text
stringlengths
7
328k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
459
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xlnet"] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xlnet_fast"] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_xlnet"] = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_xlnet"] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/xlnet/__init__.py/0
{ "file_path": "transformers/src/transformers/models/xlnet/__init__.py", "repo_id": "transformers", "token_count": 1788 }
400
# coding=utf-8 # Copyright 2022 School of EIC, Huazhong University of Science & Technology and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch YOLOS model.""" import collections.abc import math from dataclasses import dataclass from typing import Dict, List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_accelerate_available, is_scipy_available, is_vision_available, logging, replace_return_docstrings, requires_backends, ) from .configuration_yolos import YolosConfig if is_scipy_available(): from scipy.optimize import linear_sum_assignment if is_vision_available(): from transformers.image_transforms import center_to_corners_format if is_accelerate_available(): from accelerate import PartialState from accelerate.utils import reduce logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "YolosConfig" # Base docstring _CHECKPOINT_FOR_DOC = "hustvl/yolos-small" _EXPECTED_OUTPUT_SHAPE = [1, 3401, 384] YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST = [ "hustvl/yolos-small", # See all YOLOS models at https://huggingface.co/models?filter=yolos ] @dataclass class YolosObjectDetectionOutput(ModelOutput): """ Output type of [`YolosForObjectDetection`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~YolosImageProcessor.post_process`] to retrieve the unnormalized bounding boxes. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None auxiliary_outputs: Optional[List[Dict]] = None last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class YolosEmbeddings(nn.Module): """ Construct the CLS token, detection tokens, position and patch embeddings. """ def __init__(self, config: YolosConfig) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.detection_tokens = nn.Parameter(torch.zeros(1, config.num_detection_tokens, config.hidden_size)) self.patch_embeddings = YolosPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter( torch.zeros(1, num_patches + config.num_detection_tokens + 1, config.hidden_size) ) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.interpolation = InterpolateInitialPositionEmbeddings(config) self.config = config def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.size() # add the [CLS] and detection tokens to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) detection_tokens = self.detection_tokens.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings, detection_tokens), dim=1) # add positional encoding to each token # this might require interpolation of the existing position embeddings position_embeddings = self.interpolation(self.position_embeddings, (height, width)) embeddings = embeddings + position_embeddings embeddings = self.dropout(embeddings) return embeddings class InterpolateInitialPositionEmbeddings(nn.Module): def __init__(self, config) -> None: super().__init__() self.config = config def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor: cls_pos_embed = pos_embed[:, 0, :] cls_pos_embed = cls_pos_embed[:, None] det_pos_embed = pos_embed[:, -self.config.num_detection_tokens :, :] patch_pos_embed = pos_embed[:, 1 : -self.config.num_detection_tokens, :] patch_pos_embed = patch_pos_embed.transpose(1, 2) batch_size, hidden_size, seq_len = patch_pos_embed.shape patch_height, patch_width = ( self.config.image_size[0] // self.config.patch_size, self.config.image_size[1] // self.config.patch_size, ) patch_pos_embed = patch_pos_embed.view(batch_size, hidden_size, patch_height, patch_width) height, width = img_size new_patch_heigth, new_patch_width = height // self.config.patch_size, width // self.config.patch_size patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_patch_heigth, new_patch_width), mode="bicubic", align_corners=False ) patch_pos_embed = patch_pos_embed.flatten(2).transpose(1, 2) scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=1) return scale_pos_embed class InterpolateMidPositionEmbeddings(nn.Module): def __init__(self, config) -> None: super().__init__() self.config = config def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor: cls_pos_embed = pos_embed[:, :, 0, :] cls_pos_embed = cls_pos_embed[:, None] det_pos_embed = pos_embed[:, :, -self.config.num_detection_tokens :, :] patch_pos_embed = pos_embed[:, :, 1 : -self.config.num_detection_tokens, :] patch_pos_embed = patch_pos_embed.transpose(2, 3) depth, batch_size, hidden_size, seq_len = patch_pos_embed.shape patch_height, patch_width = ( self.config.image_size[0] // self.config.patch_size, self.config.image_size[1] // self.config.patch_size, ) patch_pos_embed = patch_pos_embed.view(depth * batch_size, hidden_size, patch_height, patch_width) height, width = img_size new_patch_height, new_patch_width = height // self.config.patch_size, width // self.config.patch_size patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_patch_height, new_patch_width), mode="bicubic", align_corners=False ) patch_pos_embed = ( patch_pos_embed.flatten(2) .transpose(1, 2) .contiguous() .view(depth, batch_size, new_patch_height * new_patch_width, hidden_size) ) scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=2) return scale_pos_embed class YolosPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Yolos class YolosSelfAttention(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Yolos class YolosSelfOutput(nn.Module): """ The residual connection is defined in YolosLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: YolosConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Yolos class YolosAttention(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() self.attention = YolosSelfAttention(config) self.output = YolosSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Yolos class YolosIntermediate(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Yolos class YolosOutput(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->Yolos class YolosLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: YolosConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = YolosAttention(config) self.intermediate = YolosIntermediate(config) self.output = YolosOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in Yolos, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in Yolos, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class YolosEncoder(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([YolosLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False seq_length = ( 1 + (config.image_size[0] * config.image_size[1] // config.patch_size**2) + config.num_detection_tokens ) self.mid_position_embeddings = ( nn.Parameter( torch.zeros( config.num_hidden_layers - 1, 1, seq_length, config.hidden_size, ) ) if config.use_mid_position_embeddings else None ) self.interpolation = InterpolateMidPositionEmbeddings(config) if config.use_mid_position_embeddings else None def forward( self, hidden_states: torch.Tensor, height, width, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if self.config.use_mid_position_embeddings: interpolated_mid_position_embeddings = self.interpolation(self.mid_position_embeddings, (height, width)) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if self.config.use_mid_position_embeddings: if i < (self.config.num_hidden_layers - 1): hidden_states = hidden_states + interpolated_mid_position_embeddings[i] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class YolosPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = YolosConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) YOLOS_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`YolosConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ YOLOS_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`YolosImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare YOLOS Model transformer outputting raw hidden-states without any specific head on top.", YOLOS_START_DOCSTRING, ) class YolosModel(YolosPreTrainedModel): def __init__(self, config: YolosConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = YolosEmbeddings(config) self.encoder = YolosEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = YolosPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> YolosPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. Args: heads_to_prune (`dict` of {layer_num: list of heads to prune in this layer}): See base class `PreTrainedModel`. """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(YOLOS_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, height=pixel_values.shape[-2], width=pixel_values.shape[-1], head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class YolosPooler(nn.Module): def __init__(self, config: YolosConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @add_start_docstrings( """ YOLOS Model (consisting of a ViT encoder) with object detection heads on top, for tasks such as COCO detection. """, YOLOS_START_DOCSTRING, ) class YolosForObjectDetection(YolosPreTrainedModel): def __init__(self, config: YolosConfig): super().__init__(config) # YOLOS (ViT) encoder model self.vit = YolosModel(config, add_pooling_layer=False) # Object detection heads # We add one for the "no object" class self.class_labels_classifier = YolosMLPPredictionHead( input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=config.num_labels + 1, num_layers=3 ) self.bbox_predictor = YolosMLPPredictionHead( input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=4, num_layers=3 ) # Initialize weights and apply final processing self.post_init() # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] @add_start_docstrings_to_model_forward(YOLOS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=YolosObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[List[Dict]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, YolosObjectDetectionOutput]: r""" labels (`List[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the following 2 keys: `'class_labels'` and `'boxes'` (the class labels and bounding boxes of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoModelForObjectDetection >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny") >>> model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) >>> target_sizes = torch.tensor([image.size[::-1]]) >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[ ... 0 ... ] >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected remote with confidence 0.994 at location [46.96, 72.61, 181.02, 119.73] Detected remote with confidence 0.975 at location [340.66, 79.19, 372.59, 192.65] Detected cat with confidence 0.984 at location [12.27, 54.25, 319.42, 470.99] Detected remote with confidence 0.922 at location [41.66, 71.96, 178.7, 120.33] Detected cat with confidence 0.914 at location [342.34, 21.48, 638.64, 372.46] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # First, sent images through YOLOS base model to obtain hidden states outputs = self.vit( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # Take the final hidden states of the detection tokens sequence_output = sequence_output[:, -self.config.num_detection_tokens :, :] # Class logits + predicted bounding boxes logits = self.class_labels_classifier(sequence_output) pred_boxes = self.bbox_predictor(sequence_output).sigmoid() loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: # First: create the matcher matcher = YolosHungarianMatcher( class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost ) # Second: create the criterion losses = ["labels", "boxes", "cardinality"] criterion = YolosLoss( matcher=matcher, num_classes=self.config.num_labels, eos_coef=self.config.eos_coefficient, losses=losses, ) criterion.to(self.device) # Third: compute the losses, based on outputs and labels outputs_loss = {} outputs_loss["logits"] = logits outputs_loss["pred_boxes"] = pred_boxes if self.config.auxiliary_loss: intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] outputs_class = self.class_labels_classifier(intermediate) outputs_coord = self.bbox_predictor(intermediate).sigmoid() auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord) outputs_loss["auxiliary_outputs"] = auxiliary_outputs loss_dict = criterion(outputs_loss, labels) # Fourth: compute total loss, as a weighted sum of the various losses weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} weight_dict["loss_giou"] = self.config.giou_loss_coefficient if self.config.auxiliary_loss: aux_weight_dict = {} for i in range(self.config.decoder_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes) + auxiliary_outputs + outputs else: output = (logits, pred_boxes) + outputs return ((loss, loss_dict) + output) if loss is not None else output return YolosObjectDetectionOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, auxiliary_outputs=auxiliary_outputs, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.detr.modeling_detr.dice_loss def dice_loss(inputs, targets, num_boxes): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_boxes # Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs (`torch.FloatTensor` of arbitrary shape): The predictions for each example. targets (`torch.FloatTensor` with the same shape as `inputs`) A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class and 1 for the positive class). alpha (`float`, *optional*, defaults to `0.25`): Optional weighting factor in the range (0,1) to balance positive vs. negative examples. gamma (`int`, *optional*, defaults to `2`): Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") # add modulating factor p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes # Copied from transformers.models.detr.modeling_detr.DetrLoss with Detr->Yolos class YolosLoss(nn.Module): """ This class computes the losses for YolosForObjectDetection/YolosForSegmentation. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box). A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes` parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2 (`max_obj_id` + 1). For more details on this, check the following discussion https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223" Args: matcher (`YolosHungarianMatcher`): Module able to compute a matching between targets and proposals. num_classes (`int`): Number of object categories, omitting the special no-object category. eos_coef (`float`): Relative classification weight applied to the no-object category. losses (`List[str]`): List of all the losses to be applied. See `get_loss` for a list of all available losses. """ def __init__(self, matcher, num_classes, eos_coef, losses): super().__init__() self.matcher = matcher self.num_classes = num_classes self.eos_coef = eos_coef self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) # removed logging parameter, which was part of the original implementation def loss_labels(self, outputs, targets, indices, num_boxes): """ Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim [nb_target_boxes] """ if "logits" not in outputs: raise KeyError("No logits were found in the outputs") source_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device ) target_classes[idx] = target_classes_o loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight) losses = {"loss_ce": loss_ce} return losses @torch.no_grad() def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. """ logits = outputs["logits"] device = logits.device target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) losses = {"cardinality_error": card_err} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ if "pred_boxes" not in outputs: raise KeyError("No predicted boxes found in outputs") idx = self._get_source_permutation_idx(indices) source_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag( generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) ) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses def loss_masks(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the masks: the focal loss and the dice loss. Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. """ if "pred_masks" not in outputs: raise KeyError("No predicted masks found in outputs") source_idx = self._get_source_permutation_idx(indices) target_idx = self._get_target_permutation_idx(indices) source_masks = outputs["pred_masks"] source_masks = source_masks[source_idx] masks = [t["masks"] for t in targets] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(source_masks) target_masks = target_masks[target_idx] # upsample predictions to the target size source_masks = nn.functional.interpolate( source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False ) source_masks = source_masks[:, 0].flatten(1) target_masks = target_masks.flatten(1) target_masks = target_masks.view(source_masks.shape) losses = { "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), "loss_dice": dice_loss(source_masks, target_masks, num_boxes), } return losses def _get_source_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) source_idx = torch.cat([source for (source, _) in indices]) return batch_idx, source_idx def _get_target_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) target_idx = torch.cat([target for (_, target) in indices]) return batch_idx, target_idx def get_loss(self, loss, outputs, targets, indices, num_boxes): loss_map = { "labels": self.loss_labels, "cardinality": self.loss_cardinality, "boxes": self.loss_boxes, "masks": self.loss_masks, } if loss not in loss_map: raise ValueError(f"Loss {loss} not supported") return loss_map[loss](outputs, targets, indices, num_boxes) def forward(self, outputs, targets): """ This performs the loss computation. Args: outputs (`dict`, *optional*): Dictionary of tensors, see the output specification of the model for the format. targets (`List[dict]`, *optional*): List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the losses applied, see each loss' doc. """ outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes across all nodes, for normalization purposes num_boxes = sum(len(t["class_labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) world_size = 1 if is_accelerate_available(): if PartialState._shared_state != {}: num_boxes = reduce(num_boxes) world_size = PartialState().num_processes num_boxes = torch.clamp(num_boxes / world_size, min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "auxiliary_outputs" in outputs: for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): indices = self.matcher(auxiliary_outputs, targets) for loss in self.losses: if loss == "masks": # Intermediate masks losses are too costly to compute, we ignore them. continue l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) return losses # Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with Detr->Yolos class YolosMLPPredictionHead(nn.Module): """ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, height and width of a bounding box w.r.t. an image. Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x # Copied from transformers.models.detr.modeling_detr.DetrHungarianMatcher with Detr->Yolos class YolosHungarianMatcher(nn.Module): """ This class computes an assignment between the targets and the predictions of the network. For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). Args: class_cost: The relative weight of the classification error in the matching cost. bbox_cost: The relative weight of the L1 error of the bounding box coordinates in the matching cost. giou_cost: The relative weight of the giou loss of the bounding box in the matching cost. """ def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): super().__init__() requires_backends(self, ["scipy"]) self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: raise ValueError("All costs of the Matcher can't be 0") @torch.no_grad() def forward(self, outputs, targets): """ Args: outputs (`dict`): A dictionary that contains at least these entries: * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. targets (`List[dict]`): A list of targets (len(targets) = batch_size), where each target is a dict containing: * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. Returns: `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ batch_size, num_queries = outputs["logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes target_ids = torch.cat([v["class_labels"] for v in targets]) target_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. class_cost = -out_prob[:, target_ids] # Compute the L1 cost between boxes bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) # Compute the giou cost between boxes giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) # Final cost matrix cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] # Copied from transformers.models.detr.modeling_detr._upcast def _upcast(t: Tensor) -> Tensor: # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() # Copied from transformers.models.detr.modeling_detr.box_area def box_area(boxes: Tensor) -> Tensor: """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. Args: boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 < x2` and `0 <= y1 < y2`. Returns: `torch.FloatTensor`: a tensor containing the area for each box. """ boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # Copied from transformers.models.detr.modeling_detr.box_iou def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union # Copied from transformers.models.detr.modeling_detr.generalized_box_iou def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. Returns: `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") iou, union = box_iou(boxes1, boxes2) top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] area = width_height[:, :, 0] * width_height[:, :, 1] return iou - (area - union) / area # Copied from transformers.models.detr.modeling_detr._max_by_axis def _max_by_axis(the_list): # type: (List[List[int]]) -> List[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes # Copied from transformers.models.detr.modeling_detr.NestedTensor class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) # Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): if tensor_list[0].ndim == 3: max_size = _max_by_axis([list(img.shape) for img in tensor_list]) batch_shape = [len(tensor_list)] + max_size batch_size, num_channels, height, width = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False else: raise ValueError("Only 3-dimensional tensors are supported") return NestedTensor(tensor, mask)
transformers/src/transformers/models/yolos/modeling_yolos.py/0
{ "file_path": "transformers/src/transformers/models/yolos/modeling_yolos.py", "repo_id": "transformers", "token_count": 24169 }
401
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import TYPE_CHECKING, Dict, Optional, Union import numpy as np import requests from ..tokenization_utils import PreTrainedTokenizer from ..utils import is_torch_available, is_torchaudio_available, logging from .audio_utils import ffmpeg_read from .base import ChunkPipeline if TYPE_CHECKING: from pyctcdecode import BeamSearchDecoderCTC from ..feature_extraction_sequence_utils import SequenceFeatureExtractor from ..modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES def rescale_stride(stride, ratio): """ Rescales the stride values from audio space to tokens/logits space. (160_000, 16_000, 16_000) -> (2000, 200, 200) for instance. """ # Shape is [B, SEQ] for tokens # [B, SEQ, V] for logits new_strides = [] for input_n, left, right in stride: token_n = int(round(input_n * ratio)) left = int(round(left / input_n * token_n)) right = int(round(right / input_n * token_n)) new_stride = (token_n, left, right) new_strides.append(new_stride) return new_strides def chunk_iter(inputs, feature_extractor, chunk_len, stride_left, stride_right, dtype=None): inputs_len = inputs.shape[0] step = chunk_len - stride_left - stride_right for chunk_start_idx in range(0, inputs_len, step): chunk_end_idx = chunk_start_idx + chunk_len chunk = inputs[chunk_start_idx:chunk_end_idx] processed = feature_extractor(chunk, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt") if dtype is not None: processed = processed.to(dtype=dtype) _stride_left = 0 if chunk_start_idx == 0 else stride_left # all right strides must be full, otherwise it is the last item is_last = chunk_end_idx > inputs_len if stride_right > 0 else chunk_end_idx >= inputs_len _stride_right = 0 if is_last else stride_right chunk_len = chunk.shape[0] stride = (chunk_len, _stride_left, _stride_right) if chunk.shape[0] > _stride_left: yield {"is_last": is_last, "stride": stride, **processed} if is_last: break def _fast_find_longest_common_sequence(sequence_left, sequence_right): seq_len_left = len(sequence_left) seq_len_right = len(sequence_right) counter = [[0] * (seq_len_right + 1) for _ in range(seq_len_left + 1)] longest = 0 for i in range(seq_len_left): for j in range(seq_len_right): if sequence_left[i] == sequence_right[j]: previous_counter = counter[i][j] + 1 counter[i + 1][j + 1] = previous_counter if previous_counter > longest: longest = previous_counter counter = np.array(counter) # we return the idx of the first element of the longest common sequence in the left sequence index_left = np.argwhere(counter == longest)[-1][0] - longest if longest != 0 else -1 index_right = np.argwhere(counter == longest)[-1][1] - longest if longest != 0 else -1 return index_left, index_right, longest def _find_longest_common_sequence(sequences, tokenizer): # TODO Use a faster algorithm this can probably be done in O(n) # using suffix array. # It might be tedious to do because of fault tolerance. # We actually have a really good property which is that the total sequence # MUST be those subsequences in order. # Also the algorithm should be more tolerant to errors. sequence = [tok_id for tok_id in sequences[0][0].tolist() if tok_id not in tokenizer.all_special_ids] for new_seq in sequences[1:]: new_sequence = [tok_id for tok_id in new_seq[0].tolist() if tok_id not in tokenizer.all_special_ids] index = 0 max_ = 0.0 for i in range(1, len(new_sequence) + 1): # epsilon to favor long perfect matches eps = i / 10000.0 matches = np.sum(np.array(sequence[-i:]) == np.array(new_sequence[:i])) matching = matches / i + eps if matches > 1 and matching > max_: index = i max_ = matching sequence.extend(new_sequence[index:]) return np.array(sequence) class AutomaticSpeechRecognitionPipeline(ChunkPipeline): """ Pipeline that aims at extracting spoken text contained within some audio. The input can be either a raw waveform or a audio file. In case of the audio file, ffmpeg should be installed for to support multiple audio formats Example: ```python >>> from transformers import pipeline >>> transcriber = pipeline(model="openai/whisper-base") >>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac") {'text': ' He hoped there would be stew for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered flour-fatten sauce.'} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. feature_extractor ([`SequenceFeatureExtractor`]): The feature extractor that will be used by the pipeline to encode waveform for the model. tokenizer ([`PreTrainedTokenizer`]): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from [`PreTrainedTokenizer`]. decoder (`pyctcdecode.BeamSearchDecoderCTC`, *optional*): [PyCTCDecode's BeamSearchDecoderCTC](https://github.com/kensho-technologies/pyctcdecode/blob/2fd33dc37c4111417e08d89ccd23d28e9b308d19/pyctcdecode/decoder.py#L180) can be passed for language model boosted decoding. See [`Wav2Vec2ProcessorWithLM`] for more information. chunk_length_s (`float`, *optional*, defaults to 0): The input length for in each chunk. If `chunk_length_s = 0` then chunking is disabled (default). <Tip> For more information on how to effectively use `chunk_length_s`, please have a look at the [ASR chunking blog post](https://huggingface.co/blog/asr-chunking). </Tip> stride_length_s (`float`, *optional*, defaults to `chunk_length_s / 6`): The length of stride on the left and right of each chunk. Used only with `chunk_length_s > 0`. This enables the model to *see* more context and infer letters better than without this context but the pipeline discards the stride bits at the end to make the final reconstitution as perfect as possible. <Tip> For more information on how to effectively use `stride_length_s`, please have a look at the [ASR chunking blog post](https://huggingface.co/blog/asr-chunking). </Tip> framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. device (Union[`int`, `torch.device`], *optional*): Device ordinal for CPU/GPU supports. Setting this to `None` will leverage CPU, a positive will run the model on the associated CUDA device id. torch_dtype (Union[`int`, `torch.dtype`], *optional*): The data-type (dtype) of the computation. Setting this to `None` will use float32 precision. Set to `torch.float16` or `torch.bfloat16` to use half-precision in the respective dtypes. """ def __init__( self, model: "PreTrainedModel", feature_extractor: Union["SequenceFeatureExtractor", str] = None, tokenizer: Optional[PreTrainedTokenizer] = None, decoder: Optional[Union["BeamSearchDecoderCTC", str]] = None, device: Union[int, "torch.device"] = None, torch_dtype: Optional[Union[str, "torch.dtype"]] = None, **kwargs, ): # set the model type so we can check we have the right pre- and post-processing parameters if model.config.model_type == "whisper": self.type = "seq2seq_whisper" elif model.__class__.__name__ in MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.values(): self.type = "seq2seq" elif ( feature_extractor._processor_class and feature_extractor._processor_class.endswith("WithLM") and decoder is not None ): self.decoder = decoder self.type = "ctc_with_lm" else: self.type = "ctc" super().__init__(model, tokenizer, feature_extractor, device=device, torch_dtype=torch_dtype, **kwargs) def __call__( self, inputs: Union[np.ndarray, bytes, str], **kwargs, ): """ Transcribe the audio sequence(s) given as inputs to text. See the [`AutomaticSpeechRecognitionPipeline`] documentation for more information. Args: inputs (`np.ndarray` or `bytes` or `str` or `dict`): The inputs is either : - `str` that is either the filename of a local audio file, or a public URL address to download the audio file. The file will be read at the correct sampling rate to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system. - `bytes` it is supposed to be the content of an audio file and is interpreted by *ffmpeg* in the same way. - (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`) Raw audio at the correct sampling rate (no further check will be done) - `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "raw": np.array}` with optionally a `"stride": (left: int, right: int)` than can ask the pipeline to treat the first `left` samples and last `right` samples to be ignored in decoding (but used at inference to provide more context to the model). Only use `stride` with CTC models. return_timestamps (*optional*, `str` or `bool`): Only available for pure CTC models (Wav2Vec2, HuBERT, etc) and the Whisper model. Not available for other sequence-to-sequence models. For CTC models, timestamps can take one of two formats: - `"char"`: the pipeline will return timestamps along the text for every character in the text. For instance, if you get `[{"text": "h", "timestamp": (0.5, 0.6)}, {"text": "i", "timestamp": (0.7, 0.9)}]`, then it means the model predicts that the letter "h" was spoken after `0.5` and before `0.6` seconds. - `"word"`: the pipeline will return timestamps along the text for every word in the text. For instance, if you get `[{"text": "hi ", "timestamp": (0.5, 0.9)}, {"text": "there", "timestamp": (1.0, 1.5)}]`, then it means the model predicts that the word "hi" was spoken after `0.5` and before `0.9` seconds. For the Whisper model, timestamps can take one of two formats: - `"word"`: same as above for word-level CTC timestamps. Word-level timestamps are predicted through the *dynamic-time warping (DTW)* algorithm, an approximation to word-level timestamps by inspecting the cross-attention weights. - `True`: the pipeline will return timestamps along the text for *segments* of words in the text. For instance, if you get `[{"text": " Hi there!", "timestamp": (0.5, 1.5)}]`, then it means the model predicts that the segment "Hi there!" was spoken after `0.5` and before `1.5` seconds. Note that a segment of text refers to a sequence of one or more words, rather than individual words as with word-level timestamps. generate_kwargs (`dict`, *optional*): The dictionary of ad-hoc parametrization of `generate_config` to be used for the generation call. For a complete overview of generate, check the [following guide](https://huggingface.co/docs/transformers/en/main_classes/text_generation). max_new_tokens (`int`, *optional*): The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt. Return: `Dict`: A dictionary with the following keys: - **text** (`str`): The recognized text. - **chunks** (*optional(, `List[Dict]`) When using `return_timestamps`, the `chunks` will become a list containing all the various text chunks identified by the model, *e.g.