels = labels.to(logits.device) # Shift so that tokens < n predict n if attention_mask is not None: shift_attention_mask = attention_mask[..., 1:].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return IdeficsCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): image_hidden_states = kwargs.pop("image_hidden_states", None) if image_hidden_states is not None: if self.config.use_resampler: kwargs["perceiver_embeddings"] = image_hidden_states else: kwargs["image_encoder_embeddings"] = image_hidden_states kwargs["pixel_values"] = None inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs) unwanted_kwargs = ["token_type_ids"] for kwarg in unwanted_kwargs: inputs.pop(kwarg, None) return inputs @staticmethod def _expand_inputs_for_generation( *args, **model_kwargs, ): return expand_inputs_for_generation(*args, **model_kwargs) def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, standardize_cache_format: bool = False, ) -> Dict[str, Any]: model_kwargs = super()._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder, standardize_cache_format, ) if "image_attention_mask" in model_kwargs: image_attention_mask = model_kwargs["image_attention_mask"] last_mask = image_attention_mask[:, -1, :].unsqueeze(1) model_kwargs["image_attention_mask"] = last_mask # Get the precomputed image_hidden_states model_kwargs["image_hidden_states"] = outputs.image_hidden_states return model_kwargs @staticmethod def _reorder_cache(past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past
transformers/src/transformers/models/idefics/modeling_idefics.py/0
{ "file_path": "transformers/src/transformers/models/idefics/modeling_idefics.py", "repo_id": "transformers", "token_count": 31537 }
358
# coding=utf-8 # Copyright 2023 The Salesforce Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch InstructBLIP model.""" import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto import AutoModelForCausalLM, AutoModelForSeq2SeqLM from .configuration_instructblip import InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Salesforce/instructblip-flan-t5-xl" INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Salesforce/instructblip-flan-t5-xl", # See all InstructBLIP models at https://huggingface.co/models?filter=instructblip ] @dataclass # Copied from transformers.models.blip_2.modeling_blip_2.Blip2ForConditionalGenerationModelOutput with Blip2->InstructBlip class InstructBlipForConditionalGenerationModelOutput(ModelOutput): """ Class defining the outputs of [`InstructBlipForConditionalGeneration`]. Args: loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Language modeling loss from the language model. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head of the language model. vision_outputs (`BaseModelOutputWithPooling`): Outputs of the vision encoder. qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`): Outputs of the Q-Former (Querying Transformer). language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`): Outputs of the language model. """ loss: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None vision_outputs: Optional[torch.FloatTensor] = None qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"] else getattr(self, k).to_tuple() for k in self.keys() ) # Copied from transformers.models.blip.modeling_blip.BlipVisionEmbeddings with Blip->InstructBlip class InstructBlipVisionEmbeddings(nn.Module): def __init__(self, config: InstructBlipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) return embeddings # Copied from transformers.models.blip_2.modeling_blip_2.Blip2Attention with Blip2->InstructBlip class InstructBlipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = nn.Dropout(config.attention_dropout) # small tweak here compared to CLIP, no bias here self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False) if config.qkv_bias: q_bias = nn.Parameter(torch.zeros(self.embed_dim)) v_bias = nn.Parameter(torch.zeros(self.embed_dim)) else: q_bias = None v_bias = None if q_bias is not None: qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) self.qkv.bias = nn.Parameter(qkv_bias) self.projection = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() mixed_qkv = self.qkv(hidden_states) mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute( 2, 0, 3, 1, 4 ) query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) attention_scores = attention_scores * self.scale # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) context_layer = context_layer.reshape(new_context_layer_shape) output = self.projection(context_layer) outputs = (output, attention_probs) if output_attentions else (output, None) return outputs # Copied from transformers.models.blip.modeling_blip.BlipMLP class InstructBlipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.blip.modeling_blip.BlipEncoderLayer with Blip->InstructBlip class InstructBlipEncoderLayer(nn.Module): def __init__(self, config: InstructBlipConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = InstructBlipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = InstructBlipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, head_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class InstructBlipPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = InstructBlipConfig base_model_prefix = "blip" supports_gradient_checkpointing = True _no_split_modules = [ "InstructBlipQFormerEmbeddings", "InstructBlipAttention", "InstructBlipQFormerMultiHeadAttention", "InstructBlipQFormerSelfOutput", ] _keep_in_fp32_modules = [] # Copied from transformers.models.blip_2.modeling_blip_2.Blip2PreTrainedModel._init_weights with Blip2->InstructBlip def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_range if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=factor) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() if isinstance(module, InstructBlipVisionEmbeddings): if hasattr(self.config, "vision_config"): factor = self.config.vision_config.initializer_range nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor) nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() INSTRUCTBLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`InstructBlipConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ INSTRUCTBLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ INSTRUCTBLIP_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. qformer_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary of the Q-Former. Input tokens can optionally be provided to serve as text prompt, which the Q-Former model will encode. Indices can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) qformer_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be provided to serve as text prompt, which the language model can continue. Indices can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an encoder-decoder language model (like T5) is used. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. Only relevant in case an encoder-decoder language model (like T5) is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->InstructBlip class InstructBlipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`InstructBlipEncoderLayer`]. Args: config (`InstructBlipConfig`): The corresponding vision configuration for the `InstructBlipEncoder`. """ def __init__(self, config: InstructBlipConfig): super().__init__() self.config = config self.layers = nn.ModuleList([InstructBlipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Embedded representation of the inputs. Should be float, not int tokens. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.blip.modeling_blip.BlipVisionModel with Blip->InstructBlip, BLIP->INSTRUCTBLIP class InstructBlipVisionModel(InstructBlipPreTrainedModel): main_input_name = "pixel_values" config_class = InstructBlipVisionConfig def __init__(self, config: InstructBlipVisionConfig): super().__init__(config) self.config = config embed_dim = config.hidden_size self.embeddings = InstructBlipVisionEmbeddings(config) self.encoder = InstructBlipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.post_init() @add_start_docstrings_to_model_forward(INSTRUCTBLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=InstructBlipVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings class InstructBlipQFormerMultiHeadAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) if is_cross_attention: self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) else: self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.save_attention = False def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) mixed_query_layer = self.query(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) attention_scores_dtype = attention_scores.dtype if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores).to(attention_scores_dtype) if is_cross_attention and self.save_attention: self.save_attention_map(attention_probs) attention_probs.register_hook(self.save_attn_gradients) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs_dropped = attention_probs_dropped * head_mask context_layer = torch.matmul(attention_probs_dropped, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->InstructBlipQFormer class InstructBlipQFormerSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerAttention with Blip2->InstructBlip class InstructBlipQFormerAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.attention = InstructBlipQFormerMultiHeadAttention(config, is_cross_attention) self.output = InstructBlipQFormerSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.attention( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->InstructBlipQFormer class InstructBlipQFormerIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->InstructBlipQFormer class InstructBlipQFormerOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class InstructBlipQFormerLayer(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = InstructBlipQFormerAttention(config) self.layer_idx = layer_idx if layer_idx % config.cross_attention_frequency == 0: self.crossattention = InstructBlipQFormerAttention(config, is_cross_attention=True) self.has_cross_attention = True else: self.has_cross_attention = False self.intermediate = InstructBlipQFormerIntermediate(config) self.output = InstructBlipQFormerOutput(config) self.intermediate_query = InstructBlipQFormerIntermediate(config) self.output_query = InstructBlipQFormerOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, query_length=0, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] if query_length > 0: query_attention_output = attention_output[:, :query_length, :] if self.has_cross_attention: if encoder_hidden_states is None: raise ValueError("encoder_hidden_states must be given for cross-attention layers") cross_attention_outputs = self.crossattention( query_attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, ) query_attention_output = cross_attention_outputs[0] # add cross attentions if we output attention weights outputs = outputs + cross_attention_outputs[1:-1] layer_output = apply_chunking_to_forward( self.feed_forward_chunk_query, self.chunk_size_feed_forward, self.seq_len_dim, query_attention_output, ) if attention_output.shape[1] > query_length: layer_output_text = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[:, query_length:, :], ) layer_output = torch.cat([layer_output, layer_output_text], dim=1) else: layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def feed_forward_chunk_query(self, attention_output): intermediate_output = self.intermediate_query(attention_output) layer_output = self.output_query(intermediate_output, attention_output) return layer_output # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerEncoder with Blip2->InstructBlip class InstructBlipQFormerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList( [InstructBlipQFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, query_length=0, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions else None next_decoder_cache = () if use_cache else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, query_length, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if layer_module.has_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class InstructBlipQFormerEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.config = config def forward( self, input_ids=None, position_ids=None, query_embeds=None, past_key_values_length=0, ): if input_ids is not None: seq_length = input_ids.size()[1] else: seq_length = 0 if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length].clone() if input_ids is not None: embeddings = self.word_embeddings(input_ids) if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids.to(embeddings.device)) embeddings = embeddings + position_embeddings if query_embeds is not None: embeddings = torch.cat((query_embeds, embeddings), dim=1) else: embeddings = query_embeds embeddings = embeddings.to(self.layernorm.weight.dtype) embeddings = self.layernorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class InstructBlipQFormerModel(InstructBlipPreTrainedModel): """ Querying Transformer (Q-Former), used in InstructBLIP. Slightly modified from BLIP-2 as it also takes the instruction as input. """ def __init__(self, config: InstructBlipQFormerConfig): super().__init__(config) self.config = config self.embeddings = InstructBlipQFormerEmbeddings(config) self.encoder = InstructBlipQFormerEncoder(config) self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_extended_attention_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int], device: torch.device, has_query: bool = False, ) -> torch.Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. device: (`torch.device`): The device of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})", ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, query_embeds: Optional[torch.Tensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and query_embeds is None: raise ValueError("You have to specify query_embeds when input_ids is None") # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 ) query_length = query_embeds.shape[1] if query_embeds is not None else 0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, query_embeds=query_embeds, past_key_values_length=past_key_values_length, ) input_shape = embedding_output.size()[:-1] batch_size, seq_length = input_shape device = embedding_output.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, list): encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() else: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if isinstance(encoder_attention_mask, list): encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, query_length=query_length, ) sequence_output = encoder_outputs[0] pooled_output = sequence_output[:, 0, :] if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ InstructBLIP Model for generating text given an image and an optional text prompt. The model consists of a vision encoder, Querying Transformer (Q-Former) and a language model. One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the language model continue the prompt. Otherwise, the language model starts generating text from the [BOS] (beginning-of-sequence) token. """, INSTRUCTBLIP_START_DOCSTRING, ) class InstructBlipForConditionalGeneration(InstructBlipPreTrainedModel): config_class = InstructBlipConfig main_input_name = "pixel_values" def __init__(self, config: InstructBlipConfig): super().__init__(config) self.vision_model = InstructBlipVisionModel(config.vision_config) self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) self.qformer = InstructBlipQFormerModel(config.qformer_config) self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size) if config.use_decoder_only_language_model: language_model = AutoModelForCausalLM.from_config(config.text_config) else: language_model = AutoModelForSeq2SeqLM.from_config(config.text_config) if language_model._no_split_modules is not None: self._no_split_modules.extend(language_model._no_split_modules) if language_model._keep_in_fp32_modules is not None: self._keep_in_fp32_modules.extend(language_model._keep_in_fp32_modules) self.language_model = language_model # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def get_output_embeddings(self) -> nn.Module: return self.language_model.get_output_embeddings() def get_encoder(self): return self.language_model.get_encoder() def get_decoder(self): return self.language_model.get_decoder() def _tie_weights(self): if not self.config.use_decoder_only_language_model: self.language_model.encoder.embed_tokens = self.language_model.shared self.language_model.decoder.embed_tokens = self.language_model.shared def _preprocess_accelerate(self): r""" Some pre-processing hacks to make the model `accelerate` compatible. Check https://github.com/huggingface/transformers/pull/21707 for more details. """ hf_device_map = self.hf_device_map if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1: # warn users about unexpected behavior when using multi-GPU + InstructBLIP + `accelerate`. logger.warning( "The `language_model` is not in the `hf_device_map` dictionary and you are running your script" " in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`." " Please pass a `device_map` that contains `language_model` to remove this warning." " Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for" " more details on creating a `device_map` for large models.", ) if hasattr(self.language_model, "_hf_hook"): self.language_model._hf_hook.io_same_device = True # For `generate` compatibility @add_start_docstrings_to_model_forward(INSTRUCTBLIP_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=InstructBlipForConditionalGenerationModelOutput, config_class=InstructBlipVisionConfig ) def forward( self, pixel_values: torch.FloatTensor, qformer_input_ids: torch.FloatTensor, qformer_attention_mask: Optional[torch.LongTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, InstructBlipForConditionalGenerationModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration >>> import torch >>> from PIL import Image >>> import requests >>> model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b") >>> processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b") >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) # doctest: +IGNORE_RESULT >>> url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> prompt = "What is unusual about this image?" >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device) >>> outputs = model.generate( ... **inputs, ... do_sample=False, ... num_beams=5, ... max_length=256, ... min_length=1, ... top_p=0.9, ... repetition_penalty=1.5, ... length_penalty=1.0, ... temperature=1, ... ) >>> generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() >>> print(generated_text) The unusual aspect of this image is that a man is ironing clothes on the back of a yellow SUV, which is parked in the middle of a busy city street. This is an unconventional approach to ironing clothes, as it requires the man to balance himself and his ironing equipment on top of the vehicle while navigating through traffic. Additionally, the presence of taxis and other vehicles in the scene further emphasizes the unusual nature of this situation. ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # step 1: forward the images through the vision encoder, # to get image embeddings of shape (batch_size, seq_len, hidden_size) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) # difference with BLIP-2 here: we also feed the instruction prompt to the Q-Former query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) if qformer_attention_mask is None: qformer_attention_mask = torch.ones_like(qformer_input_ids) qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) query_outputs = self.qformer( input_ids=qformer_input_ids, attention_mask=qformer_attention_mask, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) query_output = query_outputs[0][:, : query_tokens.size(1), :] # step 3: use the language model, conditioned on the query outputs and the prompt language_model_inputs = self.language_projection(query_output) language_model_attention_mask = torch.ones( language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device ) inputs_embeds = self.language_model.get_input_embeddings()(input_ids) inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) if attention_mask is None: attention_mask = torch.ones_like(input_ids) attention_mask = torch.cat([language_model_attention_mask.to(attention_mask.device), attention_mask], dim=1) if self.config.use_decoder_only_language_model: outputs = self.language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None # we compute the loss here since we need to take into account the sequence length of the query embeds if labels is not None: labels = labels.to(logits.device) logits = logits[:, -labels.size(1) :, :] # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous().to(logits.device) # Flatten the tokens loss_fct = CrossEntropyLoss(reduction="mean") loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1)) else: outputs = self.language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, ) loss = outputs.loss if return_dict else outputs[0] logits = outputs.logits if return_dict else outputs[1] if not return_dict: output = (logits, vision_outputs, query_outputs, outputs) return ((loss,) + output) if loss is not None else output return InstructBlipForConditionalGenerationModelOutput( loss=loss, logits=logits, vision_outputs=vision_outputs, qformer_outputs=query_outputs, language_model_outputs=outputs, ) @torch.no_grad() def generate( self, pixel_values: torch.FloatTensor, qformer_input_ids: Optional[torch.LongTensor] = None, qformer_attention_mask: Optional[torch.LongTensor] = None, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: """ Overrides `generate` function to be able to use the model as a conditional generator. Args: pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)): Input images to be processed. qformer_input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): The sequence used as a prompt to be fed to the Q-Former module. qformer_attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): Mask to avoid performing attention on padding token indices. input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): The sequence used as a prompt for the generation. attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): Mask to avoid performing attention on padding token indices. Returns: captions (list): A list of strings of length batch_size * num_captions. """ if hasattr(self, "hf_device_map"): # preprocess for `accelerate` self._preprocess_accelerate() batch_size = pixel_values.shape[0] image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) if qformer_attention_mask is None: qformer_attention_mask = torch.ones_like(qformer_input_ids) qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) query_outputs = self.qformer( input_ids=qformer_input_ids, attention_mask=qformer_attention_mask, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=True, ) query_output = query_outputs.last_hidden_state[:, : query_tokens.size(1), :] language_model_inputs = self.language_projection(query_output) language_attention_mask = torch.ones( language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device ) if input_ids is None: input_ids = ( torch.LongTensor([[self.config.text_config.bos_token_id]]) .repeat(batch_size, 1) .to(image_embeds.device) ) if attention_mask is None: attention_mask = torch.ones_like(input_ids) attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1) # concatenate query embeddings with prompt embeddings inputs_embeds = self.get_input_embeddings()(input_ids) inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) # add image_embeds length to max_length, so that the final max_length in counted only on token embeds if not self.language_model.config.is_encoder_decoder: generate_kwargs["max_length"] = generate_kwargs.get("max_length", 20) + language_model_inputs.shape[1] generate_kwargs["min_length"] = generate_kwargs.get("min_length", 0) + language_model_inputs.shape[1] outputs = self.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generate_kwargs, ) # the InstructBLIP authors used inconsistent tokenizer/model files during training, # with the tokenizer's bos token being set to </s> which has ID=2, # whereas the model's text config has bos token id = 0 if self.config.text_config.architectures[0] == "LLaMAForCausalLM": if isinstance(outputs, torch.Tensor): outputs[outputs == 0] = 2 else: outputs.sequences[outputs.sequences == 0] = 2 return outputs
transformers/src/transformers/models/instructblip/modeling_instructblip.py/0
{ "file_path": "transformers/src/transformers/models/instructblip/modeling_instructblip.py", "repo_id": "transformers", "token_count": 29931 }
359
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model LayoutLM.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/layoutlm-base-uncased": ( "https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/vocab.txt" ), "microsoft/layoutlm-large-uncased": ( "https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/vocab.txt" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/layoutlm-base-uncased": 512, "microsoft/layoutlm-large-uncased": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/layoutlm-base-uncased": {"do_lower_case": True}, "microsoft/layoutlm-large-uncased": {"do_lower_case": True}, } # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->LayoutLM,BERT->LayoutLM class LayoutLMTokenizer(PreTrainedTokenizer): r""" Construct a LayoutLM tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original LayoutLM). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = LayoutLMTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A LayoutLM sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A LayoutLM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
transformers/src/transformers/models/layoutlm/tokenization_layoutlm.py/0
{ "file_path": "transformers/src/transformers/models/layoutlm/tokenization_layoutlm.py", "repo_id": "transformers", "token_count": 9657 }
360
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for LayoutLMv3. """ import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class LayoutLMv3Processor(ProcessorMixin): r""" Constructs a LayoutLMv3 processor which combines a LayoutLMv3 image processor and a LayoutLMv3 tokenizer into a single processor. [`LayoutLMv3Processor`] offers all the functionalities you need to prepare data for the model. It first uses [`LayoutLMv3ImageProcessor`] to resize and normalize document images, and optionally applies OCR to get words and normalized bounding boxes. These are then provided to [`LayoutLMv3Tokenizer`] or [`LayoutLMv3TokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned into token-level `labels` for token classification tasks (such as FUNSD, CORD). Args: image_processor (`LayoutLMv3ImageProcessor`, *optional*): An instance of [`LayoutLMv3ImageProcessor`]. The image processor is a required input. tokenizer (`LayoutLMv3Tokenizer` or `LayoutLMv3TokenizerFast`, *optional*): An instance of [`LayoutLMv3Tokenizer`] or [`LayoutLMv3TokenizerFast`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "LayoutLMv3ImageProcessor" tokenizer_class = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__( self, images, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method first forwards the `images` argument to [`~LayoutLMv3ImageProcessor.__call__`]. In case [`LayoutLMv3ImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and bounding boxes along with the additional arguments to [`~LayoutLMv3Tokenizer.__call__`] and returns the output, together with resized and normalized `pixel_values`. In case [`LayoutLMv3ImageProcessor`] was initialized with `apply_ocr` set to `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional arguments to [`~LayoutLMv3Tokenizer.__call__`] and returns the output, together with resized and normalized `pixel_values`. Please refer to the docstring of the above two methods for more information. """ # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor features = self.image_processor(images=images, return_tensors=return_tensors) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(text, str): text = [text] # add batch dimension (as the image processor always adds a batch dimension) text_pair = features["words"] encoded_inputs = self.tokenizer( text=text if text is not None else features["words"], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features["boxes"], word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) # add pixel values images = features.pop("pixel_values") if return_overflowing_tokens is True: images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"]) encoded_inputs["pixel_values"] = images return encoded_inputs def get_overflowing_images(self, images, overflow_to_sample_mapping): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image images_with_overflow = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(images_with_overflow) != len(overflow_to_sample_mapping): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}" ) return images_with_overflow def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
transformers/src/transformers/models/layoutlmv3/processing_layoutlmv3.py/0
{ "file_path": "transformers/src/transformers/models/layoutlmv3/processing_layoutlmv3.py", "repo_id": "transformers", "token_count": 3523 }
361
# coding=utf-8 # Copyright 2023 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Llava model.""" from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ... import PreTrainedModel from ...activations import ACT2FN from ...cache_utils import Cache from ...modeling_outputs import ModelOutput from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto import AutoModel, AutoModelForCausalLM from .configuration_llava import LlavaConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LlavaConfig" LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "llava-hf/llava-1.5-7b-hf", "llava-hf/llava-1.5-13b-hf", "llava-hf/bakLlava-v1-hf", # See all Llava models at https://huggingface.co/models?filter=llava ] @dataclass # Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava class LlavaCausalLMOutputWithPast(ModelOutput): """ Base class for Llava causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None class LlavaMultiModalProjector(nn.Module): def __init__(self, config: LlavaConfig): super().__init__() self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) def forward(self, image_features): hidden_states = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states LLAVA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LlavaConfig`] or [`LlavaVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAVA_START_DOCSTRING, ) class LlavaPreTrainedModel(PreTrainedModel): config_class = LlavaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LlavaVisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True def _init_weights(self, module): # important: this ported version of Llava isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed - the original codebase # https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def _supports_sdpa(self): """ Retrieve language_model's attribute to check whether the model supports SDPA or not. """ return self.language_model._supports_sdpa LLAVA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses [`CLIPImageProcessor`] for processing images). attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. vision_feature_layer (`int`, *optional*, defaults to -2): The index of the layer to select the vision feature. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The LLAVA model which consists of a vision backbone and a language model.""", LLAVA_START_DOCSTRING, ) class LlavaForConditionalGeneration(LlavaPreTrainedModel): def __init__(self, config: LlavaConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = LlavaMultiModalProjector(config) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config( config.text_config, attn_implementation=config._attn_implementation ) self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def tie_weights(self): return self.language_model.tie_weights() def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) # update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels): num_images, num_image_patches, embed_dim = image_features.shape batch_size, sequence_length = input_ids.shape left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == self.config.image_token_index num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) # Compute the maximum embed dimension max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. # `torch.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] if left_padding: new_token_positions += nb_image_pad[:, None] # offset for left padding text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position final_embedding = torch.zeros( batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) final_attention_mask = torch.zeros( batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device ) if labels is not None: final_labels = torch.full( (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device ) # In case the Vision model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device batch_indices, non_image_indices, text_to_overwrite = ( batch_indices.to(target_device), non_image_indices.to(target_device), text_to_overwrite.to(target_device), ) attention_mask = attention_mask.to(target_device) # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] if labels is not None: final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] # 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling image_to_overwrite = torch.all(final_embedding == 0, dim=-1) image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device) if image_to_overwrite.sum() != image_features.shape[:-1].numel(): raise ValueError( f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." ) final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) final_attention_mask |= image_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) if labels is None: final_labels = None return final_embedding, final_attention_mask, final_labels, position_ids @add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[int] = None, vision_feature_select_strategy: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LlavaCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, LlavaForConditionalGeneration >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf") >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf") >>> prompt = "<image>\nUSER: What's the content of the image?\nASSISTANT:" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=prompt, images=image, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=30) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "\nUSER: What's the content of the image?\nASSISTANT: The image features a stop sign on a street corner" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer ) vision_feature_select_strategy = ( vision_feature_select_strategy if vision_feature_select_strategy is not None else self.config.vision_feature_select_strategy ) if inputs_embeds is None: # 1. Extra the input embeddings inputs_embeds = self.get_input_embeddings()(input_ids) # 2. Merge text and images if pixel_values is not None and input_ids.shape[1] != 1: image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) # this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated. selected_image_feature = image_outputs.hidden_states[vision_feature_layer] if vision_feature_select_strategy == "default": selected_image_feature = selected_image_feature[:, 1:] elif vision_feature_select_strategy == "full": selected_image_feature = selected_image_feature else: raise ValueError( f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}" ) image_features = self.multi_modal_projector(selected_image_feature) inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features( image_features, inputs_embeds, input_ids, attention_mask, labels ) if labels is None: labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long) # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of # generation with cache elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: # Retrieve the first layer to inspect the logits and mask out the hidden states # that are set to 0 first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) # Get the target length target_seqlen = first_layer_past_key_value.shape[-1] + 1 extended_attention_mask = torch.ones( (attention_mask.shape[0], target_seqlen - attention_mask.shape[1]), dtype=attention_mask.dtype, device=attention_mask.device, ) # Filter out only the tokens that can be un-attended, this can happen # if one uses Llava + Fused modules where the cache on the # first iteration is already big enough, or if one passes custom cache valid_indices = non_attended_tokens < extended_attention_mask.size(-1) new_batch_index = batch_index[valid_indices] new_non_attended_tokens = non_attended_tokens[valid_indices] # Zero-out the places where we don't need to attend extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: shift_attention_mask = attention_mask[..., 1:] shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return LlavaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens else: cache_length = past_length = past_key_values[0][0].shape[2] # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. elif self.config.image_token_index in input_ids: input_ids = input_ids[:, input_ids.shape[1] - 1 :] # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the # older attention values, as their corresponding values are not part of the input. if cache_length < past_length and attention_mask is not None: attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "pixel_values": pixel_values, } ) return model_inputs def _reorder_cache(self, *args, **kwargs): return self.language_model._reorder_cache(*args, **kwargs)
transformers/src/transformers/models/llava/modeling_llava.py/0
{ "file_path": "transformers/src/transformers/models/llava/modeling_llava.py", "repo_id": "transformers", "token_count": 11973 }
362
# coding=utf-8 # Copyright 2022, The LongT5 Authors and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LongT5 model configuration""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeq2SeqConfigWithPast from ...utils import logging logger = logging.get_logger(__name__) LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/long-t5-local-base": "https://huggingface.co/google/long-t5-local-base/blob/main/config.json", "google/long-t5-local-large": "https://huggingface.co/google/long-t5-local-large/blob/main/config.json", "google/long-t5-tglobal-base": "https://huggingface.co/google/long-t5-tglobal-base/blob/main/config.json", "google/long-t5-tglobal-large": "https://huggingface.co/google/long-t5-tglobal-large/blob/main/config.json", } class LongT5Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LongT5Model`] or a [`FlaxLongT5Model`]. It is used to instantiate a LongT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LongT5 [google/long-t5-local-base](https://huggingface.co/google/long-t5-local-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 32128): Vocabulary size of the LongT5 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LongT5Model`]. d_model (`int`, *optional*, defaults to 512): Size of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model // num_heads`. d_ff (`int`, *optional*, defaults to 2048): Size of the intermediate feed forward layer in each `LongT5Block`. num_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. num_decoder_layers (`int`, *optional*): Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. num_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. local_radius (`int`, *optional*, defaults to 127) Number of tokens to the left/right for each token to locally self-attend in a local attention mechanism. global_block_size (`int`, *optional*, defaults to 16) Lenght of blocks an input sequence is divided into for a global token representation. Used only for `encoder_attention_type = "transient-global"`. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. dropout_rate (`float`, *optional*, defaults to 0.1): The ratio for all dropout layers. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). feed_forward_proj (`string`, *optional*, defaults to `"relu"`): Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. LongT5v1.1 uses the `"gated-gelu"` feed forward projection. Original LongT5 implementation uses `"gated-gelu"`. encoder_attention_type (`string`, *optional*, defaults to `"local"`): Type of encoder attention to be used. Should be one of `"local"` or `"transient-global"`, which are supported by LongT5 implementation. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). """ model_type = "longt5" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, vocab_size=32128, d_model=512, d_kv=64, d_ff=2048, num_layers=6, num_decoder_layers=None, num_heads=8, local_radius=127, global_block_size=16, relative_attention_num_buckets=32, relative_attention_max_distance=128, dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, feed_forward_proj="relu", is_encoder_decoder=True, encoder_attention_type="local", use_cache=True, pad_token_id=0, eos_token_id=1, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers # default = symmetry self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers self.num_heads = num_heads self.local_radius = local_radius self.global_block_size = global_block_size self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.feed_forward_proj = feed_forward_proj self.encoder_attention_type = encoder_attention_type self.use_cache = use_cache act_info = self.feed_forward_proj.split("-") self.dense_act_fn = act_info[-1] self.is_gated_act = act_info[0] == "gated" if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": self.dense_act_fn = "gelu_new" super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, **kwargs, ) class LongT5OnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence" common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") return common_inputs @property def default_onnx_opset(self) -> int: return 13
transformers/src/transformers/models/longt5/configuration_longt5.py/0
{ "file_path": "transformers/src/transformers/models/longt5/configuration_longt5.py", "repo_id": "transformers", "token_count": 3475 }
363
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_m2m_100"] = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config, M2M100OnnxConfig from .tokenization_m2m_100 import M2M100Tokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_m2m_100 import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, M2M100ForConditionalGeneration, M2M100Model, M2M100PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/m2m_100/__init__.py/0
{ "file_path": "transformers/src/transformers/models/m2m_100/__init__.py", "repo_id": "transformers", "token_count": 768 }
364
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_markuplm": ["MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "MarkupLMConfig"], "feature_extraction_markuplm": ["MarkupLMFeatureExtractor"], "processing_markuplm": ["MarkupLMProcessor"], "tokenization_markuplm": ["MarkupLMTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_markuplm_fast"] = ["MarkupLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_markuplm"] = [ "MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST", "MarkupLMForQuestionAnswering", "MarkupLMForSequenceClassification", "MarkupLMForTokenClassification", "MarkupLMModel", "MarkupLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_markuplm import MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP, MarkupLMConfig from .feature_extraction_markuplm import MarkupLMFeatureExtractor from .processing_markuplm import MarkupLMProcessor from .tokenization_markuplm import MarkupLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_markuplm_fast import MarkupLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_markuplm import ( MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST, MarkupLMForQuestionAnswering, MarkupLMForSequenceClassification, MarkupLMForTokenClassification, MarkupLMModel, MarkupLMPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/markuplm/__init__.py/0
{ "file_path": "transformers/src/transformers/models/markuplm/__init__.py", "repo_id": "transformers", "token_count": 1053 }
365
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MaskFormer checkpoints with ResNet backbone from the original repository. URL: https://github.com/facebookresearch/MaskFormer""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_maskformer_config(model_name: str): if "resnet101c" in model_name: # TODO add support for ResNet-C backbone, which uses a "deeplab" stem raise NotImplementedError("To do") elif "resnet101" in model_name: backbone_config = ResNetConfig.from_pretrained( "microsoft/resnet-101", out_features=["stage1", "stage2", "stage3", "stage4"] ) else: backbone_config = ResNetConfig.from_pretrained( "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"] ) config = MaskFormerConfig(backbone_config=backbone_config) repo_id = "huggingface/label-files" if "ade20k-full" in model_name: config.num_labels = 847 filename = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: config.num_labels = 150 filename = "ade20k-id2label.json" elif "coco-stuff" in model_name: config.num_labels = 171 filename = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO config.num_labels = 133 filename = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: config.num_labels = 19 filename = "cityscapes-id2label.json" elif "vistas" in model_name: config.num_labels = 65 filename = "mapillary-vistas-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.stem.conv1.weight", "model.pixel_level_module.encoder.embedder.embedder.convolution.weight")) rename_keys.append(("backbone.stem.conv1.norm.weight", "model.pixel_level_module.encoder.embedder.embedder.normalization.weight")) rename_keys.append(("backbone.stem.conv1.norm.bias", "model.pixel_level_module.encoder.embedder.embedder.normalization.bias")) rename_keys.append(("backbone.stem.conv1.norm.running_mean", "model.pixel_level_module.encoder.embedder.embedder.normalization.running_mean")) rename_keys.append(("backbone.stem.conv1.norm.running_var", "model.pixel_level_module.encoder.embedder.embedder.normalization.running_var")) # fmt: on # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.bias", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.running_mean", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.running_var", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3): rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.bias", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_mean", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_var", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # FPN # fmt: off rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias")) for source_index, target_index in zip(range(3, 0, -1), range(0, 3)): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias")) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias")) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight")) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias")) # fmt: on # Transformer decoder # fmt: off for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias")) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias")) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias")) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias")) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias")) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias")) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias")) # fmt: on # heads on top # fmt: off rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias")) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight")) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias")) for i in range(3): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight")) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_decoder_q_k_v(state_dict, config): # fmt: off hidden_size = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # fmt: on # We will verify our results on an image of cute cats def prepare_img() -> torch.Tensor: url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_maskformer_checkpoint( model_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False ): """ Copy/paste/tweak model's weights to our MaskFormer structure. """ config = get_maskformer_config(model_name) # load original state_dict with open(checkpoint_path, "rb") as f: data = pickle.load(f) state_dict = data["model"] # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_decoder_q_k_v(state_dict, config) # update to torch tensors for key, value in state_dict.items(): state_dict[key] = torch.from_numpy(value) # load 🤗 model model = MaskFormerForInstanceSegmentation(config) model.eval() model.load_state_dict(state_dict) # verify results image = prepare_img() if "vistas" in model_name: ignore_index = 65 elif "cityscapes" in model_name: ignore_index = 65535 else: ignore_index = 255 reduce_labels = True if "ade" in model_name else False image_processor = MaskFormerImageProcessor(ignore_index=ignore_index, reduce_labels=reduce_labels) inputs = image_processor(image, return_tensors="pt") outputs = model(**inputs) if model_name == "maskformer-resnet50-ade": expected_logits = torch.tensor( [[6.7710, -0.1452, -3.5687], [1.9165, -1.0010, -1.8614], [3.6209, -0.2950, -1.3813]] ) elif model_name == "maskformer-resnet101-ade": expected_logits = torch.tensor( [[4.0381, -1.1483, -1.9688], [2.7083, -1.9147, -2.2555], [3.4367, -1.3711, -2.1609]] ) elif model_name == "maskformer-resnet50-coco-stuff": expected_logits = torch.tensor( [[3.2309, -3.0481, -2.8695], [5.4986, -5.4242, -2.4211], [6.2100, -5.2279, -2.7786]] ) elif model_name == "maskformer-resnet101-coco-stuff": expected_logits = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ) elif model_name == "maskformer-resnet101-cityscapes": expected_logits = torch.tensor( [[-1.8861, -1.5465, 0.6749], [-2.3677, -1.6707, -0.0867], [-2.2314, -1.9530, -0.9132]] ) elif model_name == "maskformer-resnet50-vistas": expected_logits = torch.tensor( [[-6.3917, -1.5216, -1.1392], [-5.5335, -4.5318, -1.8339], [-4.3576, -4.0301, 0.2162]] ) elif model_name == "maskformer-resnet50-ade20k-full": expected_logits = torch.tensor( [[3.6146, -1.9367, -3.2534], [4.0099, 0.2027, -2.7576], [3.3913, -2.3644, -3.9519]] ) elif model_name == "maskformer-resnet101-ade20k-full": expected_logits = torch.tensor( [[3.2211, -1.6550, -2.7605], [2.8559, -2.4512, -2.9574], [2.6331, -2.6775, -2.1844]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_logits, atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor of {model_name} to {pytorch_dump_folder_path}") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print(f"Pushing model and image processor of {model_name} to the hub...") model.push_to_hub(f"facebook/{model_name}") image_processor.push_to_hub(f"facebook/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-resnet50-ade", type=str, required=True, choices=[ "maskformer-resnet50-ade", "maskformer-resnet101-ade", "maskformer-resnet50-coco-stuff", "maskformer-resnet101-coco-stuff", "maskformer-resnet101-cityscapes", "maskformer-resnet50-vistas", "maskformer-resnet50-ade20k-full", "maskformer-resnet101-ade20k-full", ], help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", type=str, required=True, help=("Path to the original pickle file (.pkl) of the original checkpoint.",), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
transformers/src/transformers/models/maskformer/convert_maskformer_resnet_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/maskformer/convert_maskformer_resnet_to_pytorch.py", "repo_id": "transformers", "token_count": 9461 }
366
# coding=utf-8 # Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart50 import MBart50Tokenizer else: MBart50Tokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip class MBart50TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" MBART tokenizer for mBART-50 (backed by HuggingFace's *tokenizers* library). Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Examples: ```python >>> from transformers import MBart50TokenizerFast >>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> # model(**model_inputs) should work ```""" vocab_files_names = VOCAB_FILES_NAMES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = MBart50Tokenizer prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file=None, src_lang=None, tgt_lang=None, tokenizer_file=None, eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or [] kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( vocab_file, src_lang=src_lang, tgt_lang=tgt_lang, tokenizer_file=tokenizer_file, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.lang_code_to_id = { lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES } self._src_lang = src_lang if src_lang is not None else "en_XX" self.tgt_lang = tgt_lang self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.set_src_lang_special_tokens(self._src_lang) @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An MBART-50 sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `labels`: (for decoder) `[tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(src_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(tgt_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers/src/transformers/models/mbart50/tokenization_mbart50_fast.py/0
{ "file_path": "transformers/src/transformers/models/mbart50/tokenization_mbart50_fast.py", "repo_id": "transformers", "token_count": 5245 }
367
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MGT-STR CHAR.""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"mgp-str": 27} class MgpstrTokenizer(PreTrainedTokenizer): """ Construct a MGP-STR char tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str`, *optional*, defaults to `"[GO]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"[GO]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[s]"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"[GO]"`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, vocab_file, unk_token="[GO]", bos_token="[GO]", eos_token="[s]", pad_token="[GO]", **kwargs): with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) self.decoder = {v: k for k, v in self.vocab.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): vocab = dict(self.vocab).copy() vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): """Tokenize a string.""" char_tokens = [] for s in text: char_tokens.extend(s) return char_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
transformers/src/transformers/models/mgp_str/tokenization_mgp_str.py/0
{ "file_path": "transformers/src/transformers/models/mgp_str/tokenization_mgp_str.py", "repo_id": "transformers", "token_count": 1683 }
368
# MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "mrm8488/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "csarron/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "lordtt13/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = ["google/mobilebert-uncased"] def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.replace("ffn_layer", "ffn") name = name.replace("FakeLayerNorm", "LayerNorm") name = name.replace("extra_output_weights", "dense/kernel") name = name.replace("bert", "mobilebert") name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class NoNorm(nn.Module): def __init__(self, feat_size, eps=None): super().__init__() self.bias = nn.Parameter(torch.zeros(feat_size)) self.weight = nn.Parameter(torch.ones(feat_size)) def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: return input_tensor * self.weight + self.bias NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm} class MobileBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.hidden_size = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) embed_dim_multiplier = 3 if self.trigram_input else 1 embedded_input_size = self.embedding_size * embed_dim_multiplier self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = torch.cat( [ nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0), inputs_embeds, nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0), ], dim=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) # Add positional embeddings and token type embeddings, then layer # normalize and perform dropout. position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MobileBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.true_hidden_size, self.all_head_size) self.key = nn.Linear(config.true_hidden_size, self.all_head_size) self.value = nn.Linear( config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class MobileBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) if not self.use_bottleneck: layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = MobileBertSelfAttention(config) self.output = MobileBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, layer_input: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, ) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. attention_output = self.output(self_outputs[0], layer_input) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class MobileBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class OutputBottleneck(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) else: self.bottleneck = OutputBottleneck(config) def forward( self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor ) -> torch.Tensor: layer_output = self.dense(intermediate_states) if not self.use_bottleneck: layer_output = self.dropout(layer_output) layer_output = self.LayerNorm(layer_output + residual_tensor_1) else: layer_output = self.LayerNorm(layer_output + residual_tensor_1) layer_output = self.bottleneck(layer_output, residual_tensor_2) return layer_output class BottleneckLayer(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layer_input = self.dense(hidden_states) layer_input = self.LayerNorm(layer_input) return layer_input class Bottleneck(nn.Module): def __init__(self, config): super().__init__() self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.input = BottleneckLayer(config) if self.key_query_shared_bottleneck: self.attention = BottleneckLayer(config) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) class FFNOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class FFNLayer(nn.Module): def __init__(self, config): super().__init__() self.intermediate = MobileBertIntermediate(config) self.output = FFNOutput(config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: intermediate_output = self.intermediate(hidden_states) layer_outputs = self.output(intermediate_output, hidden_states) return layer_outputs class MobileBertLayer(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = MobileBertAttention(config) self.intermediate = MobileBertIntermediate(config) self.output = MobileBertOutput(config) if self.use_bottleneck: self.bottleneck = Bottleneck(config) if config.num_feedforward_networks > 1: self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 self_attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] s = (attention_output,) outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output, hidden_states) outputs = ( (layer_output,) + outputs + ( torch.tensor(1000), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) return outputs class MobileBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class MobileBertPooler(nn.Module): def __init__(self, config): super().__init__() self.do_activate = config.classifier_activation if self.do_activate: self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) pooled_output = torch.tanh(pooled_output) return pooled_output class MobileBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class MobileBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MobileBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.transform(hidden_states) hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) hidden_states += self.decoder.bias return hidden_states class MobileBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class MobileBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]: prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class MobileBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig pretrained_model_archive_map = MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST load_tf_weights = load_tf_weights_in_mobilebert base_model_prefix = "mobilebert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (nn.LayerNorm, NoNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class MobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`MobileBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class MobileBertModel(MobileBertPreTrainedModel): """ https://arxiv.org/pdf/2004.02984.pdf """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MobileBertEmbeddings(config) self.encoder = MobileBertEncoder(config) self.pooler = MobileBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class MobileBertForPreTraining(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddigs): self.cls.predictions.decoder = new_embeddigs def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[torch.FloatTensor] = None, return_dict: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, MobileBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) >>> # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class MobileBertForMaskedLM(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.cls = MobileBertOnlyMLMHead(config) self.config = config # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddigs): self.cls.predictions.decoder = new_embeddigs def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class MobileBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`. - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> loss = outputs.loss >>> logits = outputs.logits ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_score,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing class MobileBertForSequenceClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing class MobileBertForMultipleChoice(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing class MobileBertForTokenClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/mobilebert/modeling_mobilebert.py/0
{ "file_path": "transformers/src/transformers/models/mobilebert/modeling_mobilebert.py", "repo_id": "transformers", "token_count": 29570 }
369
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_mobilevit"] = ["MobileViTFeatureExtractor"] _import_structure["image_processing_mobilevit"] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mobilevit"] = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_mobilevit"] = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/mobilevit/__init__.py/0
{ "file_path": "transformers/src/transformers/models/mobilevit/__init__.py", "repo_id": "transformers", "token_count": 1380 }
370
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization classes for MPNet.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mpnet import MPNetTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt", }, "tokenizer_file": { "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/mpnet-base": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/mpnet-base": {"do_lower_case": True}, } class MPNetTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" MPNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = MPNetTokenizer model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="[UNK]", pad_token="<pad>", mask_token="<mask>", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get("lowercase", do_lower_case) != do_lower_case or pre_tok_state.get("strip_accents", strip_accents) != strip_accents ): pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) pre_tok_state["lowercase"] = do_lower_case pre_tok_state["strip_accents"] = strip_accents self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) self.do_lower_case = do_lower_case @property def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. MPNet tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily comprise the space before the *<mask>*. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def mask_token(self, value): """ Overriding the default behavior of the mask token to have it eat the space before it. This is needed to preserve backward compatibility with all the previously used models based on MPNet. """ # Mask token behave like a normal word, i.e. include the space before it # So we set lstrip to True value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value self._mask_token = value def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not make use of token type ids, therefore a list of zeros is returned Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers/src/transformers/models/mpnet/tokenization_mpnet_fast.py/0
{ "file_path": "transformers/src/transformers/models/mpnet/tokenization_mpnet_fast.py", "repo_id": "transformers", "token_count": 3935 }
371
# coding=utf-8 # Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Musicgen model.""" import copy import inspect import math import random from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation.configuration_utils import GenerationConfig from ...generation.logits_process import ClassifierFreeGuidanceLogitsProcessor, LogitsProcessorList from ...generation.stopping_criteria import StoppingCriteriaList from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, ModelOutput, Seq2SeqLMOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_auto import AutoModel from .configuration_musicgen import MusicgenConfig, MusicgenDecoderConfig if TYPE_CHECKING: from ...generation.streamers import BaseStreamer logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MusicgenConfig" _CHECKPOINT_FOR_DOC = "facebook/musicgen-small" MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/musicgen-small", # See all Musicgen models at https://huggingface.co/models?filter=musicgen ] @dataclass class MusicgenUnconditionalInput(ModelOutput): """ Args: encoder_outputs (`Tuple[torch.FloatTensor]` of length 1, with tensor shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the text encoder model. attention_mask (`torch.LongTensor`) of shape `(batch_size, sequence_length)`, *optional*): Encoder attention mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: 1 for tokens that are **not masked**, 0 for tokens that are **masked**. guidance_scale (`float`, *optional*): Guidance scale for classifier free guidance, setting the balance between the conditional logits (predicted from the prompts) and the unconditional logits (predicted without prompts). """ encoder_outputs: Tuple[torch.FloatTensor] = None attention_mask: torch.LongTensor = None guidance_scale: float = None # Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class MusicgenSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int): super().__init__() self.embedding_dim = embedding_dim self.make_weights(num_positions, embedding_dim) def make_weights(self, num_embeddings: int, embedding_dim: int): emb_weights = self.get_embedding(num_embeddings, embedding_dim) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): bsz, codebooks, seq_len = input_ids.size() # Create the position ids from the input token ids. position_ids = (torch.arange(seq_len) + past_key_values_length).to(input_ids.device) # expand embeddings if needed if seq_len > self.weights.size(0): self.make_weights(seq_len + self.offset, self.embedding_dim) return self.weights.index_select(0, position_ids.view(-1)).detach() # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Musicgen class MusicgenAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[MusicgenConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class MusicgenDecoderLayer(nn.Module): def __init__(self, config: MusicgenDecoderConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = MusicgenAttention( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = MusicgenAttention( self.embed_dim, config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False) self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False) self.final_layer_norm = nn.LayerNorm(self.embed_dim) # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class MusicgenPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MusicgenDecoderConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MusicgenDecoderLayer", "MusicgenAttention"] def _init_weights(self, module): std = self.config.initializer_factor if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MUSICGEN_START_DOCSTRING = r""" The Musicgen model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is an encoder decoder transformer trained on the task of conditional music generation This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MusicgenConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MUSICGEN_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) <Tip warning={true}> The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `decoder_input_ids`. </Tip> decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MUSICGEN_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`): Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are input IDs?](../glossary#input-ids) <Tip warning={true}> The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `input_ids`. </Tip> attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class MusicgenDecoder(MusicgenPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenDecoderLayer`] """ def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.max_target_positions = config.max_position_embeddings self.d_model = config.hidden_size self.num_codebooks = config.num_codebooks self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 embed_dim = config.vocab_size + 1 self.embed_tokens = nn.ModuleList( [nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)] ) self.embed_positions = MusicgenSinusoidalPositionalEmbedding( config.max_position_embeddings, config.hidden_size, ) self.layers = nn.ModuleList([MusicgenDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: # (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len) input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input.shape input_shape = (bsz, seq_len) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1:] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)]) attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input, past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {attn_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.forward, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Musicgen decoder model outputting raw hidden-states without any specific head on top.", MUSICGEN_START_DOCSTRING, ) class MusicgenModel(MusicgenPreTrainedModel): def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.decoder = MusicgenDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states=encoder_hidden_states, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) @add_start_docstrings( "The MusicGen decoder model with a language modelling head on top.", MUSICGEN_START_DOCSTRING, ) class MusicgenForCausalLM(MusicgenPreTrainedModel): def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.model = MusicgenModel(config) self.num_codebooks = config.num_codebooks self.lm_heads = nn.ModuleList( [nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)] ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_heads def set_output_embeddings(self, new_embeddings): self.lm_heads = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1) loss = None if labels is not None: raise NotImplementedError("Training is not implemented for Musicgen.") # (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size) lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:]) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=True, delay_pattern_mask=None, guidance_scale=None, **kwargs, ): if delay_pattern_mask is None: input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) input_ids = input_ids.repeat((2, 1)) if attention_mask is not None: attention_mask = attention_mask.repeat((2, 1)) if past_key_values is not None: input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "attention_mask": attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "head_mask": head_mask, "cross_attn_head_mask": cross_attn_head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } def build_delay_pattern_mask(self, input_ids: torch.LongTensor, pad_token_id: int, max_length: int = None): """Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks, seq_len)`: - [P, -1, -1, -1, -1, P, P, P] - [P, P, -1, -1, -1, -1, P, P] - [P, P, P, -1, -1, -1, -1, P] - [P, P, P, P, -1, -1, -1, -1] where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the mask is set to the value in the prompt: - [P, a, b, -1, -1, P, P, P] - [P, P, c, d, -1, -1, P, P] - [P, P, P, e, f, -1, -1, P] - [P, P, P, P, g, h, -1, -1] where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1 tokens in our prediction. """ # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input_ids.shape max_length = max_length if max_length is not None else self.generation_config.max_length input_ids_shifted = ( torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1 ) channel_codebooks = num_codebooks // 2 if self.config.audio_channels == 2 else num_codebooks # we only apply the mask if we have a large enough seq len - otherwise we return as is if max_length < 2 * channel_codebooks - 1: return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1) # fill the shifted ids with the prompt entries, offset by the codebook idx for codebook in range(channel_codebooks): if self.config.audio_channels == 1: # mono channel - loop over the codebooks one-by-one input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook] else: # left/right channels are interleaved in the generated codebooks, so handle one then the other input_ids_shifted[:, 2 * codebook, codebook : seq_len + codebook] = input_ids[:, 2 * codebook] input_ids_shifted[:, 2 * codebook + 1, codebook : seq_len + codebook] = input_ids[:, 2 * codebook + 1] # construct a pattern mask that indicates the positions of padding tokens for each codebook # first fill the upper triangular part (the EOS padding) delay_pattern = torch.triu( torch.ones((channel_codebooks, max_length), dtype=torch.bool), diagonal=max_length - channel_codebooks + 1 ) # then fill the lower triangular part (the BOS padding) delay_pattern = delay_pattern + torch.tril(torch.ones((channel_codebooks, max_length), dtype=torch.bool)) if self.config.audio_channels == 2: # for left/right channel we need to duplicate every row of the pattern mask in an interleaved fashion delay_pattern = delay_pattern.repeat_interleave(2, dim=0) mask = ~delay_pattern.to(input_ids.device) input_ids = mask * input_ids_shifted + ~mask * pad_token_id # find the first position to start generating - this is the first place we have the -1 token # and will always be in the first codebook (since it has no codebook offset) first_codebook_ids = input_ids[:, 0, :] start_ids = (first_codebook_ids == -1).nonzero()[:, 1] if len(start_ids) > 0: first_start_id = min(start_ids) else: # we have no tokens that need to be filled - return entire matrix of input ids first_start_id = seq_len # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) pattern_mask = input_ids.reshape(bsz * num_codebooks, -1) input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1) return input_ids, pattern_mask @staticmethod def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask): """Apply a delay pattern mask to the decoder input ids, only preserving predictions where the mask is set to -1, and otherwise setting to the value detailed in the mask.""" seq_len = input_ids.shape[-1] decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len] input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask) return input_ids @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask", None) is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id # 3. Define model inputs # inputs_tensor has to be defined # model_input_name is defined if model-specific keyword input is passed # otherwise model_input_name is None # all model-specific keyword inputs are removed from `model_kwargs` input_ids, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = input_ids.shape[0] // self.num_codebooks # 4. Define other model kwargs model_kwargs["output_attentions"] = generation_config.output_attentions model_kwargs["output_hidden_states"] = generation_config.output_hidden_states model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( input_ids, generation_config.pad_token_id, generation_config.eos_token_id ) # 5. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: logger.warning( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation." ) elif generation_config.max_new_tokens is not None: if not has_default_max_length: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: raise ValueError( f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" f" the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: logger.warning( f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_new_tokens`." ) # 6. Prepare `input_ids` which will be used for auto-regressive generation # Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=generation_config.decoder_start_token_id, max_length=generation_config.max_length, ) if streamer is not None: streamer.put(input_ids.cpu()) # stash the delay mask so that we don't have to recompute it in each forward pass model_kwargs["delay_pattern_mask"] = delay_pattern_mask # 7. determine generation mode is_greedy_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is False ) is_sample_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is True ) # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=input_ids, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing greedy search, " f"but is {generation_config.num_return_sequences}." ) # 11. run greedy search outputs = self._greedy_search( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif is_sample_gen_mode: # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config) # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, **model_kwargs, ) # 12. run sample outputs = self._sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape( batch_size, self.num_codebooks, -1 ) if generation_config.return_dict_in_generate: outputs.sequences = output_ids return outputs else: return output_ids @add_start_docstrings( "The composite MusicGen model with a text encoder, audio encoder and Musicgen decoder, " "for music generation tasks with one or both of text and audio prompts.", MUSICGEN_START_DOCSTRING, ) class MusicgenForConditionalGeneration(PreTrainedModel): config_class = MusicgenConfig base_model_prefix = "encoder_decoder" main_input_name = "input_ids" supports_gradient_checkpointing = True def __init__( self, config: Optional[MusicgenConfig] = None, text_encoder: Optional[PreTrainedModel] = None, audio_encoder: Optional[PreTrainedModel] = None, decoder: Optional[MusicgenForCausalLM] = None, ): if config is None and (text_encoder is None or audio_encoder is None or decoder is None): raise ValueError( "Either a configuration has to be provided, or all three of text encoder, audio encoder and MusicGen decoder." ) if config is None: config = MusicgenConfig.from_sub_models_config(text_encoder.config, audio_encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.text_encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the MusicGen decoder's configuration, it has to be equal" f" to the text encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.text_encoder.hidden_size} for" " `config.text_encoder.hidden_size`." ) # initialize with config super().__init__(config) if text_encoder is None: from ..auto.modeling_auto import AutoModelForTextEncoding text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder) if audio_encoder is None: from ..auto.modeling_auto import AutoModel audio_encoder = AutoModel.from_config(config.audio_encoder) if decoder is None: decoder = MusicgenForCausalLM(config.decoder) self.text_encoder = text_encoder self.audio_encoder = audio_encoder self.decoder = decoder if self.text_encoder.config.to_dict() != self.config.text_encoder.to_dict(): logger.warning( f"Config of the text_encoder: {self.text_encoder.__class__} is overwritten by shared text_encoder config:" f" {self.config.text_encoder}" ) if self.audio_encoder.config.to_dict() != self.config.audio_encoder.to_dict(): logger.warning( f"Config of the audio_encoder: {self.audio_encoder.__class__} is overwritten by shared audio_encoder config:" f" {self.config.audio_encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.text_encoder.config = self.config.text_encoder self.audio_encoder.config = self.config.audio_encoder self.decoder.config = self.config.decoder # text encoder outputs might need to be projected to different dimension for decoder if ( self.text_encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size) if self.text_encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head" ) decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys()) if "encoder_hidden_states" not in decoder_signature: raise ValueError( "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" ) # tie text encoder, decoder weights if config set accordingly self.tie_weights() def tie_weights(self): # tie text encoder & decoder if needed if self.config.tie_encoder_decoder: # tie text encoder and decoder base model decoder_base_model_prefix = self.decoder.base_model_prefix self._tie_encoder_decoder_weights( self.text_encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix ) def get_audio_encoder(self): return self.audio_encoder def get_text_encoder(self): return self.text_encoder def get_encoder(self): # get the text encoder to compute the encoder hidden-states for generation return self.get_text_encoder() def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.text_encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") ```""" # At the moment fast initialization is not supported for composite models if kwargs.get("_fast_init", False): logger.warning( "Fast initialization is currently not supported for MusicgenForConditionalGeneration. " "Falling back to slow initialization..." ) kwargs["_fast_init"] = False return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @classmethod def from_sub_models_pretrained( cls, text_encoder_pretrained_model_name_or_path: str = None, audio_encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: text_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the text encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. audio_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the audio encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the text encoder configuration, use the prefix *text_encoder_* for each configuration parameter. - To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder >>> model = MusicgenForConditionalGeneration.from_sub_models_pretrained( ... text_encoder_pretrained_model_name_or_path="google-t5/t5-base", ... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz", ... decoder_pretrained_model_name_or_path="facebook/musicgen-small", ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./musicgen-ft") >>> # load fine-tuned model >>> model = MusicgenForConditionalGeneration.from_pretrained("./musicgen-ft") ```""" kwargs_text_encoder = { argument[len("text_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove text encoder, audio encoder and decoder kwargs from kwargs for key in kwargs_text_encoder.keys(): del kwargs["text_encoder_" + key] for key in kwargs_audio_encoder.keys(): del kwargs["audio_encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. text_encoder = kwargs_text_encoder.pop("model", None) if text_encoder is None: if text_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_text_encoder: encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained( text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_text_encoder["config"] = encoder_config text_encoder = AutoModel.from_pretrained( text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder ) audio_encoder = kwargs_audio_encoder.pop("model", None) if audio_encoder is None: if audio_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_audio_encoder: encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained( audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_audio_encoder["config"] = encoder_config audio_encoder = AutoModel.from_pretrained( audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if isinstance(decoder_config, MusicgenConfig): decoder_config = decoder_config.decoder if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_sub_models_pretrained(...)`" ) decoder = MusicgenForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = MusicgenConfig.from_sub_models_config( text_encoder.config, audio_encoder.config, decoder.config, **kwargs ) return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(MUSICGEN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.BoolTensor] = None, input_values: Optional[torch.FloatTensor] = None, padding_mask: Optional[torch.BoolTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, MusicgenForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small") >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") >>> inputs = processor( ... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], ... padding=True, ... return_tensors="pt", ... ) >>> pad_token_id = model.generation_config.pad_token_id >>> decoder_input_ids = ( ... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long) ... * pad_token_id ... ) >>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits >>> logits.shape # (bsz * num_codebooks, tgt_len, vocab_size) torch.Size([8, 1, 2048]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_text_encoder = { argument[len("text_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_outputs is None: encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_text_encoder, ) elif isinstance(encoder_outputs, tuple): encoder_outputs = BaseModelOutput(*encoder_outputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.text_encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if attention_mask is not None: encoder_hidden_states = encoder_hidden_states * attention_mask[..., None] if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) elif decoder_input_ids is None and decoder_inputs_embeds is None: audio_encoder_outputs = self.audio_encoder( input_values=input_values, padding_mask=padding_mask, **kwargs_audio_encoder, ) audio_codes = audio_encoder_outputs.audio_codes frames, bsz, codebooks, seq_len = audio_codes.shape if frames != 1: raise ValueError( f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " "disabled by setting `chunk_length=None` in the audio encoder." ) if self.config.decoder.audio_channels == 2 and audio_codes.shape[2] == self.decoder.num_codebooks // 2: # mono input through encodec that we convert to stereo audio_codes = audio_codes.repeat_interleave(2, dim=2) decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) loss = None if labels is not None: logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: if loss is not None: return (loss,) + decoder_outputs + encoder_outputs else: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_attention_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, decoder_delay_pattern_mask=None, guidance_scale=None, **kwargs, ): if decoder_delay_pattern_mask is None: decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( decoder_input_ids, self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) decoder_input_ids = decoder_input_ids.repeat((2, 1)) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.repeat((2, 1)) if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if decoder_input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = decoder_input_ids.shape[1] - 1 decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, torch.Tensor], decoder_start_token_id: int = None, bos_token_id: int = None, device: torch.device = None, ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) if device is None: device = self.device decoder_input_ids_start = ( torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device) * decoder_start_token_id ) # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_input_ids_start # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item(): decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = torch.cat( (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), dim=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask return decoder_input_ids, model_kwargs def _prepare_text_encoder_kwargs_for_generation( self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None, guidance_scale: Optional[float] = None, ) -> Dict[str, Any]: # 1. get text encoder encoder = self.get_text_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # 2. Prepare encoder args and encoder kwargs from model kwargs. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor last_hidden_state = encoder(**encoder_kwargs).last_hidden_state # for classifier free guidance we need to add a 'null' input to our encoder hidden states if guidance_scale is not None and guidance_scale > 1: last_hidden_state = torch.concatenate([last_hidden_state, torch.zeros_like(last_hidden_state)], dim=0) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = torch.concatenate( [model_kwargs["attention_mask"], torch.zeros_like(model_kwargs["attention_mask"])], dim=0 ) model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=last_hidden_state) return model_kwargs def _prepare_audio_encoder_kwargs_for_generation( self, input_values, model_kwargs, model_input_name: Optional[str] = None ): # 1. get audio encoder encoder = self.get_audio_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # 2. Prepare encoder args and encoder kwargs from model kwargs. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.audio_encoder.main_input_name encoder_kwargs["return_dict"] = True if self.decoder.config.audio_channels == 1: encoder_kwargs[model_input_name] = input_values audio_encoder_outputs = encoder.encode(**encoder_kwargs) audio_codes = audio_encoder_outputs.audio_codes audio_scales = audio_encoder_outputs.audio_scales frames, bsz, codebooks, seq_len = audio_codes.shape else: if input_values.shape[1] != 2: raise ValueError( f"Expected stereo audio (2-channels) but example has {input_values.shape[1]} channel." ) encoder_kwargs[model_input_name] = input_values[:, :1, :] audio_encoder_outputs_left = encoder.encode(**encoder_kwargs) audio_codes_left = audio_encoder_outputs_left.audio_codes audio_scales_left = audio_encoder_outputs_left.audio_scales encoder_kwargs[model_input_name] = input_values[:, 1:, :] audio_encoder_outputs_right = encoder.encode(**encoder_kwargs) audio_codes_right = audio_encoder_outputs_right.audio_codes audio_scales_right = audio_encoder_outputs_right.audio_scales frames, bsz, codebooks, seq_len = audio_codes_left.shape # copy alternating left/right channel codes into stereo codebook audio_codes = audio_codes_left.new_ones((frames, bsz, 2 * codebooks, seq_len)) audio_codes[:, :, ::2, :] = audio_codes_left audio_codes[:, :, 1::2, :] = audio_codes_right if audio_scales_left != [None] or audio_scales_right != [None]: audio_scales = torch.stack([audio_scales_left, audio_scales_right], dim=1) else: audio_scales = [None] * bsz if frames != 1: raise ValueError( f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " "disabled by setting `chunk_length=None` in the audio encoder." ) decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) model_kwargs["decoder_input_ids"] = decoder_input_ids model_kwargs["audio_scales"] = audio_scales return model_kwargs def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.LongTensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs encoder_outputs = model_kwargs.get("encoder_outputs") if encoder_outputs is not None: # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding shape = encoder_outputs[0].size()[:-1] return torch.ones(shape, dtype=torch.long, device=self.device) * -100 if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, torch.Tensor): batch_size = value.shape[0] break return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) if model_kwargs.get("encoder_outputs") is not None and type(model_kwargs["encoder_outputs"]) == tuple: # wrap the unconditional outputs as a BaseModelOutput for compatibility with the rest of generate model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=model_kwargs["encoder_outputs"][0]) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask", None) is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id # 3. Define model inputs # inputs_tensor has to be defined # model_input_name is defined if model-specific keyword input is passed # otherwise model_input_name is None # all model-specific keyword inputs are removed from `model_kwargs` inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = inputs_tensor.shape[0] # 4. Define other model kwargs model_kwargs["output_attentions"] = generation_config.output_attentions model_kwargs["output_hidden_states"] = generation_config.output_hidden_states model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id ) if "encoder_outputs" not in model_kwargs: # encoder_outputs are created and added to `model_kwargs` model_kwargs = self._prepare_text_encoder_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name, guidance_scale=generation_config.guidance_scale, ) if "decoder_input_ids" not in model_kwargs and "input_values" in model_kwargs: model_kwargs = self._prepare_audio_encoder_kwargs_for_generation( model_kwargs["input_values"], model_kwargs, ) # 5. Prepare `input_ids` which will be used for auto-regressive generation input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config.decoder_start_token_id, bos_token_id=generation_config.bos_token_id, device=inputs_tensor.device, ) # 6. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None: logger.warning( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation." ) elif generation_config.max_new_tokens is not None: if not has_default_max_length: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: raise ValueError( f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" f" the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: logger.warning( f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_new_tokens`." ) # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( input_ids, pad_token_id=generation_config.decoder_start_token_id, max_length=generation_config.max_length, ) # stash the delay mask so that we don't have to recompute in each forward pass model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask # input_ids are ready to be placed on the streamer (if used) if streamer is not None: streamer.put(input_ids.cpu()) # 7. determine generation mode is_greedy_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is False ) is_sample_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is True ) # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=inputs_tensor, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing greedy search, " f"but is {generation_config.num_return_sequences}." ) # 11. run greedy search outputs = self._greedy_search( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif is_sample_gen_mode: # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config) # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 12. run sample outputs = self._sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape( batch_size, self.decoder.num_codebooks, -1 ) # append the frame dimension back to the audio codes output_ids = output_ids[None, ...] audio_scales = model_kwargs.get("audio_scales") if audio_scales is None: audio_scales = [None] * batch_size if self.decoder.config.audio_channels == 1: output_values = self.audio_encoder.decode( output_ids, audio_scales=audio_scales, ).audio_values else: codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales) output_values_left = codec_outputs_left.audio_values codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales) output_values_right = codec_outputs_right.audio_values output_values = torch.cat([output_values_left, output_values_right], dim=1) if generation_config.return_dict_in_generate: outputs.sequences = output_values return outputs else: return output_values def get_unconditional_inputs(self, num_samples=1): """ Helper function to get null inputs for unconditional generation, enabling the model to be used without the feature extractor or tokenizer. Args: num_samples (int, *optional*): Number of audio samples to unconditionally generate. max_new_tokens (int, *optional*): Number of tokens to generate for each sample. More tokens means longer audio samples, at the expense of longer inference (since more audio tokens need to be generated per sample). Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") >>> # get the unconditional (or 'null') inputs for the model >>> unconditional_inputs = model.get_unconditional_inputs(num_samples=1) >>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256) ```""" last_hidden_state = torch.zeros( (num_samples, 1, self.config.text_encoder.hidden_size), device=self.device, dtype=self.dtype ) attention_mask = torch.zeros((num_samples, 1), device=self.device, dtype=torch.long) return MusicgenUnconditionalInput( encoder_outputs=(last_hidden_state,), attention_mask=attention_mask, guidance_scale=1.0, )
transformers/src/transformers/models/musicgen/modeling_musicgen.py/0
{ "file_path": "transformers/src/transformers/models/musicgen/modeling_musicgen.py", "repo_id": "transformers", "token_count": 53218 }
372
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_nezha"] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/nezha/__init__.py/0
{ "file_path": "transformers/src/transformers/models/nezha/__init__.py", "repo_id": "transformers", "token_count": 899 }
373
# coding=utf-8 # Copyright 2022 UW-Madison and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Nystromformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "uw-madison/nystromformer-512": "https://huggingface.co/uw-madison/nystromformer-512/resolve/main/config.json", # See all Nystromformer models at https://huggingface.co/models?filter=nystromformer } class NystromformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`NystromformerModel`]. It is used to instantiate an Nystromformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Nystromformer [uw-madison/nystromformer-512](https://huggingface.co/uw-madison/nystromformer-512) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30000): Vocabulary size of the Nystromformer model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`NystromformerModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`NystromformerModel`]. segment_means_seq_len (`int`, *optional*, defaults to 64): Sequence length used in segment-means. num_landmarks (`int`, *optional*, defaults to 64): The number of landmark (or Nystrom) points to use in Nystrom approximation of the softmax self-attention matrix. conv_kernel_size (`int`, *optional*, defaults to 65): The kernel size of depthwise convolution used in Nystrom approximation. inv_coeff_init_option (`bool`, *optional*, defaults to `False`): Whether or not to use exact coefficient computation for the initial values for the iterative method of calculating the Moore-Penrose inverse of a matrix. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import NystromformerModel, NystromformerConfig >>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration >>> configuration = NystromformerConfig() >>> # Initializing a model from the uw-madison/nystromformer-512 style configuration >>> model = NystromformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "nystromformer" def __init__( self, vocab_size=30000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=510, type_vocab_size=2, segment_means_seq_len=64, num_landmarks=64, conv_kernel_size=65, inv_coeff_init_option=False, initializer_range=0.02, layer_norm_eps=1e-5, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.segment_means_seq_len = segment_means_seq_len self.num_landmarks = num_landmarks self.conv_kernel_size = conv_kernel_size self.inv_coeff_init_option = inv_coeff_init_option self.layer_norm_eps = layer_norm_eps super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
transformers/src/transformers/models/nystromformer/configuration_nystromformer.py/0
{ "file_path": "transformers/src/transformers/models/nystromformer/configuration_nystromformer.py", "repo_id": "transformers", "token_count": 2444 }
374
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_opt"] = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_opt"] = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_opt"] = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/opt/__init__.py/0
{ "file_path": "transformers/src/transformers/models/opt/__init__.py", "repo_id": "transformers", "token_count": 1188 }
375
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for OwlViT""" import warnings from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, center_to_corners_format, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) def _upcast(t): # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() def box_area(boxes): """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. Args: boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 < x2` and `0 <= y1 < y2`. Returns: `torch.FloatTensor`: a tensor containing the area for each box. """ boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union class OwlViTImageProcessor(BaseImageProcessor): r""" Constructs an OWL-ViT image processor. This image processor inherits from [`ImageProcessingMixin`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the shorter edge of the input to a certain `size`. size (`Dict[str, int]`, *optional*, defaults to {"height": 768, "width": 768}): The size to use for resizing the image. Only has an effect if `do_resize` is set to `True`. If `size` is a sequence like (h, w), output size will be matched to this. If `size` is an int, then image will be resized to (size, size). resample (`int`, *optional*, defaults to `Resampling.BICUBIC`): An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`, `PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`, `PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `False`): Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. crop_size (`int`, *optional*, defaults to {"height": 768, "width": 768}): The size to use for center cropping the image. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the input by a certain factor. rescale_factor (`float`, *optional*, defaults to `1/255`): The factor to use for rescaling the image. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the input with `image_mean` and `image_std`. Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. image_mean (`List[int]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): The sequence of means for each channel, to be used when normalizing images. image_std (`List[int]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): The sequence of standard deviations for each channel, to be used when normalizing images. """ model_input_names = ["pixel_values"] def __init__( self, do_resize=True, size=None, resample=PILImageResampling.BICUBIC, do_center_crop=False, crop_size=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=None, image_std=None, **kwargs, ): size = size if size is not None else {"height": 768, "width": 768} size = get_size_dict(size, default_to_square=True) crop_size = crop_size if crop_size is not None else {"height": 768, "width": 768} crop_size = get_size_dict(crop_size, default_to_square=True) # Early versions of the OWL-ViT config on the hub had "rescale" as a flag. This clashes with the # vision image processor method `rescale` as it would be set as an attribute during the super().__init__ # call. This is for backwards compatibility. if "rescale" in kwargs: rescale_val = kwargs.pop("rescale") kwargs["do_rescale"] = rescale_val super().__init__(**kwargs) self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to a certain size. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): The size to resize the image to. Must contain height and width keys. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): The resampling filter to use when resizing the input. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size, default_to_square=True) if "height" not in size or "width" not in size: raise ValueError("size dictionary must contain height and width keys") return resize( image, (size["height"], size["width"]), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def center_crop( self, image: np.ndarray, crop_size: Dict[str, int], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Center crop an image to a certain size. Args: image (`np.ndarray`): Image to center crop. crop_size (`Dict[str, int]`): The size to center crop the image to. Must contain height and width keys. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ crop_size = get_size_dict(crop_size, default_to_square=True) if "height" not in crop_size or "width" not in crop_size: raise ValueError("crop_size dictionary must contain height and width keys") return center_crop( image, (crop_size["height"], crop_size["width"]), data_format=data_format, input_data_format=input_data_format, **kwargs, ) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_center_crop: Optional[bool] = None, crop_size: Optional[Dict[str, int]] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Prepares an image or batch of images for the model. Args: images (`ImageInput`): The image or batch of images to be prepared. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether or not to resize the input. If `True`, will resize the input to the size specified by `size`. size (`Dict[str, int]`, *optional*, defaults to `self.size`): The size to resize the input to. Only has an effect if `do_resize` is set to `True`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): The resampling filter to use when resizing the input. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether or not to center crop the input. If `True`, will center crop the input to the size specified by `crop_size`. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): The size to center crop the input to. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether or not to rescale the input. If `True`, will rescale the input by dividing it by `rescale_factor`. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): The factor to rescale the input by. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether or not to normalize the input. If `True`, will normalize the input by subtracting `image_mean` and dividing by `image_std`. image_mean (`Union[float, List[float]]`, *optional*, defaults to `self.image_mean`): The mean to subtract from the input when normalizing. Only has an effect if `do_normalize` is set to `True`. image_std (`Union[float, List[float]]`, *optional*, defaults to `self.image_std`): The standard deviation to divide the input by when normalizing. Only has an effect if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: defaults to the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize(image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_center_crop: images = [ self.center_crop(image, crop_size=crop_size, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) return encoded_inputs def post_process(self, outputs, target_sizes): """ Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Args: outputs ([`OwlViTObjectDetectionOutput`]): Raw outputs of the model. target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). For visualization, this should be the image size after data augment, but before padding. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ # TODO: (amy) add support for other frameworks warnings.warn( "`post_process` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.", FutureWarning, ) logits, boxes = outputs.logits, outputs.pred_boxes if len(logits) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") if target_sizes.shape[1] != 2: raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") probs = torch.max(logits, dim=-1) scores = torch.sigmoid(probs.values) labels = probs.indices # Convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(boxes) # Convert from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)] return results def post_process_object_detection( self, outputs, threshold: float = 0.1, target_sizes: Union[TensorType, List[Tuple]] = None ): """ Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Args: outputs ([`OwlViTObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ # TODO: (amy) add support for other frameworks logits, boxes = outputs.logits, outputs.pred_boxes if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) probs = torch.max(logits, dim=-1) scores = torch.sigmoid(probs.values) labels = probs.indices # Convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(boxes) # Convert from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: if isinstance(target_sizes, List): img_h = torch.Tensor([i[0] for i in target_sizes]) img_w = torch.Tensor([i[1] for i in target_sizes]) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [] for s, l, b in zip(scores, labels, boxes): score = s[s > threshold] label = l[s > threshold] box = b[s > threshold] results.append({"scores": score, "labels": label, "boxes": box}) return results # TODO: (Amy) Make compatible with other frameworks def post_process_image_guided_detection(self, outputs, threshold=0.0, nms_threshold=0.3, target_sizes=None): """ Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO api. Args: outputs ([`OwlViTImageGuidedObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.0): Minimum confidence threshold to use to filter out predicted boxes. nms_threshold (`float`, *optional*, defaults to 0.3): IoU threshold for non-maximum suppression of overlapping boxes. target_sizes (`torch.Tensor`, *optional*): Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to None, predictions will not be unnormalized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. All labels are set to None as `OwlViTForObjectDetection.image_guided_detection` perform one-shot object detection. """ logits, target_boxes = outputs.logits, outputs.target_pred_boxes if len(logits) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") if target_sizes.shape[1] != 2: raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") probs = torch.max(logits, dim=-1) scores = torch.sigmoid(probs.values) # Convert to [x0, y0, x1, y1] format target_boxes = center_to_corners_format(target_boxes) # Apply non-maximum suppression (NMS) if nms_threshold < 1.0: for idx in range(target_boxes.shape[0]): for i in torch.argsort(-scores[idx]): if not scores[idx][i]: continue ious = box_iou(target_boxes[idx][i, :].unsqueeze(0), target_boxes[idx])[0][0] ious[i] = -1.0 # Mask self-IoU. scores[idx][ious > nms_threshold] = 0.0 # Convert from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(target_boxes.device) target_boxes = target_boxes * scale_fct[:, None, :] # Compute box display alphas based on prediction scores results = [] alphas = torch.zeros_like(scores) for idx in range(target_boxes.shape[0]): # Select scores for boxes matching the current query: query_scores = scores[idx] if not query_scores.nonzero().numel(): continue # Apply threshold on scores before scaling query_scores[query_scores < threshold] = 0.0 # Scale box alpha such that the best box for each query has alpha 1.0 and the worst box has alpha 0.1. # All other boxes will either belong to a different query, or will not be shown. max_score = torch.max(query_scores) + 1e-6 query_alphas = (query_scores - (max_score * 0.1)) / (max_score * 0.9) query_alphas = torch.clip(query_alphas, 0.0, 1.0) alphas[idx] = query_alphas mask = alphas[idx] > 0 box_scores = alphas[idx][mask] boxes = target_boxes[idx][mask] results.append({"scores": box_scores, "labels": None, "boxes": boxes}) return results
transformers/src/transformers/models/owlvit/image_processing_owlvit.py/0
{ "file_path": "transformers/src/transformers/models/owlvit/image_processing_owlvit.py", "repo_id": "transformers", "token_count": 12332 }
376
# coding=utf-8 # Copyright 2020 Google and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model PEGASUS.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: PegasusTokenizer = None logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/pegasus-xsum": 512, } class PegasusTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" PEGASUS tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. mask_token (`str`, *optional*, defaults to `"<mask_2>"`): The token used for masking single token values. This is the token used when training this model with masked language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining. It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf). mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`): The token used for masking whole target sentences. This is the token used when training this model with gap sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf). additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and <unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66) that uses the tokens 2 - 104 only for pretraining """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = PegasusTokenizer model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file=None, tokenizer_file=None, pad_token="<pad>", eos_token="</s>", unk_token="<unk>", mask_token="<mask_2>", mask_token_sent="<mask_1>", additional_special_tokens=None, offset=103, # entries 2 - 104 are only used for pretraining **kwargs, ): self.offset = offset if additional_special_tokens is not None: if not isinstance(additional_special_tokens, list): raise TypeError( f"additional_special_tokens should be of type {type(list)}, but is" f" {type(additional_special_tokens)}" ) additional_special_tokens_extended = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1) ] if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) additional_special_tokens = additional_special_tokens_extended else: additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)] # pegasus was design to support changing the index of the first tokens. If one of the padding/eos/unk/mask token # is different from default, we must rebuild the vocab from_slow = kwargs.pop("from_slow", None) from_slow = from_slow or str(pad_token) != "<pad>" or str(eos_token) != "</s>" or str(unk_token) != "<unk>" kwargs.pop("added_tokens_decoder", {}) super().__init__( vocab_file, tokenizer_file=tokenizer_file, pad_token=pad_token, eos_token=eos_token, unk_token=unk_token, mask_token=mask_token, mask_token_sent=mask_token_sent, offset=offset, additional_special_tokens=additional_special_tokens, from_slow=from_slow, **kwargs, ) self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def _special_token_mask(self, seq): all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """Get list where entries are [1] if a token is [eos] or [pad] else 0.""" if already_has_special_tokens: return self._special_token_mask(token_ids_0) elif token_ids_1 is None: return self._special_token_mask(token_ids_0) + [1] else: return self._special_token_mask(token_ids_0 + token_ids_1) + [1] def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """ Build model inputs from a sequence by adding eos to the end. no bos token is added to the front. - single sequence: `X </s>` - pair of sequences: `A B </s>` (not intended use) Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_0 + token_ids_1 + [self.eos_token_id] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers/src/transformers/models/pegasus/tokenization_pegasus_fast.py/0
{ "file_path": "transformers/src/transformers/models/pegasus/tokenization_pegasus_fast.py", "repo_id": "transformers", "token_count": 4338 }
377
# coding=utf-8 # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Phi model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/phi-1": "https://huggingface.co/microsoft/phi-1/resolve/main/config.json", "microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json", "microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json", } class PhiConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Phi [microsoft/phi-1](https://huggingface.co/microsoft/phi-1). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 51200): Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`PhiModel`]. hidden_size (`int`, *optional*, defaults to 2048): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 8192): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. resid_pdrop (`float`, *optional*, defaults to 0.0): Dropout probability for mlp outputs. embd_pdrop (`int`, *optional*, defaults to 0.0): The dropout ratio for the embeddings. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after computing the attention scores. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding. qk_layernorm (`bool`, *optional*, defaults to `False`): Whether or not to normalize the Queries and Keys after projecting the hidden states. bos_token_id (`int`, *optional*, defaults to 1): Denotes beginning of sequences token id. eos_token_id (`int`, *optional*, defaults to 2): Denotes end of sequences token id. Example: ```python >>> from transformers import PhiModel, PhiConfig >>> # Initializing a Phi-1 style configuration >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1") >>> # Initializing a model from the configuration >>> model = PhiModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "phi" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=51200, hidden_size=2048, intermediate_size=8192, num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=None, resid_pdrop=0.0, embd_pdrop=0.0, attention_dropout=0.0, hidden_act="gelu_new", max_position_embeddings=2048, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, partial_rotary_factor=0.5, qk_layernorm=False, bos_token_id=1, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attention_dropout = attention_dropout self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.partial_rotary_factor = partial_rotary_factor self.qk_layernorm = qk_layernorm self._rope_scaling_validation() super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/phi/configuration_phi.py/0
{ "file_path": "transformers/src/transformers/models/phi/configuration_phi.py", "repo_id": "transformers", "token_count": 3668 }
378
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ProphetNet model, ported from ProphetNet repo(fairsequery_states version).""" import copy import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import LayerNorm from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_prophetnet import ProphetNetConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ProphenetConfig" _CHECKPOINT_FOR_DOC = "microsoft/prophetnet-large-uncased" PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/prophetnet-large-uncased", # See all ProphetNet models at https://huggingface.co/models?filter=prophetnet ] PROPHETNET_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior. Parameters: config ([`ProphetNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PROPHETNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) ProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def softmax(hidden_state, dim, onnx_trace=False): if onnx_trace: return nn.functional.softmax(hidden_state.float(), dim=dim) else: return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32) def ngram_attention_bias(sequence_length, ngram, device, dtype): """ This function computes the bias for the predict stream """ left_block = ( torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min ) right_block = left_block.detach().clone() # create bias for stream_idx in range(ngram): right_block[stream_idx].fill_diagonal_(0, wrap=False) left_block[stream_idx].triu_(-stream_idx + 1) left_block[:, :, 0] = 0 return torch.cat([left_block, right_block], dim=2) def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False): """ This function computes individual parts of the relative position buckets. For more detail, see paper. """ inv_relative_positions = -relative_positions rel_positions_bucket = 0 if is_bidirectional: num_buckets = num_buckets // 2 rel_positions_bucket = ( rel_positions_bucket + torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets ) inv_relative_positions = torch.abs(inv_relative_positions) else: inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions)) max_exact = num_buckets // 2 is_small = torch.lt(inv_relative_positions, max_exact) val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log( max_distance / max_exact ) * (num_buckets - max_exact) val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int() rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large) return rel_positions_bucket def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids): """ This function computes both main and predict relative position buckets. For more detail, see paper. """ # main stream main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1) main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1) # predicting stream predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1) predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1) predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1) # get both position buckets main_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False ) predict_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False ) return main_relative_position_buckets, predict_relative_position_buckets @dataclass class ProphetNetSeq2SeqLMOutput(ModelOutput): """ Base class for sequence-to-sequence language models outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions @dataclass class ProphetNetSeq2SeqModelOutput(ModelOutput): """ Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential decoding. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions @dataclass class ProphetNetDecoderModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ProphetNetDecoderLMOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None class ProphetNetPreTrainedModel(PreTrainedModel): config_class = ProphetNetConfig base_model_prefix = "prophetnet" supports_gradient_checkpointing = True def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert decoder_start_token_id is not None, ( "self.model.config.decoder_start_token_id has to be defined. In ProphetNet it is usually set to the" " pad_token_id. See ProphetNet docs for more information" ) # shift inputs to the right shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" return shifted_input_ids class ProphetNetPositionalEmbeddings(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, config: ProphetNetConfig) -> None: self.max_length = config.max_position_embeddings super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id) def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None): assert (position_ids is None) or ( self.padding_idx is None ), "If position_ids is pre-computed then padding_idx should not be set." if position_ids is None: if past_key_values is not None: # position_ids is the same for every token when decoding a single step # Without the int() cast, it doesn't work in some cases when exporting to ONNX prev_num_input_ids = past_key_values[0][0].shape[2] num_input_ids = inputs_shape[1] + prev_num_input_ids position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * ( int(self.padding_idx + num_input_ids) ) else: if attention_mask is None: attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device) # retrieve position_ids from input_ids / attention_mask position_ids = ( torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask ).long() + self.padding_idx # make sure position_ids are not bigger then max_length position_ids = position_ids.clamp(0, self.max_length - 1) return super().forward(position_ids), position_ids def _forward(self, position_ids): return super().forward(position_ids) class ProphetNetAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: ProphetNetConfig, num_attn_heads: int, ): super().__init__() hidden_size = config.hidden_size self.attention_dropout = config.attention_dropout self.dropout = config.dropout self.num_attn_heads = num_attn_heads self.head_dim = hidden_size // num_attn_heads assert self.head_dim * num_attn_heads == hidden_size, ( "`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and" " `config.num_decoder_attention_heads`" ) self.key_proj = nn.Linear(hidden_size, hidden_size) self.value_proj = nn.Linear(hidden_size, hidden_size) self.query_proj = nn.Linear(hidden_size, hidden_size) self.out_proj = nn.Linear(hidden_size, hidden_size) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states, key_value_states: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, layer_head_mask: Optional[Tensor] = None, past_key_value: Optional[Tuple[Tensor]] = None, output_attentions: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: batch_size, tgt_len, hidden_size = hidden_states.size() # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None assert list(hidden_states.size()) == [ batch_size, tgt_len, hidden_size, ], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}" # previous time steps are cached - no need to recompute key and value if they are static query_states = self.query_proj(hidden_states) / (self.head_dim**0.5) if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.key_proj(key_value_states), -1, batch_size) value_states = self._shape(self.value_proj(key_value_states), -1, batch_size) else: # self_attention key_states = self._shape(self.key_proj(hidden_states), -1, batch_size) value_states = self._shape(self.value_proj(hidden_states), -1, batch_size) if is_cross_attention: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) # project states into the correct shape proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(2) attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3)) expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len) if attn_weights.size() != expected_shape: raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}") # This is part of a workaround to get around fork/join parallelism not supporting Optional types. if attention_mask is not None and attention_mask.dim() == 0: attention_mask = None expected_shape = (batch_size, self.num_attn_heads, 1, src_len) if attention_mask is not None and attention_mask.size() != expected_shape: raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}") if attention_mask is not None: # don't attend to padding symbols attn_weights = attn_weights + attention_mask if output_attentions: attn_weights_reshaped = attn_weights else: attn_weights_reshaped = None attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( batch_size, self.num_attn_heads, tgt_len, src_len ) # apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped attn_probs = nn.functional.dropout( attn_weights, p=self.attention_dropout, training=self.training, ) attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states) expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim) if attn_output.size() != expected_shape: raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}") attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size) attn_output = self.out_proj(attn_output) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, attn_weights_reshaped, past_key_value class ProphetNetFeedForward(nn.Module): """ This is the residual two feed-forward layer block based on the original Transformer implementation. """ def __init__(self, config: ProphetNetConfig, ffn_dim: int): super().