* `[{"text": "hi ", "timestamp": (0.5, 0.9)}, {"text": "there", "timestamp": (1.0, 1.5)}]`. The original full text can roughly be recovered by doing `"".join(chunk["text"] for chunk in output["chunks"])`. """ return super().__call__(inputs, **kwargs) def _sanitize_parameters( self, chunk_length_s=None, stride_length_s=None, ignore_warning=None, decoder_kwargs=None, return_timestamps=None, return_language=None, generate_kwargs=None, max_new_tokens=None, ): # No parameters on this pipeline right now preprocess_params = {} if chunk_length_s is not None: if self.type == "seq2seq" and not ignore_warning: logger.warning( "Using `chunk_length_s` is very experimental with seq2seq models. The results will not necessarily" " be entirely accurate and will have caveats. More information:" " https://github.com/huggingface/transformers/pull/20104. Ignore this warning with pipeline(...," " ignore_warning=True)" ) preprocess_params["chunk_length_s"] = chunk_length_s if stride_length_s is not None: preprocess_params["stride_length_s"] = stride_length_s forward_params = defaultdict(dict) if max_new_tokens is not None: forward_params["max_new_tokens"] = max_new_tokens if generate_kwargs is not None: if max_new_tokens is not None and "max_new_tokens" in generate_kwargs: raise ValueError( "`max_new_tokens` is defined both as an argument and inside `generate_kwargs` argument, please use" " only 1 version" ) forward_params.update(generate_kwargs) postprocess_params = {} if decoder_kwargs is not None: postprocess_params["decoder_kwargs"] = decoder_kwargs if return_timestamps is not None: # Check whether we have a valid setting for return_timestamps and throw an error before we perform a forward pass if self.type == "seq2seq" and return_timestamps: raise ValueError("We cannot return_timestamps yet on non-CTC models apart from Whisper!") if self.type == "ctc_with_lm" and return_timestamps != "word": raise ValueError("CTC with LM can only predict word level timestamps, set `return_timestamps='word'`") if self.type == "ctc" and return_timestamps not in ["char", "word"]: raise ValueError( "CTC can either predict character level timestamps, or word level timestamps. " "Set `return_timestamps='char'` or `return_timestamps='word'` as required." ) if self.type == "seq2seq_whisper" and return_timestamps == "char": raise ValueError( "Whisper cannot return `char` timestamps, only word level or segment level timestamps. " "Use `return_timestamps='word'` or `return_timestamps=True` respectively." ) forward_params["return_timestamps"] = return_timestamps postprocess_params["return_timestamps"] = return_timestamps if return_language is not None: if self.type != "seq2seq_whisper": raise ValueError("Only Whisper can return language for now.") postprocess_params["return_language"] = return_language return preprocess_params, forward_params, postprocess_params def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None): if isinstance(inputs, str): if inputs.startswith("http://") or inputs.startswith("https://"): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png inputs = requests.get(inputs).content else: with open(inputs, "rb") as f: inputs = f.read() if isinstance(inputs, bytes): inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate) stride = None extra = {} if isinstance(inputs, dict): stride = inputs.pop("stride", None) # Accepting `"array"` which is the key defined in `datasets` for # better integration if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)): raise ValueError( "When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a " '"raw" key containing the numpy array representing the audio and a "sampling_rate" key, ' "containing the sampling_rate associated with that array" ) _inputs = inputs.pop("raw", None) if _inputs is None: # Remove path which will not be used from `datasets`. inputs.pop("path", None) _inputs = inputs.pop("array", None) in_sampling_rate = inputs.pop("sampling_rate") extra = inputs inputs = _inputs if in_sampling_rate != self.feature_extractor.sampling_rate: if is_torchaudio_available(): from torchaudio import functional as F else: raise ImportError( "torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. " "The torchaudio package can be installed through: `pip install torchaudio`." ) inputs = F.resample( torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate ).numpy() ratio = self.feature_extractor.sampling_rate / in_sampling_rate else: ratio = 1 if stride is not None: if stride[0] + stride[1] > inputs.shape[0]: raise ValueError("Stride is too large for input") # Stride needs to get the chunk length here, it's going to get # swallowed by the `feature_extractor` later, and then batching # can add extra data in the inputs, so we need to keep track # of the original length in the stride so we can cut properly. stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio))) if not isinstance(inputs, np.ndarray): raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`") if len(inputs.shape) != 1: raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline") if chunk_length_s: if stride_length_s is None: stride_length_s = chunk_length_s / 6 if isinstance(stride_length_s, (int, float)): stride_length_s = [stride_length_s, stride_length_s] # XXX: Carefuly, this variable will not exist in `seq2seq` setting. # Currently chunking is not possible at this level for `seq2seq` so # it's ok. align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1) chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to) stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to) stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to) if chunk_len < stride_left + stride_right: raise ValueError("Chunk length must be superior to stride length") for item in chunk_iter( inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype ): yield item else: if self.type == "seq2seq_whisper" and inputs.shape[0] > self.feature_extractor.n_samples: processed = self.feature_extractor( inputs, sampling_rate=self.feature_extractor.sampling_rate, truncation=False, padding="longest", return_tensors="pt", ) else: processed = self.feature_extractor( inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt" ) if self.torch_dtype is not None: processed = processed.to(dtype=self.torch_dtype) if stride is not None: if self.type == "seq2seq": raise ValueError("Stride is only usable with CTC models, try removing it !") processed["stride"] = stride yield {"is_last": True, **processed, **extra} def _forward(self, model_inputs, return_timestamps=False, **generate_kwargs): attention_mask = model_inputs.pop("attention_mask", None) stride = model_inputs.pop("stride", None) is_last = model_inputs.pop("is_last") if self.type in {"seq2seq", "seq2seq_whisper"}: encoder = self.model.get_encoder() # Consume values so we can let extra information flow freely through # the pipeline (important for `partial` in microphone) if "input_features" in model_inputs: inputs = model_inputs.pop("input_features") elif "input_values" in model_inputs: inputs = model_inputs.pop("input_values") else: raise ValueError( "Seq2Seq speech recognition model requires either a " f"`input_features` or `input_values` key, but only has {model_inputs.keys()}" ) # custom processing for Whisper timestamps and word-level timestamps if return_timestamps and self.type == "seq2seq_whisper": generate_kwargs["return_timestamps"] = return_timestamps if return_timestamps == "word": generate_kwargs["return_token_timestamps"] = True generate_kwargs["return_segments"] = True if stride is not None: if isinstance(stride, tuple): generate_kwargs["num_frames"] = stride[0] // self.feature_extractor.hop_length else: generate_kwargs["num_frames"] = [s[0] // self.feature_extractor.hop_length for s in stride] if self.type == "seq2seq_whisper" and inputs.shape[-1] > self.feature_extractor.nb_max_frames: generate_kwargs["input_features"] = inputs else: generate_kwargs["encoder_outputs"] = encoder(inputs, attention_mask=attention_mask) tokens = self.model.generate( attention_mask=attention_mask, **generate_kwargs, ) # whisper longform generation stores timestamps in "segments" if return_timestamps == "word" and self.type == "seq2seq_whisper": if "segments" not in tokens: out = {"tokens": tokens["sequences"], "token_timestamps": tokens["token_timestamps"]} else: token_timestamps = [ torch.cat([segment["token_timestamps"] for segment in segment_list]) for segment_list in tokens["segments"] ] out = {"tokens": tokens["sequences"], "token_timestamps": token_timestamps} else: out = {"tokens": tokens} if self.type == "seq2seq_whisper": if stride is not None: out["stride"] = stride else: inputs = { self.model.main_input_name: model_inputs.pop(self.model.main_input_name), "attention_mask": attention_mask, } outputs = self.model(**inputs) logits = outputs.logits if self.type == "ctc_with_lm": out = {"logits": logits} else: out = {"tokens": logits.argmax(dim=-1)} if stride is not None: # Send stride to `postprocess`. # it needs to be handled there where # the pieces are to be concatenated. ratio = 1 / self.model.config.inputs_to_logits_ratio if isinstance(stride, tuple): out["stride"] = rescale_stride([stride], ratio)[0] else: out["stride"] = rescale_stride(stride, ratio) # Leftover extra = model_inputs return {"is_last": is_last, **out, **extra} def postprocess( self, model_outputs, decoder_kwargs: Optional[Dict] = None, return_timestamps=None, return_language=None ): # Optional return types optional = {} final_items = [] key = "logits" if self.type == "ctc_with_lm" else "tokens" stride = None for outputs in model_outputs: items = outputs[key].numpy() stride = outputs.get("stride", None) if stride is not None and self.type in {"ctc", "ctc_with_lm"}: total_n, left, right = stride # Total_n might be < logits.shape[1] # because of padding, that's why # we need to reconstruct this information # This won't work with left padding (which doesn't exist right now) right_n = total_n - right items = items[:, left:right_n] final_items.append(items) if stride and self.type == "seq2seq": items = _find_longest_common_sequence(final_items, self.tokenizer) elif self.type == "seq2seq_whisper": time_precision = self.feature_extractor.chunk_length / self.model.config.max_source_positions # Send the chunking back to seconds, it's easier to handle in whisper sampling_rate = self.feature_extractor.sampling_rate for output in model_outputs: if "stride" in output: chunk_len, stride_left, stride_right = output["stride"] # Go back in seconds chunk_len /= sampling_rate stride_left /= sampling_rate stride_right /= sampling_rate output["stride"] = chunk_len, stride_left, stride_right text, optional = self.tokenizer._decode_asr( model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) else: items = np.concatenate(final_items, axis=1) items = items.squeeze(0) if self.type == "ctc_with_lm": if decoder_kwargs is None: decoder_kwargs = {} beams = self.decoder.decode_beams(items, **decoder_kwargs) text = beams[0][0] if return_timestamps: # Simply cast from pyctcdecode format to wav2vec2 format to leverage # pre-existing code later chunk_offset = beams[0][2] offsets = [] for word, (start_offset, end_offset) in chunk_offset: offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset}) elif self.type != "seq2seq_whisper": skip_special_tokens = self.type != "ctc" text = self.tokenizer.decode(items, skip_special_tokens=skip_special_tokens) if return_timestamps: offsets = self.tokenizer.decode( items, skip_special_tokens=skip_special_tokens, output_char_offsets=True )["char_offsets"] if return_timestamps == "word": offsets = self.tokenizer._get_word_offsets(offsets, self.tokenizer.replace_word_delimiter_char) if return_timestamps and self.type not in {"seq2seq", "seq2seq_whisper"}: chunks = [] for item in offsets: start = item["start_offset"] * self.model.config.inputs_to_logits_ratio start /= self.feature_extractor.sampling_rate stop = item["end_offset"] * self.model.config.inputs_to_logits_ratio stop /= self.feature_extractor.sampling_rate chunks.append({"text": item[return_timestamps], "timestamp": (start, stop)}) optional["chunks"] = chunks extra = defaultdict(list) for output in model_outputs: output.pop("tokens", None) output.pop("logits", None) output.pop("is_last", None) output.pop("stride", None) output.pop("token_timestamps", None) for k, v in output.items(): extra[k].append(v) return {"text": text, **optional, **extra} def _find_timestamp_sequence(sequences, tokenizer, feature_extractor, max_source_positions): """ Computes the final sequences by merging the end of the nth sequence with the beginning of the n+1th sequence. Since `WhisperForConditionalGeneration` produces the timestamps pairwise, we filter the consecutive timestamps and only iterate over them. We keep track of the `time` which indicates the actual starting time of the chunk that is processed. We need to make sure to offset the timestamps tokens by the `time` in order for the tokenizer to properly compute the final `offset`. """ # index of the first timestamp token timestamp_begin = tokenizer.convert_tokens_to_ids("<|notimestamps|>") + 1 items = [] # approximation of the token to time ratio : ~0.2seconds time_precision = feature_extractor.chunk_length / max_source_positions time = 0 for seq_idx, item in enumerate(sequences): sequence, stride = item if isinstance(sequence, list): sequence = np.array(sequence) chunk_len, stride_left, stride_right = stride sequence = sequence.squeeze(0) # get rid of the `forced_decoder_idx` that are use to parametrize the generation begin_idx = np.where(sequence == timestamp_begin)[0][0] if timestamp_begin in sequence else 0 sequence = sequence[begin_idx:] timestamp_tokens = sequence >= timestamp_begin if seq_idx != 0 and sum(timestamp_tokens) > 0: consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 last_timestamp = np.where(timestamp_tokens)[0][-1] consecutive = np.append(consecutive, last_timestamp) if last_timestamp not in consecutive else consecutive time -= stride_left + stride_right offset = int((time / feature_extractor.sampling_rate) / time_precision) overlap_time = int((stride_left / feature_extractor.sampling_rate) / time_precision) # relevant timestamps are in the overlapping part relevant_timestamp = np.where(sequence[consecutive] >= timestamp_begin + overlap_time)[0] if relevant_timestamp.shape[0] > 0: relevant_timestamp = ( consecutive[relevant_timestamp[0] - 1] if relevant_timestamp[0] > 0 else consecutive[0] ) # if a big stride is used, we need to check some of the previous items for the best overlap best_match = 0 sliced_sequence = [] for idx, previous_sequence in enumerate(reversed(items)): previous_tokens = previous_sequence[1:-1] if previous_sequence[0] < (timestamp_begin + offset - overlap_time) and idx != 0: break # the previous sequence is too far in the past if len(previous_tokens) > 0: # find the longest common sequence between the overlapping parts index_left, index_right, match_length = _fast_find_longest_common_sequence( sequence[1:relevant_timestamp], previous_tokens ) # don't do anything if only 1 token was matched if match_length > 1 and match_length > best_match: best_match = match_length best_idx = idx end_of_curr_sequence_idx = ( np.where(sequence[index_left + 1 :] >= timestamp_begin)[0][0] + 1 ) end_of_curr_sequence_idx = end_of_curr_sequence_idx + 1 + index_left # if all the tokens are matched, suffix if index_left == 0 and match_length == len(previous_tokens): sliced_sequence = np.insert( sequence[index_left + 1 : end_of_curr_sequence_idx], 0, previous_sequence[0] ) sliced_sequence[-1] = previous_sequence[-1] # if part of the previous sequence is not taken elif index_left >= 0: sliced_sequence = sequence[index_left + 1 : end_of_curr_sequence_idx] # let's insert the missing part of the previous sequence previous_slice = ( previous_sequence[: index_right + 1] if index_right > 0 else [previous_sequence[0]] ) sliced_sequence = np.insert(sliced_sequence, 0, previous_slice) sliced_sequence[-1] += offset if len(sliced_sequence) > 0: items[len(items) - best_idx - 1] = sliced_sequence items = items[: len(items) - best_idx] sequence = sequence[end_of_curr_sequence_idx:] # sequence might have changed timestamp_tokens = sequence >= timestamp_begin consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 if sum(timestamp_tokens) > 0: last_timestamp = np.where(timestamp_tokens)[0][-1] consecutive = ( np.append(consecutive, last_timestamp + 1) if last_timestamp not in consecutive else consecutive ) if len(consecutive) > 0: last_slice = 0 for current_slice in consecutive: actual_offset = items[-1][-1] if seq_idx != 0 or last_slice != 0 else sequence[0] sliced_tokens = sequence[last_slice:current_slice] duration = sliced_tokens[-1] - sliced_tokens[0] sliced_tokens[0] = actual_offset sliced_tokens[-1] = actual_offset + duration items.append(sliced_tokens) last_slice = current_slice time += chunk_len result = [] for i in range(len(items)): result += items[i].tolist() return result