__init__() self.activation_fn = ACT2FN[config.activation_function] self.intermediate = nn.Linear(config.hidden_size, ffn_dim) self.output = nn.Linear(ffn_dim, config.hidden_size) self.activation_dropout = config.activation_dropout self.dropout = config.dropout def forward(self, hidden_states): hidden_states = self.intermediate(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.output(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states class ProphetNetNgramSelfAttention(nn.Module): def __init__(self, config: ProphetNetConfig): super().__init__() self.hidden_size = config.hidden_size self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.num_attn_heads = config.num_decoder_attention_heads self.dropout = config.dropout self.attention_dropout = config.attention_dropout self.head_dim = config.hidden_size // self.num_attn_heads self.ngram = config.ngram assert ( self.head_dim * self.num_attn_heads == config.hidden_size ), "config.hidden_size must be divisible by num_attn_heads" # key, value, query projection self.key_proj = nn.Linear(config.hidden_size, config.hidden_size) self.value_proj = nn.Linear(config.hidden_size, config.hidden_size) self.query_proj = nn.Linear(config.hidden_size, config.hidden_size) # out projection self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) # rel position embeddings self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads) # for onnx runtime self.onnx_trace = False def _shape(self, tensor, seq_len, batch_size): return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def prepare_for_onnx_export_(self): self.onnx_trace = True def forward( self, hidden_states, past_key_value: Optional[Tuple[Tensor]] = None, attention_mask=None, layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, ): batch_size, ngram_sequence_length, hidden_size = hidden_states.size() assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], ( f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape" f" {hidden_states.shape}" ) # project query_states = self.query_proj(hidden_states) key_states = self.key_proj(hidden_states) value_states = self.value_proj(hidden_states) # normalize query_states = query_states / (self.head_dim**0.5) # reshape query_states = self._shape(query_states, ngram_sequence_length, batch_size) key_states = self._shape(key_states, -1, batch_size) value_states = self._shape(value_states, -1, batch_size) proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = query_states.view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) # chunk into main stream and predict stream hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1) query_states_list = query_states.chunk(1 + self.ngram, dim=2) key_states_list = key_states.chunk(1 + self.ngram, dim=2) value_states_list = value_states.chunk(1 + self.ngram, dim=2) main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:] main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:] main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:] main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:] # saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim) if past_key_value is not None: prev_main_key_states = past_key_value[0] main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2) prev_main_value_states = past_key_value[1] main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2) # Update cache past_key_value = (main_key_states, main_value_states) # get seq_length of main stream only sequence_length = ngram_sequence_length // (1 + self.ngram) # MAIN-STREAM # main attn weights # [batch_size, number_heads, sequence_length, head_dimesion] # x [batch_size, number_heads, head_dimesion, sequence_length] # -> [batch_size, number_heads, sequence_length, sequence_length] main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3)) # retrieve relative position embeddings for each layer -> see paper for more details main_relative_pos_embeddings = self.get_main_relative_pos_embeddings( main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets ) main_attn_weights = main_attn_weights + main_relative_pos_embeddings if attention_mask is not None: main_attn_weights = main_attn_weights + attention_mask main_attn_probs = softmax( main_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(main_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view( batch_size, self.num_attn_heads, -1, sequence_length ) main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training) # project to attn_output # [batch_size, number_heads, sequence_length, sequence_length] # x [batch_size, number_heads, sequence_length, head_dimesion] # -> [batch_size, number_heads, sequence_length, head_dimesion] main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states) # reshape so that num_heads dim is merged into last `head_dim` axis main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size) main_attn_output = self.out_proj(main_attn_output) # PREDICT-STREAM # [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_query_states = torch.stack(predict_query_states_list, 1).view( batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim ) # [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1) # [batch_size, sequence_length, ngram, hidden_size] predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2) # [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion] predict_value_states = torch.cat( [torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2 ) # [batch_size, ngram, number_heads, sequence_length, head_dimesion] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states)) # retrieve relative position embeddings for each layer -> see paper for more details # [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings] predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings( predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets ) # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings if extended_predict_attention_mask is not None: # Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4) extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype) predict_attn_weights = predict_attn_weights + extended_predict_attention_mask predict_attn_probs = softmax( predict_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(predict_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs predict_attn_probs = nn.functional.dropout( predict_attn_probs, p=self.attention_dropout, training=self.training ) # project to attention output # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_attn_output = torch.einsum( "bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2)) ) # reshape so that num_heads dim is merged into last `head_dim` axis # [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size] predict_attn_output = predict_attn_output.transpose(2, 3) predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size) predict_attn_output = self.out_proj(predict_attn_output) # concat to single attn output # [batch_size, (1+ngram)*sequence_length, hidden_size] attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size) # reshape into better form for `config.output_attentions` main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, main_attn_probs, predict_attn_probs, past_key_value def get_main_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, main_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, hidden_size] # input attn_weights [batch_size, num_heads, sequence_length, sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len) if main_relative_position_buckets is None: batch_size, sequence_length = hidden_states.shape[:2] relative_positions = ( torch.arange(1, attn_weights.shape[-1] + 1) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) # [batch_size, sequence_length, sequence_length+1] relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) main_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, sequence_length, num_buckets * num_heads] rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) rel_pos_embeddings = rel_pos_embeddings.view( rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2) # [batch_size, num_heads, sequence_length, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,)) main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1) # [batch_size * num_heads * sequence_length, sequence_length] main_relative_position_buckets = main_relative_position_buckets.view( -1, main_relative_position_buckets.shape[-1] ) main_relative_position_buckets = main_relative_position_buckets.long() # [batch_size * num_heads * sequence_length, sequence_length] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets) main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1) return main_relative_pos_embeddings def get_predict_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, ngram, hidden_size] # input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] # input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None batch_size, sequence_length = hidden_states.shape[0:2] if predict_relative_position_buckets is None: key_sequence_length = attn_weights.shape[-1] assert ( position_ids[0][0] == key_sequence_length - 1 ), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)" relative_positions = ( torch.arange(0, key_sequence_length) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) predict_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, ngram, sequence_length, hidden_size] hidden_states = hidden_states.transpose(1, 2) rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) # [batch_size, ngram, sequence_length, num_buckets, num_heads] rel_pos_embeddings = rel_pos_embeddings.view( hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3) # [batch_size * ngram * sequence_length * num_heads, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets) # [ngram, batch_size, num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0) predict_relative_position_buckets = predict_relative_position_buckets.repeat( self.ngram, 1, self.num_attn_heads, 1 ) # [ngram * batch_size * num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.view( -1, predict_relative_position_buckets.size(-1) ).long() predict_relative_pos_embeddings = torch.gather( rel_pos_embeddings, dim=1, index=predict_relative_position_buckets ) # [batch_size, gram, num_heads, sequence_length, -1] predict_relative_pos_embeddings = predict_relative_pos_embeddings.view( batch_size, self.ngram, self.num_attn_heads, sequence_length, -1 ) return predict_relative_pos_embeddings class ProphetNetEncoderLayer(nn.Module): """ Encoder block for Prophetnet """ def __init__(self, config: ProphetNetConfig): super().__init__() # 1st residual block self.self_attn = ProphetNetAttention(config, config.num_encoder_attention_heads) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block self.feed_forward = ProphetNetFeedForward(config, config.encoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask, layer_head_mask, output_attentions: bool = False, ): # 1st residual block attention_output, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_layer_norm(attention_output + hidden_states) # 2nd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class ProphetNetDecoderLayer(nn.Module): """ Decoder block for Prophetnet """ def __init__(self, config: ProphetNetConfig): super().__init__() # 1st residual block self.self_attn = ProphetNetNgramSelfAttention(config) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block if config.add_cross_attention: self.cross_attn = ProphetNetAttention(config, config.num_decoder_attention_heads) self.cross_attn_layer_norm = LayerNorm(config.hidden_size) # 3rd residual block self.feed_forward = ProphetNetFeedForward(config, config.decoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attn_mask=None, layer_head_mask=None, cross_attn_layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, past_key_value=None, use_cache: bool = True, output_attentions: bool = False, ): # 1st residual block # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, ) hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attn_weights = None if encoder_hidden_states is not None: # 2nd residual block attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attn_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # 3rd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs @add_start_docstrings( "The standalone encoder part of the ProphetNetModel.", PROPHETNET_START_DOCSTRING, ) class ProphetNetEncoder(ProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None): super().__init__(config) self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = ProphetNetPositionalEmbeddings(config) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.layers = nn.ModuleList([ProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)]) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetEncoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either input_ids or inputs_embeds has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass input_ids or inputs_embeds.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # prepare attention mask if attention_mask is not None: extended_attention_mask = ( 1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype) else: extended_attention_mask = None position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device) hidden_states = inputs_embeds + position_embeddings hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training) encoder_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, extended_attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask=extended_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions ) @add_start_docstrings( "The standalone decoder part of the ProphetNetModel.", PROPHETNET_START_DOCSTRING, ) class ProphetNetDecoder(ProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: ProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None): super().__init__(config) self.ngram = config.ngram self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.dropout = config.dropout self.max_target_positions = config.max_position_embeddings self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = ProphetNetPositionalEmbeddings(config) self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None) self.layers = nn.ModuleList([ProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)]) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetDecoderModelOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetDecoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetDecoder.from_pretrained("microsoft/prophetnet-large-uncased", add_cross_attention=False) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) batch_size, sequence_length = inputs_embeds.shape[:2] main_stream_pos_embed, position_ids = self.position_embeddings( (batch_size, sequence_length), device=inputs_embeds.device, past_key_values=past_key_values, ) if past_key_values is not None: main_relative_position_buckets, predict_relative_position_buckets = None, None else: ( main_relative_position_buckets, predict_relative_position_buckets, ) = self.compute_buffered_relative_buckets(position_ids) predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1) # add position embeddings hidden_states = inputs_embeds + main_stream_pos_embed ngram_embeddings = self.ngram_embeddings.weight # prepare attention mask if past_key_values is not None: assert ( hidden_states.size(1) == 1 ), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1" ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1) for ngram in range(self.ngram) ] extended_attention_mask = None extended_predict_attention_mask = None else: ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram) ] extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask) extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask) # prepare encoder attention mask if encoder_attention_mask is not None: extended_encoder_attention_mask = ( 1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype) else: extended_encoder_attention_mask = None hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1) if self.embeddings_layer_norm: hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # init attentions, hidden_states and cache with empty tuples all_main_stream_hidden_states = () if output_hidden_states else None all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None all_main_stream_attns = () if output_attentions else None all_ngram_stream_attns = () if output_attentions else None all_cross_attns = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False present_key_values = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: # grad cannot be kept because tensor is sliced all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, extended_attention_mask, encoder_hidden_states, extended_encoder_attention_mask, (head_mask[idx] if head_mask is not None else None), (cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), extended_predict_attention_mask, main_relative_position_buckets, predict_relative_position_buckets, position_ids, None, use_cache, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=extended_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attn_mask=extended_encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if use_cache: present_key_values += (layer_outputs[4 if output_attentions else 1],) if output_attentions: all_main_stream_attns += (layer_outputs[1],) all_ngram_stream_attns += (layer_outputs[2],) if self.config.add_cross_attention: all_cross_attns += (layer_outputs[3],) if output_hidden_states: all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) # split last_hidden_state for return last_hidden_state = hidden_states[:, :sequence_length] last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None if not return_dict: return tuple( v for v in [ last_hidden_state, last_hidden_state_ngram, present_key_values, all_main_stream_hidden_states, all_ngram_stream_hidden_states, all_main_stream_attns, all_ngram_stream_attns, all_cross_attns, ] if v is not None ) return ProphetNetDecoderModelOutput( last_hidden_state=last_hidden_state, last_hidden_state_ngram=last_hidden_state_ngram, past_key_values=present_key_values, hidden_states=all_main_stream_hidden_states, hidden_states_ngram=all_ngram_stream_hidden_states, attentions=all_main_stream_attns, ngram_attentions=all_ngram_stream_attns, cross_attentions=all_cross_attns, ) def compute_buffered_relative_buckets(self, position_ids): batch_size, sequence_length = position_ids.shape position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1) main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets( self.num_buckets, self.relative_max_distance, position_ids ) # buffer relative buckets main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1) predict_relative_buckets = torch.cat( [ predict_relative_buckets[:, :sequence_length, :sequence_length], predict_relative_buckets[ :, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length ], ], 2, ).repeat(batch_size, 1, 1) return main_relative_buckets, predict_relative_buckets def prepare_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask causal_mask = torch.full( (seq_length, seq_length), torch.finfo(hidden_states.dtype).min, dtype=hidden_states.dtype, device=hidden_states.device, ) causal_mask = torch.triu(causal_mask, 1) extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_causal_mask + extended_attention_mask else: extended_attention_mask = extended_causal_mask return extended_attention_mask.to(hidden_states.dtype) def prepare_predict_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask predict_causal_mask = ngram_attention_bias( self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype ) predict_causal_mask = torch.cat( [ predict_causal_mask[:, :seq_length, :seq_length], predict_causal_mask[ :, :seq_length, self.max_target_positions : self.max_target_positions + seq_length ], ], dim=-1, ) extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.expand( (batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length) ) # predicted stream attention_mask should always be 0 extended_attention_mask = torch.cat( [extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1 ) extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask else: extended_predict_attention_mask = extended_predict_causal_mask return extended_predict_attention_mask.to(hidden_states.dtype) @add_start_docstrings( "The bare ProphetNet Model outputting raw hidden-states without any specific head on top.", PROPHETNET_START_DOCSTRING, ) class ProphetNetModel(ProphetNetPreTrainedModel): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"] def __init__(self, config: ProphetNetConfig): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) encoder_config = copy.deepcopy(config) encoder_config.is_encoder_decoder = False encoder_config.use_cache = False self.encoder = ProphetNetEncoder(encoder_config, self.word_embeddings) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False self.decoder = ProphetNetDecoder(decoder_config, self.word_embeddings) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value self.encoder.word_embeddings = self.word_embeddings self.decoder.word_embeddings = self.word_embeddings def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.word_embeddings, self.word_embeddings) self._tie_or_clone_weights(self.decoder.word_embeddings, self.word_embeddings) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetSeq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetModel >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetModel.from_pretrained("microsoft/prophetnet-large-uncased") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state # main stream hidden states >>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return ProphetNetSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram, decoder_attentions=decoder_outputs.attentions, decoder_ngram_attentions=decoder_outputs.ngram_attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The ProphetNet Model with a language modeling head. Can be used for sequence generation tasks.", PROPHETNET_START_DOCSTRING, ) class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"] def __init__(self, config: ProphetNetConfig): super().__init__(config) self.prophetnet = ProphetNetModel(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.prophetnet.word_embeddings, self.lm_head) def get_input_embeddings(self): return self.prophetnet.word_embeddings @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetSeq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> logits_next_token = outputs.logits # logits to predict next token as usual >>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) outputs = self.prophetnet( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = ( decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2] ) predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None # To use .view in loss computation, make sure that logits is contiguous. if not logits.is_contiguous(): logits = logits.contiguous() loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return ProphetNetSeq2SeqLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states, decoder_attentions=outputs.decoder_attentions, decoder_ngram_attentions=outputs.decoder_ngram_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): assert encoder_outputs is not None, "`encoder_outputs` have to be passed for generation." if past_key_values: decoder_input_ids = decoder_input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past def get_encoder(self): return self.prophetnet.encoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings( "The standalone decoder part of the ProphetNetModel with a lm head on top. The model can be used for causal" " language modeling.", PROPHETNET_START_DOCSTRING, ) class ProphetNetForCausalLM(ProphetNetPreTrainedModel): _tied_weights_keys = [ "prophetnet.word_embeddings.weight", "prophetnet.decoder.word_embeddings.weight", "lm_head.weight", ] def __init__(self, config: ProphetNetConfig): # set config for CLM config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.prophetnet = ProphetNetDecoderWrapper(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.prophetnet.decoder.word_embeddings def set_input_embeddings(self, value): self.prophetnet.decoder.word_embeddings = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.prophetnet.decoder.word_embeddings, self.lm_head) def set_decoder(self, decoder): self.prophetnet.decoder = decoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetDecoderLMOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetForCausalLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetForCausalLM.from_pretrained("microsoft/prophetnet-large-uncased") >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # Model can also be used with EncoderDecoder framework >>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer >>> import torch >>> tokenizer_enc = BertTokenizer.from_pretrained("google-bert/bert-large-uncased") >>> tokenizer_dec = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( ... "google-bert/bert-large-uncased", "microsoft/prophetnet-large-uncased" ... ) >>> ARTICLE = ( ... "the us state department said wednesday it had received no " ... "formal word from bolivia that it was expelling the us ambassador there " ... "but said the charges made against him are `` baseless ." ... ) >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids >>> labels = tokenizer_dec( ... "us rejects charges against its ambassador in bolivia", return_tensors="pt" ... ).input_ids >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) outputs = self.prophetnet.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return ProphetNetDecoderLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, hidden_states_ngram=outputs.hidden_states_ngram, attentions=outputs.attentions, ngram_attentions=outputs.ngram_attentions, cross_attentions=outputs.cross_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, use_cache=None, **kwargs, ): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past_key_values: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "head_mask": head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past class ProphetNetDecoderWrapper(ProphetNetPreTrainedModel): """ This is a wrapper class, so that [`ProphetNetForCausalLM`] can correctly be loaded from pretrained prophetnet classes. """ def __init__(self, config: ProphetNetConfig): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.decoder = ProphetNetDecoder(config, word_embeddings=self.word_embeddings) # Initialize weights and apply final processing self.post_init() def _tie_weights(self): self._tie_or_clone_weights(self.word_embeddings, self.decoder.get_input_embeddings()) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
transformers/src/transformers/models/prophetnet/modeling_prophetnet.py/0
{ "file_path": "transformers/src/transformers/models/prophetnet/modeling_prophetnet.py", "repo_id": "transformers", "token_count": 48338 }
379
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Reformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/config.json" ), "google/reformer-enwik8": "https://huggingface.co/google/reformer-enwik8/resolve/main/config.json", } class ReformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ReformerModel`]. It is used to instantiate a Reformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ReFormer [google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: attention_head_size (`int`, *optional*, defaults to 64): Dimensionality of the projected key, query and value vectors attn_layers (`List[str]`, *optional*, defaults to `["local", "lsh", "local", "lsh", "local", "lsh"]`): List of attention layer types in ascending order. It can be chosen between a LSHSelfAttention layer (`"lsh"`) and a LocalSelfAttention layer (`"local"`). For more information on LSHSelfAttention layer, see [LSH Self Attention](reformer#lsh-self-attention). For more information on LocalSelfAttention layer, see [Local Self Attention](reformer#local-self-attention). axial_pos_embds (`bool`, *optional*, defaults to `True`): Whether or not to use axial position embeddings. For more information on how axial position embeddings work, see [Axial Position Encodings](reformer#axial-positional-encodings). axial_norm_std (`float`, *optional*, defaults to 1.0): The standard deviation of the normal_initializer for initializing the weight matrices of the axial positional encodings. axial_pos_shape (`List[int]`, *optional*, defaults to `[64, 64]`): The position dims of the axial position encodings. During training, the product of the position dims has to be equal to the sequence length. For more information on how axial position embeddings work, see [Axial Position Encodings](reformer#axial-positional-encodings). axial_pos_embds_dim (`List[int]`, *optional*, defaults to `[64, 192]`): The embedding dims of the axial position encodings. The sum of the embedding dims has to be equal to the hidden size. For more information on how axial position embeddings work, see [Axial Position Encodings](reformer#axial-positional-encodings). chunk_size_lm_head (`int`, *optional*, defaults to 0): The chunk size of the final language model feed forward head layer. A chunk size of 0 means that the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes n < sequence_length embeddings at a time. For more information on feed forward chunking, see [How does Feed Forward Chunking work?](../glossary#feed-forward-chunking). eos_token_id (`int`, *optional*, defaults to 2): The token id for the end-of-sentence token. feed_forward_size (`int`, *optional*, defaults to 512): Dimensionality of the feed_forward layer in the residual attention block. hash_seed (`int`, *optional*): Seed that can be used to make local sensitive hashing in `LSHSelfAttention` deterministic. This should only be set for testing purposed. For evaluation and training purposes `hash_seed` should be left as `None` to ensure fully random rotations in local sensitive hashing scheme. hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the feed forward layer in the residual attention block. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.05): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the output hidden states of the residual attention blocks. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. is_decoder (`bool`, *optional*, defaults to `False`): Whether or not to use a causal mask in addition to the `attention_mask` passed to [`ReformerModel`]. When using the Reformer for causal language modeling, this argument should be set to `True`. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. local_chunk_length (`int`, *optional*, defaults to 64): Length of chunk which attends to itself in `LocalSelfAttention`. Chunking reduces memory complexity from sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk length (chunked self attention). local_num_chunks_before (`int`, *optional*, defaults to 1): Number of previous neighbouring chunks to attend to in `LocalSelfAttention` layer to itself. local_num_chunks_after (`int`, *optional*, defaults to 0): Number of following neighbouring chunks to attend to in `LocalSelfAttention` layer in addition to itself. local_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities in `LocalSelfAttention`. lsh_attn_chunk_length (`int`, *optional*, defaults to 64): Length of chunk which attends to itself in `LSHSelfAttention`. Chunking reduces memory complexity from sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk length (chunked self attention). lsh_num_chunks_before (`int`, *optional*, defaults to 1): Number of previous neighbouring chunks to attend to in `LSHSelfAttention` layer to itself. lsh_num_chunks_after (`int`, *optional*, defaults to 0): Number of following neighbouring chunks to attend to in `LSHSelfAttention` layer to itself. lsh_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities in `LSHSelfAttention`. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_buckets (`int` or `List[int]`, *optional*): Number of buckets, the key query vectors can be "hashed into" using the locality sensitive hashing scheme. Each query key vector is hashed into a hash in `1, ..., num_buckets`. The number of buckets can also be factorized into a list for improved memory complexity. In this case, each query key vector is hashed into a hash in `1-1, 1-2, ..., num_buckets[0]-1, ..., num_buckets[0]-num_buckets[1]` if `num_buckets` is factorized into two factors. The number of buckets (or the product the factors) should approximately equal sequence length / lsh_chunk_length. If `num_buckets` not set, a good value is calculated on the fly. num_hashes (`int`, *optional*, defaults to 1): Number of hashing rounds (e.g., number of random rotations) in Local Sensitive Hashing scheme. The higher `num_hashes`, the more accurate the `LSHSelfAttention` becomes, but also the more memory and time intensive the hashing becomes. pad_token_id (`int`, *optional*, defaults to 0): The token id for the padding token. vocab_size (`int`, *optional*, defaults to 320):\ Vocabulary size of the Reformer model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ReformerModel`]. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie input and output embeddings. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import ReformerConfig, ReformerModel >>> # Initializing a Reformer configuration >>> configuration = ReformerConfig() >>> # Initializing a Reformer model (with random weights) >>> model = ReformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "reformer" keys_to_ignore_at_inference = ["past_buckets_states"] attribute_map = {} def __init__( self, attention_head_size=64, attn_layers=["local", "lsh", "local", "lsh", "local", "lsh"], axial_norm_std=1.0, axial_pos_embds=True, axial_pos_shape=[64, 64], axial_pos_embds_dim=[64, 192], chunk_size_lm_head=0, eos_token_id=2, feed_forward_size=512, hash_seed=None, hidden_act="relu", hidden_dropout_prob=0.05, hidden_size=256, initializer_range=0.02, is_decoder=False, layer_norm_eps=1e-12, local_num_chunks_before=1, local_num_chunks_after=0, local_attention_probs_dropout_prob=0.05, local_attn_chunk_length=64, lsh_attn_chunk_length=64, lsh_attention_probs_dropout_prob=0.0, lsh_num_chunks_before=1, lsh_num_chunks_after=0, max_position_embeddings=4096, num_attention_heads=12, num_buckets=None, num_hashes=1, pad_token_id=0, vocab_size=320, tie_word_embeddings=False, use_cache=True, classifier_dropout=None, **kwargs, ): self.hash_seed = hash_seed self.vocab_size = vocab_size self.attention_head_size = attention_head_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hashes = num_hashes self.num_hidden_layers = len(attn_layers) self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets self.lsh_attn_chunk_length = lsh_attn_chunk_length self.local_attn_chunk_length = local_attn_chunk_length self.lsh_num_chunks_after = lsh_num_chunks_after self.lsh_num_chunks_before = lsh_num_chunks_before self.local_num_chunks_after = local_num_chunks_after self.local_num_chunks_before = local_num_chunks_before self.hidden_act = hidden_act self.feed_forward_size = feed_forward_size self.hidden_dropout_prob = hidden_dropout_prob self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.axial_pos_embds = axial_pos_embds self.axial_pos_shape = tuple(axial_pos_shape) self.axial_pos_embds_dim = tuple(axial_pos_embds_dim) self.axial_norm_std = axial_norm_std self.chunk_size_lm_head = chunk_size_lm_head self.attn_layers = attn_layers self.use_cache = use_cache self.classifier_dropout = classifier_dropout super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_decoder=is_decoder, tie_word_embeddings=tie_word_embeddings, **kwargs, )
transformers/src/transformers/models/reformer/configuration_reformer.py/0
{ "file_path": "transformers/src/transformers/models/reformer/configuration_reformer.py", "repo_id": "transformers", "token_count": 5139 }
380
# coding=utf-8 # Copyright 2021 The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 RemBERT model.""" from __future__ import annotations import math from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_rembert import RemBertConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "RemBertConfig" TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/rembert", # See all RemBERT models at https://huggingface.co/models?filter=rembert ] class TFRemBertEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.input_embedding_size = config.input_embedding_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.input_embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.input_embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.input_embedding_size], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.input_embedding_size]) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, past_key_values_length=0, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims( tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->RemBert class TFRemBertSelfAttention(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFRemBertModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->RemBert class TFRemBertSelfOutput(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->RemBert class TFRemBertAttention(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFRemBertSelfAttention(config, name="self") self.dense_output = TFRemBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->RemBert class TFRemBertIntermediate(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->RemBert class TFRemBertOutput(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->RemBert class TFRemBertLayer(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.attention = TFRemBertAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFRemBertAttention(config, name="crossattention") self.intermediate = TFRemBertIntermediate(config, name="intermediate") self.bert_output = TFRemBertOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) if getattr(self, "crossattention", None) is not None: with tf.name_scope(self.crossattention.name): self.crossattention.build(None) class TFRemBertEncoder(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_hidden_mapping_in = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="embedding_hidden_mapping_in", ) self.layer = [TFRemBertLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_values: Tuple[Tuple[tf.Tensor]], use_cache: bool, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: hidden_states = self.embedding_hidden_mapping_in(inputs=hidden_states) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embedding_hidden_mapping_in", None) is not None: with tf.name_scope(self.embedding_hidden_mapping_in.name): self.embedding_hidden_mapping_in.build([None, None, self.config.input_embedding_size]) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->RemBert class TFRemBertPooler(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFRemBertLMPredictionHead(keras.layers.Layer): def __init__(self, config: RemBertConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.initializer_range = config.initializer_range self.output_embedding_size = config.output_embedding_size self.dense = keras.layers.Dense( config.output_embedding_size, kernel_initializer=get_initializer(self.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.activation = get_tf_activation(config.hidden_act) else: self.activation = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def build(self, input_shape=None): self.decoder = self.add_weight( name="decoder/weight", shape=[self.config.vocab_size, self.output_embedding_size], initializer=get_initializer(self.initializer_range), ) self.decoder_bias = self.add_weight( shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="decoder/bias" ) if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, self.config.output_embedding_size]) def get_output_embeddings(self) -> keras.layers.Layer: return self def set_output_embeddings(self, value): self.decoder = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"decoder_bias": self.decoder_bias} def set_bias(self, value: tf.Variable): self.decoder_bias = value["decoder_bias"] self.config.vocab_size = shape_list(value["decoder_bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.activation(hidden_states) seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.output_embedding_size]) hidden_states = self.LayerNorm(hidden_states) hidden_states = tf.matmul(a=hidden_states, b=self.decoder, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.decoder_bias) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->RemBert class TFRemBertMLMHead(keras.layers.Layer): def __init__(self, config: RemBertConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFRemBertLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) @keras_serializable class TFRemBertMainLayer(keras.layers.Layer): config_class = RemBertConfig def __init__(self, config: RemBertConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.embeddings = TFRemBertEmbeddings(config, name="embeddings") self.encoder = TFRemBertEncoder(config, name="encoder") self.pooler = TFRemBertPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFRemBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RemBertConfig base_model_prefix = "rembert" REMBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`RemBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ REMBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare RemBERT Model transformer outputing raw hidden-states without any specific head on top.", REMBERT_START_DOCSTRING, ) class TFRemBertModel(TFRemBertPreTrainedModel): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.rembert = TFRemBertMainLayer(config, name="rembert") @unpack_inputs @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.rembert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rembert", None) is not None: with tf.name_scope(self.rembert.name): self.rembert.build(None) @add_start_docstrings("""RemBERT Model with a `language modeling` head on top.""", REMBERT_START_DOCSTRING) class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFRemBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.rembert = TFRemBertMainLayer(config, name="rembert", add_pooling_layer=False) self.mlm = TFRemBertMLMHead(config, input_embeddings=self.rembert.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.rembert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rembert", None) is not None: with tf.name_scope(self.rembert.name): self.rembert.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None) @add_start_docstrings( """RemBERT Model with a `language modeling` head on top for CLM fine-tuning.""", REMBERT_START_DOCSTRING ) class TFRemBertForCausalLM(TFRemBertPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TFRemBertForCausalLM` as a standalone, add `is_decoder=True.`") self.rembert = TFRemBertMainLayer(config, name="rembert", add_pooling_layer=False) self.mlm = TFRemBertMLMHead(config, input_embeddings=self.rembert.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = tf.ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} @unpack_inputs @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.rembert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rembert", None) is not None: with tf.name_scope(self.rembert.name): self.rembert.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None) @add_start_docstrings( """ RemBERT Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks. """, REMBERT_START_DOCSTRING, ) class TFRemBertForSequenceClassification(TFRemBertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.rembert = TFRemBertMainLayer(config, name="rembert") self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.rembert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=training) logits = self.classifier(inputs=pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rembert", None) is not None: with tf.name_scope(self.rembert.name): self.rembert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ RemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, REMBERT_START_DOCSTRING, ) class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.rembert = TFRemBertMainLayer(config, name="rembert") self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob) self.classifier = keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None flat_attention_mask = ( tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None ) flat_position_ids = ( tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None ) flat_inputs_embeds = ( tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.rembert( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, position_ids=flat_position_ids, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=training) logits = self.classifier(inputs=pooled_output) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rembert", None) is not None: with tf.name_scope(self.rembert.name): self.rembert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ RemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, REMBERT_START_DOCSTRING, ) class TFRemBertForTokenClassification(TFRemBertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.rembert = TFRemBertMainLayer(config, name="rembert", add_pooling_layer=False) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.rembert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(inputs=sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rembert", None) is not None: with tf.name_scope(self.rembert.name): self.rembert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ RemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, REMBERT_START_DOCSTRING, ) class TFRemBertForQuestionAnswering(TFRemBertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.rembert = TFRemBertMainLayer(config, add_pooling_layer=False, name="rembert") self.qa_outputs = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.rembert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rembert", None) is not None: with tf.name_scope(self.rembert.name): self.rembert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
transformers/src/transformers/models/rembert/modeling_tf_rembert.py/0