transformers/src/transformers/pipelines/automatic_speech_recognition.py/0
{ "file_path": "transformers/src/transformers/pipelines/automatic_speech_recognition.py", "repo_id": "transformers", "token_count": 17163 }
402
import collections import types import numpy as np from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, requires_backends, ) from .base import ArgumentHandler, Dataset, Pipeline, PipelineException, build_pipeline_init_args if is_torch_available(): import torch from ..models.auto.modeling_auto import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, ) if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import ( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, ) class TableQuestionAnsweringArgumentHandler(ArgumentHandler): """ Handles arguments for the TableQuestionAnsweringPipeline """ def __call__(self, table=None, query=None, **kwargs): # Returns tqa_pipeline_inputs of shape: # [ # {"table": pd.DataFrame, "query": List[str]}, # ..., # {"table": pd.DataFrame, "query" : List[str]} # ] requires_backends(self, "pandas") import pandas as pd if table is None: raise ValueError("Keyword argument `table` cannot be None.") elif query is None: if isinstance(table, dict) and table.get("query") is not None and table.get("table") is not None: tqa_pipeline_inputs = [table] elif isinstance(table, list) and len(table) > 0: if not all(isinstance(d, dict) for d in table): raise ValueError( f"Keyword argument `table` should be a list of dict, but is {(type(d) for d in table)}" ) if table[0].get("query") is not None and table[0].get("table") is not None: tqa_pipeline_inputs = table else: raise ValueError( "If keyword argument `table` is a list of dictionaries, each dictionary should have a `table`" f" and `query` key, but only dictionary has keys {table[0].keys()} `table` and `query` keys." ) elif Dataset is not None and isinstance(table, Dataset) or isinstance(table, types.GeneratorType): return table else: raise ValueError( "Invalid input. Keyword argument `table` should be either of type `dict` or `list`, but " f"is {type(table)})" ) else: tqa_pipeline_inputs = [{"table": table, "query": query}] for tqa_pipeline_input in tqa_pipeline_inputs: if not isinstance(tqa_pipeline_input["table"], pd.DataFrame): if tqa_pipeline_input["table"] is None: raise ValueError("Table cannot be None.") tqa_pipeline_input["table"] = pd.DataFrame(tqa_pipeline_input["table"]) return tqa_pipeline_inputs @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class TableQuestionAnsweringPipeline(Pipeline): """ Table Question Answering pipeline using a `ModelForTableQuestionAnswering`. This pipeline is only available in PyTorch. Example: ```python >>> from transformers import pipeline >>> oracle = pipeline(model="google/tapas-base-finetuned-wtq") >>> table = { ... "Repository": ["Transformers", "Datasets", "Tokenizers"], ... "Stars": ["36542", "4512", "3934"], ... "Contributors": ["651", "77", "34"], ... "Programming language": ["Python", "Python", "Rust, Python and NodeJS"], ... } >>> oracle(query="How many stars does the transformers repository have?", table=table) {'answer': 'AVERAGE > 36542', 'coordinates': [(0, 1)], 'cells': ['36542'], 'aggregator': 'AVERAGE'} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This tabular question answering pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"table-question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a tabular question answering task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=table-question-answering). """ default_input_names = "table,query" def __init__(self, args_parser=TableQuestionAnsweringArgumentHandler(), *args, **kwargs): super().__init__(*args, **kwargs) self._args_parser = args_parser if self.framework == "tf": mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy() mapping.update(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES) else: mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy() mapping.update(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES) self.check_model_type(mapping) self.aggregate = bool(getattr(self.model.config, "aggregation_labels", None)) and bool( getattr(self.model.config, "num_aggregation_labels", None) ) self.type = "tapas" if hasattr(self.model.config, "aggregation_labels") else None def batch_inference(self, **inputs): return self.model(**inputs) def sequential_inference(self, **inputs): """ Inference used for models that need to process sequences in a sequential fashion, like the SQA models which handle conversational query related to a table. """ if self.framework == "pt": all_logits = [] all_aggregations = [] prev_answers = None batch_size = inputs["input_ids"].shape[0] input_ids = inputs["input_ids"].to(self.device) attention_mask = inputs["attention_mask"].to(self.device) token_type_ids = inputs["token_type_ids"].to(self.device) token_type_ids_example = None for index in range(batch_size): # If sequences have already been processed, the token type IDs will be created according to the previous # answer. if prev_answers is not None: prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,) model_labels = np.zeros_like(prev_labels_example.cpu().numpy()) # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) for i in range(model_labels.shape[0]): segment_id = token_type_ids_example[:, 0].tolist()[i] col_id = token_type_ids_example[:, 1].tolist()[i] - 1 row_id = token_type_ids_example[:, 2].tolist()[i] - 1 if row_id >= 0 and col_id >= 0 and segment_id == 1: model_labels[i] = int(prev_answers[(col_id, row_id)]) token_type_ids_example[:, 3] = torch.from_numpy(model_labels).type(torch.long).to(self.device) input_ids_example = input_ids[index] attention_mask_example = attention_mask[index] # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) outputs = self.model( input_ids=input_ids_example.unsqueeze(0), attention_mask=attention_mask_example.unsqueeze(0), token_type_ids=token_type_ids_example.unsqueeze(0), ) logits = outputs.logits if self.aggregate: all_aggregations.append(outputs.logits_aggregation) all_logits.append(logits) dist_per_token = torch.distributions.Bernoulli(logits=logits) probabilities = dist_per_token.probs * attention_mask_example.type(torch.float32).to( dist_per_token.probs.device ) coords_to_probs = collections.defaultdict(list) for i, p in enumerate(probabilities.squeeze().tolist()): segment_id = token_type_ids_example[:, 0].tolist()[i] col = token_type_ids_example[:, 1].tolist()[i] - 1 row = token_type_ids_example[:, 2].tolist()[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: coords_to_probs[(col, row)].append(p) prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs} logits_batch = torch.cat(tuple(all_logits), 0) return (logits_batch,) if not self.aggregate else (logits_batch, torch.cat(tuple(all_aggregations), 0)) else: all_logits = [] all_aggregations = [] prev_answers = None batch_size = inputs["input_ids"].shape[0] input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] token_type_ids = inputs["token_type_ids"].numpy() token_type_ids_example = None for index in range(batch_size): # If sequences have already been processed, the token type IDs will be created according to the previous # answer. if prev_answers is not None: prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,) model_labels = np.zeros_like(prev_labels_example, dtype=np.int32) # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) for i in range(model_labels.shape[0]): segment_id = token_type_ids_example[:, 0].tolist()[i] col_id = token_type_ids_example[:, 1].tolist()[i] - 1 row_id = token_type_ids_example[:, 2].tolist()[i] - 1 if row_id >= 0 and col_id >= 0 and segment_id == 1: model_labels[i] = int(prev_answers[(col_id, row_id)]) token_type_ids_example[:, 3] = model_labels input_ids_example = input_ids[index] attention_mask_example = attention_mask[index] # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) outputs = self.model( input_ids=np.expand_dims(input_ids_example, axis=0), attention_mask=np.expand_dims(attention_mask_example, axis=0), token_type_ids=np.expand_dims(token_type_ids_example, axis=0), ) logits = outputs.logits if self.aggregate: all_aggregations.append(outputs.logits_aggregation) all_logits.append(logits) probabilities = tf.math.sigmoid(tf.cast(logits, tf.float32)) * tf.cast( attention_mask_example, tf.float32 ) coords_to_probs = collections.defaultdict(list) token_type_ids_example = token_type_ids_example for i, p in enumerate(tf.squeeze(probabilities).numpy().tolist()): segment_id = token_type_ids_example[:, 0].tolist()[i] col = token_type_ids_example[:, 1].tolist()[i] - 1 row = token_type_ids_example[:, 2].tolist()[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: coords_to_probs[(col, row)].append(p) prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs} logits_batch = tf.concat(tuple(all_logits), 0) return (logits_batch,) if not self.aggregate else (logits_batch, tf.concat(tuple(all_aggregations), 0)) def __call__(self, *args, **kwargs): r""" Answers queries according to a table. The pipeline accepts several types of inputs which are detailed below: - `pipeline(table, query)` - `pipeline(table, [query])` - `pipeline(table=table, query=query)` - `pipeline(table=table, query=[query])` - `pipeline({"table": table, "query": query})` - `pipeline({"table": table, "query": [query]})` - `pipeline([{"table": table, "query": query}, {"table": table, "query": query}])` The `table` argument should be a dict or a DataFrame built from that dict, containing the whole table: Example: ```python data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["56", "45", "59"], "number of movies": ["87", "53", "69"], "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"], } ``` This dictionary can be passed in as such, or can be converted to a pandas DataFrame: Example: ```python import pandas as pd table = pd.DataFrame.from_dict(data) ``` Args: table (`pd.DataFrame` or `Dict`): Pandas DataFrame or dictionary that will be converted to a DataFrame containing all the table values. See above for an example of dictionary. query (`str` or `List[str]`): Query or list of queries that will be sent to the model alongside the table. sequential (`bool`, *optional*, defaults to `False`): Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the inference to be done sequentially to extract relations within sequences, given their conversational nature. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). Return: A dictionary or a list of dictionaries containing results: Each result is a dictionary with the following keys: - **answer** (`str`) -- The answer of the query given the table. If there is an aggregator, the answer will be preceded by `AGGREGATOR >`. - **coordinates** (`List[Tuple[int, int]]`) -- Coordinates of the cells of the answers. - **cells** (`List[str]`) -- List of strings made up of the answer cell values. - **aggregator** (`str`) -- If the model has an aggregator, this returns the aggregator. """ pipeline_inputs = self._args_parser(*args, **kwargs) results = super().__call__(pipeline_inputs, **kwargs) if len(results) == 1: return results[0] return results def _sanitize_parameters(self, sequential=None, padding=None, truncation=None, **kwargs): preprocess_params = {} if padding is not None: preprocess_params["padding"] = padding if truncation is not None: preprocess_params["truncation"] = truncation forward_params = {} if sequential is not None: forward_params["sequential"] = sequential return preprocess_params, forward_params, {} def preprocess(self, pipeline_input, sequential=None, padding=True, truncation=None): if truncation is None: if self.type == "tapas": truncation = "drop_rows_to_fit" else: truncation = "do_not_truncate" table, query = pipeline_input["table"], pipeline_input["query"] if table.empty: raise ValueError("table is empty") if query is None or query == "": raise ValueError("query is empty") inputs = self.tokenizer(table, query, return_tensors=self.framework, truncation=truncation, padding=padding) inputs["table"] = table return inputs def _forward(self, model_inputs, sequential=False, **generate_kwargs): table = model_inputs.pop("table") if self.type == "tapas": if sequential: outputs = self.sequential_inference(**model_inputs) else: outputs = self.batch_inference(**model_inputs) else: outputs = self.model.generate(**model_inputs, **generate_kwargs) model_outputs = {"model_inputs": model_inputs, "table": table, "outputs": outputs} return model_outputs def postprocess(self, model_outputs): inputs = model_outputs["model_inputs"] table = model_outputs["table"] outputs = model_outputs["outputs"] if self.type == "tapas": if self.aggregate: logits, logits_agg = outputs[:2] predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits, logits_agg) answer_coordinates_batch, agg_predictions = predictions aggregators = {i: self.model.config.aggregation_labels[pred] for i, pred in enumerate(agg_predictions)} no_agg_label_index = self.model.config.no_aggregation_label_index aggregators_prefix = { i: aggregators[i] + " > " for i, pred in enumerate(agg_predictions) if pred != no_agg_label_index } else: logits = outputs[0] predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits) answer_coordinates_batch = predictions[0] aggregators = {} aggregators_prefix = {} answers = [] for index, coordinates in enumerate(answer_coordinates_batch): cells = [table.iat[coordinate] for coordinate in coordinates] aggregator = aggregators.get(index, "") aggregator_prefix = aggregators_prefix.get(index, "") answer = { "answer": aggregator_prefix + ", ".join(cells), "coordinates": coordinates, "cells": [table.iat[coordinate] for coordinate in coordinates], } if aggregator: answer["aggregator"] = aggregator answers.append(answer) if len(answer) == 0: raise PipelineException("Empty answer") else: answers = [{"answer": answer} for answer in self.tokenizer.batch_decode(outputs, skip_special_tokens=True)] return answers if len(answers) > 1 else answers[0]
transformers/src/transformers/pipelines/table_question_answering.py/0
{ "file_path": "transformers/src/transformers/pipelines/table_question_answering.py", "repo_id": "transformers", "token_count": 9176 }
403