{ "file_path": "transformers/src/transformers/models/rembert/modeling_tf_rembert.py", "repo_id": "transformers", "token_count": 33595 }
381
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 RoFormer model.""" from __future__ import annotations import math from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFCausalLMOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_roformer import RoFormerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "junnyu/roformer_chinese_base" _CONFIG_FOR_DOC = "RoFormerConfig" TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "junnyu/roformer_chinese_small", "junnyu/roformer_chinese_base", "junnyu/roformer_chinese_char_small", "junnyu/roformer_chinese_char_base", "junnyu/roformer_small_discriminator", "junnyu/roformer_small_generator", # See all RoFormer models at https://huggingface.co/models?filter=roformer ] class TFRoFormerSinusoidalPositionalEmbedding(keras.layers.Layer): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, **kwargs): super().__init__(**kwargs) if embedding_dim % 2 != 0: raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported") self.embedding_dim = embedding_dim self.num_positions = num_positions def build(self, input_shape: tf.TensorShape): """ Build shared token embedding layer Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ weight = self._init_weight(self.num_positions, self.embedding_dim) self.weight = self.add_weight( name="embeddings", shape=[self.num_positions, self.embedding_dim], ) weight = tf.cast(weight, dtype=self.weight.dtype) self.weight.assign(weight) super().build(input_shape) @staticmethod def _init_weight(n_pos: int, dim: int): """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) table = np.zeros_like(position_enc) # index 0 is all zero table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2]) table[:, dim // 2 :] = np.cos(position_enc[:, 1::2]) # convert to tensor table = tf.convert_to_tensor(table) tf.stop_gradient(table) return table def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input_shape[:2] positions = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range") return tf.gather(self.weight, positions) class TFRoFormerEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: RoFormerConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = config.embedding_size self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.embedding_size]) def call( self, input_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFRoFormerSelfAttention(keras.layers.Layer): def __init__(self, config: RoFormerConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.rotary_value = config.rotary_value self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, sinusoidal_pos: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) if sinusoidal_pos is not None: if self.rotary_value: query_layer, key_layer, value_layer = self.apply_rotary_position_embeddings( sinusoidal_pos, query_layer, key_layer, value_layer ) else: query_layer, key_layer = self.apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFRoFormerModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs @staticmethod def apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer, value_layer=None): # https://kexue.fm/archives/8265 # sin [batch_size, num_heads, sequence_length, embed_size_per_head//2] # cos [batch_size, num_heads, sequence_length, embed_size_per_head//2] sin, cos = tf.split(sinusoidal_pos, num_or_size_splits=2, axis=-1) # sin [θ0,θ1,θ2......θd/2-1]-> sin_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1] # cos [θ0,θ1,θ2......θd/2-1]-> cos_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1] sin_pos = tf.repeat(sin, 2, axis=-1) cos_pos = tf.repeat(cos, 2, axis=-1) # rotate_half_query_layer [-q1,q0,-q3,q2......,-qd-1,qd-2] rotate_half_query_layer = tf.stack([-query_layer[..., 1::2], query_layer[..., ::2]], axis=-1) rotate_half_query_layer = tf.reshape(rotate_half_query_layer, shape_list(query_layer)) query_layer = query_layer * cos_pos + rotate_half_query_layer * sin_pos # rotate_half_key_layer [-k1,k0,-k3,k2......,-kd-1,kd-2] rotate_half_key_layer = tf.stack([-key_layer[..., 1::2], key_layer[..., ::2]], axis=-1) rotate_half_key_layer = tf.reshape(rotate_half_key_layer, shape_list(key_layer)) key_layer = key_layer * cos_pos + rotate_half_key_layer * sin_pos if value_layer is not None: # rotate_half_value_layer [-v1,v0,-v3,v2......,-vd-1,vd-2] rotate_half_value_layer = tf.stack([-value_layer[..., 1::2], value_layer[..., ::2]], axis=-1) rotate_half_value_layer = tf.reshape(rotate_half_value_layer, shape_list(value_layer)) value_layer = value_layer * cos_pos + rotate_half_value_layer * sin_pos return query_layer, key_layer, value_layer return query_layer, key_layer def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->RoFormer class TFRoFormerSelfOutput(keras.layers.Layer): def __init__(self, config: RoFormerConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFRoFormerAttention(keras.layers.Layer): def __init__(self, config: RoFormerConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFRoFormerSelfAttention(config, name="self") self.dense_output = TFRoFormerSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, sinusoidal_pos: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, sinusoidal_pos=sinusoidal_pos, head_mask=head_mask, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->RoFormer class TFRoFormerIntermediate(keras.layers.Layer): def __init__(self, config: RoFormerConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->RoFormer class TFRoFormerOutput(keras.layers.Layer): def __init__(self, config: RoFormerConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFRoFormerLayer(keras.layers.Layer): def __init__(self, config: RoFormerConfig, **kwargs): super().__init__(**kwargs) self.attention = TFRoFormerAttention(config, name="attention") self.intermediate = TFRoFormerIntermediate(config, name="intermediate") self.roformer_output = TFRoFormerOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, sinusoidal_pos: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, sinusoidal_pos=sinusoidal_pos, head_mask=head_mask, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.roformer_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "roformer_output", None) is not None: with tf.name_scope(self.roformer_output.name): self.roformer_output.build(None) class TFRoFormerEncoder(keras.layers.Layer): def __init__(self, config: RoFormerConfig, **kwargs): super().__init__(**kwargs) self.embed_positions = TFRoFormerSinusoidalPositionalEmbedding( config.max_position_embeddings, config.hidden_size // config.num_attention_heads, name="embed_positions", ) self.layer = [TFRoFormerLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # [sequence_length, embed_size_per_head] -> [batch_size, num_heads, sequence_length, embed_size_per_head] sinusoidal_pos = self.embed_positions(shape_list(hidden_states)[:-1])[None, None, :, :] for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, sinusoidal_pos=sinusoidal_pos, head_mask=head_mask[i], output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) class TFRoFormerPredictionHeadTransform(keras.layers.Layer): def __init__(self, config: RoFormerConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.embedding_size]) class TFRoFormerLMPredictionHead(keras.layers.Layer): def __init__(self, config: RoFormerConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = config.embedding_size self.transform = TFRoFormerPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->RoFormer class TFRoFormerMLMHead(keras.layers.Layer): def __init__(self, config: RoFormerConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFRoFormerLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) @keras_serializable class TFRoFormerMainLayer(keras.layers.Layer): config_class = RoFormerConfig def __init__(self, config: RoFormerConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFRoFormerEmbeddings(config, name="embeddings") if config.embedding_size != config.hidden_size: self.embeddings_project = keras.layers.Dense(config.hidden_size, name="embeddings_project") self.encoder = TFRoFormerEncoder(config, name="encoder") def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, training=training, ) if hasattr(self, "embeddings_project"): embedding_output = self.embeddings_project(embedding_output, training=training) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "embeddings_project", None) is not None: with tf.name_scope(self.embeddings_project.name): self.embeddings_project.build([None, None, self.config.embedding_size]) class TFRoFormerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RoFormerConfig base_model_prefix = "roformer" ROFORMER_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`RoFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ROFORMER_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare RoFormer Model transformer outputing raw hidden-states without any specific head on top.", ROFORMER_START_DOCSTRING, ) class TFRoFormerModel(TFRoFormerPreTrainedModel): def __init__(self, config: RoFormerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roformer = TFRoFormerMainLayer(config, name="roformer") @unpack_inputs @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: outputs = self.roformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roformer", None) is not None: with tf.name_scope(self.roformer.name): self.roformer.build(None) @add_start_docstrings("""RoFormer Model with a `language modeling` head on top.""", ROFORMER_START_DOCSTRING) class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: RoFormerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFRoFormerForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roformer = TFRoFormerMainLayer(config, name="roformer") self.mlm = TFRoFormerMLMHead(config, input_embeddings=self.roformer.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.roformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roformer", None) is not None: with tf.name_scope(self.roformer.name): self.roformer.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None) @add_start_docstrings( """RoFormer Model with a `language modeling` head on top for CLM fine-tuning.""", ROFORMER_START_DOCSTRING ) class TFRoFormerForCausalLM(TFRoFormerPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config: RoFormerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TFRoFormerForCausalLM` as a standalone, add `is_decoder=True.`") self.roformer = TFRoFormerMainLayer(config, name="roformer") self.mlm = TFRoFormerMLMHead(config, input_embeddings=self.roformer.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.roformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roformer", None) is not None: with tf.name_scope(self.roformer.name): self.roformer.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None) class TFRoFormerClassificationHead(keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config: RoFormerConfig, *inputs, **kwargs): super().__init__(*inputs, **kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.out_proj = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) if isinstance(config.hidden_act, str): self.classifier_act_fn = get_tf_activation(config.hidden_act) else: self.classifier_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.dense(inputs=hidden_states) hidden_states = self.classifier_act_fn(hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.out_proj(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ RoFormer Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks. """, ROFORMER_START_DOCSTRING, ) class TFRoFormerForSequenceClassification(TFRoFormerPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: RoFormerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roformer = TFRoFormerMainLayer(config, name="roformer") self.classifier = TFRoFormerClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.roformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) logits = self.classifier(hidden_states=outputs[0], training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roformer", None) is not None: with tf.name_scope(self.roformer.name): self.roformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ RoFormer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ROFORMER_START_DOCSTRING, ) class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config: RoFormerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roformer = TFRoFormerMainLayer(config, name="roformer") self.sequence_summary = TFSequenceSummary(config, config.initializer_range, name="sequence_summary") self.classifier = keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward( ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None flat_attention_mask = ( tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None ) flat_inputs_embeds = ( tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.roformer( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) logits = self.sequence_summary(inputs=outputs[0], training=training) logits = self.classifier(inputs=logits) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roformer", None) is not None: with tf.name_scope(self.roformer.name): self.roformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ RoFormer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ROFORMER_START_DOCSTRING, ) class TFRoFormerForTokenClassification(TFRoFormerPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: RoFormerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roformer = TFRoFormerMainLayer(config, name="roformer") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.roformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(inputs=sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roformer", None) is not None: with tf.name_scope(self.roformer.name): self.roformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ RoFormer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ROFORMER_START_DOCSTRING, ) class TFRoFormerForQuestionAnswering(TFRoFormerPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: RoFormerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roformer = TFRoFormerMainLayer(config, name="roformer") self.qa_outputs = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.roformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roformer", None) is not None: with tf.name_scope(self.roformer.name): self.roformer.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
transformers/src/transformers/models/roformer/modeling_tf_roformer.py/0
{ "file_path": "transformers/src/transformers/models/roformer/modeling_tf_roformer.py", "repo_id": "transformers", "token_count": 28490 }
382
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SeamlessM4T model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/hf-seamless-m4t-medium": "https://huggingface.co/facebook/hf-seamless-m4t-medium/resolve/main/config.json", # See all SeamlessM4T models at https://huggingface.co/models?filter=seamless_m4t } class SeamlessM4TConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`~SeamlessM4TModel`]. It is used to instantiate an SeamlessM4T model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SeamlessM4T ["facebook/hf-seamless-m4t-medium"](https://huggingface.co/"facebook/hf-seamless-m4t-medium") architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256102): Vocabulary size of the SeamlessM4T model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~SeamlessM4TModel`], [`~SeamlessM4TForTextToSpeech`] or [`~SeamlessM4TForTextToText`]. t2u_vocab_size (`int`, *optional*, defaults to 10082): Unit vocabulary size of the SeamlessM4T model. Defines the number of different unit tokens that can be represented by the `inputs_ids` passed when calling the Text-To-Units sub-model of [`~SeamlessM4TModel`], [`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`]. > Parameters shared across sub-models hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the "intermediate" layers in the architecture. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model text encoder and decoder might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is used as an encoder/decoder or not. encoder_layerdrop (`float`, *optional*, defaults to 0.05): The LayerDrop probability for the encoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.05): The LayerDrop probability for the decoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the decoder and feed-forward layers. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, decoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all attention layers. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all activation layers in the model. scale_embedding (`bool`, *optional*, defaults to `True`): Scale embeddings by diving by sqrt(d_model). > Text encoder and text decoder specific parameters encoder_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer text encoder. encoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text encoder. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text encoder. decoder_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer text decoder. decoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text decoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text decoder. decoder_start_token_id (`int`, *optional*, defaults to 3): If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only applied in the text decoder. max_new_tokens (`int`, *optional*, defaults to 256): The maximum numbers of text tokens to generate, ignoring the number of tokens in the prompt. pad_token_id (`int`, *optional*, defaults to 0): The id of the _padding_ text token. Only applied to the text-decoder model. bos_token_id (`int`, *optional*, defaults to 2): The id of the _beginning-of-stream_ text token. Only applied to the text-decoder model. eos_token_id (`int`, *optional*, defaults to 3): The id of the _end-of-stream_ text token. Only applied to the text-decoder model. > Speech encoder specific parameters speech_encoder_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer speech encoder. speech_encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer speech encoder. speech_encoder_intermediate_size (`int`, *optional*, defaults to 4096): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer speech encoder. speech_encoder_hidden_act (`str` or `function`, *optional*, defaults to `"swish"`): The non-linear activation function (function or string) in the speech encoder. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. speech_encoder_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all layers in the speech encoder. add_adapter (`bool`, *optional*, defaults to `True`): Add an adapter layer on top of the speech encoder. speech_encoder_layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the speech encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. feature_projection_input_dim (`int`, *optional*, defaults to 160): Input dimension of the input feature projection of the speech encoder, i.e the dimension after processing input audios with [`SeamlessM4TFeatureExtractor`]. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer of the speech encoder. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer of the speech encoder. adaptor_kernel_size (`int`, *optional*, defaults to 8): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adaptor_stride (`int`, *optional*, defaults to 8): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adaptor_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all layers in the speech adapter. num_adapter_layers (`int`, *optional*, defaults to 1): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. position_embeddings_type (`str`, *optional*, defaults to `"relative"`): Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left `None` no relative position embedding is applied. Only applied to the speech encoder. rotary_embedding_base (`int`, *optional*, defaults to 10000): If `"rotary"` position embeddings are used, defines the size of the embedding base. Only applied to the speech encoder. max_source_positions (`int`, *optional*, defaults to 4096): if `"relative"` position embeddings are used, defines the maximum source input positions. Only applied to the speech encoder. conv_depthwise_kernel_size (`int`, *optional*, defaults to 31): Kernel size of convolutional depthwise 1D layer in Conformer blocks. Only applied to the speech encoder. > Text-To-Unit (t2u) model specific parameters t2u_bos_token_id (`int`, *optional*, defaults to 0): The id of the _beginning-of-stream_ unit token. Only applied to the text-to-unit seq2seq model. t2u_pad_token_id (`int`, *optional*, defaults to 1): The id of the _padding_ unit token. Only applied to the text-to-unit seq2seq model. t2u_eos_token_id (`int`, *optional*, defaults to 2): The id of the _end-of-stream_ unit token. Only applied to the text-to-unit seq2seq model. t2u_decoder_start_token_id (`int`, *optional*, defaults to 2): If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only applied to the text-to-unit seq2seq model. t2u_max_new_tokens (`int`, *optional*, defaults to 1024): The maximum numbers of unit tokens to generate, ignoring the number of tokens in the prompt. Only applied to the text-to-unit seq2seq model. t2u_encoder_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer text-to-unit encoder. t2u_encoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit encoder. t2u_encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text-to-unit encoder. t2u_decoder_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer text-to-unit decoder. t2u_decoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit decoder. t2u_decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text-to-unit decoder. t2u_max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model text-to-unit component might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). > Hifi-Gan Vocoder specific parameters sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the output audio will be generated, expressed in hertz (Hz). upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the hifi-gan upsampling network. Applies to the vocoder only. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[5, 4, 4, 2, 2]`): A tuple of integers defining the stride of each 1D convolutional layer in the vocoder upsampling network. The length of *upsample_rates* defines the number of convolutional layers and has to match the length of *upsample_kernel_sizes*. Applies to the vocoder only. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[11, 8, 8, 4, 4]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the vocoder upsampling network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of *upsample_rates*. Applies to the vocoder only. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the vocoder 1D convolutional layers in the multi-receptive field fusion (MRF) module. Applies to the vocoder only. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the vocoder dilated 1D convolutional layers in the multi-receptive field fusion (MRF) module. Applies to the vocoder only. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation in the vocoder. Applies to the vocoder only. unit_hifi_gan_vocab_size (`int`, *optional*, defaults to 10000): Vocabulary size of the SeamlessM4T vocoder. Defines the number of different unit tokens that can be represented by the `inputs_ids` passed when calling the vocoder of [`~SeamlessM4TModel`], [`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`]. unit_embed_dim (`int`, *optional*, defaults to 1280): The projection dimension of the input ids given to the hifi-gan vocoder. Applies to the vocoder only. lang_embed_dim (`int`, *optional*, defaults to 256): The projection dimension of the target language given to the hifi-gan vocoder. Applies to the vocoder only. spkr_embed_dim (`int`, *optional*, defaults to 256): The projection dimension of the speaker id given to the hifi-gan vocoder. Applies to the vocoder only. vocoder_num_langs (`int`, *optional*, defaults to 36): Number of langs supported by the vocoder. Might be different from `t2u_num_langs`. vocoder_num_spkrs (`int`, *optional*, defaults to 200): Number of speakers supported by the vocoder. variance_predictor_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the duration predictor. Applies to the vocoder only. var_pred_dropout (`float`, *optional*, defaults to 0.5): The dropout probability of the duration predictor. Applies to the vocoder only. vocoder_offset (`int`, *optional*, defaults to 4): Offset the unit token ids by this number to account for symbol tokens. Applies to the vocoder only. ```python >>> from transformers import SeamlessM4TModel, SeamlessM4TConfig >>> # Initializing a SeamlessM4T "facebook/hf-seamless-m4t-medium" style configuration >>> configuration = SeamlessM4TConfig() >>> # Initializing a model from the "facebook/hf-seamless-m4t-medium" style configuration >>> model = SeamlessM4TModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "seamless_m4t" def __init__( self, vocab_size=256102, t2u_vocab_size=10082, # shared config hidden_size=1024, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, max_position_embeddings=1024, is_encoder_decoder=True, encoder_layerdrop=0.05, decoder_layerdrop=0.05, activation_function="relu", dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, scale_embedding=True, # text encoder|decoder encoder_layers=24, encoder_ffn_dim=8192, encoder_attention_heads=16, decoder_layers=24, decoder_ffn_dim=8192, decoder_attention_heads=16, decoder_start_token_id=3, max_new_tokens=256, pad_token_id=0, bos_token_id=2, eos_token_id=3, # speech_encoder speech_encoder_layers=24, speech_encoder_attention_heads=16, speech_encoder_intermediate_size=4096, speech_encoder_hidden_act="swish", speech_encoder_dropout=0.0, add_adapter=True, speech_encoder_layerdrop=0.1, feature_projection_input_dim=160, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, adaptor_kernel_size=8, adaptor_stride=8, adaptor_dropout=0.1, num_adapter_layers=1, position_embeddings_type="relative", rotary_embedding_base=10000, max_source_positions=4096, conv_depthwise_kernel_size=31, # t2u config t2u_bos_token_id=0, t2u_pad_token_id=1, t2u_eos_token_id=2, t2u_decoder_start_token_id=2, t2u_max_new_tokens=1024, t2u_encoder_layers=6, t2u_encoder_ffn_dim=8192, t2u_encoder_attention_heads=16, t2u_decoder_layers=6, t2u_decoder_ffn_dim=8192, t2u_decoder_attention_heads=16, t2u_max_position_embeddings=2048, # hifi-gan vocoder config sampling_rate=16000, upsample_initial_channel=512, upsample_rates=[5, 4, 4, 2, 2], upsample_kernel_sizes=[11, 8, 8, 4, 4], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], leaky_relu_slope=0.1, # specific to Code Hifi-Gan unit_hifi_gan_vocab_size=10000, unit_embed_dim=1280, lang_embed_dim=256, spkr_embed_dim=256, vocoder_num_langs=36, vocoder_num_spkrs=200, variance_predictor_kernel_size=3, var_pred_dropout=0.5, vocoder_offset=4, **kwargs, ): # overall_config self.vocab_size = vocab_size self.t2u_vocab_size = t2u_vocab_size self.hidden_size = hidden_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.max_position_embeddings = max_position_embeddings self.use_cache = use_cache self.max_new_tokens = max_new_tokens self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.activation_function = activation_function self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.scale_embedding = scale_embedding # for proper config init self.num_attention_heads = decoder_attention_heads self.num_hidden_layers = decoder_layers # text|unit encoder|decoder self.encoder_layers = encoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.decoder_attention_heads = decoder_attention_heads # speech_encoder self.speech_encoder_layers = speech_encoder_layers self.speech_encoder_hidden_act = speech_encoder_hidden_act self.speech_encoder_dropout = speech_encoder_dropout self.speech_encoder_attention_heads = speech_encoder_attention_heads self.speech_encoder_layerdrop = speech_encoder_layerdrop self.speech_encoder_intermediate_size = speech_encoder_intermediate_size self.feature_projection_input_dim = feature_projection_input_dim self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.adaptor_kernel_size = adaptor_kernel_size self.adaptor_stride = adaptor_stride self.adaptor_dropout = adaptor_dropout self.num_adapter_layers = num_adapter_layers self.position_embeddings_type = position_embeddings_type self.rotary_embedding_base = rotary_embedding_base self.max_source_positions = max_source_positions self.conv_depthwise_kernel_size = conv_depthwise_kernel_size self.add_adapter = add_adapter # t2u config self.t2u_bos_token_id = t2u_bos_token_id self.t2u_pad_token_id = t2u_pad_token_id self.t2u_eos_token_id = t2u_eos_token_id self.t2u_decoder_start_token_id = t2u_decoder_start_token_id self.t2u_max_new_tokens = t2u_max_new_tokens self.t2u_encoder_layers = t2u_encoder_layers self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim self.t2u_encoder_attention_heads = t2u_encoder_attention_heads self.t2u_decoder_layers = t2u_decoder_layers self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim self.t2u_decoder_attention_heads = t2u_decoder_attention_heads self.t2u_max_position_embeddings = t2u_max_position_embeddings # hifi-gan vocoder config # original parameters specific to Hifi-Gan self.sampling_rate = sampling_rate self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.leaky_relu_slope = leaky_relu_slope # specific to Code Hifi-Gan self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size self.unit_embed_dim = unit_embed_dim self.lang_embed_dim = lang_embed_dim self.spkr_embed_dim = spkr_embed_dim self.vocoder_num_langs = vocoder_num_langs self.vocoder_num_spkrs = vocoder_num_spkrs self.variance_predictor_kernel_size = variance_predictor_kernel_size self.var_pred_dropout = var_pred_dropout self.vocoder_offset = vocoder_offset super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, is_encoder_decoder=is_encoder_decoder, max_position_embeddings=max_position_embeddings, **kwargs, )
transformers/src/transformers/models/seamless_m4t/configuration_seamless_m4t.py/0
{ "file_path": "transformers/src/transformers/models/seamless_m4t/configuration_seamless_m4t.py", "repo_id": "transformers", "token_count": 9594 }
383
# coding=utf-8 # Copyright 2021 NVIDIA The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SegFormer model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput, SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_segformer import SegformerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "nvidia/mit-b0" _EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "nvidia/segformer-b0-finetuned-ade-512-512", # See all SegFormer models at https://huggingface.co/models?filter=segformer ] class SegFormerImageClassifierOutput(ImageClassifierOutput): """ Base class for outputs of image classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at the output of each stage. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Segformer class SegformerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class SegformerOverlapPatchEmbeddings(nn.Module): """Construct the overlapping patch embeddings.""" def __init__(self, patch_size, stride, num_channels, hidden_size): super().__init__() self.proj = nn.Conv2d( num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=patch_size // 2, ) self.layer_norm = nn.LayerNorm(hidden_size) def forward(self, pixel_values): embeddings = self.proj(pixel_values) _, _, height, width = embeddings.shape # (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels) # this can be fed to a Transformer layer embeddings = embeddings.flatten(2).transpose(1, 2) embeddings = self.layer_norm(embeddings) return embeddings, height, width class SegformerEfficientSelfAttention(nn.Module): """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio): super().__init__() self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = int(self.hidden_size / self.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(self.hidden_size, self.all_head_size) self.key = nn.Linear(self.hidden_size, self.all_head_size) self.value = nn.Linear(self.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.sr_ratio = sequence_reduction_ratio if sequence_reduction_ratio > 1: self.sr = nn.Conv2d( hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio ) self.layer_norm = nn.LayerNorm(hidden_size) def transpose_for_scores(self, hidden_states): new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size) hidden_states = hidden_states.view(new_shape) return hidden_states.permute(0, 2, 1, 3) def forward( self, hidden_states, height, width, output_attentions=False, ): query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sr_ratio > 1: batch_size, seq_len, num_channels = hidden_states.shape # Reshape to (batch_size, num_channels, height, width) hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) # Apply sequence reduction hidden_states = self.sr(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class SegformerSelfOutput(nn.Module): def __init__(self, config, hidden_size): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class SegformerAttention(nn.Module): def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio): super().__init__() self.self = SegformerEfficientSelfAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, ) self.output = SegformerSelfOutput(config, hidden_size=hidden_size) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, height, width, output_attentions=False): self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class SegformerDWConv(nn.Module): def __init__(self, dim=768): super().__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, hidden_states, height, width): batch_size, seq_len, num_channels = hidden_states.shape hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width) hidden_states = self.dwconv(hidden_states) hidden_states = hidden_states.flatten(2).transpose(1, 2) return hidden_states class SegformerMixFFN(nn.Module): def __init__(self, config, in_features, hidden_features=None, out_features=None): super().__init__() out_features = out_features or in_features self.dense1 = nn.Linear(in_features, hidden_features) self.dwconv = SegformerDWConv(hidden_features) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.dense2 = nn.Linear(hidden_features, out_features) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, height, width): hidden_states = self.dense1(hidden_states) hidden_states = self.dwconv(hidden_states, height, width) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class SegformerLayer(nn.Module): """This corresponds to the Block class in the original implementation.""" def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio): super().__init__() self.layer_norm_1 = nn.LayerNorm(hidden_size) self.attention = SegformerAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, ) self.drop_path = SegformerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.layer_norm_2 = nn.LayerNorm(hidden_size) mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = SegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size) def forward(self, hidden_states, height, width, output_attentions=False): self_attention_outputs = self.attention( self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention height, width, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection (with stochastic depth) attention_output = self.drop_path(attention_output) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width) # second residual connection (with stochastic depth) mlp_output = self.drop_path(mlp_output) layer_output = mlp_output + hidden_states outputs = (layer_output,) + outputs return outputs class SegformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # stochastic depth decay rule drop_path_decays = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( SegformerOverlapPatchEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], ) ) self.patch_embeddings = nn.ModuleList(embeddings) # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( SegformerLayer( config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=drop_path_decays[cur + j], sequence_reduction_ratio=config.sr_ratios[i], mlp_ratio=config.mlp_ratios[i], ) ) blocks.append(nn.ModuleList(layers)) self.block = nn.ModuleList(blocks) # Layer norms self.layer_norm = nn.ModuleList( [nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)] ) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = pixel_values.shape[0] hidden_states = pixel_values for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)): embedding_layer, block_layer, norm_layer = x # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks for i, blk in enumerate(block_layer): layer_outputs = blk(hidden_states, height, width, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # third, apply layer norm hidden_states = norm_layer(hidden_states) # fourth, optionally reshape back to (batch_size, num_channels, height, width) if idx != len(self.patch_embeddings) - 1 or ( idx == len(self.patch_embeddings) - 1 and self.config.reshape_last_stage ): hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous() if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class SegformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegformerConfig base_model_prefix = "segformer" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) SEGFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SegformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEGFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.", SEGFORMER_START_DOCSTRING, ) class SegformerModel(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config # hierarchical Transformer encoder self.encoder = SegformerEncoder(config) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. """, SEGFORMER_START_DOCSTRING, ) class SegformerForImageClassification(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.segformer = SegformerModel(config) # Classifier head self.classifier = nn.Linear(config.hidden_sizes[-1], config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=SegFormerImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SegFormerImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # convert last hidden states to (batch_size, height*width, hidden_size) batch_size = sequence_output.shape[0] if self.config.reshape_last_stage: # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) sequence_output = sequence_output.permute(0, 2, 3, 1) sequence_output = sequence_output.reshape(batch_size, -1, self.config.hidden_sizes[-1]) # global average pooling sequence_output = sequence_output.mean(dim=1) logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SegFormerImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class SegformerMLP(nn.Module): """ Linear Embedding. """ def __init__(self, config: SegformerConfig, input_dim): super().__init__() self.proj = nn.Linear(input_dim, config.decoder_hidden_size) def forward(self, hidden_states: torch.Tensor): hidden_states = hidden_states.flatten(2).transpose(1, 2) hidden_states = self.proj(hidden_states) return hidden_states class SegformerDecodeHead(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size mlps = [] for i in range(config.num_encoder_blocks): mlp = SegformerMLP(config, input_dim=config.hidden_sizes[i]) mlps.append(mlp) self.linear_c = nn.ModuleList(mlps) # the following 3 layers implement the ConvModule of the original implementation self.linear_fuse = nn.Conv2d( in_channels=config.decoder_hidden_size * config.num_encoder_blocks, out_channels=config.decoder_hidden_size, kernel_size=1, bias=False, ) self.batch_norm = nn.BatchNorm2d(config.decoder_hidden_size) self.activation = nn.ReLU() self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Conv2d(config.decoder_hidden_size, config.num_labels, kernel_size=1) self.config = config def forward(self, encoder_hidden_states: torch.FloatTensor) -> torch.Tensor: batch_size = encoder_hidden_states[-1].shape[0] all_hidden_states = () for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.linear_c): if self.config.reshape_last_stage is False and encoder_hidden_state.ndim == 3: height = width = int(math.sqrt(encoder_hidden_state.shape[-1])) encoder_hidden_state = ( encoder_hidden_state.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous() ) # unify channel dimension height, width = encoder_hidden_state.shape[2], encoder_hidden_state.shape[3] encoder_hidden_state = mlp(encoder_hidden_state) encoder_hidden_state = encoder_hidden_state.permute(0, 2, 1) encoder_hidden_state = encoder_hidden_state.reshape(batch_size, -1, height, width) # upsample encoder_hidden_state = nn.functional.interpolate( encoder_hidden_state, size=encoder_hidden_states[0].size()[2:], mode="bilinear", align_corners=False ) all_hidden_states += (encoder_hidden_state,) hidden_states = self.linear_fuse(torch.cat(all_hidden_states[::-1], dim=1)) hidden_states = self.batch_norm(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) # logits are of shape (batch_size, num_labels, height/4, width/4) logits = self.classifier(hidden_states) return logits @add_start_docstrings( """SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""", SEGFORMER_START_DOCSTRING, ) class SegformerForSemanticSegmentation(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.segformer = SegformerModel(config) self.decode_head = SegformerDecodeHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, SegformerForSemanticSegmentation >>> from PIL import Image >>> import requests >>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) >>> list(logits.shape) [1, 150, 128, 128] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.decode_head(encoder_hidden_states) loss = None if labels is not None: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if self.config.num_labels > 1: loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) elif self.config.num_labels == 1: valid_mask = ((labels >= 0) & (labels != self.config.semantic_loss_ignore_index)).float() loss_fct = BCEWithLogitsLoss(reduction="none") loss = loss_fct(upsampled_logits.squeeze(1), labels.float()) loss = (loss * valid_mask).mean() else: raise ValueError(f"Number of labels should be >=0: {self.config.num_labels}") if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
transformers/src/transformers/models/segformer/modeling_segformer.py/0
{ "file_path": "transformers/src/transformers/models/segformer/modeling_segformer.py", "repo_id": "transformers", "token_count": 14945 }
384
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Siglip model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json", } class SiglipTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`SiglipModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 64): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. pad_token_id (`int`, *optional*, defaults to 1): The id of the padding token in the vocabulary. bos_token_id (`int`, *optional*, defaults to 49406): The id of the beginning-of-sequence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 49407): The id of the end-of-sequence token in the vocabulary. Example: ```python >>> from transformers import SiglipTextConfig, SiglipTextModel >>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration >>> configuration = SiglipTextConfig() >>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = SiglipTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "siglip_text_model" def __init__( self, vocab_size=32000, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, max_position_embeddings=64, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, # This differs from `CLIPTokenizer`'s default and from openai/siglip # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538 pad_token_id=1, bos_token_id=49406, eos_token_id=49407, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.attention_dropout = attention_dropout @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from SiglipConfig if config_dict.get("model_type") == "siglip": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class SiglipVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. Example: ```python >>> from transformers import SiglipVisionConfig, SiglipVisionModel >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration >>> configuration = SiglipVisionConfig() >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = SiglipVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "siglip_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=16, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from SiglipConfig if config_dict.get("model_type") == "siglip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class SiglipConfig(PretrainedConfig): r""" [`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`SiglipTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`SiglipVisionConfig`]. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import SiglipConfig, SiglipModel >>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration >>> configuration = SiglipConfig() >>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = SiglipModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig >>> from transformers import SiglipTextConfig, SiglipVisionConfig >>> # Initializing a SiglipText and SiglipVision configuration >>> config_text = SiglipTextConfig() >>> config_vision = SiglipVisionConfig() >>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "siglip" def __init__(self, text_config=None, vision_config=None, **kwargs): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.") self.text_config = SiglipTextConfig(**text_config) self.vision_config = SiglipVisionConfig(**vision_config) self.initializer_factor = 1.0 @classmethod def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs): r""" Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision model configuration. Returns: [`SiglipConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
transformers/src/transformers/models/siglip/configuration_siglip.py/0
{ "file_path": "transformers/src/transformers/models/siglip/configuration_siglip.py", "repo_id": "transformers", "token_count": 5034 }
385
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Speech2Text model.""" import math from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_speech_to_text import Speech2TextConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Speech2TextConfig" SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/s2t-small-librispeech-asr", # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text ] # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class Conv1dSubsampler(nn.Module): """ Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) """ def __init__(self, config): super(Conv1dSubsampler, self).__init__() self.config = config self.num_layers = config.num_conv_layers self.in_channels = config.input_feat_per_channel * config.input_channels self.mid_channels = config.conv_channels self.out_channels = config.d_model self.kernel_sizes = config.conv_kernel_sizes self.conv_layers = nn.ModuleList( nn.Conv1d( self.in_channels if i == 0 else self.mid_channels // 2, self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2, kernel_size=k, stride=2, padding=k // 2, ) for i, k in enumerate(self.kernel_sizes) ) def forward(self, input_features): hidden_states = input_features.transpose(1, 2).contiguous() # -> B x (C x D) x T for conv in self.conv_layers: hidden_states = conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) hidden_states = hidden_states.transpose(1, 2).contiguous() # -> T x B x (C x D) return hidden_states class Speech2TextSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach() def create_position_ids_from_input_ids( self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 ): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Speech2Text class Speech2TextAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[Speech2TextConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value SPEECH_TO_TEXT_ATTENTION_CLASSES = {"eager": Speech2TextAttention} # Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT class Speech2TextEncoderLayer(nn.Module): def __init__(self, config: Speech2TextConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT class Speech2TextDecoderLayer(nn.Module): def __init__(self, config: Speech2TextConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class Speech2TextPreTrainedModel(PreTrainedModel): config_class = Speech2TextConfig base_model_prefix = "model" main_input_name = "input_features" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ for i in range(self.config.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): # generate creates 3D attention mask, because of the shape of input_features # convert it to 2D if thats the case if len(attention_mask.shape) > 2: attention_mask = attention_mask[:, :, -1] subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) bsz = attention_mask.size()[0] attention_mask = torch.zeros( (bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values # before the output lengths indices are attended to attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long() return attention_mask SPEECH_TO_TEXT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Speech2TextConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SPEECH_TO_TEXT_INPUTS_DOCSTRING = r""" Args: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`modeling_speech_to_text._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class Speech2TextEncoder(Speech2TextPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`Speech2TextEncoderLayer`]. Args: config: Speech2TextConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: Speech2TextConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.conv = Conv1dSubsampler(config) self.embed_positions = Speech2TextSinusoidalPositionalEmbedding( self.max_source_positions, embed_dim, self.padding_idx, ) self.layers = nn.ModuleList([Speech2TextEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_features, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_features (`torch.LongTensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict inputs_embeds = self.conv(input_features) inputs_embeds = self.embed_scale * inputs_embeds # subsample attention mask if necessary if attention_mask is not None: attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask) padding_mask = attention_mask.ne(1).long() else: padding_mask = torch.zeros(inputs_embeds.shape[:2], dtype=torch.long, device=inputs_embeds.device) embed_pos = self.embed_positions(padding_mask) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class Speech2TextDecoder(Speech2TextPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Speech2TextDecoderLayer`] Args: config: Speech2TextConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: Speech2TextConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = Speech2TextSinusoidalPositionalEmbedding( self.max_target_positions, config.d_model, self.padding_idx, ) self.layers = nn.ModuleList([Speech2TextDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Speech2Text Model outputting raw hidden-states without any specific head on top.", SPEECH_TO_TEXT_START_DOCSTRING, ) class Speech2TextModel(Speech2TextPreTrainedModel): def __init__(self, config: Speech2TextConfig): super().__init__(config) self.encoder = Speech2TextEncoder(config) self.decoder = Speech2TextDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" Returns: Example: ```python >>> import torch >>> from transformers import Speech2TextModel, AutoFeatureExtractor >>> from datasets import load_dataset >>> model = Speech2TextModel.from_pretrained("facebook/s2t-small-librispeech-asr") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor( ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" ... ) >>> input_features = inputs.input_features >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 256] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # downsample encoder attention mask if attention_mask is not None: encoder_attention_mask = self._get_feature_vector_attention_mask( encoder_outputs[0].shape[1], attention_mask ) else: encoder_attention_mask = None # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The Speech2Text Model with a language modeling head. Can be used for summarization.", SPEECH_TO_TEXT_START_DOCSTRING, ) class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel): base_model_prefix = "model" _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: Speech2TextConfig): super().__init__(config) self.model = Speech2TextModel(config) self.lm_head = nn.Linear(config.d_model, self.config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import torch >>> from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration >>> from datasets import load_dataset >>> model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") >>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor( ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" ... ) >>> input_features = inputs.input_features >>> generated_ids = model.generate(inputs=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription 'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py/0
{ "file_path": "transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py", "repo_id": "transformers", "token_count": 28147 }
386
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Speech processor class for SpeechT5.""" from ...processing_utils import ProcessorMixin class SpeechT5Processor(ProcessorMixin): r""" Constructs a SpeechT5 processor which wraps a feature extractor and a tokenizer into a single processor. [`SpeechT5Processor`] offers all the functionalities of [`SpeechT5FeatureExtractor`] and [`SpeechT5Tokenizer`]. See the docstring of [`~SpeechT5Processor.__call__`] and [`~SpeechT5Processor.decode`] for more information. Args: feature_extractor (`SpeechT5FeatureExtractor`): An instance of [`SpeechT5FeatureExtractor`]. The feature extractor is a required input. tokenizer (`SpeechT5Tokenizer`): An instance of [`SpeechT5Tokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "SpeechT5FeatureExtractor" tokenizer_class = "SpeechT5Tokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) def __call__(self, *args, **kwargs): """ Processes audio and text input, as well as audio and text targets. You can process audio by using the argument `audio`, or process audio targets by using the argument `audio_target`. This forwards the arguments to SpeechT5FeatureExtractor's [`~SpeechT5FeatureExtractor.__call__`]. You can process text by using the argument `text`, or process text labels by using the argument `text_target`. This forwards the arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.__call__`]. Valid input combinations are: - `text` only - `audio` only - `text_target` only - `audio_target` only - `text` and `audio_target` - `audio` and `audio_target` - `text` and `text_target` - `audio` and `text_target` Please refer to the docstring of the above two methods for more information. """ audio = kwargs.pop("audio", None) text = kwargs.pop("text", None) text_target = kwargs.pop("text_target", None) audio_target = kwargs.pop("audio_target", None) sampling_rate = kwargs.pop("sampling_rate", None) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) elif text is not None: inputs = self.tokenizer(text, **kwargs) else: inputs = None if audio_target is not None: targets = self.feature_extractor(audio_target=audio_target, *args, sampling_rate=sampling_rate, **kwargs) labels = targets["input_values"] elif text_target is not None: targets = self.tokenizer(text_target, **kwargs) labels = targets["input_ids"] else: targets = None if inputs is None: return targets if targets is not None: inputs["labels"] = labels decoder_attention_mask = targets.get("attention_mask") if decoder_attention_mask is not None: inputs["decoder_attention_mask"] = decoder_attention_mask return inputs def pad(self, *args, **kwargs): """ Collates the audio and text inputs, as well as their targets, into a padded batch. Audio inputs are padded by SpeechT5FeatureExtractor's [`~SpeechT5FeatureExtractor.pad`]. Text inputs are padded by SpeechT5Tokenizer's [`~SpeechT5Tokenizer.pad`]. Valid input combinations are: - `input_ids` only - `input_values` only - `labels` only, either log-mel spectrograms or text tokens - `input_ids` and log-mel spectrogram `labels` - `input_values` and text `labels` Please refer to the docstring of the above two methods for more information. """ input_values = kwargs.pop("input_values", None) input_ids = kwargs.pop("input_ids", None) labels = kwargs.pop("labels", None) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs.") if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: inputs = self.feature_extractor.pad(input_values, *args, **kwargs) elif input_ids is not None: inputs = self.tokenizer.pad(input_ids, **kwargs) else: inputs = None if labels is not None: if "input_ids" in labels or (isinstance(labels, list) and "input_ids" in labels[0]): targets = self.tokenizer.pad(labels, **kwargs) labels = targets["input_ids"] else: feature_size_hack = self.feature_extractor.feature_size self.feature_extractor.feature_size = self.feature_extractor.num_mel_bins targets = self.feature_extractor.pad(labels, *args, **kwargs) self.feature_extractor.feature_size = feature_size_hack labels = targets["input_values"] else: targets = None if inputs is None: return targets if targets is not None: inputs["labels"] = labels decoder_attention_mask = targets.get("attention_mask") if decoder_attention_mask is not None: inputs["decoder_attention_mask"] = decoder_attention_mask return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs)
transformers/src/transformers/models/speecht5/processing_speecht5.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/processing_speecht5.py", "repo_id": "transformers", "token_count": 3047 }
387
# coding=utf-8 # Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Starcoder2 model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class Starcoder2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Starcoder2Model`]. It is used to instantiate a Starcoder2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [bigcode/starcoder2-7b_16k](https://huggingface.co/bigcode/starcoder2-7b_16k) model. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49152): Vocabulary size of the Starcoder2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Starcoder2Model`] hidden_size (`int`, *optional*, defaults to 3072): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 12288): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 24): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 2): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Starcoder2's sliding window attention allows sequence of up to 4096*32 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. norm_epsilon (`float`, *optional*, defaults to 1e-05): Epsilon value for the layer norm use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. bos_token_id (`int`, *optional*, defaults to 50256): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 50256): The id of the "end-of-sequence" token. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. sliding_window (`int`, *optional*): Sliding window attention window size. If not specified, will default to `None` (no sliding window). attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. residual_dropout (`float`, *optional*, defaults to 0.0): Residual connection dropout value. embedding_dropout (`float`, *optional*, defaults to 0.0): Embedding dropout. use_bias (`bool`, *optional*, defaults to `True`): Whether to use bias term on linear layers of the model. ```python >>> from transformers import Starcoder2Model, Starcoder2Config >>> # Initializing a Starcoder2 7B style configuration >>> configuration = Starcoder2Config() >>> # Initializing a model from the Starcoder2 7B style configuration >>> model = Starcoder2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "starcoder2" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=49152, hidden_size=3072, intermediate_size=12288, num_hidden_layers=30, num_attention_heads=24, num_key_value_heads=2, hidden_act="gelu_pytorch_tanh", max_position_embeddings=4096, initializer_range=0.018042, norm_epsilon=1e-5, use_cache=True, bos_token_id=50256, eos_token_id=50256, rope_theta=10000.0, sliding_window=None, attention_dropout=0.0, residual_dropout=0.0, embedding_dropout=0.0, use_bias=True, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window self.use_bias = use_bias self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.norm_epsilon = norm_epsilon self.use_cache = use_cache self.rope_theta = rope_theta self.attention_dropout = attention_dropout self.residual_dropout = residual_dropout self.embedding_dropout = embedding_dropout super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, )
transformers/src/transformers/models/starcoder2/configuration_starcoder2.py/0
{ "file_path": "transformers/src/transformers/models/starcoder2/configuration_starcoder2.py", "repo_id": "transformers", "token_count": 2611 }
388
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Swin Transformer model.""" from __future__ import annotations import collections.abc import math import warnings from dataclasses import dataclass from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACT2FN from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_swin import SwinConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SwinConfig" # Base docstring _CHECKPOINT_FOR_DOC = "microsoft/swin-tiny-patch4-window7-224" _EXPECTED_OUTPUT_SHAPE = [1, 49, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "microsoft/swin-tiny-patch4-window7-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/swin-tiny-patch4-window7-224", # See all Swin models at https://huggingface.co/models?filter=swin ] # drop_path, TFSwinPatchEmbeddings, TFSwinPatchMerging and TFSwinDropPath are tensorflow # implementations of PyTorch functionalities in the timm library. @dataclass class TFSwinEncoderOutput(ModelOutput): """ Swin encoder's outputs, with potential hidden states and attentions. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None @dataclass class TFSwinModelOutput(ModelOutput): """ Swin model's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): Average pooling of the last layer hidden-state. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None @dataclass class TFSwinMaskedImageModelingOutput(ModelOutput): """ Swin masked image model outputs. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided): Masked image modeling (MLM) loss. reconstruction (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Reconstructed pixel values. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ loss: tf.Tensor | None = None reconstruction: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None @property def logits(self): warnings.warn( "logits attribute is deprecated and will be removed in version 5 of Transformers." " Please use the reconstruction attribute to retrieve the final output instead.", FutureWarning, ) return self.reconstruction @dataclass class TFSwinImageClassifierOutput(ModelOutput): """ Swin outputs for image classification. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ loss: tf.Tensor | None = None logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None def window_partition(input_feature: tf.Tensor, window_size: int) -> tf.Tensor: """ Partitions the given input into windows. """ batch_size, height, width, num_channels = shape_list(input_feature) input_feature = tf.reshape( input_feature, (batch_size, height // window_size, window_size, width // window_size, window_size, num_channels), ) windows = tf.transpose(input_feature, (0, 1, 3, 2, 4, 5)) windows = tf.reshape(windows, (-1, window_size, window_size, num_channels)) return windows def window_reverse(windows: tf.Tensor, window_size: int, height: int, width: int) -> tf.Tensor: """ Merges windows to produce higher resolution features. """ x = tf.shape(windows)[0] y = tf.cast(height * width / (window_size * window_size), tf.int32) batch_size = tf.math.floordiv(x, y) windows = tf.reshape( windows, (batch_size, height // window_size, width // window_size, window_size, window_size, -1) ) windows = tf.transpose(windows, (0, 1, 3, 2, 4, 5)) windows = tf.reshape(windows, (batch_size, height, width, -1)) return windows def drop_path( input: tf.Tensor, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True ) -> tf.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob input_shape = shape_list(input) ndim = len(input_shape) shape = [input_shape[0]] + [1] * (ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = tf.random.uniform(shape) random_tensor = tf.where(random_tensor <= keep_prob, 1.0, 0.0) if keep_prob > 0.0 and scale_by_keep: random_tensor /= keep_prob return input * random_tensor class TFSwinEmbeddings(keras.layers.Layer): """ Construct the patch and position embeddings. Optionally, also the mask token. """ def __init__(self, config: SwinConfig, use_mask_token: bool = False, **kwargs) -> None: super().__init__(**kwargs) self.patch_embeddings = TFSwinPatchEmbeddings(config, name="patch_embeddings") self.num_patches = self.patch_embeddings.num_patches self.patch_grid = self.patch_embeddings.grid_size self.embed_dim = config.embed_dim self.use_mask_token = use_mask_token self.use_absolute_embeddings = config.use_absolute_embeddings self.norm = keras.layers.LayerNormalization(name="norm", epsilon=1e-5) self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") self.config = config def build(self, input_shape: tf.TensorShape) -> None: if self.use_mask_token: self.mask_token = self.add_weight(shape=(1, 1, self.embed_dim), initializer="zeros", name="mask_token") else: self.mask_token = None if self.use_absolute_embeddings: self.position_embeddings = self.add_weight( (1, self.num_patches + 1, self.embed_dim), initializer="zeros", name="positional_embeddings" ) else: self.position_embeddings = None if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build(None) if getattr(self, "norm", None) is not None: with tf.name_scope(self.norm.name): self.norm.build([None, None, self.config.embed_dim]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) def call( self, pixel_values: tf.Tensor, bool_masked_pos: bool = None, training: bool = False ) -> Tuple[tf.Tensor, Tuple[int, int]]: embeddings, output_dimensions = self.patch_embeddings(pixel_values, training=training) embeddings = self.norm(embeddings, training=training) batch_size, seq_len, _ = shape_list(embeddings) if bool_masked_pos is not None: mask_tokens = tf.repeat(self.mask_token, batch_size, 0) mask_tokens = tf.repeat(mask_tokens, seq_len, 1) # replace the masked visual tokens by mask_tokens mask = tf.expand_dims(bool_masked_pos, -1) mask = tf.cast(mask, mask_tokens.dtype) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings, training=training) return embeddings, output_dimensions class TFSwinPatchEmbeddings(keras.layers.Layer): """ Image to Patch Embedding. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.embed_dim image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.projection = keras.layers.Conv2D( filters=hidden_size, kernel_size=self.patch_size, strides=self.patch_size, padding="valid", name="projection", ) def maybe_pad(self, pixel_values: tf.Tensor, height: int, width: int) -> tf.Tensor: if width % self.patch_size[1] != 0: pad_values = ((0, 0), (0, 0), (0, 0), (0, self.patch_size[1] - width % self.patch_size[1])) pixel_values = tf.pad(pixel_values, pad_values) if height % self.patch_size[0] != 0: pad_values = ((0, 0), (0, 0), (0, self.patch_size[0] - height % self.patch_size[0]), (0, 0)) pixel_values = tf.pad(pixel_values, pad_values) return pixel_values def call(self, pixel_values: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor, Tuple[int, int]]: _, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # pad the input to be divisible by self.patch_size, if needed pixel_values = self.maybe_pad(pixel_values, height, width) # B,C,H,W -> B,H,W,C pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1)) embeddings = self.projection(pixel_values, training=training) # B,H,W,C -> B,C,H,W embeddings = tf.transpose(embeddings, (0, 3, 1, 2)) batch_size, channels, height, width = shape_list(embeddings) output_dimensions = (height, width) embeddings = tf.reshape(embeddings, (batch_size, channels, -1)) embeddings = tf.transpose(embeddings, (0, 2, 1)) return embeddings, output_dimensions def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels]) class TFSwinPatchMerging(keras.layers.Layer): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`keras.layer.Layer`, *optional*, defaults to `keras.layers.LayerNormalization`): Normalization layer class. """ def __init__( self, input_resolution: Tuple[int, int], dim: int, norm_layer: Optional[Callable] = None, **kwargs ) -> None: super().__init__(**kwargs) self.input_resolution = input_resolution self.dim = dim self.reduction = keras.layers.Dense(2 * dim, use_bias=False, name="reduction") if norm_layer is None: # Use same default epsilon as PyTorch self.norm = keras.layers.LayerNormalization(epsilon=1e-5, name="norm") else: self.norm = norm_layer(name="norm") def maybe_pad(self, input_feature: tf.Tensor, height: int, width: int) -> tf.Tensor: should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = ((0, 0), (0, height % 2), (0, width % 2), (0, 0)) input_feature = tf.pad(input_feature, pad_values) return input_feature def call(self, input_feature: tf.Tensor, input_dimensions: Tuple[int, int], training: bool = False) -> tf.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, _, num_channels = shape_list(input_feature) input_feature = tf.reshape(input_feature, (batch_size, height, width, num_channels)) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # batch_size height/2 width/2 4*num_channels input_feature = tf.concat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = tf.reshape( input_feature, (batch_size, -1, 4 * num_channels) ) # batch_size height/2*width/2 4*C input_feature = self.norm(input_feature, training=training) input_feature = self.reduction(input_feature, training=training) return input_feature def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "reduction", None) is not None: with tf.name_scope(self.reduction.name): self.reduction.build([None, None, 4 * self.dim]) if getattr(self, "norm", None) is not None: with tf.name_scope(self.norm.name): self.norm.build([None, None, 4 * self.dim]) class TFSwinDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: float = None, scale_by_keep: bool = True, **kwargs) -> None: super(TFSwinDropPath, self).__init__(**kwargs) self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def call(self, input: tf.Tensor, training: bool = False) -> tf.Tensor: return drop_path(input, self.drop_prob, training, self.scale_by_keep) class TFSwinSelfAttention(keras.layers.Layer): def __init__(self, config: SwinConfig, dim: int, num_heads: int, **kwargs) -> None: super().__init__(**kwargs) if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size window_size = config.window_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.query = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), use_bias=config.qkv_bias, name="query", ) self.key = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), use_bias=config.qkv_bias, name="key", ) self.value = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), use_bias=config.qkv_bias, name="value", ) self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) def build(self, input_shape: tf.TensorShape) -> None: self.relative_position_bias_table = self.add_weight( shape=(((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1)), self.num_attention_heads), initializer="zeros", name="relative_position_bias_table", ) self.relative_position_index = self.add_weight( shape=(self.window_size[0] ** 2, self.window_size[1] ** 2), trainable=False, dtype=tf.int32, name="relative_position_index", ) # get pair-wise relative position index for each token inside the window coords_h = tf.range(self.window_size[0]) coords_w = tf.range(self.window_size[1]) coords = tf.stack(tf.meshgrid(coords_h, coords_w, indexing="ij")) coords_flatten = tf.reshape(coords, (shape_list(coords)[0], -1)) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = tf.transpose(relative_coords, (1, 2, 0)) stack_0, stack_1 = tf.unstack(relative_coords, axis=2) stack_0 += self.window_size[0] - 1 stack_0 *= 2 * self.window_size[1] - 1 stack_1 += self.window_size[1] - 1 relative_coords = tf.stack([stack_0, stack_1], axis=2) self.relative_position_index.assign(tf.cast(tf.reduce_sum(relative_coords, axis=-1), tf.int32)) if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.all_head_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.all_head_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.all_head_size]) def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor: new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size] x = tf.reshape(x, new_x_shape) return tf.transpose(x, (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor, ...]: batch_size, dim, _ = shape_list(hidden_states) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, (0, 1, 3, 2))) attention_scores = attention_scores / math.sqrt(self.attention_head_size) relative_position_bias = tf.gather( self.relative_position_bias_table, tf.reshape(self.relative_position_index, (-1,)) ) relative_position_bias = tf.reshape( relative_position_bias, (self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1), ) relative_position_bias = tf.transpose(relative_position_bias, (2, 0, 1)) attention_scores = attention_scores + tf.expand_dims(relative_position_bias, 0) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in SwinModel call() function) mask_shape = shape_list(attention_mask)[0] attention_scores = tf.reshape( attention_scores, (batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim) ) attention_mask = tf.expand_dims(attention_mask, 1) attention_mask = tf.expand_dims(attention_mask, 0) attention_scores = attention_scores + attention_mask attention_scores = tf.reshape(attention_scores, (-1, self.num_attention_heads, dim, dim)) # Normalize the attention scores to probabilities. attention_probs = tf.nn.softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, (0, 2, 1, 3)) new_context_layer_shape = shape_list(context_layer)[:-2] + [ self.all_head_size, ] context_layer = tf.reshape(context_layer, new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TFSwinSelfOutput(keras.layers.Layer): def __init__(self, config: SwinConfig, dim: int, **kwargs) -> None: super().__init__(**kwargs) self.dense = keras.layers.Dense(dim, name="dense") self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob, name="dropout") self.dim = dim def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.dim]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) class TFSwinAttention(keras.layers.Layer): def __init__(self, config: SwinConfig, dim: int, num_heads: int, **kwargs) -> None: super().__init__(**kwargs) self.self = TFSwinSelfAttention(config, dim, num_heads, name="self") self.self_output = TFSwinSelfOutput(config, dim, name="output") self.pruned_heads = set() def prune_heads(self, heads): """ Prunes heads of the model. See base class PreTrainedModel heads: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: bool = False, training: bool = False, ) -> tf.Tensor: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions, training=training) attention_output = self.self_output(self_outputs[0], hidden_states, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "self_output", None) is not None: with tf.name_scope(self.self_output.name): self.self_output.build(None) class TFSwinIntermediate(keras.layers.Layer): def __init__(self, config: SwinConfig, dim: int, **kwargs) -> None: super().__init__(**kwargs) self.dense = keras.layers.Dense(int(config.mlp_ratio * dim), name="dense") if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.dim = dim def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.dim]) class TFSwinOutput(keras.layers.Layer): def __init__(self, config: SwinConfig, dim: int, **kwargs) -> None: super().__init__(**kwargs) self.dense = keras.layers.Dense(dim, name="dense") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, "dropout") self.config = config self.dim = dim def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, int(self.config.mlp_ratio * self.dim)]) class TFSwinLayer(keras.layers.Layer): def __init__( self, config, dim, input_resolution: Tuple[int, int], num_heads: int, shift_size: int = 0, **kwargs ) -> None: super().__init__(**kwargs) self.chunk_size_feed_forward = config.chunk_size_feed_forward min_res = tf.reduce_min(input_resolution) self.window_size = min_res if min_res <= config.window_size else config.window_size self.shift_size = 0 if min_res <= self.window_size else shift_size self.input_resolution = input_resolution self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") self.attention = TFSwinAttention(config, dim, num_heads, name="attention") self.drop_path = ( TFSwinDropPath(config.drop_path_rate, name="drop_path") if config.drop_path_rate > 0.0 else keras.layers.Activation("linear", name="drop_path") ) self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") self.intermediate = TFSwinIntermediate(config, dim, name="intermediate") self.swin_output = TFSwinOutput(config, dim, name="output") self.dim = dim def get_attn_mask(self, height: int, width: int, window_size: int, shift_size: int) -> tf.Tensor | None: img_mask = tf.zeros((height, width)) height_slices = ((0, -window_size), (-window_size, -shift_size), (-shift_size, -1)) width_slices = ((0, -window_size), (-window_size, -shift_size), (-shift_size, -1)) # calculate attention mask for SW-MSA if shift_size > 0: count = 0 for height_slice in height_slices: for width_slice in width_slices: height_inds = tf.range(height_slice[0] % height, height_slice[1] % height + 1) width_inds = tf.range(width_slice[0] % width, width_slice[1] % width + 1) indices = tf.reshape(tf.stack(tf.meshgrid(height_inds, width_inds), axis=-1), (-1, 2)) if len(indices) >= 1: updates = tf.ones((len(indices),), dtype=img_mask.dtype) * count img_mask = tf.tensor_scatter_nd_update(img_mask, indices, updates) count += 1 img_mask = tf.expand_dims(img_mask, -1) img_mask = tf.expand_dims(img_mask, 0) mask_windows = window_partition(img_mask, window_size) mask_windows = tf.reshape(mask_windows, (-1, window_size * window_size)) attn_mask = tf.expand_dims(mask_windows, 1) - tf.expand_dims(mask_windows, 2) attn_mask = tf.where(attn_mask != 0, float(-100.0), attn_mask) attn_mask = tf.where(attn_mask == 0, float(0.0), attn_mask) return attn_mask def maybe_pad( self, hidden_states: tf.Tensor, window_size: int, height: int, width: int ) -> Tuple[tf.Tensor, tf.Tensor]: pad_right = (window_size - width % window_size) % window_size pad_bottom = (window_size - height % window_size) % window_size pad_values = [[0, 0], [0, pad_bottom], [0, pad_right], [0, 0]] hidden_states = tf.pad(hidden_states, pad_values) pad_values = tf.reshape(pad_values, (-1,)) return hidden_states, pad_values def call( self, hidden_states: tf.Tensor, input_dimensions: Tuple[int, int], head_mask: tf.Tensor | None = None, output_attentions: bool = False, training: bool = False, ) -> tf.Tensor: # if window size is larger than input resolution, we don't partition windows min_res = tf.reduce_min(input_dimensions) shift_size = 0 if min_res <= self.window_size else self.shift_size window_size = min_res if min_res <= self.window_size else self.window_size height, width = input_dimensions batch_size, _, channels = shape_list(hidden_states) shortcut = hidden_states hidden_states = self.layernorm_before(hidden_states, training=training) hidden_states = tf.reshape(hidden_states, (batch_size, height, width, channels)) # pad hidden_states to multiples of window size hidden_states, pad_values = self.maybe_pad(hidden_states, window_size, height, width) _, height_pad, width_pad, _ = shape_list(hidden_states) # cyclic shift if shift_size > 0: shifted_hidden_states = tf.roll(hidden_states, shift=(-shift_size, -shift_size), axis=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, window_size) hidden_states_windows = tf.reshape(hidden_states_windows, (-1, window_size * window_size, channels)) attn_mask = self.get_attn_mask( height=height_pad, width=width_pad, window_size=window_size, shift_size=shift_size ) attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions, training=training ) attention_output = attention_outputs[0] attention_windows = tf.reshape(attention_output, (-1, window_size, window_size, channels)) shifted_windows = window_reverse(attention_windows, window_size, height_pad, width_pad) # reverse cyclic shift if shift_size > 0: attention_windows = tf.roll(shifted_windows, shift=(shift_size, shift_size), axis=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :] attention_windows = tf.reshape(attention_windows, (batch_size, height * width, channels)) hidden_states = shortcut + self.drop_path(attention_windows, training=training) layer_output = self.layernorm_after(hidden_states, training=training) layer_output = self.intermediate(layer_output) layer_output = hidden_states + self.swin_output(layer_output, training=training) layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) return layer_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layernorm_before", None) is not None: with tf.name_scope(self.layernorm_before.name): self.layernorm_before.build([None, None, self.dim]) if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) if getattr(self, "layernorm_after", None) is not None: with tf.name_scope(self.layernorm_after.name): self.layernorm_after.build([None, None, self.dim]) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "swin_output", None) is not None: with tf.name_scope(self.swin_output.name): self.swin_output.build(None) class TFSwinStage(keras.layers.Layer): def __init__( self, config: SwinConfig, dim: int, input_resolution: Tuple[int, int], depth: int, num_heads: int, drop_path: List[float], downsample: Optional[Callable], **kwargs, ) -> None: super().