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from ..utils import is_torch_available from ..utils.quantization_config import QuantizationConfigMixin if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel if is_torch_available(): import torch class HfQuantizer(ABC): """ Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization. This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method yet. Attributes quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`): The quantization config that defines the quantization parameters of your model that you want to quantize. modules_to_not_convert (`List[str]`, *optional*): The list of module names to not convert when quantizing the model. required_packages (`List[str]`, *optional*): The list of required pip packages to install prior to using the quantizer requires_calibration (`bool`): Whether the quantization method requires to calibrate the model before using it. requires_parameters_quantization (`bool`): Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is required to create a new xxxParameter in order to properly quantize the model. """ requires_calibration = False required_packages = None requires_parameters_quantization = False def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): self.quantization_config = quantization_config # -- Handle extra kwargs below -- self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", []) self.pre_quantized = kwargs.pop("pre_quantized", True) if not self.pre_quantized and self.requires_calibration: raise ValueError( f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized." f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to " f"pass `pre_quantized=True` while knowing what you are doing." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Some quantization methods require to explicitly set the dtype of the model to a target dtype. You need to override this method in case you want to make sure that behavior is preserved Args: torch_dtype (`torch.dtype`): The input dtype that is passed in `from_pretrained` """ return torch_dtype def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: """ Override this method if you want to pass a override the existing device map with a new one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is passed, the device_map is set to `"auto"`` Args: device_map (`Union[dict, str]`, *optional*): The device_map that is passed through the `from_pretrained` method. """ return device_map def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained` to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype` to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`. Args: torch_dtype (`torch.dtype`, *optional*): The torch_dtype that is used to compute the device_map. """ return torch_dtype def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: """ Override this method if you want to adjust the `missing_keys`. Args: missing_keys (`List[str]`, *optional*): The list of missing keys in the checkpoint compared to the state dict of the model """ return missing_keys def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]: """ returns dtypes for modules that are not quantized - used for the computation of the device_map in case one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified in `_process_model_before_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize torch_dtype (`torch.dtype`): The dtype passed in `from_pretrained` method. """ return { name: torch_dtype for name, _ in model.named_parameters() if any(m in name for m in self.modules_to_not_convert) } def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: """adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization""" return max_memory def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: """ checks if a loaded state_dict component is part of quantized param + some validation; only defined if requires_parameters_quantization == True for quantization methods that require to create a new parameters for quantization. """ return False def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter": """ takes needed components from state_dict and creates quantized param; only applicable if requires_parameters_quantization == True """ if not self.requires_parameters_quantization: raise AttributeError( f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}." ) def validate_environment(self, *args, **kwargs): """ This method is used to potentially check for potential conflicts with arguments that are passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers. If no explicit check are needed, simply return nothing. """ return def preprocess_model(self, model: "PreTrainedModel", **kwargs): """ Setting model attributes and/or converting model before weights loading. At this point the model should be initialized on the meta device so you can freely manipulate the skeleton of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_before_weight_loading`. """ model.is_quantized = True model.quantization_method = self.quantization_config.quant_method return self._process_model_before_weight_loading(model, **kwargs) def postprocess_model(self, model: "PreTrainedModel", **kwargs): """ Post-process the model post weights loading. Make sure to override the abstract method `_process_model_after_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_after_weight_loading`. """ return self._process_model_after_weight_loading(model, **kwargs) @abstractmethod def _process_model_before_weight_loading(self, model, **kwargs): ... @abstractmethod def _process_model_after_weight_loading(self, model, **kwargs): ... @property @abstractmethod def is_serializable(self): ... @property @abstractmethod def is_trainable(self): ...
transformers/src/transformers/quantizers/base.py/0
{ "file_path": "transformers/src/transformers/quantizers/base.py", "repo_id": "transformers", "token_count": 3434 }
404
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Base classes common to both the slow and the fast tokenization classes: PreTrainedTokenizerBase (host all the user fronting encoding methods) Special token mixing (host the special tokens logic) and BatchEncoding (wrap the dictionary of output with special method for the Fast tokenizers) """ import copy import json import os import re import warnings from collections import UserDict from collections.abc import Mapping, Sized from contextlib import contextmanager from dataclasses import dataclass from functools import lru_cache from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union import numpy as np from packaging import version from . import __version__ from .dynamic_module_utils import custom_object_save from .utils import ( ExplicitEnum, PaddingStrategy, PushToHubMixin, TensorType, add_end_docstrings, add_model_info_to_auto_map, cached_file, copy_func, download_url, extract_commit_hash, is_flax_available, is_jax_tensor, is_mlx_available, is_numpy_array, is_offline_mode, is_remote_url, is_tf_available, is_tf_tensor, is_tokenizers_available, is_torch_available, is_torch_device, is_torch_tensor, logging, requires_backends, to_py_obj, ) if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf if is_flax_available(): import jax.numpy as jnp # noqa: F401 from .pipelines.conversational import Conversation if is_tokenizers_available(): from tokenizers import AddedToken from tokenizers import Encoding as EncodingFast else: @dataclass(frozen=False, eq=True) class AddedToken: """ AddedToken represents a token to be added to a Tokenizer An AddedToken can have special options defining the way it should behave. The `normalized` will default to `not special` if it is not specified, similarly to the definition in `tokenizers`. """ def __init__( self, content: str, single_word=False, lstrip=False, rstrip=False, special=False, normalized=None ): self.content = content self.single_word = single_word self.lstrip = lstrip self.rstrip = rstrip self.special = special self.normalized = normalized if normalized is not None else not special def __getstate__(self): return self.__dict__ def __str__(self): return self.content @dataclass class EncodingFast: """This is dummy class because without the `tokenizers` library we don't have these objects anyway""" pass logger = logging.get_logger(__name__) VERY_LARGE_INTEGER = int(1e30) # This is used to set the max input length for a model with infinite size input LARGE_INTEGER = int(1e20) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER # Define type aliases and NamedTuples TextInput = str PreTokenizedInput = List[str] EncodedInput = List[int] TextInputPair = Tuple[str, str] PreTokenizedInputPair = Tuple[List[str], List[str]] EncodedInputPair = Tuple[List[int], List[int]] # Slow tokenizers used to be saved in three separated files SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json" ADDED_TOKENS_FILE = "added_tokens.json" TOKENIZER_CONFIG_FILE = "tokenizer_config.json" # Fast tokenizers (provided by HuggingFace tokenizer's library) can be saved in a single file FULL_TOKENIZER_FILE = "tokenizer.json" _re_tokenizer_file = re.compile(r"tokenizer\.(.*)\.json") class TruncationStrategy(ExplicitEnum): """ Possible values for the `truncation` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ ONLY_FIRST = "only_first" ONLY_SECOND = "only_second" LONGEST_FIRST = "longest_first" DO_NOT_TRUNCATE = "do_not_truncate" class CharSpan(NamedTuple): """ Character span in the original string. Args: start (`int`): Index of the first character in the original string. end (`int`): Index of the character following the last character in the original string. """ start: int end: int class TokenSpan(NamedTuple): """ Token span in an encoded string (list of tokens). Args: start (`int`): Index of the first token in the span. end (`int`): Index of the token following the last token in the span. """ start: int end: int class BatchEncoding(UserDict): """ Holds the output of the [`~tokenization_utils_base.PreTrainedTokenizerBase.__call__`], [`~tokenization_utils_base.PreTrainedTokenizerBase.encode_plus`] and [`~tokenization_utils_base.PreTrainedTokenizerBase.batch_encode_plus`] methods (tokens, attention_masks, etc). This class is derived from a python dictionary and can be used as a dictionary. In addition, this class exposes utility methods to map from word/character space to token space. Args: data (`dict`, *optional*): Dictionary of lists/arrays/tensors returned by the `__call__`/`encode_plus`/`batch_encode_plus` methods ('input_ids', 'attention_mask', etc.). encoding (`tokenizers.Encoding` or `Sequence[tokenizers.Encoding]`, *optional*): If the tokenizer is a fast tokenizer which outputs additional information like mapping from word/character space to token space the `tokenizers.Encoding` instance or list of instance (for batches) hold this information. tensor_type (`Union[None, str, TensorType]`, *optional*): You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization. prepend_batch_axis (`bool`, *optional*, defaults to `False`): Whether or not to add a batch axis when converting to tensors (see `tensor_type` above). n_sequences (`Optional[int]`, *optional*): You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization. """ def __init__( self, data: Optional[Dict[str, Any]] = None, encoding: Optional[Union[EncodingFast, Sequence[EncodingFast]]] = None, tensor_type: Union[None, str, TensorType] = None, prepend_batch_axis: bool = False, n_sequences: Optional[int] = None, ): super().__init__(data) if isinstance(encoding, EncodingFast): encoding = [encoding] self._encodings = encoding if n_sequences is None and encoding is not None and len(encoding): n_sequences = encoding[0].n_sequences self._n_sequences = n_sequences self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis) @property def n_sequences(self) -> Optional[int]: """ `Optional[int]`: The number of sequences used to generate each sample from the batch encoded in this [`BatchEncoding`]. Currently can be one of `None` (unknown), `1` (a single sentence) or `2` (a pair of sentences) """ return self._n_sequences @property def is_fast(self) -> bool: """ `bool`: Indicate whether this [`BatchEncoding`] was generated from the result of a [`PreTrainedTokenizerFast`] or not. """ return self._encodings is not None def __getitem__(self, item: Union[int, str]) -> Union[Any, EncodingFast]: """ If the key is a string, returns the value of the dict associated to `key` ('input_ids', 'attention_mask', etc.). If the key is an integer, get the `tokenizers.Encoding` for batch item with index `key`. If the key is a slice, returns the value of the dict associated to `key` ('input_ids', 'attention_mask', etc.) with the constraint of slice. """ if isinstance(item, str): return self.data[item] elif self._encodings is not None: return self._encodings[item] elif isinstance(item, slice): return {key: self.data[key][item] for key in self.data.keys()} else: raise KeyError( "Invalid key. Only three types of key are available: " "(1) string, (2) integers for backend Encoding, and (3) slices for data subsetting." ) def __getattr__(self, item: str): try: return self.data[item] except KeyError: raise AttributeError def __getstate__(self): return {"data": self.data, "encodings": self._encodings} def __setstate__(self, state): if "data" in state: self.data = state["data"] if "encodings" in state: self._encodings = state["encodings"] def keys(self): return self.data.keys() def values(self): return self.data.values() def items(self): return self.data.items() # After this point: # Extended properties and methods only available for fast (Rust-based) tokenizers # provided by HuggingFace tokenizers library. @property def encodings(self) -> Optional[List[EncodingFast]]: """ `Optional[List[tokenizers.Encoding]]`: The list all encodings from the tokenization process. Returns `None` if the input was tokenized through Python (i.e., not a fast) tokenizer. """ return self._encodings def tokens(self, batch_index: int = 0) -> List[str]: """ Return the list of tokens (sub-parts of the input strings after word/subword splitting and before conversion to integer indices) at a given batch index (only works for the output of a fast tokenizer). Args: batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. Returns: `List[str]`: The list of tokens at that index. """ if not self._encodings: raise ValueError( "tokens() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" " class)." ) return self._encodings[batch_index].tokens def sequence_ids(self, batch_index: int = 0) -> List[Optional[int]]: """ Return a list mapping the tokens to the id of their original sentences: - `None` for special tokens added around or between sequences, - `0` for tokens corresponding to words in the first sequence, - `1` for tokens corresponding to words in the second sequence when a pair of sequences was jointly encoded. Args: batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. Returns: `List[Optional[int]]`: A list indicating the sequence id corresponding to each token. Special tokens added by the tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding sequence. """ if not self._encodings: raise ValueError( "sequence_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" " class)." ) return self._encodings[batch_index].sequence_ids def words(self, batch_index: int = 0) -> List[Optional[int]]: """ Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer. Args: batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. Returns: `List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word (several tokens will be mapped to the same word index if they are parts of that word). """ if not self._encodings: raise ValueError( "words() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" " class)." ) warnings.warn( "`BatchEncoding.words()` property is deprecated and should be replaced with the identical, " "but more self-explanatory `BatchEncoding.word_ids()` property.", FutureWarning, ) return self.word_ids(batch_index) def word_ids(self, batch_index: int = 0) -> List[Optional[int]]: """ Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer. Args: batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. Returns: `List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word (several tokens will be mapped to the same word index if they are parts of that word). """ if not self._encodings: raise ValueError( "word_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" " class)." ) return self._encodings[batch_index].word_ids def token_to_sequence(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int: """ Get the index of the sequence represented by the given token. In the general use case, this method returns `0` for a single sequence or the first sequence of a pair, and `1` for the second sequence of a pair Can be called as: - `self.token_to_sequence(token_index)` if batch size is 1 - `self.token_to_sequence(batch_index, token_index)` if batch size is greater than 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e., words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_token_index (`int`): Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of the token in the sequence. token_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the sequence. Returns: `int`: Index of the word in the input sequence. """ if not self._encodings: raise ValueError("token_to_sequence() is not available when using Python based tokenizers") if token_index is not None: batch_index = batch_or_token_index else: batch_index = 0 token_index = batch_or_token_index if batch_index < 0: batch_index = self._batch_size + batch_index if token_index < 0: token_index = self._seq_len + token_index return self._encodings[batch_index].token_to_sequence(token_index) def token_to_word(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int: """ Get the index of the word corresponding (i.e. comprising) to an encoded token in a sequence of the batch. Can be called as: - `self.token_to_word(token_index)` if batch size is 1 - `self.token_to_word(batch_index, token_index)` if batch size is greater than 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e., words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_token_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the