__init__(**kwargs) self.config = config self.dim = dim self.blocks = [ TFSwinLayer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, shift_size=0 if (i % 2 == 0) else config.window_size // 2, name=f"blocks.{i}", ) for i in range(depth) ] # patch merging layer if downsample is not None: self.downsample = downsample( input_resolution, dim=dim, norm_layer=partial(keras.layers.LayerNormalization, epsilon=1e-5), name="downsample", ) else: self.downsample = None self.pointing = False def call( self, hidden_states: tf.Tensor, input_dimensions: Tuple[int, int], head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ) -> Tuple[tf.Tensor, ...]: height, width = input_dimensions for i, layer_module in enumerate(self.blocks): layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, training=training ) hidden_states = layer_outputs[0] if self.downsample is not None: height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 output_dimensions = (height, width, height_downsampled, width_downsampled) hidden_states = self.downsample(layer_outputs[0], input_dimensions, training=training) else: output_dimensions = (height, width, height, width) stage_outputs = (hidden_states, output_dimensions) if output_attentions: stage_outputs += layer_outputs[1:] return stage_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "downsample", None) is not None: with tf.name_scope(self.downsample.name): self.downsample.build(None) if getattr(self, "blocks", None) is not None: for layer in self.blocks: with tf.name_scope(layer.name): layer.build(None) class TFSwinEncoder(keras.layers.Layer): def __init__(self, config: SwinConfig, grid_size: Tuple[int, int], **kwargs): super().__init__(**kwargs) self.num_layers = len(config.depths) self.config = config dpr = list((tf.linspace(0, 1, sum(config.depths)) * config.drop_path_rate).numpy()) self.layers = [ TFSwinStage( config=config, dim=int(config.embed_dim * 2**i_layer), input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), depth=config.depths[i_layer], num_heads=config.num_heads[i_layer], drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=TFSwinPatchMerging if (i_layer < self.num_layers - 1) else None, name=f"layers.{i_layer}", ) for i_layer in range(self.num_layers) ] self.gradient_checkpointing = False def call( self, hidden_states: tf.Tensor, input_dimensions: Tuple[int, int], head_mask: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, training: bool = False, ) -> Union[Tuple[tf.Tensor, ...], TFSwinEncoderOutput]: all_input_dimensions = () all_hidden_states = () if output_hidden_states else None all_reshaped_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: batch_size, _, hidden_size = shape_list(hidden_states) # rearrange b (h w) c -> b c h w reshaped_hidden_state = tf.reshape(hidden_states, (batch_size, *input_dimensions, hidden_size)) reshaped_hidden_state = tf.transpose(reshaped_hidden_state, (0, 3, 1, 2)) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, training=training ) hidden_states = layer_outputs[0] output_dimensions = layer_outputs[1] input_dimensions = (output_dimensions[-2], output_dimensions[-1]) all_input_dimensions += (input_dimensions,) if output_hidden_states: batch_size, _, hidden_size = shape_list(hidden_states) # rearrange b (h w) c -> b c h w reshaped_hidden_state = tf.reshape(hidden_states, (batch_size, *input_dimensions, hidden_size)) reshaped_hidden_state = tf.transpose(reshaped_hidden_state, (0, 3, 1, 2)) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) if output_attentions: all_self_attentions += layer_outputs[2:] if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFSwinEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, reshaped_hidden_states=all_reshaped_hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) class TFSwinPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SwinConfig base_model_prefix = "swin" main_input_name = "pixel_values" SWIN_START_DOCSTRING = r""" This model is a Tensorflow [keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. Parameters: config ([`SwinConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SWIN_INPUTS_DOCSTRING = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def normalize_data_format(value: str) -> str: """ From tensorflow addons https://github.com/tensorflow/addons/blob/8cec33fcaaf1cf90aec7bdd55a0fcdbb251ce5c2/tensorflow_addons/utils/keras_utils.py#L71 """ if value is None: value = keras.backend.image_data_format() data_format = value.lower() if data_format not in {"channels_first", "channels_last"}: raise ValueError( 'The `data_format` argument must be one of "channels_first", "channels_last". Received: ' + str(value) ) return data_format class AdaptiveAveragePooling1D(keras.layers.Layer): """ Args: Average 1D Pooling with adaptive kernel size. output_size: An integer or tuple/list of a single integer, specifying pooled_features. The new size of output channels. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, steps)`. Input shape: - If `data_format='channels_last'`: 3D tensor with shape `(batch, steps, channels)`. - If `data_format='channels_first'`: 3D tensor with shape `(batch, channels, steps)`. Output shape: - If `data_format='channels_last'`: 3D tensor with shape `(batch_size, pooled_steps, channels)`. - If `data_format='channels_first'`: 3D tensor with shape `(batch_size, channels, pooled_steps)`. Adapted from [tensorflow-addon's adaptive pooling.py]( https://github.com/tensorflow/addons/blob/8cec33fcaaf1cf90aec7bdd55a0fcdbb251ce5c2/tensorflow_addons/layers/adaptive_pooling.py#L90-L120 ) """ def __init__( self, output_size: Union[int, Iterable[int]], reduce_function: Callable = tf.reduce_mean, data_format: Optional[str] = None, **kwargs, ) -> None: self.data_format = normalize_data_format(data_format) self.reduce_function = reduce_function self.output_size = (output_size,) if isinstance(output_size, int) else tuple(output_size) super().__init__(**kwargs) def call(self, inputs: tf.Tensor, *args) -> None: bins = self.output_size[0] if self.data_format == "channels_last": splits = tf.split(inputs, bins, axis=1) splits = tf.stack(splits, axis=1) out_vect = self.reduce_function(splits, axis=2) else: splits = tf.split(inputs, bins, axis=2) splits = tf.stack(splits, axis=2) out_vect = self.reduce_function(splits, axis=3) return out_vect def compute_output_shape(self, input_shape: Iterable[int]) -> tf.TensorShape: input_shape = tf.TensorShape(input_shape).as_list() if self.data_format == "channels_last": shape = tf.TensorShape([input_shape[0], self.output_size[0], input_shape[2]]) else: shape = tf.TensorShape([input_shape[0], input_shape[1], self.output_size[0]]) return shape def get_config(self) -> Dict[str, Any]: config = { "output_size": self.output_size, "data_format": self.data_format, } base_config = super().get_config() return {**base_config, **config} @keras_serializable class TFSwinMainLayer(keras.layers.Layer): config_class = SwinConfig def __init__( self, config: SwinConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs ) -> None: super().__init__(**kwargs) self.config = config self.num_layers = len(config.depths) self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) self.embeddings = TFSwinEmbeddings(config, use_mask_token=use_mask_token, name="embeddings") self.encoder = TFSwinEncoder(config, self.embeddings.patch_grid, name="encoder") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") self.pooler = AdaptiveAveragePooling1D(output_size=(1,)) if add_pooling_layer else None def get_input_embeddings(self) -> TFSwinPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List]): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_head_mask(self, head_mask: Optional[Any]) -> List: if head_mask is not None: raise NotImplementedError return [None] * len(self.config.depths) @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFSwinModelOutput, Tuple[tf.Tensor, ...]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask) embedding_output, input_dimensions = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, training=training ) encoder_outputs = self.encoder( embedding_output, input_dimensions, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output, training=training) pooled_output = None if self.pooler is not None: batch_size, _, num_features = shape_list(sequence_output) pooled_output = self.pooler(sequence_output) pooled_output = tf.reshape(pooled_output, (batch_size, num_features)) if not return_dict: output = (sequence_output, pooled_output) + encoder_outputs[1:] return output return TFSwinModelOutput( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.num_features]) @add_start_docstrings( "The bare Swin Model transformer outputting raw hidden-states without any specific head on top.", SWIN_START_DOCSTRING, ) class TFSwinModel(TFSwinPreTrainedModel): def __init__( self, config: SwinConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs ) -> None: super().__init__(config, **kwargs) self.config = config self.swin = TFSwinMainLayer(config, name="swin") @add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSwinModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFSwinModelOutput, Tuple[tf.Tensor, ...]]: r""" bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") swin_outputs = self.swin( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return swin_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "swin", None) is not None: with tf.name_scope(self.swin.name): self.swin.build(None) class TFSwinPixelShuffle(keras.layers.Layer): """TF layer implementation of torch.nn.PixelShuffle""" def __init__(self, upscale_factor: int, **kwargs) -> None: super().__init__(**kwargs) if not isinstance(upscale_factor, int) or upscale_factor < 2: raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}") self.upscale_factor = upscale_factor def call(self, x: tf.Tensor) -> tf.Tensor: hidden_states = x batch_size, _, _, num_input_channels = shape_list(hidden_states) block_size_squared = self.upscale_factor**2 output_depth = int(num_input_channels / block_size_squared) # When the number of output channels >= 2, PyTorch's PixelShuffle and # TF's depth_to_space differ in their output as the order of channels selected for combining # is a permutation of the other c.f. # https://stackoverflow.com/questions/68272502/tf-depth-to-space-not-same-as-torchs-pixelshuffle-when-output-channels-1 permutation = tf.constant( [[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]] ) hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1) hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC") return hidden_states class TFSwinDecoder(keras.layers.Layer): def __init__(self, config: SwinConfig, **kwargs): super().__init__(**kwargs) self.conv2d = keras.layers.Conv2D( filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, strides=1, name="0" ) self.pixel_shuffle = TFSwinPixelShuffle(config.encoder_stride, name="1") self.config = config def call(self, x: tf.Tensor) -> tf.Tensor: hidden_states = x # B,C,H,W -> B,H,W,C hidden_states = tf.transpose(hidden_states, (0, 2, 3, 1)) hidden_states = self.conv2d(hidden_states) hidden_states = self.pixel_shuffle(hidden_states) # B,H,W,C -> B,C,H,W hidden_states = tf.transpose(hidden_states, (0, 3, 1, 2)) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv2d", None) is not None: with tf.name_scope(self.conv2d.name): self.conv2d.build([None, None, None, self.config.hidden_size]) if getattr(self, "pixel_shuffle", None) is not None: with tf.name_scope(self.pixel_shuffle.name): self.pixel_shuffle.build(None) @add_start_docstrings( "Swin Model with a decoder on top for masked image modeling, as proposed in" " [SimMIM](https://arxiv.org/abs/2111.09886).", SWIN_START_DOCSTRING, ) class TFSwinForMaskedImageModeling(TFSwinPreTrainedModel): def __init__(self, config: SwinConfig): super().__init__(config) self.swin = TFSwinMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="swin") self.decoder = TFSwinDecoder(config, name="decoder") @add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSwinMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFSwinMaskedImageModelingOutput]: r""" bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFSwinForMaskedImageModeling >>> import tensorflow as tf >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224") >>> model = TFSwinForMaskedImageModeling.from_pretrained("microsoft/swin-tiny-patch4-window7-224") >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 >>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values >>> # create random boolean mask of shape (batch_size, num_patches) >>> bool_masked_pos = tf.random.uniform((1, num_patches)) >= 0.5 >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction >>> list(reconstructed_pixel_values.shape) [1, 3, 224, 224] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.swin( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] # Reshape to (batch_size, num_channels, height, width) sequence_output = tf.transpose(sequence_output, (0, 2, 1)) batch_size, num_channels, sequence_length = shape_list(sequence_output) height = width = int(sequence_length**0.5) sequence_output = tf.reshape(sequence_output, (batch_size, num_channels, height, width)) # Reconstruct pixel values reconstructed_pixel_values = self.decoder(sequence_output) masked_im_loss = None if bool_masked_pos is not None: size = self.config.image_size // self.config.patch_size bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size)) mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1) mask = tf.repeat(mask, self.config.patch_size, 2) mask = tf.expand_dims(mask, 1) mask = tf.cast(mask, tf.float32) reconstruction_loss = keras.losses.mean_absolute_error( # Swap axes as metric calculation reduces over the final dimension tf.transpose(pixel_values, (1, 2, 3, 0)), tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)), ) reconstruction_loss = tf.expand_dims(reconstruction_loss, 0) total_loss = tf.reduce_sum(reconstruction_loss * mask) num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels masked_im_loss = total_loss / num_masked_pixels masked_im_loss = tf.reshape(masked_im_loss, (1,)) if not return_dict: output = (reconstructed_pixel_values,) + outputs[2:] return ((masked_im_loss,) + output) if masked_im_loss is not None else output return TFSwinMaskedImageModelingOutput( loss=masked_im_loss, reconstruction=reconstructed_pixel_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, reshaped_hidden_states=outputs.reshaped_hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "swin", None) is not None: with tf.name_scope(self.swin.name): self.swin.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings( """ Swin Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, SWIN_START_DOCSTRING, ) class TFSwinForImageClassification(TFSwinPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: SwinConfig): super().__init__(config) self.num_labels = config.num_labels self.swin = TFSwinMainLayer(config, name="swin") # Classifier head self.classifier = ( keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else keras.layers.Activation("linear", name="classifier") ) @add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSwinImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor, ...], TFSwinImageClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.swin( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] logits = self.classifier(pooled_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSwinImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, reshaped_hidden_states=outputs.reshaped_hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "swin", None) is not None: with tf.name_scope(self.swin.name): self.swin.build(None) if getattr(self, "classifier", None) is not None: if hasattr(self.classifier, "name"): with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.swin.num_features])
transformers/src/transformers/models/swin/modeling_tf_swin.py/0
{ "file_path": "transformers/src/transformers/models/swin/modeling_tf_swin.py", "repo_id": "transformers", "token_count": 30544 }
389
# coding=utf-8 # Copyright 2020, The T5 Authors and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ T5 model configuration""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeq2SeqConfigWithPast from ...utils import logging logger = logging.get_logger(__name__) T5_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google-t5/t5-small": "https://huggingface.co/google-t5/t5-small/resolve/main/config.json", "google-t5/t5-base": "https://huggingface.co/google-t5/t5-base/resolve/main/config.json", "google-t5/t5-large": "https://huggingface.co/google-t5/t5-large/resolve/main/config.json", "google-t5/t5-3b": "https://huggingface.co/google-t5/t5-3b/resolve/main/config.json", "google-t5/t5-11b": "https://huggingface.co/google-t5/t5-11b/resolve/main/config.json", } class T5Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the T5 [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 32128): Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. d_model (`int`, *optional*, defaults to 512): Size of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`. d_ff (`int`, *optional*, defaults to 2048): Size of the intermediate feed forward layer in each `T5Block`. num_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. num_decoder_layers (`int`, *optional*): Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. num_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. dropout_rate (`float`, *optional*, defaults to 0.1): The ratio for all dropout layers. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for classifier. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). feed_forward_proj (`string`, *optional*, defaults to `"relu"`): Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). """ model_type = "t5" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, vocab_size=32128, d_model=512, d_kv=64, d_ff=2048, num_layers=6, num_decoder_layers=None, num_heads=8, relative_attention_num_buckets=32, relative_attention_max_distance=128, dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, feed_forward_proj="relu", is_encoder_decoder=True, use_cache=True, pad_token_id=0, eos_token_id=1, classifier_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.num_decoder_layers = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry self.num_heads = num_heads self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.classifier_dropout = classifier_dropout self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.feed_forward_proj = feed_forward_proj self.use_cache = use_cache act_info = self.feed_forward_proj.split("-") self.dense_act_fn = act_info[-1] self.is_gated_act = act_info[0] == "gated" if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": self.dense_act_fn = "gelu_new" super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, **kwargs, ) class T5OnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence" common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") return common_inputs @property def default_onnx_opset(self) -> int: return 13
transformers/src/transformers/models/t5/configuration_t5.py/0
{ "file_path": "transformers/src/transformers/models/t5/configuration_t5.py", "repo_id": "transformers", "token_count": 3259 }
390
# coding=utf-8 # Copyright 2020 Google Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TAPAS configuration. Based on the BERT configuration with added parameters. Hyperparameters are taken from run_task_main.py and hparam_utils.py of the original implementation. URLS: - https://github.com/google-research/tapas/blob/master/tapas/run_task_main.py - https://github.com/google-research/tapas/blob/master/tapas/utils/hparam_utils.py """ from ...configuration_utils import PretrainedConfig TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class TapasConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the TAPAS [google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture. Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Hyperparameters additional to BERT are taken from run_task_main.py and hparam_utils.py of the original implementation. Original implementation available at https://github.com/google-research/tapas/tree/master. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the TAPAS model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`TapasModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"swish"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_sizes (`List[int]`, *optional*, defaults to `[3, 256, 256, 2, 256, 256, 10]`): The vocabulary sizes of the `token_type_ids` passed when calling [`TapasModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. positive_label_weight (`float`, *optional*, defaults to 10.0): Weight for positive labels. num_aggregation_labels (`int`, *optional*, defaults to 0): The number of aggregation operators to predict. aggregation_loss_weight (`float`, *optional*, defaults to 1.0): Importance weight for the aggregation loss. use_answer_as_supervision (`bool`, *optional*): Whether to use the answer as the only supervision for aggregation examples. answer_loss_importance (`float`, *optional*, defaults to 1.0): Importance weight for the regression loss. use_normalized_answer_loss (`bool`, *optional*, defaults to `False`): Whether to normalize the answer loss by the maximum of the predicted and expected value. huber_loss_delta (`float`, *optional*): Delta parameter used to calculate the regression loss. temperature (`float`, *optional*, defaults to 1.0): Value used to control (OR change) the skewness of cell logits probabilities. aggregation_temperature (`float`, *optional*, defaults to 1.0): Scales aggregation logits to control the skewness of probabilities. use_gumbel_for_cells (`bool`, *optional*, defaults to `False`): Whether to apply Gumbel-Softmax to cell selection. use_gumbel_for_aggregation (`bool`, *optional*, defaults to `False`): Whether to apply Gumbel-Softmax to aggregation selection. average_approximation_function (`string`, *optional*, defaults to `"ratio"`): Method to calculate the expected average of cells in the weak supervision case. One of `"ratio"`, `"first_order"` or `"second_order"`. cell_selection_preference (`float`, *optional*): Preference for cell selection in ambiguous cases. Only applicable in case of weak supervision for aggregation (WTQ, WikiSQL). If the total mass of the aggregation probabilities (excluding the "NONE" operator) is higher than this hyperparameter, then aggregation is predicted for an example. answer_loss_cutoff (`float`, *optional*): Ignore examples with answer loss larger than cutoff. max_num_rows (`int`, *optional*, defaults to 64): Maximum number of rows. max_num_columns (`int`, *optional*, defaults to 32): Maximum number of columns. average_logits_per_cell (`bool`, *optional*, defaults to `False`): Whether to average logits per cell. select_one_column (`bool`, *optional*, defaults to `True`): Whether to constrain the model to only select cells from a single column. allow_empty_column_selection (`bool`, *optional*, defaults to `False`): Whether to allow not to select any column. init_cell_selection_weights_to_zero (`bool`, *optional*, defaults to `False`): Whether to initialize cell selection weights to 0 so that the initial probabilities are 50%. reset_position_index_per_cell (`bool`, *optional*, defaults to `True`): Whether to restart position indexes at every cell (i.e. use relative position embeddings). disable_per_token_loss (`bool`, *optional*, defaults to `False`): Whether to disable any (strong or weak) supervision on cells. aggregation_labels (`Dict[int, label]`, *optional*): The aggregation labels used to aggregate the results. For example, the WTQ models have the following aggregation labels: `{0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}` no_aggregation_label_index (`int`, *optional*): If the aggregation labels are defined and one of these labels represents "No aggregation", this should be set to its index. For example, the WTQ models have the "NONE" aggregation label at index 0, so that value should be set to 0 for these models. Example: ```python >>> from transformers import TapasModel, TapasConfig >>> # Initializing a default (SQA) Tapas configuration >>> configuration = TapasConfig() >>> # Initializing a model from the configuration >>> model = TapasModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "tapas" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1024, type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10], initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, positive_label_weight=10.0, num_aggregation_labels=0, aggregation_loss_weight=1.0, use_answer_as_supervision=None, answer_loss_importance=1.0, use_normalized_answer_loss=False, huber_loss_delta=None, temperature=1.0, aggregation_temperature=1.0, use_gumbel_for_cells=False, use_gumbel_for_aggregation=False, average_approximation_function="ratio", cell_selection_preference=None, answer_loss_cutoff=None, max_num_rows=64, max_num_columns=32, average_logits_per_cell=False, select_one_column=True, allow_empty_column_selection=False, init_cell_selection_weights_to_zero=False, reset_position_index_per_cell=True, disable_per_token_loss=False, aggregation_labels=None, no_aggregation_label_index=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_sizes = type_vocab_sizes self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps # Fine-tuning task hyperparameters self.positive_label_weight = positive_label_weight self.num_aggregation_labels = num_aggregation_labels self.aggregation_loss_weight = aggregation_loss_weight self.use_answer_as_supervision = use_answer_as_supervision self.answer_loss_importance = answer_loss_importance self.use_normalized_answer_loss = use_normalized_answer_loss self.huber_loss_delta = huber_loss_delta self.temperature = temperature self.aggregation_temperature = aggregation_temperature self.use_gumbel_for_cells = use_gumbel_for_cells self.use_gumbel_for_aggregation = use_gumbel_for_aggregation self.average_approximation_function = average_approximation_function self.cell_selection_preference = cell_selection_preference self.answer_loss_cutoff = answer_loss_cutoff self.max_num_rows = max_num_rows self.max_num_columns = max_num_columns self.average_logits_per_cell = average_logits_per_cell self.select_one_column = select_one_column self.allow_empty_column_selection = allow_empty_column_selection self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero self.reset_position_index_per_cell = reset_position_index_per_cell self.disable_per_token_loss = disable_per_token_loss # Aggregation hyperparameters self.aggregation_labels = aggregation_labels self.no_aggregation_label_index = no_aggregation_label_index if isinstance(self.aggregation_labels, dict): self.aggregation_labels = {int(k): v for k, v in aggregation_labels.items()}
transformers/src/transformers/models/tapas/configuration_tapas.py/0
{ "file_path": "transformers/src/transformers/models/tapas/configuration_tapas.py", "repo_id": "transformers", "token_count": 4873 }
391
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TrOCR model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class TrOCRConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TrOCRForCausalLM`]. It is used to instantiate an TrOCR model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the TrOCR [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the TrOCR model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`TrOCRForCausalLM`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). scale_embedding (`bool`, *optional*, defaults to `False`): Whether or not to scale the word embeddings by sqrt(d_model). use_learned_position_embeddings (`bool`, *optional*, defaults to `True`): Whether or not to use learned position embeddings. If not, sinusoidal position embeddings will be used. layernorm_embedding (`bool`, *optional*, defaults to `True`): Whether or not to use a layernorm after the word + position embeddings. Example: ```python >>> from transformers import TrOCRConfig, TrOCRForCausalLM >>> # Initializing a TrOCR-base style configuration >>> configuration = TrOCRConfig() >>> # Initializing a model (with random weights) from the TrOCR-base style configuration >>> model = TrOCRForCausalLM(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "trocr" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self, vocab_size=50265, d_model=1024, decoder_layers=12, decoder_attention_heads=16, decoder_ffn_dim=4096, activation_function="gelu", max_position_embeddings=512, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, decoder_start_token_id=2, init_std=0.02, decoder_layerdrop=0.0, use_cache=True, scale_embedding=False, use_learned_position_embeddings=True, layernorm_embedding=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.activation_function = activation_function self.max_position_embeddings = max_position_embeddings self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.init_std = init_std self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.scale_embedding = scale_embedding self.use_learned_position_embeddings = use_learned_position_embeddings self.layernorm_embedding = layernorm_embedding super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, **kwargs, )
transformers/src/transformers/models/trocr/configuration_trocr.py/0
{ "file_path": "transformers/src/transformers/models/trocr/configuration_trocr.py", "repo_id": "transformers", "token_count": 2596 }
392
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ UDOP model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) UDOP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/udop-large": "https://huggingface.co/microsoft/udop-large/resolve/main/config.json", } class UdopConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`UdopForConditionalGeneration`]. It is used to instantiate a UDOP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the UDOP [microsoft/udop-large](https://huggingface.co/microsoft/udop-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 33201): Vocabulary size of the UDOP model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`UdopForConditionalGeneration`]. d_model (`int`, *optional*, defaults to 1024): Size of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`. d_ff (`int`, *optional*, defaults to 4096): Size of the intermediate feed forward layer in each `UdopBlock`. num_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder and decoder. num_decoder_layers (`int`, *optional*): Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. num_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder and decoder. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. relative_bias_args (`List[dict]`, *optional*, defaults to `[{'type': '1d'}, {'type': 'horizontal'}, {'type': 'vertical'}]`): A list of dictionaries containing the arguments for the relative bias layers. dropout_rate (`float`, *optional*, defaults to 0.1): The ratio for all dropout layers. layer_norm_epsilon (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). feed_forward_proj (`string`, *optional*, defaults to `"relu"`): Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. Udopv1.1 uses the `"gated-gelu"` feed forward projection. Original Udop uses `"relu"`. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model should behave as an encoder/decoder or not. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 1): The id of the end-of-sequence token in the vocabulary. max_2d_position_embeddings (`int`, *optional*, defaults to 1024): The maximum absolute position embeddings for relative position encoding. image_size (`int`, *optional*, defaults to 224): The size of the input images. patch_size (`int`, *optional*, defaults to 16): The patch size used by the vision encoder. num_channels (`int`, *optional*, defaults to 3): The number of channels in the input images. """ model_type = "udop" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, vocab_size=33201, d_model=1024, d_kv=64, d_ff=4096, num_layers=24, num_decoder_layers=None, num_heads=16, relative_attention_num_buckets=32, relative_attention_max_distance=128, relative_bias_args=[{"type": "1d"}, {"type": "horizontal"}, {"type": "vertical"}], dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, feed_forward_proj="relu", is_encoder_decoder=True, use_cache=True, pad_token_id=0, eos_token_id=1, max_2d_position_embeddings=1024, image_size=224, patch_size=16, num_channels=3, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.num_decoder_layers = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry self.num_heads = num_heads self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.feed_forward_proj = feed_forward_proj self.use_cache = use_cache # UDOP attributes self.max_2d_position_embeddings = max_2d_position_embeddings self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels if not isinstance(relative_bias_args, list): raise ValueError("`relative_bias_args` should be a list of dictionaries.") self.relative_bias_args = relative_bias_args act_info = self.feed_forward_proj.split("-") self.dense_act_fn = act_info[-1] self.is_gated_act = act_info[0] == "gated" if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, **kwargs, )
transformers/src/transformers/models/udop/configuration_udop.py/0
{ "file_path": "transformers/src/transformers/models/udop/configuration_udop.py", "repo_id": "transformers", "token_count": 3134 }
393
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Hubert checkpoint.""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, Wav2Vec2FeatureExtractor, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) def convert_classification(base_model_name, hf_config, downstream_dict): model = UniSpeechSatForSequenceClassification.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["projector.weight"] model.projector.bias.data = downstream_dict["projector.bias"] model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"] model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"] return model def convert_diarization(base_model_name, hf_config, downstream_dict): model = UniSpeechSatForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config) model.classifier.weight.data = downstream_dict["model.linear.weight"] model.classifier.bias.data = downstream_dict["model.linear.bias"] return model def convert_xvector(base_model_name, hf_config, downstream_dict): model = UniSpeechSatForXVector.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["connector.weight"] model.projector.bias.data = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel): model.tdnn[i].kernel.weight.data = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] model.objective.weight.data = downstream_dict["objective.W"] return model @torch.no_grad() def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path): """ Copy/paste/tweak model's weights to transformers design. """ checkpoint = torch.load(checkpoint_path, map_location="cpu") downstream_dict = checkpoint["Downstream"] hf_config = UniSpeechSatConfig.from_pretrained(config_path) hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( base_model_name, return_attention_mask=True, do_normalize=False ) arch = hf_config.architectures[0] if arch.endswith("ForSequenceClassification"): hf_model = convert_classification(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForAudioFrameClassification"): hf_model = convert_diarization(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForXVector"): hf_model = convert_xvector(base_model_name, hf_config, downstream_dict) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}") if hf_config.use_weighted_layer_sum: hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(model_dump_path) hf_model.save_pretrained(model_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") args = parser.parse_args() convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
transformers/src/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1692 }
394
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support Vision-Encoder-Text-Decoder architectures""" import os from typing import Optional, Tuple, Union import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput from ...modeling_flax_utils import FlaxPreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from ..auto.configuration_auto import AutoConfig from ..auto.modeling_flax_auto import FlaxAutoModel, FlaxAutoModelForCausalLM from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VisionEncoderDecoderConfig" VISION_ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like image captioning. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical character recognition (OCR) yields a significant performance improvement. After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Parameters: config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: pixel_values (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using the vision model's image processor. For example, using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. decoder_position_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.decoder.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.FlaxSeq2SeqLMOutput`] instead of a plain tuple. """ VISION_ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING = r""" Args: pixel_values (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using the vision model's image processor. For example, using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.FlaxBaseModelOutput`] instead of a plain tuple. """ VISION_ENCODER_DECODER_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For sequence to sequence training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. decoder_position_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.decoder.max_position_embeddings - 1]`. past_key_values (`Dict[str, jnp.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.FlaxCausalLMOutputWithCrossAttentions`] instead of a plain tuple. """ class FlaxVisionEncoderDecoderModule(nn.Module): config: VisionEncoderDecoderConfig dtype: jnp.dtype = jnp.float32 def setup(self): encoder_config = self.config.encoder decoder_config = self.config.decoder # Copied from `modeling_hybrid_clip.py` with modifications. from ...models.auto.modeling_flax_auto import FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_MAPPING encoder_module = FLAX_MODEL_MAPPING[encoder_config.__class__].module_class decoder_module = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING[decoder_config.__class__].module_class self.encoder = encoder_module(encoder_config, dtype=self.dtype) self.decoder = decoder_module(decoder_config, dtype=self.dtype) # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Dense( self.decoder.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.decoder.config.initializer_range), dtype=self.dtype, ) else: self.enc_to_dec_proj = None def _get_encoder_module(self): return self.encoder def _get_projection_module(self): return self.enc_to_dec_proj def _get_decoder_module(self): return self.decoder def __call__( self, pixel_values, decoder_input_ids, decoder_attention_mask, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if self.enc_to_dec_proj is not None: encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) # The advantage of explicitly setting this is TPU XLA compiler knows as soon as possible what shape this # variable has and can better optimize. Also passing `None` can lead to some problems when jitting the model. # In Flax/JAX, we only want to pass `None` for non-tensor function inputs. For all tensor function inputs, we # should always pass a tensor and not `None`. batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqLMOutput( logits=decoder_outputs.logits, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING) class FlaxVisionEncoderDecoderModel(FlaxPreTrainedModel): r""" [`FlaxVisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with the module (flax.nn.Module) of one of the base vision model classes of the library as encoder module and another one as decoder module when created with the :meth*~transformers.FlaxAutoModel.from_pretrained* class method for the encoder and :meth*~transformers.FlaxAutoModelForCausalLM.from_pretrained* class method for the decoder. """ config_class = VisionEncoderDecoderConfig base_model_prefix = "vision_encoder_decoder" main_input_name = "pixel_values" module_class = FlaxVisionEncoderDecoderModule def __init__( self, config: VisionEncoderDecoderConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if not _do_init: raise ValueError( "`FlaxVisionEncoderDecoderModel` cannot be created without initializing, `_do_init` must be `True`." ) if input_shape is None: num_channels = getattr(config.encoder, "num_channels", 3) input_shape = ( (1, config.encoder.image_size, config.encoder.image_size, num_channels), (1, 1), ) if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: encoder_input_shape, decoder_input_shape = input_shape # init input tensors pixel_values = jnp.zeros(encoder_input_shape, dtype=self.dtype) decoder_input_ids = jnp.zeros(decoder_input_shape, dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) batch_size, _, _, _ = pixel_values.shape decoder_batch_size, decoder_sequence_length = decoder_input_ids.shape if not decoder_batch_size == batch_size: raise ValueError( f"The inputs of encoder and decoder should have the same batch size, but got {batch_size} for encoder " f"and {decoder_batch_size} for decoder." ) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_sequence_length)[None, :], (decoder_batch_size, decoder_sequence_length) ) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, pixel_values, decoder_input_ids, decoder_attention_mask, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(VISION_ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=_CONFIG_FOR_DOC) def encode( self, pixel_values: jnp.ndarray, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoImageProcessor, FlaxVisionEncoderDecoderModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> # initialize a vit-gpt2 from pretrained ViT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "openai-community/gpt2" ... ) >>> pixel_values = image_processor(images=image, return_tensors="np").pixel_values >>> encoder_outputs = model.encode(pixel_values) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # `FlaxViTModel` expects channel first format, but `FlaxViTModule` expects channel last format. # Currently, we assume this holds for all Flax vision models, and perform a transpose here. pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, pixel_values, **kwargs): encode_module = module._get_encoder_module() return encode_module(pixel_values, **kwargs) outputs = self.module.apply( {"params": params or self.params}, pixel_values=jnp.array(pixel_values, dtype=self.dtype), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) if return_dict: outputs = FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return outputs @add_start_docstrings(VISION_ENCODER_DECODER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def decode( self, decoder_input_ids, encoder_outputs, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoImageProcessor, FlaxVisionEncoderDecoderModel >>> import jax.numpy as jnp >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> # initialize a vit-gpt2 from pretrained ViT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "openai-community/gpt2" ... ) >>> pixel_values = image_processor(images=image, return_tensors="np").pixel_values >>> encoder_outputs = model.encode(pixel_values) >>> decoder_start_token_id = model.config.decoder.bos_token_id >>> decoder_input_ids = jnp.ones((pixel_values.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward( module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs ): projection_module = module._get_projection_module() decoder_module = module._get_decoder_module() # optionally project encoder_hidden_states if projection_module is not None: encoder_hidden_states = projection_module(encoder_hidden_states) return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(VISION_ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def __call__( self, pixel_values: jnp.ndarray, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Examples: ```python >>> from transformers import FlaxVisionEncoderDecoderModel, AutoImageProcessor, AutoTokenizer >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> # load output tokenizer >>> tokenizer_output = AutoTokenizer.from_pretrained("openai-community/gpt2") >>> # initialize a vit-gpt2 from pretrained ViT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "openai-community/gpt2" ... ) >>> pixel_values = image_processor(images=image, return_tensors="np").pixel_values >>> # use GPT2's eos_token as the pad as well as eos token >>> model.config.eos_token_id = model.config.decoder.eos_token_id >>> model.config.pad_token_id = model.config.eos_token_id >>> # generation >>> sequences = model.generate(pixel_values, num_beams=4, max_length=12).sequences >>> captions = tokenizer_output.batch_decode(sequences, skip_special_tokens=True) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs # `FlaxViTModel` expects channel first format, but `FlaxViTModule` expects channel last format. # Currently, we assume this holds for all Flax vision models, and perform a transpose here. pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # prepare decoder inputs if decoder_input_ids is None: raise ValueError("`decoder_input_ids` can't be `None`.") if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, pixel_values=jnp.array(pixel_values, dtype=self.dtype), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) def prepare_inputs_for_generation( self, decoder_input_ids, max_length, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: decoder_position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: decoder_position_ids = jnp.broadcast_to( jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": decoder_position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, decoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, *model_args, **kwargs, ) -> FlaxPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An example is `google/vit-base-patch16-224-in21k`. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import FlaxVisionEncoderDecoderModel >>> # initialize a vit-gpt2 from a pretrained ViT and a pretrained GPT2 model. Note that the cross-attention layers will be randomly initialized >>> model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "openai-community/gpt2" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./vit-gpt2") >>> # load fine-tuned model >>> model = FlaxVisionEncoderDecoderModel.from_pretrained("./vit-gpt2") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = FlaxAutoModel.from_pretrained( encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = FlaxAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs dtype = kwargs.pop("dtype", jnp.float32) config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) # init model model = cls(config, dtype=dtype) model.params["encoder"] = encoder.params model.params["decoder"] = decoder.params return model
transformers/src/transformers/models/vision_encoder_decoder/modeling_flax_vision_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/vision_encoder_decoder/modeling_flax_vision_encoder_decoder.py", "repo_id": "transformers", "token_count": 17430 }
395
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViT and non-distilled DeiT checkpoints from the timm library.""" import argparse from pathlib import Path import requests import timm import torch from PIL import Image from timm.data import ImageNetInfo, infer_imagenet_subset from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, base_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, base_model=False): for i in range(config.num_hidden_layers): if base_model: prefix = "" else: prefix = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def remove_classification_head_(state_dict): ignore_keys = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our ViT structure. """ # define default ViT configuration config = ViTConfig() base_model = False # load original model from timm timm_model = timm.create_model(vit_name, pretrained=True) timm_model.eval() # detect unsupported ViT models in transformers # fc_norm is present if not isinstance(getattr(timm_model, "fc_norm", None), torch.nn.Identity): raise ValueError(f"{vit_name} is not supported in transformers because of the presence of fc_norm.") # use of global average pooling in combination (or without) class token if getattr(timm_model, "global_pool", None) == "avg": raise ValueError(f"{vit_name} is not supported in transformers because of use of global average pooling.") # CLIP style vit with norm_pre layer present if "clip" in vit_name and not isinstance(getattr(timm_model, "norm_pre", None), torch.nn.Identity): raise ValueError( f"{vit_name} is not supported in transformers because it's a CLIP style ViT with norm_pre layer." ) # SigLIP style vit with attn_pool layer present if "siglip" in vit_name and getattr(timm_model, "global_pool", None) == "map": raise ValueError( f"{vit_name} is not supported in transformers because it's a SigLIP style ViT with attn_pool." ) # use of layer scale in ViT model blocks if not isinstance(getattr(timm_model.blocks[0], "ls1", None), torch.nn.Identity) or not isinstance( getattr(timm_model.blocks[0], "ls2", None), torch.nn.Identity ): raise ValueError(f"{vit_name} is not supported in transformers because it uses a layer scale in its blocks.") # Hybrid ResNet-ViTs if not isinstance(timm_model.patch_embed, timm.layers.PatchEmbed): raise ValueError(f"{vit_name} is not supported in transformers because it is a hybrid ResNet-ViT.") # get patch size and image size from the patch embedding submodule config.patch_size = timm_model.patch_embed.patch_size[0] config.image_size = timm_model.patch_embed.img_size[0] # retrieve architecture-specific parameters from the timm model config.hidden_size = timm_model.embed_dim config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features config.num_hidden_layers = len(timm_model.blocks) config.num_attention_heads = timm_model.blocks[0].attn.num_heads # check whether the model has a classification head or not if timm_model.num_classes != 0: config.num_labels = timm_model.num_classes # infer ImageNet subset from timm model imagenet_subset = infer_imagenet_subset(timm_model) dataset_info = ImageNetInfo(imagenet_subset) config.id2label = {i: dataset_info.index_to_label_name(i) for i in range(dataset_info.num_classes())} config.label2id = {v: k for k, v in config.id2label.items()} else: print(f"{vit_name} is going to be converted as a feature extractor only.") base_model = True # load state_dict of original model state_dict = timm_model.state_dict() # remove and rename some keys in the state dict if base_model: remove_classification_head_(state_dict) rename_keys = create_rename_keys(config, base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) # load HuggingFace model if base_model: model = ViTModel(config, add_pooling_layer=False).eval() else: model = ViTForImageClassification(config).eval() model.load_state_dict(state_dict) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: image_processor = DeiTImageProcessor(size=config.image_size) else: image_processor = ViTImageProcessor(size=config.image_size) encoding = image_processor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) if base_model: timm_pooled_output = timm_model.forward_features(pixel_values) assert timm_pooled_output.shape == outputs.last_hidden_state.shape assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1) else: timm_logits = timm_model(pixel_values) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
transformers/src/transformers/models/vit/convert_vit_timm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/vit/convert_vit_timm_to_pytorch.py", "repo_id": "transformers", "token_count": 4416 }
396
# coding=utf-8 # Copyright 2023 The Kakao Enterprise Authors, the MMS-TTS Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for VITS.""" import json import os import re from typing import Any, Dict, List, Optional, Tuple, Union from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_phonemizer_available, logging if is_phonemizer_available(): import phonemizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/mms-tts-eng": "https://huggingface.co/facebook/mms-tts-eng/resolve/main/vocab.json", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { # This model does not have a maximum input length. "facebook/mms-tts-eng": 4096, } def has_non_roman_characters(input_string): # Find any character outside the ASCII range non_roman_pattern = re.compile(r"[^\x00-\x7F]") # Search the input string for non-Roman characters match = non_roman_pattern.search(input_string) has_non_roman = match is not None return has_non_roman class VitsTokenizer(PreTrainedTokenizer): """ Construct a VITS tokenizer. Also supports MMS-TTS. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. language (`str`, *optional*): Language identifier. add_blank (`bool`, *optional*, defaults to `True`): Whether to insert token id 0 in between the other tokens. normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the input text by removing all casing and punctuation. phonemize (`bool`, *optional*, defaults to `True`): Whether to convert the input text into phonemes. is_uroman (`bool`, *optional*, defaults to `False`): Whether the `uroman` Romanizer needs to be applied to the input text prior to tokenizing. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, pad_token="<pad>", unk_token="<unk>", language=None, add_blank=True, normalize=True, phonemize=True, is_uroman=False, **kwargs, ) -> None: with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.language = language self.add_blank = add_blank self.normalize = normalize self.phonemize = phonemize self.is_uroman = is_uroman super().__init__( pad_token=pad_token, unk_token=unk_token, language=language, add_blank=add_blank, normalize=normalize, phonemize=phonemize, is_uroman=is_uroman, **kwargs, ) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def normalize_text(self, input_string): """Lowercase the input string, respecting any special token ids that may be part or entirely upper-cased.""" all_vocabulary = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys()) filtered_text = "" i = 0 while i < len(input_string): found_match = False for word in all_vocabulary: if input_string[i : i + len(word)] == word: filtered_text += word i += len(word) found_match = True break if not found_match: filtered_text += input_string[i].lower() i += 1 return filtered_text def _preprocess_char(self, text): """Special treatment of characters in certain languages""" if self.language == "ron": text = text.replace("ț", "ţ") return text def prepare_for_tokenization( self, text: str, is_split_into_words: bool = False, normalize: Optional[bool] = None, **kwargs ) -> Tuple[str, Dict[str, Any]]: """ Performs any necessary transformations before tokenization. This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the `kwargs` at the end of the encoding process to be sure all the arguments have been used. Args: text (`str`): The text to prepare. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. normalize (`bool`, *optional*, defaults to `None`): Whether or not to apply punctuation and casing normalization to the text inputs. Typically, VITS is trained on lower-cased and un-punctuated text. Hence, normalization is used to ensure that the input text consists only of lower-case characters. kwargs (`Dict[str, Any]`, *optional*): Keyword arguments to use for the tokenization. Returns: `Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs. """ normalize = normalize if normalize is not None else self.normalize if normalize: # normalise for casing text = self.normalize_text(text) filtered_text = self._preprocess_char(text) if has_non_roman_characters(filtered_text) and self.is_uroman: logger.warning( "Text to the tokenizer contains non-Roman characters. Ensure the `uroman` Romanizer is " "applied to the text prior to passing it to the tokenizer. See " "`https://github.com/isi-nlp/uroman` for details." ) if self.phonemize: if not is_phonemizer_available(): raise ImportError("Please install the `phonemizer` Python package to use this tokenizer.") filtered_text = phonemizer.phonemize( filtered_text, language="en-us", backend="espeak", strip=True, preserve_punctuation=True, with_stress=True, ) filtered_text = re.sub(r"\s+", " ", filtered_text) elif normalize: # strip any chars outside of the vocab (punctuation) filtered_text = "".join(list(filter(lambda char: char in self.encoder, filtered_text))).strip() return filtered_text, kwargs def _tokenize(self, text: str) -> List[str]: """Tokenize a string by inserting the `<pad>` token at the boundary between adjacent characters.""" tokens = list(text) if self.add_blank: interspersed = [self._convert_id_to_token(0)] * (len(tokens) * 2 + 1) interspersed[1::2] = tokens tokens = interspersed return tokens def convert_tokens_to_string(self, tokens: List[str]) -> str: if self.add_blank and len(tokens) > 1: tokens = tokens[1::2] return "".join(tokens) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Union[Tuple[str], None]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
transformers/src/transformers/models/vits/tokenization_vits.py/0
{ "file_path": "transformers/src/transformers/models/vits/tokenization_vits.py", "repo_id": "transformers", "token_count": 3981 }
397
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def get_xclip_config(model_name, num_frames): text_config = XCLIPTextConfig() # derive patch size from model name start_idx = model_name.find("patch") patch_size = int(model_name[start_idx + len("patch") : start_idx + len("patch") + 2]) vision_config = XCLIPVisionConfig(patch_size=patch_size, num_frames=num_frames) if "large" in model_name: text_config.hidden_size = 768 text_config.intermediate_size = 3072 text_config.num_attention_heads = 12 vision_config.hidden_size = 1024 vision_config.intermediate_size = 4096 vision_config.num_attention_heads = 16 vision_config.num_hidden_layers = 24 vision_config.mit_hidden_size = 768 vision_config.mit_intermediate_size = 3072 if model_name == "xclip-large-patch14-16-frames": vision_config.image_size = 336 config = XCLIPConfig.from_text_vision_configs(text_config, vision_config) if "large" in model_name: config.projection_dim = 768 return config def rename_key(name): # text encoder if name == "token_embedding.weight": name = name.replace("token_embedding.weight", "text_model.embeddings.token_embedding.weight") if name == "positional_embedding": name = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight") if "ln_1" in name: name = name.replace("ln_1", "layer_norm1") if "ln_2" in name: name = name.replace("ln_2", "layer_norm2") if "c_fc" in name: name = name.replace("c_fc", "fc1") if "c_proj" in name: name = name.replace("c_proj", "fc2") if name.startswith("transformer.resblocks"): name = name.replace("transformer.resblocks", "text_model.encoder.layers") if "attn.out_proj" in name and "message" not in name: name = name.replace("attn.out_proj", "self_attn.out_proj") if "ln_final" in name: name = name.replace("ln_final", "text_model.final_layer_norm") # visual encoder if name == "visual.class_embedding": name = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding") if name == "visual.positional_embedding": name = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight") if name.startswith("visual.transformer.resblocks"): name = name.replace("visual.transformer.resblocks", "vision_model.encoder.layers") if "visual.conv1" in name: name = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding") if "visual.ln_pre" in name: name = name.replace("visual.ln_pre", "vision_model.pre_layernorm") if "visual.ln_post" in name: name = name.replace("visual.ln_post", "vision_model.post_layernorm") if "visual.proj" in name: name = name.replace("visual.proj", "visual_projection.weight") if "text_projection" in name: name = name.replace("text_projection", "text_projection.weight") # things on top if "prompts_visual_proj" in name: name = name.replace("prompts_visual_proj", "prompts_visual_projection") if "prompts_visual_ln" in name: name = name.replace("prompts_visual_ln", "prompts_visual_layernorm") # mit if name == "mit.positional_embedding": name = name.replace("positional", "position") if name.startswith("mit.resblocks"): name = name.replace("mit.resblocks", "mit.encoder.layers") # prompts generator if name.startswith("prompts_generator.norm"): name = name.replace("prompts_generator.norm", "prompts_generator.layernorm") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "attn.in_proj" in key: key_split = key.split(".") if key.startswith("visual"): layer_num = key_split[3] dim = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.q_proj.weight"] = val[ :dim, : ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.k_proj.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.v_proj.weight"] = val[ -dim:, : ] else: orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.q_proj.bias"] = val[ :dim ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.k_proj.bias"] = val[ dim : dim * 2 ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.v_proj.bias"] = val[ -dim: ] else: if "weight" in key: orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[ :dim, : ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[ -dim:, : ] else: orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[ dim : dim * 2 ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] elif key.startswith("mit"): layer_num = key_split[2] dim = config.vision_config.mit_hidden_size if "weight" in key: orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :] orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[dim : dim * 2, :] orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :] else: orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2] orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] else: layer_num = key_split[2] dim = config.text_config.hidden_size if "weight" in key: orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :] else: orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[ dim : dim * 2 ] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] else: new_key_name = rename_key(key) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: val = val.T orig_state_dict[new_key_name] = val return orig_state_dict def prepare_video(num_frames): if num_frames == 8: filename = "eating_spaghetti_8_frames.npy" elif num_frames == 16: filename = "eating_spaghetti.npy" elif num_frames == 32: filename = "eating_spaghetti_32_frames.npy" file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename=filename, repo_type="dataset", ) video = np.load(file) return list(video) def convert_xclip_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): model_to_url = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } checkpoint_url = model_to_url[model_name] num_frames = 8 if "16-frames" in model_name: num_frames = 16 elif "shot" in model_name: num_frames = 32 config = get_xclip_config(model_name, num_frames) model = XCLIPModel(config) model.eval() if "drive" in checkpoint_url: output = "pytorch_model.bin" gdown.cached_download(checkpoint_url, output, quiet=False) state_dict = torch.load(output, map_location="cpu")["model"] else: state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"] state_dict = convert_state_dict(state_dict, config) model = XCLIPModel(config) missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() size = 336 if model_name == "xclip-large-patch14-16-frames" else 224 image_processor = VideoMAEImageProcessor(size=size) slow_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") fast_tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32") processor = XCLIPProcessor(image_processor=image_processor, tokenizer=fast_tokenizer) video = prepare_video(num_frames) inputs = processor( text=["playing sports", "eating spaghetti", "go shopping"], videos=video, return_tensors="pt", padding=True ) print("Shape of pixel values:", inputs.pixel_values.shape) with torch.no_grad(): outputs = model(**inputs) # Verify outputs logits_per_video = outputs.logits_per_video probs = logits_per_video.softmax(dim=1) print("Probs:", probs) # kinetics-400 if model_name == "xclip-base-patch32": expected_probs = torch.tensor([[0.0019, 0.9951, 0.0030]]) elif model_name == "xclip-base-patch32-16-frames": expected_probs = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]]) elif model_name == "xclip-base-patch16": expected_probs = torch.tensor([[0.0083, 0.9681, 0.0236]]) elif model_name == "xclip-base-patch16-16-frames": expected_probs = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]]) elif model_name == "xclip-large-patch14": expected_probs = torch.tensor([[0.0062, 0.9864, 0.0075]]) elif model_name == "xclip-large-patch14-16-frames": expected_probs = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]]) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": expected_probs = torch.tensor([[0.0555, 0.8914, 0.0531]]) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": expected_probs = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]]) elif model_name == "xclip-large-patch14-kinetics-600": expected_probs = torch.tensor([[0.0036, 0.9920, 0.0045]]) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": expected_probs = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]]) elif model_name == "xclip-base-patch16-hmdb-4-shot": expected_probs = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]]) elif model_name == "xclip-base-patch16-hmdb-8-shot": expected_probs = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]]) elif model_name == "xclip-base-patch16-hmdb-16-shot": expected_probs = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]]) elif model_name == "xclip-base-patch16-ucf-2-shot": expected_probs = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]]) elif model_name == "xclip-base-patch16-ucf-4-shot": expected_probs = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]]) elif model_name == "xclip-base-patch16-ucf-8-shot": expected_probs = torch.tensor([[0.0027, 0.9904, 0.0070]]) elif model_name == "xclip-base-patch16-ucf-16-shot": expected_probs = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]]) # zero shot elif model_name == "xclip-base-patch16-zero-shot": expected_probs = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]]) else: raise ValueError(f"Model name {model_name} not supported") assert torch.allclose(probs, expected_probs, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub...") model.push_to_hub(model_name, organization="nielsr") processor.push_to_hub(model_name, organization="nielsr") slow_tokenizer.push_to_hub(model_name, organization="nielsr") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/x_clip/convert_x_clip_original_pytorch_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/x_clip/convert_x_clip_original_pytorch_to_hf.py", "repo_id": "transformers", "token_count": 8829 }
398
# coding=utf-8 # Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for XLM.""" import json import os import re import sys import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "FacebookAI/xlm-mlm-en-2048": "https://huggingface.co/FacebookAI/xlm-mlm-en-2048/resolve/main/vocab.json", "FacebookAI/xlm-mlm-ende-1024": "https://huggingface.co/FacebookAI/xlm-mlm-ende-1024/resolve/main/vocab.json", "FacebookAI/xlm-mlm-enfr-1024": "https://huggingface.co/FacebookAI/xlm-mlm-enfr-1024/resolve/main/vocab.json", "FacebookAI/xlm-mlm-enro-1024": "https://huggingface.co/FacebookAI/xlm-mlm-enro-1024/resolve/main/vocab.json", "FacebookAI/xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/FacebookAI/xlm-mlm-tlm-xnli15-1024/resolve/main/vocab.json", "FacebookAI/xlm-mlm-xnli15-1024": "https://huggingface.co/FacebookAI/xlm-mlm-xnli15-1024/resolve/main/vocab.json", "FacebookAI/xlm-clm-enfr-1024": "https://huggingface.co/FacebookAI/xlm-clm-enfr-1024/resolve/main/vocab.json", "FacebookAI/xlm-clm-ende-1024": "https://huggingface.co/FacebookAI/xlm-clm-ende-1024/resolve/main/vocab.json", "FacebookAI/xlm-mlm-17-1280": "https://huggingface.co/FacebookAI/xlm-mlm-17-1280/resolve/main/vocab.json", "FacebookAI/xlm-mlm-100-1280": "https://huggingface.co/FacebookAI/xlm-mlm-100-1280/resolve/main/vocab.json", }, "merges_file": { "FacebookAI/xlm-mlm-en-2048": "https://huggingface.co/FacebookAI/xlm-mlm-en-2048/resolve/main/merges.txt", "FacebookAI/xlm-mlm-ende-1024": "https://huggingface.co/FacebookAI/xlm-mlm-ende-1024/resolve/main/merges.txt", "FacebookAI/xlm-mlm-enfr-1024": "https://huggingface.co/FacebookAI/xlm-mlm-enfr-1024/resolve/main/merges.txt", "FacebookAI/xlm-mlm-enro-1024": "https://huggingface.co/FacebookAI/xlm-mlm-enro-1024/resolve/main/merges.txt", "FacebookAI/xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/FacebookAI/xlm-mlm-tlm-xnli15-1024/resolve/main/merges.txt", "FacebookAI/xlm-mlm-xnli15-1024": "https://huggingface.co/FacebookAI/xlm-mlm-xnli15-1024/resolve/main/merges.txt", "FacebookAI/xlm-clm-enfr-1024": "https://huggingface.co/FacebookAI/xlm-clm-enfr-1024/resolve/main/merges.txt", "FacebookAI/xlm-clm-ende-1024": "https://huggingface.co/FacebookAI/xlm-clm-ende-1024/resolve/main/merges.txt", "FacebookAI/xlm-mlm-17-1280": "https://huggingface.co/FacebookAI/xlm-mlm-17-1280/resolve/main/merges.txt", "FacebookAI/xlm-mlm-100-1280": "https://huggingface.co/FacebookAI/xlm-mlm-100-1280/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "FacebookAI/xlm-mlm-en-2048": 512, "FacebookAI/xlm-mlm-ende-1024": 512, "FacebookAI/xlm-mlm-enfr-1024": 512, "FacebookAI/xlm-mlm-enro-1024": 512, "FacebookAI/xlm-mlm-tlm-xnli15-1024": 512, "FacebookAI/xlm-mlm-xnli15-1024": 512, "FacebookAI/xlm-clm-enfr-1024": 512, "FacebookAI/xlm-clm-ende-1024": 512, "FacebookAI/xlm-mlm-17-1280": 512, "FacebookAI/xlm-mlm-100-1280": 512, } PRETRAINED_INIT_CONFIGURATION = { "FacebookAI/xlm-mlm-en-2048": {"do_lowercase_and_remove_accent": True}, "FacebookAI/xlm-mlm-ende-1024": { "do_lowercase_and_remove_accent": True, "id2lang": {0: "de", 1: "en"}, "lang2id": {"de": 0, "en": 1}, }, "FacebookAI/xlm-mlm-enfr-1024": { "do_lowercase_and_remove_accent": True, "id2lang": {0: "en", 1: "fr"}, "lang2id": {"en": 0, "fr": 1}, }, "FacebookAI/xlm-mlm-enro-1024": { "do_lowercase_and_remove_accent": True, "id2lang": {0: "en", 1: "ro"}, "lang2id": {"en": 0, "ro": 1}, }, "FacebookAI/xlm-mlm-tlm-xnli15-1024": { "do_lowercase_and_remove_accent": True, "id2lang": { 0: "ar", 1: "bg", 2: "de", 3: "el", 4: "en", 5: "es", 6: "fr", 7: "hi", 8: "ru", 9: "sw", 10: "th", 11: "tr", 12: "ur", 13: "vi", 14: "zh", }, "lang2id": { "ar": 0, "bg": 1, "de": 2, "el": 3, "en": 4, "es": 5, "fr": 6, "hi": 7, "ru": 8, "sw": 9, "th": 10, "tr": 11, "ur": 12, "vi": 13, "zh": 14, }, }, "FacebookAI/xlm-mlm-xnli15-1024": { "do_lowercase_and_remove_accent": True, "id2lang": { 0: "ar", 1: "bg", 2: "de", 3: "el", 4: "en", 5: "es", 6: "fr", 7: "hi", 8: "ru", 9: "sw", 10: "th", 11: "tr", 12: "ur", 13: "vi", 14: "zh", }, "lang2id": { "ar": 0, "bg": 1, "de": 2, "el": 3, "en": 4, "es": 5, "fr": 6, "hi": 7, "ru": 8, "sw": 9, "th": 10, "tr": 11, "ur": 12, "vi": 13, "zh": 14, }, }, "FacebookAI/xlm-clm-enfr-1024": { "do_lowercase_and_remove_accent": True, "id2lang": {0: "en", 1: "fr"}, "lang2id": {"en": 0, "fr": 1}, }, "FacebookAI/xlm-clm-ende-1024": { "do_lowercase_and_remove_accent": True, "id2lang": {0: "de", 1: "en"}, "lang2id": {"de": 0, "en": 1}, }, "FacebookAI/xlm-mlm-17-1280": { "do_lowercase_and_remove_accent": False, "id2lang": { 0: "ar", 1: "de", 2: "en", 3: "es", 4: "fr", 5: "hi", 6: "it", 7: "ja", 8: "ko", 9: "nl", 10: "pl", 11: "pt", 12: "ru", 13: "sv", 14: "tr", 15: "vi", 16: "zh", }, "lang2id": { "ar": 0, "de": 1, "en": 2, "es": 3, "fr": 4, "hi": 5, "it": 6, "ja": 7, "ko": 8, "nl": 9, "pl": 10, "pt": 11, "ru": 12, "sv": 13, "tr": 14, "vi": 15, "zh": 16, }, }, "FacebookAI/xlm-mlm-100-1280": { "do_lowercase_and_remove_accent": False, "id2lang": { 0: "af", 1: "als", 2: "am", 3: "an", 4: "ang", 5: "ar", 6: "arz", 7: "ast", 8: "az", 9: "bar", 10: "be", 11: "bg", 12: "bn", 13: "br", 14: "bs", 15: "ca", 16: "ceb", 17: "ckb", 18: "cs", 19: "cy", 20: "da", 21: "de", 22: "el", 23: "en", 24: "eo", 25: "es", 26: "et", 27: "eu", 28: "fa", 29: "fi", 30: "fr", 31: "fy", 32: "ga", 33: "gan", 34: "gl", 35: "gu", 36: "he", 37: "hi", 38: "hr", 39: "hu", 40: "hy", 41: "ia", 42: "id", 43: "is", 44: "it", 45: "ja", 46: "jv", 47: "ka", 48: "kk", 49: "kn", 50: "ko", 51: "ku", 52: "la", 53: "lb", 54: "lt", 55: "lv", 56: "mk", 57: "ml", 58: "mn", 59: "mr", 60: "ms", 61: "my", 62: "nds", 63: "ne", 64: "nl", 65: "nn", 66: "no", 67: "oc", 68: "pl", 69: "pt", 70: "ro", 71: "ru", 72: "scn", 73: "sco", 74: "sh", 75: "si", 76: "simple", 77: "sk", 78: "sl", 79: "sq", 80: "sr", 81: "sv", 82: "sw", 83: "ta", 84: "te", 85: "th", 86: "tl", 87: "tr", 88: "tt", 89: "uk", 90: "ur", 91: "uz", 92: "vi", 93: "war", 94: "wuu", 95: "yi", 96: "zh", 97: "zh_classical", 98: "zh_min_nan", 99: "zh_yue", }, "lang2id": { "af": 0, "als": 1, "am": 2, "an": 3, "ang": 4, "ar": 5, "arz": 6, "ast": 7, "az": 8, "bar": 9, "be": 10, "bg": 11, "bn": 12, "br": 13, "bs": 14, "ca": 15, "ceb": 16, "ckb": 17, "cs": 18, "cy": 19, "da": 20, "de": 21, "el": 22, "en": 23, "eo": 24, "es": 25, "et": 26, "eu": 27, "fa": 28, "fi": 29, "fr": 30, "fy": 31, "ga": 32, "gan": 33, "gl": 34, "gu": 35, "he": 36, "hi": 37, "hr": 38, "hu": 39, "hy": 40, "ia": 41, "id": 42, "is": 43, "it": 44, "ja": 45, "jv": 46, "ka": 47, "kk": 48, "kn": 49, "ko": 50, "ku": 51, "la": 52, "lb": 53, "lt": 54, "lv": 55, "mk": 56, "ml": 57, "mn": 58, "mr": 59, "ms": 60, "my": 61, "nds": 62, "ne": 63, "nl": 64, "nn": 65, "no": 66, "oc": 67, "pl": 68, "pt": 69, "ro": 70, "ru": 71, "scn": 72, "sco": 73, "sh": 74, "si": 75, "simple": 76, "sk": 77, "sl": 78, "sq": 79, "sr": 80, "sv": 81, "sw": 82, "ta": 83, "te": 84, "th": 85, "tl": 86, "tr": 87, "tt": 88, "uk": 89, "ur": 90, "uz": 91, "vi": 92, "war": 93, "wuu": 94, "yi": 95, "zh": 96, "zh_classical": 97, "zh_min_nan": 98, "zh_yue": 99, }, }, } def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def lowercase_and_remove_accent(text): """ Lowercase and strips accents from a piece of text based on https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py """ text = " ".join(text) text = text.lower() text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output).lower().split(" ") def replace_unicode_punct(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl """ text = text.replace(",", ",") text = re.sub(r"。\s*", ". ", text) text = text.replace("、", ",") text = text.replace("”", '"') text = text.replace("“", '"') text = text.replace("∶", ":") text = text.replace(":", ":") text = text.replace("?", "?") text = text.replace("《", '"') text = text.replace("》", '"') text = text.replace(")", ")") text = text.replace("!", "!") text = text.replace("(", "(") text = text.replace(";", ";") text = text.replace("1", "1") text = text.replace("」", '"') text = text.replace("「", '"') text = text.replace("0", "0") text = text.replace("3", "3") text = text.replace("2", "2") text = text.replace("5", "5") text = text.replace("6", "6") text = text.replace("9", "9") text = text.replace("7", "7") text = text.replace("8", "8") text = text.replace("4", "4") text = re.sub(r".\s*", ". ", text) text = text.replace("~", "~") text = text.replace("’", "'") text = text.replace("…", "...") text = text.replace("━", "-") text = text.replace("〈", "<") text = text.replace("〉", ">") text = text.replace("【", "[") text = text.replace("】", "]") text = text.replace("%", "%") return text def remove_non_printing_char(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl """ output = [] for char in text: cat = unicodedata.category(char) if cat.startswith("C"): continue output.append(char) return "".join(output) def romanian_preprocessing(text): """Sennrich's WMT16 scripts for Romanian preprocessing, used by model `FacebookAI/xlm-mlm-enro-1024`""" # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219") text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b") # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py text = text.replace("\u0218", "S").replace("\u0219", "s") # s-comma text = text.replace("\u021a", "T").replace("\u021b", "t") # t-comma text = text.replace("\u0102", "A").replace("\u0103", "a") text = text.replace("\u00C2", "A").replace("\u00E2", "a") text = text.replace("\u00CE", "I").replace("\u00EE", "i") return text class XLMTokenizer(PreTrainedTokenizer): """ Construct an XLM tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: - Moses preprocessing and tokenization for most supported languages. - Language specific tokenization for Chinese (Jieba), Japanese (KyTea) and Thai (PyThaiNLP). - Optionally lowercases and normalizes all inputs text. - The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like "__classify__") to a vocabulary. - The `lang2id` attribute maps the languages supported by the model with their IDs if provided (automatically set for pretrained vocabularies). - The `id2lang` attributes does reverse mapping if provided (automatically set for pretrained vocabularies). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Vocabulary file. merges_file (`str`): Merges file. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"</s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<special1>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']`): List of additional special tokens. lang2id (`Dict[str, int]`, *optional*): Dictionary mapping languages string identifiers to their IDs. id2lang (`Dict[int, str]`, *optional*): Dictionary mapping language IDs to their string identifiers. do_lowercase_and_remove_accent (`bool`, *optional*, defaults to `True`): Whether to lowercase and remove accents when tokenizing. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>", sep_token="</s>", pad_token="<pad>", cls_token="</s>", mask_token="<special1>", additional_special_tokens=[ "<special0>", "<special1>", "<special2>", "<special3>", "<special4>", "<special5>", "<special6>", "<special7>", "<special8>", "<special9>", ], lang2id=None, id2lang=None, do_lowercase_and_remove_accent=True, **kwargs, ): try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses # cache of sm.MosesPunctNormalizer instance self.cache_moses_punct_normalizer = {} # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.lang_with_custom_tokenizer = {"zh", "th", "ja"} # True for current supported model (v1.2.0), False for XLM-17 & 100 self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent self.lang2id = lang2id self.id2lang = id2lang if lang2id is not None and id2lang is not None: assert len(lang2id) == len(id2lang) self.ja_word_tokenizer = None self.zh_word_tokenizer = None with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( unk_token=unk_token, bos_token=bos_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, lang2id=lang2id, id2lang=id2lang, do_lowercase_and_remove_accent=do_lowercase_and_remove_accent, **kwargs, ) @property def do_lower_case(self): return self.do_lowercase_and_remove_accent def moses_punct_norm(self, text, lang): if lang not in self.cache_moses_punct_normalizer: punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) self.cache_moses_punct_normalizer[lang] = punct_normalizer else: punct_normalizer = self.cache_moses_punct_normalizer[lang] return punct_normalizer.normalize(text) def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer else: moses_tokenizer = self.cache_moses_tokenizer[lang] return moses_tokenizer.tokenize(text, return_str=False, escape=False) def moses_pipeline(self, text, lang): text = replace_unicode_punct(text) text = self.moses_punct_norm(text, lang) text = remove_non_printing_char(text) return text def ja_tokenize(self, text): if self.ja_word_tokenizer is None: try: import Mykytea self.ja_word_tokenizer = Mykytea.Mykytea( f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin" ) except (AttributeError, ImportError): logger.error( "Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper" " (https://github.com/chezou/Mykytea-python) with the following steps" ) logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea") logger.error("2. autoreconf -i") logger.error("3. ./configure --prefix=$HOME/local") logger.error("4. make && make install") logger.error("5. pip install kytea") raise return list(self.ja_word_tokenizer.getWS(text)) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def _tokenize(self, text, lang="en", bypass_tokenizer=False): """ Tokenize a string given language code. For Chinese, Japanese and Thai, we use a language specific tokenizer. Otherwise, we use Moses. Details of tokenization: - [sacremoses](https://github.com/alvations/sacremoses): port of Moses - Install with `pip install sacremoses` - [pythainlp](https://github.com/PyThaiNLP/pythainlp): Thai tokenizer - Install with `pip install pythainlp` - [kytea](https://github.com/chezou/Mykytea-python): Japanese tokenizer, wrapper of [KyTea](https://github.com/neubig/kytea) - Install with the following steps: :: git clone [email protected]:neubig/kytea.git && cd kytea autoreconf -i ./configure --prefix=$HOME/local make && make install pip install kytea - [jieba](https://github.com/fxsjy/jieba): Chinese tokenizer (*) - Install with `pip install jieba` (*) The original XLM used [Stanford Segmenter](https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip). However, the wrapper (`nltk.tokenize.stanford_segmenter`) is slow due to JVM overhead, and it will be deprecated. Jieba is a lot faster and pip-installable. Note there is some mismatch with the Stanford Segmenter. It should be fine if you fine-tune the model with Chinese supervisionself. If you want the same exact behaviour, use the original XLM [preprocessing script](https://github.com/facebookresearch/XLM/tree/master/tools) to tokenize the sentence externally, and set `bypass_tokenizer=True` to bypass the tokenizer. Args: - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported languages. However, we don't enforce it. - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE. Returns: List of tokens. """ if lang and self.lang2id and lang not in self.lang2id: logger.error( "Supplied language code not found in lang2id mapping. Please check that your language is supported by" " the loaded pretrained model." ) if bypass_tokenizer: text = text.split() elif lang not in self.lang_with_custom_tokenizer: text = self.moses_pipeline(text, lang=lang) # TODO: make sure we are using `FacebookAI/xlm-mlm-enro-1024`, since XLM-100 doesn't have this step if lang == "ro": text = romanian_preprocessing(text) text = self.moses_tokenize(text, lang=lang) elif lang == "th": text = self.moses_pipeline(text, lang=lang) try: if "pythainlp" not in sys.modules: from pythainlp.tokenize import word_tokenize as th_word_tokenize else: th_word_tokenize = sys.modules["pythainlp"].word_tokenize except (AttributeError, ImportError): logger.error( "Make sure you install PyThaiNLP (https://github.com/PyThaiNLP/pythainlp) with the following steps" ) logger.error("1. pip install pythainlp") raise text = th_word_tokenize(text) elif lang == "zh": try: if "jieba" not in sys.modules: import jieba else: jieba = sys.modules["jieba"] except (AttributeError, ImportError): logger.error("Make sure you install Jieba (https://github.com/fxsjy/jieba) with the following steps") logger.error("1. pip install jieba") raise text = " ".join(jieba.cut(text)) text = self.moses_pipeline(text, lang=lang) text = text.split() elif lang == "ja": text = self.moses_pipeline(text, lang=lang) text = self.ja_tokenize(text) else: raise ValueError("It should not reach here") if self.do_lowercase_and_remove_accent and not bypass_tokenizer: text = lowercase_and_remove_accent(text) split_tokens = [] for token in text: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = "".join(tokens).replace("</w>", " ").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos = [self.bos_token_id] sep = [self.sep_token_id] if token_ids_1 is None: return bos + token_ids_0 + sep return bos + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses
transformers/src/transformers/models/xlm/tokenization_xlm.py/0
{ "file_path": "transformers/src/transformers/models/xlm/tokenization_xlm.py", "repo_id": "transformers", "token_count": 18546 }
399