token in the sequence. token_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the sequence. Returns: `int`: Index of the word in the input sequence. """ if not self._encodings: raise ValueError("token_to_word() is not available when using Python based tokenizers") if token_index is not None: batch_index = batch_or_token_index else: batch_index = 0 token_index = batch_or_token_index if batch_index < 0: batch_index = self._batch_size + batch_index if token_index < 0: token_index = self._seq_len + token_index return self._encodings[batch_index].token_to_word(token_index) def word_to_tokens( self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0 ) -> Optional[TokenSpan]: """ Get the encoded token span corresponding to a word in a sequence of the batch. Token spans are returned as a [`~tokenization_utils_base.TokenSpan`] with: - **start** -- Index of the first token. - **end** -- Index of the token following the last token. Can be called as: - `self.word_to_tokens(word_index, sequence_index: int = 0)` if batch size is 1 - `self.word_to_tokens(batch_index, word_index, sequence_index: int = 0)` if batch size is greater or equal to 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_word_index (`int`): Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of the word in the sequence. word_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the sequence. sequence_index (`int`, *optional*, defaults to 0): If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 or 1) the provided word index belongs to. Returns: ([`~tokenization_utils_base.TokenSpan`], *optional*): Span of tokens in the encoded sequence. Returns `None` if no tokens correspond to the word. This can happen especially when the token is a special token that has been used to format the tokenization. For example when we add a class token at the very beginning of the tokenization. """ if not self._encodings: raise ValueError("word_to_tokens() is not available when using Python based tokenizers") if word_index is not None: batch_index = batch_or_word_index else: batch_index = 0 word_index = batch_or_word_index if batch_index < 0: batch_index = self._batch_size + batch_index if word_index < 0: word_index = self._seq_len + word_index span = self._encodings[batch_index].word_to_tokens(word_index, sequence_index) return TokenSpan(*span) if span is not None else None def token_to_chars(self, batch_or_token_index: int, token_index: Optional[int] = None) -> CharSpan: """ Get the character span corresponding to an encoded token in a sequence of the batch. Character spans are returned as a [`~tokenization_utils_base.CharSpan`] with: - **start** -- Index of the first character in the original string associated to the token. - **end** -- Index of the character following the last character in the original string associated to the token. Can be called as: - `self.token_to_chars(token_index)` if batch size is 1 - `self.token_to_chars(batch_index, token_index)` if batch size is greater or equal to 1 Args: batch_or_token_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the token in the sequence. token_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the token or tokens in the sequence. Returns: [`~tokenization_utils_base.CharSpan`]: Span of characters in the original string, or None, if the token (e.g. <s>, </s>) doesn't correspond to any chars in the origin string. """ if not self._encodings: raise ValueError("token_to_chars() is not available when using Python based tokenizers") if token_index is not None: batch_index = batch_or_token_index else: batch_index = 0 token_index = batch_or_token_index span_indices = self._encodings[batch_index].token_to_chars(token_index) return CharSpan(*span_indices) if span_indices is not None else None def char_to_token( self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0 ) -> int: """ Get the index of the token in the encoded output comprising a character in the original string for a sequence of the batch. Can be called as: - `self.char_to_token(char_index)` if batch size is 1 - `self.char_to_token(batch_index, char_index)` if batch size is greater or equal to 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_char_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the word in the sequence char_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the sequence. sequence_index (`int`, *optional*, defaults to 0): If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 or 1) the provided character index belongs to. Returns: `int`: Index of the token. """ if not self._encodings: raise ValueError("char_to_token() is not available when using Python based tokenizers") if char_index is not None: batch_index = batch_or_char_index else: batch_index = 0 char_index = batch_or_char_index return self._encodings[batch_index].char_to_token(char_index, sequence_index) def word_to_chars( self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0 ) -> CharSpan: """ Get the character span in the original string corresponding to given word in a sequence of the batch. Character spans are returned as a CharSpan NamedTuple with: - start: index of the first character in the original string - end: index of the character following the last character in the original string Can be called as: - `self.word_to_chars(word_index)` if batch size is 1 - `self.word_to_chars(batch_index, word_index)` if batch size is greater or equal to 1 Args: batch_or_word_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the word in the sequence word_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the sequence. sequence_index (`int`, *optional*, defaults to 0): If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 or 1) the provided word index belongs to. Returns: `CharSpan` or `List[CharSpan]`: Span(s) of the associated character or characters in the string. CharSpan are NamedTuple with: - start: index of the first character associated to the token in the original string - end: index of the character following the last character associated to the token in the original string """ if not self._encodings: raise ValueError("word_to_chars() is not available when using Python based tokenizers") if word_index is not None: batch_index = batch_or_word_index else: batch_index = 0 word_index = batch_or_word_index return CharSpan(*(self._encodings[batch_index].word_to_chars(word_index, sequence_index))) def char_to_word(self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0) -> int: """ Get the word in the original string corresponding to a character in the original string of a sequence of the batch. Can be called as: - `self.char_to_word(char_index)` if batch size is 1 - `self.char_to_word(batch_index, char_index)` if batch size is greater than 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_char_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the character in the original string. char_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the character in the original string. sequence_index (`int`, *optional*, defaults to 0): If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 or 1) the provided character index belongs to. Returns: `int` or `List[int]`: Index or indices of the associated encoded token(s). """ if not self._encodings: raise ValueError("char_to_word() is not available when using Python based tokenizers") if char_index is not None: batch_index = batch_or_char_index else: batch_index = 0 char_index = batch_or_char_index return self._encodings[batch_index].char_to_word(char_index, sequence_index) def convert_to_tensors( self, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False ): """ Convert the inner content to tensors. Args: tensor_type (`str` or [`~utils.TensorType`], *optional*): The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If `None`, no modification is done. prepend_batch_axis (`int`, *optional*, defaults to `False`): Whether or not to add the batch dimension during the conversion. """ if tensor_type is None: return self # Convert to TensorType if not isinstance(tensor_type, TensorType): tensor_type = TensorType(tensor_type) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf as_tensor = tf.constant is_tensor = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") import torch is_tensor = torch.is_tensor def as_tensor(value, dtype=None): if isinstance(value, list) and isinstance(value[0], np.ndarray): return torch.tensor(np.array(value)) return torch.tensor(value) elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") import jax.numpy as jnp # noqa: F811 as_tensor = jnp.array is_tensor = is_jax_tensor elif tensor_type == TensorType.MLX: if not is_mlx_available(): raise ImportError("Unable to convert output to MLX tensors format, MLX is not installed.") import mlx.core as mx as_tensor = mx.array def is_tensor(obj): return isinstance(obj, mx.array) else: def as_tensor(value, dtype=None): if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)): value_lens = [len(val) for val in value] if len(set(value_lens)) > 1 and dtype is None: # we have a ragged list so handle explicitly value = as_tensor([np.asarray(val) for val in value], dtype=object) return np.asarray(value, dtype=dtype) is_tensor = is_numpy_array # Do the tensor conversion in batch for key, value in self.items(): try: if prepend_batch_axis: value = [value] if not is_tensor(value): tensor = as_tensor(value) # Removing this for now in favor of controlling the shape with `prepend_batch_axis` # # at-least2d # if tensor.ndim > 2: # tensor = tensor.squeeze(0) # elif tensor.ndim < 2: # tensor = tensor[None, :] self[key] = tensor except Exception as e: if key == "overflowing_tokens": raise ValueError( "Unable to create tensor returning overflowing tokens of different lengths. " "Please see if a fast version of this tokenizer is available to have this feature available." ) from e raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding with" " 'padding=True' 'truncation=True' to have batched tensors with the same length. Perhaps your" f" features (`{key}` in this case) have excessive nesting (inputs type `list` where type `int` is" " expected)." ) from e return self def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding": """ Send all values to device by calling `v.to(device)` (PyTorch only). Args: device (`str` or `torch.device`): The device to put the tensors on. Returns: [`BatchEncoding`]: The same instance after modification. """ requires_backends(self, ["torch"]) # This check catches things like APEX blindly calling "to" on all inputs to a module # Otherwise it passes the casts down and casts the LongTensor containing the token idxs # into a HalfTensor if isinstance(device, str) or is_torch_device(device) or isinstance(device, int): self.data = {k: v.to(device=device) for k, v in self.data.items()} else: logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.") return self class SpecialTokensMixin: """ A mixin derived by [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] to handle specific behaviors related to special tokens. In particular, this class hold the attributes which can be used to directly access these special tokens in a model-independent manner and allow to set and update the special tokens. Args: bos_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the beginning of a sentence. eos_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the end of a sentence. unk_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing an out-of-vocabulary token. sep_token (`str` or `tokenizers.AddedToken`, *optional*): A special token separating two different sentences in the same input (used by BERT for instance). pad_token (`str` or `tokenizers.AddedToken`, *optional*): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. cls_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the class of the input (used by BERT for instance). mask_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing a masked token (used by masked-language modeling pretraining objectives, like BERT). additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be skipped when decoding if `skip_special_tokens` is set to `True`. """ SPECIAL_TOKENS_ATTRIBUTES = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", "additional_special_tokens", ] def __init__(self, verbose=False, **kwargs): self._bos_token = None self._eos_token = None self._unk_token = None self._sep_token = None self._pad_token = None self._cls_token = None self._mask_token = None self._pad_token_type_id = 0 self._additional_special_tokens = [] self.verbose = verbose # We directly set the hidden value to allow initialization with special tokens # which are not yet in the vocabulary. Necessary for serialization/de-serialization # TODO clean this up at some point (probably by switching to fast tokenizers) for key, value in kwargs.items(): if value is None: continue if key in self.SPECIAL_TOKENS_ATTRIBUTES: if key == "additional_special_tokens": assert isinstance(value, (list, tuple)), f"Value {value} is not a list or tuple" assert all( isinstance(t, (str, AddedToken)) for t in value ), "One of the tokens is not a string or an AddedToken" setattr(self, key, value) elif isinstance(value, (str, AddedToken)): setattr(self, key, value) else: raise TypeError(f"Special token {key} has to be either str or AddedToken but got: {type(value)}") def sanitize_special_tokens(self) -> int: """ The `sanitize_special_tokens` is now deprecated kept for backward compatibility and will be removed in transformers v5. """ logger.warning_once("The `sanitize_special_tokens` will be removed in transformers v5.") return self.add_tokens(self.all_special_tokens_extended, special_tokens=True) def add_special_tokens( self, special_tokens_dict: Dict[str, Union[str, AddedToken]], replace_additional_special_tokens=True ) -> int: """ Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the current vocabulary). When adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer. In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method. Using `add_special_tokens` will ensure your special tokens can be used in several ways: - Special tokens can be skipped when decoding using `skip_special_tokens = True`. - Special tokens are carefully handled by the tokenizer (they are never split), similar to `AddedTokens`. - You can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts. When possible, special tokens are already registered for provided pretrained models (for instance [`BertTokenizer`] `cls_token` is already registered to be :obj*'[CLS]'* and XLM's one is also registered to be `'</s>'`). Args: special_tokens_dict (dictionary *str* to *str* or `tokenizers.AddedToken`): Keys should be in the list of predefined special attributes: [`bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`]. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the `unk_token` to them). replace_additional_special_tokens (`bool`, *optional*,, defaults to `True`): If `True`, the existing list of additional special tokens will be replaced by the list provided in `special_tokens_dict`. Otherwise, `self._additional_special_tokens` is just extended. In the former case, the tokens will NOT be removed from the tokenizer's full vocabulary - they are only being flagged as non-special tokens. Remember, this only affects which tokens are skipped during decoding, not the `added_tokens_encoder` and `added_tokens_decoder`. This means that the previous `additional_special_tokens` are still added tokens, and will not be split by the model. Returns: `int`: Number of tokens added to the vocabulary. Examples: ```python # Let's see how to add a new classification token to GPT-2 tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") model = GPT2Model.from_pretrained("openai-community/gpt2") special_tokens_dict = {"cls_token": "<CLS>"} num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) print("We have added", num_added_toks, "tokens") # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) assert tokenizer.cls_token == "<CLS>" ```""" if not special_tokens_dict: return 0 added_tokens = [] for key, value in special_tokens_dict.items(): assert key in self.SPECIAL_TOKENS_ATTRIBUTES, f"Key {key} is not a special token" if self.verbose: logger.info(f"Assigning {value} to the {key} key of the tokenizer") if key == "additional_special_tokens": assert isinstance(value, (list, tuple)) and all( isinstance(t, (str, AddedToken)) for t in value ), f"Tokens {value} for key {key} should all be str or AddedToken instances" to_add = [] for token in value: if isinstance(token, str): # for legacy purpose we default to stripping. `test_add_tokens_tokenizer` depends on this token = AddedToken(token, rstrip=False, lstrip=False, normalized=False, special=True) if not replace_additional_special_tokens and str(token) in self.additional_special_tokens: continue to_add.append(token) if replace_additional_special_tokens and len(to_add) > 0: setattr(self, key, list(to_add)) else: self._additional_special_tokens.extend(to_add) added_tokens += to_add else: if not isinstance(value, (str, AddedToken)): raise ValueError(f"Token {value} for key {key} should be a str or an AddedToken instance") if isinstance(value, (str)): # for legacy purpose we default to stripping. `False` depends on this value = AddedToken(value, rstrip=False, lstrip=False, normalized=False, special=True) if isinstance(value, AddedToken): setattr(self, key, value) if value not in added_tokens: added_tokens.append(value) # if we are adding tokens that were not part of the vocab, we ought to add them added_tokens = self.add_tokens(added_tokens, special_tokens=True) return added_tokens def add_tokens( self, new_tokens: Union[str, AddedToken, List[Union[str, AddedToken]]], special_tokens: bool = False ) -> int: """ Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary and and will be isolated before the tokenization algorithm is applied. Added tokens and tokens from the vocabulary of the tokenization algorithm are therefore not treated in the same way. Note, when adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer. In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method. Args: new_tokens (`str`, `tokenizers.AddedToken` or a list of *str* or `tokenizers.AddedToken`): Tokens are only added if they are not already in the vocabulary. `tokenizers.AddedToken` wraps a string token to let you personalize its behavior: whether this token should only match against a single word, whether this token should strip all potential whitespaces on the left side, whether this token should strip all potential whitespaces on the right side, etc. special_tokens (`bool`, *optional*, defaults to `False`): Can be used to specify if the token is a special token. This mostly change the normalization behavior (special tokens like CLS or [MASK] are usually not lower-cased for instance). See details for `tokenizers.AddedToken` in HuggingFace tokenizers library. Returns: `int`: Number of tokens added to the vocabulary. Examples: ```python # Let's see how to increase the vocabulary of Bert model and tokenizer tokenizer = BertTokenizerFast.from_pretrained("google-bert/bert-base-uncased") model = BertModel.from_pretrained("google-bert/bert-base-uncased") num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"]) print("We have added", num_added_toks, "tokens") # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) ```""" if not new_tokens: return 0 if not isinstance(new_tokens, (list, tuple)): new_tokens = [new_tokens] return self._add_tokens(new_tokens, special_tokens=special_tokens) def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: raise NotImplementedError @property def bos_token(self) -> str: """ `str`: Beginning of sentence token. Log an error if used while not having been set. """ if self._bos_token is None: if self.verbose: logger.error("Using bos_token, but it is not set yet.") return None return str(self._bos_token) @property def eos_token(self) -> str: """ `str`: End of sentence token. Log an error if used while not having been set. """ if self._eos_token is None: if self.verbose: logger.error("Using eos_token, but it is not set yet.") return None return str(self._eos_token) @property def unk_token(self) -> str: """ `str`: Unknown token. Log an error if used while not having been set. """ if self._unk_token is None: if self.verbose: logger.error("Using unk_token, but it is not set yet.") return None return str(self._unk_token) @property def sep_token(self) -> str: """ `str`: Separation token, to separate context and query in an input sequence. Log an error if used while not having been set. """ if self._sep_token is None: if self.verbose: logger.error("Using sep_token, but it is not set yet.") return None return str(self._sep_token) @property def pad_token(self) -> str: """ `str`: Padding token. Log an error if used while not having been set. """ if self._pad_token is None: if self.verbose: logger.error("Using pad_token, but it is not set yet.") return None return str(self._pad_token) @property def cls_token(self) -> str: """ `str`: Classification token, to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ if self._cls_token is None: if self.verbose: logger.error("Using cls_token, but it is not set yet.") return None return str(self._cls_token) @property def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @property def additional_special_tokens(self) -> List[str]: """ `List[str]`: All the additional special tokens you may want to use. Log an error if used while not having been set. """ if self._additional_special_tokens is None: if self.verbose: logger.error("Using additional_special_tokens, but it is not set yet.") return None return [str(tok) for tok in self._additional_special_tokens] @bos_token.setter def bos_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the BOS token") self._bos_token = value @eos_token.setter def eos_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the EOS token") self._eos_token = value @unk_token.setter def unk_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the UNK token") self._unk_token = value @sep_token.setter def sep_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the SEP token") self._sep_token = value @pad_token.setter def pad_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the PAD token") self._pad_token = value @cls_token.setter def cls_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the CLS token") self._cls_token = value @mask_token.setter def mask_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the MASK token") self._mask_token = value @additional_special_tokens.setter def additional_special_tokens(self, value): self._additional_special_tokens = value if value is not None else None @property def bos_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the beginning of sentence token in the vocabulary. Returns `None` if the token has not been set. """ if self._bos_token is None: return None return self.convert_tokens_to_ids(self.bos_token) @property def eos_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been set. """ if self._eos_token is None: return None return self.convert_tokens_to_ids(self.eos_token) @property def unk_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the unknown token in the vocabulary. Returns `None` if the token has not been set. """ if self._unk_token is None: return None return self.convert_tokens_to_ids(self.unk_token) @property def sep_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the separation token in the vocabulary, to separate context and query in an input sequence. Returns `None` if the token has not been set. """ if self._sep_token is None: return None return self.convert_tokens_to_ids(self.sep_token) @property def pad_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the padding token in the vocabulary. Returns `None` if the token has not been set. """ if self._pad_token is None: return None return self.convert_tokens_to_ids(self.pad_token) @property def pad_token_type_id(self) -> int: """ `int`: Id of the padding token type in the vocabulary. """ return self._pad_token_type_id @property def cls_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the classification token in the vocabulary, to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Returns `None` if the token has not been set. """ if self._cls_token is None: return None return self.convert_tokens_to_ids(self.cls_token) @property def mask_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the mask token in the vocabulary, used when training a model with masked-language modeling. Returns `None` if the token has not been set. """ if self._mask_token is None: return None return self.convert_tokens_to_ids(self.mask_token) @property def additional_special_tokens_ids(self) -> List[int]: """ `List[int]`: Ids of all the additional special tokens in the vocabulary. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.additional_special_tokens) @bos_token_id.setter def bos_token_id(self, value): self._bos_token = self.convert_ids_to_tokens(value) if value is not None else None @eos_token_id.setter def eos_token_id(self, value): self._eos_token = self.convert_ids_to_tokens(value) if value is not None else None @unk_token_id.setter def unk_token_id(self, value): self._unk_token = self.convert_ids_to_tokens(value) if value is not None else None @sep_token_id.setter def sep_token_id(self, value): self._sep_token = self.convert_ids_to_tokens(value) if value is not None else None @pad_token_id.setter def pad_token_id(self, value): self._pad_token = self.convert_ids_to_tokens(value) if value is not None else None @cls_token_id.setter def cls_token_id(self, value): self._cls_token = self.convert_ids_to_tokens(value) if value is not None else None @mask_token_id.setter def mask_token_id(self, value): self._mask_token = self.convert_ids_to_tokens(value) if value is not None else None @additional_special_tokens_ids.setter def additional_special_tokens_ids(self, values): self._additional_special_tokens = [self.convert_ids_to_tokens(value) for value in values] @property def special_tokens_map(self) -> Dict[str, Union[str, List[str]]]: """ `Dict[str, Union[str, List[str]]]`: A dictionary mapping special token class attributes (`cls_token`, `unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.). Convert potential tokens of `tokenizers.AddedToken` type to string. """ set_attr = {} for attr in self.SPECIAL_TOKENS_ATTRIBUTES: attr_value = getattr(self, attr) if attr_value: set_attr[attr] = attr_value return set_attr @property def special_tokens_map_extended(self) -> Dict[str, Union[str, AddedToken, List[Union[str, AddedToken]]]]: """ `Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]`: A dictionary mapping special token class attributes (`cls_token`, `unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.). Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how special tokens are tokenized. """ set_attr = {} for attr in self.SPECIAL_TOKENS_ATTRIBUTES: attr_value = getattr(self, "_" + attr) if attr_value: set_attr[attr] = attr_value return set_attr @property def all_special_tokens_extended(self) -> List[Union[str, AddedToken]]: """ `List[Union[str, tokenizers.AddedToken]]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.), the order has nothing to do with the index of each tokens. If you want to know the correct indices, check `self.added_tokens_encoder`. We can't create an order anymore as the keys are `AddedTokens` and not `Strings`. Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how special tokens are tokenized. """ all_tokens = [] seen = set() for value in self.special_tokens_map_extended.values(): if isinstance(value, (list, tuple)): tokens_to_add = [token for token in value if str(token) not in seen] else: tokens_to_add = [value] if str(value) not in seen else [] seen.update(map(str, tokens_to_add)) all_tokens.extend(tokens_to_add) return all_tokens @property def all_special_tokens(self) -> List[str]: """ `List[str]`: A list of the unique special tokens (`'<unk>'`, `'<cls>'`, ..., etc.). Convert tokens of `tokenizers.AddedToken` type to string. """ all_toks = [str(s) for s in self.all_special_tokens_extended] return all_toks @property def all_special_ids(self) -> List[int]: """ `List[int]`: List the ids of the special tokens(`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes. """ all_toks = self.all_special_tokens all_ids = self.convert_tokens_to_ids(all_toks) return all_ids ENCODE_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to add special tokens when encoding the sequences. This will use the underlying `PretrainedTokenizerBase.build_inputs_with_special_tokens` function, which defines which tokens are automatically added to the input ids. This is usefull if you want to add `bos` or `eos` tokens automatically. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. Requires `padding` to be activated. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" return_token_type_ids (`bool`, *optional*): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are token type IDs?](../glossary#token-type-ids) return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_overflowing_tokens (`bool`, *optional*, defaults to `False`): Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overflowing tokens. return_special_tokens_mask (`bool`, *optional*, defaults to `False`): Whether or not to return special tokens mask information. return_offsets_mapping (`bool`, *optional*, defaults to `False`): Whether or not to return `(char_start, char_end)` for each token. This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using Python's tokenizer, this method will raise `NotImplementedError`. return_length (`bool`, *optional*, defaults to `False`): Whether or not to return the lengths of the encoded inputs. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. **kwargs: passed to the `self.tokenize()` method Return: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or if *"token_type_ids"* is in `self.model_input_names`). [What are token type IDs?](../glossary#token-type-ids) - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and `return_overflowing_tokens=True`). - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and `return_overflowing_tokens=True`). - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). - **length** -- The length of the inputs (when `return_length=True`) """ INIT_TOKENIZER_DOCSTRING = r""" Class attributes (overridden by derived classes) - **vocab_files_names** (`Dict[str, str]`) -- A dictionary with, as keys, the `__init__` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string). - **pretrained_vocab_files_map** (`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the high-level keys being the `__init__` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` of the pretrained models with, as associated values, the `url` to the associated pretrained vocabulary file. - **max_model_input_sizes** (`Dict[str, Optional[int]]`) -- A dictionary with, as keys, the `short-cut-names` of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or `None` if the model has no maximum input size. - **pretrained_init_configuration** (`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the `short-cut-names` of the pretrained models, and as associated values, a dictionary of specific arguments to pass to the `__init__` method of the tokenizer class for this pretrained model when loading the tokenizer with the [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`] method. - **model_input_names** (`List[str]`) -- A list of inputs expected in the forward pass of the model. - **padding_side** (`str`) -- The default value for the side on which the model should have padding applied. Should be `'right'` or `'left'`. - **truncation_side** (`str`) -- The default value for the side on which the model should have truncation applied. Should be `'right'` or `'left'`. Args: model_max_length (`int`, *optional*): The maximum length (in number of tokens) for the inputs to the transformer model. When the tokenizer is loaded with [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], this will be set to the value stored for the associated model in `max_model_input_sizes` (see above). If no value is provided, will default to VERY_LARGE_INTEGER (`int(1e30)`). padding_side (`str`, *optional*): The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. truncation_side (`str`, *optional*): The side on which the model should have truncation applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. chat_template (`str`, *optional*): A Jinja template string that will be used to format lists of chat messages. See https://huggingface.co/docs/transformers/chat_templating for a full description. model_input_names (`List[string]`, *optional*): The list of inputs accepted by the forward pass of the model (like `"token_type_ids"` or `"attention_mask"`). Default value is picked from the class attribute of the same name. bos_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the beginning of a sentence. Will be associated to `self.bos_token` and `self.bos_token_id`. eos_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the end of a sentence. Will be associated to `self.eos_token` and `self.eos_token_id`. unk_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing an out-of-vocabulary token. Will be associated to `self.unk_token` and `self.unk_token_id`. sep_token (`str` or `tokenizers.AddedToken`, *optional*): A special token separating two different sentences in the same input (used by BERT for instance). Will be associated to `self.sep_token` and `self.sep_token_id`. pad_token (`str` or `tokenizers.AddedToken`, *optional*): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. Will be associated to `self.pad_token` and `self.pad_token_id`. cls_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the class of the input (used by BERT for instance). Will be associated to `self.cls_token` and `self.cls_token_id`. mask_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing a masked token (used by masked-language modeling pretraining objectives, like BERT). Will be associated to `self.mask_token` and `self.mask_token_id`. additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): A tuple or a list of additional special tokens. Add them here to ensure they are skipped when decoding with `skip_special_tokens` is set to True. If they are not part of the vocabulary, they will be added at the end of the vocabulary. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not the model should cleanup the spaces that were added when splitting the input text during the tokenization process. split_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the special tokens should be split during the tokenization process. The default behavior is to not split special tokens. This means that if `<s>` is the `bos_token`, then `tokenizer.tokenize("<s>") = ['<s>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<s>")` will be give `['<', 's', '>']`. This argument is only supported for `slow` tokenizers for the moment. """ @add_end_docstrings(INIT_TOKENIZER_DOCSTRING) class PreTrainedTokenizerBase(SpecialTokensMixin, PushToHubMixin): """ Base class for [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`]. Handles shared (mostly boiler plate) methods for those two classes. """ vocab_files_names: Dict[str, str] = {} pretrained_vocab_files_map: Dict[str, Dict[str, str]] = {} pretrained_init_configuration: Dict[str, Dict[str, Any]] = {} max_model_input_sizes: Dict[str, Optional[int]] = {} _auto_class: Optional[str] = None # first name has to correspond to main model input name # to make sure `tokenizer.pad(...)` works correctly model_input_names: List[str] = ["input_ids", "token_type_ids", "attention_mask"] padding_side: str = "right" truncation_side: str = "right" slow_tokenizer_class = None def __init__(self, **kwargs): # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``) self.init_inputs = () self.init_kwargs = copy.deepcopy(kwargs) self.name_or_path = kwargs.pop("name_or_path", "") self._processor_class = kwargs.pop("processor_class", None) # For backward compatibility we fallback to set model_max_length from max_len if provided model_max_length = kwargs.pop("model_max_length", kwargs.pop("max_len", None)) self.model_max_length = model_max_length if model_max_length is not None else VERY_LARGE_INTEGER # Padding and truncation side are right by default and overridden in subclasses. If specified in the kwargs, it # is changed. self.padding_side = kwargs.pop("padding_side", self.padding_side) if self.padding_side not in ["right", "left"]: raise ValueError( f"Padding side should be selected between 'right' and 'left', current value: {self.padding_side}" ) self.truncation_side = kwargs.pop("truncation_side", self.truncation_side) if self.truncation_side not in ["right", "left"]: raise ValueError( f"Truncation side should be selected between 'right' and 'left', current value: {self.truncation_side}" ) self.model_input_names = kwargs.pop("model_input_names", self.model_input_names) # By default, cleaning tokenization spaces for both fast and slow tokenizers self.clean_up_tokenization_spaces = kwargs.pop("clean_up_tokenization_spaces", True) # By default, do not split special tokens for both fast and slow tokenizers self.split_special_tokens = kwargs.pop("split_special_tokens", False) self.deprecation_warnings = {} # Use to store when we have already noticed a deprecation warning (avoid overlogging). self._in_target_context_manager = False # Stores a Jinja template that formats chat histories into tokenizable strings self.chat_template = kwargs.pop("chat_template", None) if isinstance(self.chat_template, (list, tuple)): # Chat templates are stored as lists of dicts with fixed key names, # we reconstruct that into a single dict while loading them. self.chat_template = {template["name"]: template["template"] for template in self.chat_template} super().__init__(**kwargs) @property def max_len_single_sentence(self) -> int: """ `int`: The maximum length of a sentence that can be fed to the model. """ return self.model_max_length - self.num_special_tokens_to_add(pair=False) @property def max_len_sentences_pair(self) -> int: """ `int`: The maximum combined length of a pair of sentences that can be fed to the model. """ return self.model_max_length - self.num_special_tokens_to_add(pair=True) @max_len_single_sentence.setter def max_len_single_sentence(self, value) -> int: # For backward compatibility, allow to try to setup 'max_len_single_sentence'. if value == self.model_max_length - self.num_special_tokens_to_add(pair=False) and self.verbose: if not self.deprecation_warnings.get("max_len_single_sentence", False): logger.warning( "Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up." ) self.deprecation_warnings["max_len_single_sentence"] = True else: raise ValueError( "Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up." ) @max_len_sentences_pair.setter def max_len_sentences_pair(self, value) -> int: # For backward compatibility, allow to try to setup 'max_len_sentences_pair'. if value == self.model_max_length - self.num_special_tokens_to_add(pair=True) and self.verbose: if not self.deprecation_warnings.get("max_len_sentences_pair", False): logger.warning( "Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up." ) self.deprecation_warnings["max_len_sentences_pair"] = True else: raise ValueError("Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up.") def _set_processor_class(self, processor_class: str): """Sets processor class as an attribute.""" self._processor_class = processor_class @property def added_tokens_decoder(self) -> Dict[int, AddedToken]: raise NotImplementedError() def __repr__(self) -> str: added_tokens_decoder_rep = "\n\t".join([f"{k}: {v.__repr__()}," for k, v in self.added_tokens_decoder.items()]) return ( f"{self.__class__.__name__}(name_or_path='{self.name_or_path}'," f" vocab_size={self.vocab_size}, model_max_length={self.model_max_length}, is_fast={self.is_fast}," f" padding_side='{self.padding_side}', truncation_side='{self.truncation_side}'," f" special_tokens={self.special_tokens_map}, clean_up_tokenization_spaces={self.clean_up_tokenization_spaces}), " " added_tokens_decoder={\n\t" + added_tokens_decoder_rep + "\n}" ) def __len__(self) -> int: raise NotImplementedError() def get_vocab(self) -> Dict[str, int]: """ Returns the vocabulary as a dictionary of token to index. `tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the vocab. Returns: `Dict[str, int]`: The vocabulary. """ raise NotImplementedError() def apply_chat_template( self, conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"], chat_template: Optional[str] = None, add_generation_prompt: bool = False, tokenize: bool = True, padding: bool = False, truncation: bool = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_dict: bool = False, tokenizer_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]: """ Converts a list of dictionaries with `"role"` and `"content"` keys to a list of token ids. This method is intended for use with chat models, and will read the tokenizer's chat_template attribute to determine the format and control tokens to use when converting. When chat_template is None, it will fall back to the default_chat_template specified at the class level. Args: conversation (Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"]): A list of dicts with "role" and "content" keys, representing the chat history so far. chat_template (str, *optional*): A Jinja template to use for this conversion. If this is not passed, the model's default chat template will be used instead. add_generation_prompt (bool, *optional*): Whether to end the prompt with the token(s) that indicate the start of an assistant message. This is useful when you want to generate a response from the model. Note that this argument will be passed to the chat template, and so it must be supported in the template for this argument to have any effect. tokenize (`bool`, defaults to `True`): Whether to tokenize the output. If `False`, the output will be a string. padding (`bool`, defaults to `False`): Whether to pad sequences to the maximum length. Has no effect if tokenize is `False`. truncation (`bool`, defaults to `False`): Whether to truncate sequences at the maximum length. Has no effect if tokenize is `False`. max_length (`int`, *optional*): Maximum length (in tokens) to use for padding or truncation. Has no effect if tokenize is `False`. If not specified, the tokenizer's `max_length` attribute will be used as a default. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Has no effect if tokenize is `False`. Acceptable values are: - `'tf'`: Return TensorFlow `tf.Tensor` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. return_dict (`bool`, defaults to `False`): Whether to return a dictionary with named outputs. Has no effect if tokenize is `False`. tokenizer_kwargs (`Dict[str: Any]`, *optional*): Additional kwargs to pass to the tokenizer. **kwargs: Additional kwargs to pass to the template renderer. Will be accessible by the chat template. Returns: `Union[List[int], Dict]`: A list of token ids representing the tokenized chat so far, including control tokens. This output is ready to pass to the model, either directly or via methods like `generate()`. If `return_dict` is set, will return a dict of tokenizer outputs instead. """ if return_dict and not tokenize: raise ValueError( "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict " "of tokenizer outputs to return." ) if tokenizer_kwargs is None: tokenizer_kwargs = {} # First, handle the cases when the model has a dict of multiple templates if isinstance(self.chat_template, dict) or ( self.chat_template is None and isinstance(self.default_chat_template, dict) ): template_dict = self.chat_template or self.default_chat_template if chat_template is not None and chat_template in template_dict: # The user can pass the name of a template to the chat template argument instead of an entire template chat_template = template_dict[chat_template] elif chat_template is None and "default" in template_dict: chat_template = template_dict["default"] elif chat_template is None: raise ValueError( "This model has multiple chat templates with no default specified! Please either pass a chat " "template or the name of the template you wish to use to the `chat_template` argument. Available " f"template names are {sorted(template_dict.keys())}." ) elif chat_template is None: # These are the cases when the model has a single template # priority: `chat_template` argument > `tokenizer.chat_template` > `tokenizer.default_chat_template if self.chat_template is not None: chat_template = self.chat_template else: chat_template = self.default_chat_template # Compilation function uses a cache to avoid recompiling the same template compiled_template = self._compile_jinja_template(chat_template) if isinstance(conversation, (list, tuple)) and ( isinstance(conversation[0], (list, tuple)) or hasattr(conversation[0], "messages") ): conversations = conversation is_batched = True else: conversations = [conversation] is_batched = False rendered = [] template_kwargs = {**self.special_tokens_map, **kwargs} # kwargs overwrite special tokens if both are present for chat in conversations: if hasattr(chat, "messages"): # Indicates it's a Conversation object chat = chat.messages rendered_chat = compiled_template.render( messages=chat, add_generation_prompt=add_generation_prompt, **template_kwargs ) rendered.append(rendered_chat) if not is_batched: rendered = rendered[0] if tokenize: out = self( rendered, padding=padding, truncation=truncation, max_length=max_length, add_special_tokens=False, return_tensors=return_tensors, **tokenizer_kwargs, ) if return_dict: return out else: return out["input_ids"] else: return rendered @lru_cache def _compile_jinja_template(self, chat_template): try: import jinja2 from jinja2.exceptions import TemplateError from jinja2.sandbox import ImmutableSandboxedEnvironment except ImportError: raise ImportError("apply_chat_template requires jinja2 to be installed.") if version.parse(jinja2.__version__) < version.parse("3.0.0"): raise ImportError( "apply_chat_template requires jinja2>=3.0.0 to be installed. Your version is " f"{jinja2.__version__}." ) def raise_exception(message): raise TemplateError(message) jinja_env = ImmutableSandboxedEnvironment(trim_blocks=True, lstrip_blocks=True) jinja_env.globals["raise_exception"] = raise_exception return jinja_env.from_string(chat_template) @property def default_chat_template(self): """ This template formats inputs in the standard ChatML format. See https://github.com/openai/openai-python/blob/main/chatml.md """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using a default chat template " "that implements the ChatML format (without BOS/EOS tokens!). If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) return ( "{% for message in messages %}" "{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}" "{% endfor %}" "{% if add_generation_prompt %}" "{{ '<|im_start|>assistant\n' }}" "{% endif %}" ) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", trust_remote_code=False, **kwargs, ): r""" Instantiate a [`~tokenization_utils_base.PreTrainedTokenizerBase`] (or a derived class) from a predefined tokenizer. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved using the [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`] method, e.g., `./my_model_directory/`. - (**Deprecated**, not applicable to all derived classes) A path or url to a single saved vocabulary file (if and only if the tokenizer only requires a single vocabulary file like Bert or XLNet), e.g., `./my_model_directory/vocab.txt`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download the vocabulary files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). local_files_only (`bool`, *optional*, defaults to `False`): Whether or not to only rely on local files and not to attempt to download any files. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. subfolder (`str`, *optional*): In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here. inputs (additional positional arguments, *optional*): Will be passed along to the Tokenizer `__init__` method. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (additional keyword arguments, *optional*): Will be passed to the Tokenizer `__init__` method. Can be used to set special tokens like `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`. See parameters in the `__init__` for more details. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Examples: ```python # We can't instantiate directly the base class *PreTrainedTokenizerBase* so let's show our examples on a derived class: BertTokenizer # Download vocabulary from huggingface.co and cache. tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") # Download vocabulary from huggingface.co (user-uploaded) and cache. tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-german-cased") # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) tokenizer = BertTokenizer.from_pretrained("./test/saved_model/") # If the tokenizer uses a single vocabulary file, you can point directly to this file tokenizer = BertTokenizer.from_pretrained("./test/saved_model/my_vocab.txt") # You can link tokens to special vocabulary when instantiating tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased", unk_token="<unk>") # You should be sure '<unk>' is in the vocabulary when doing that. # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead) assert tokenizer.unk_token == "<unk>" ```""" resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) use_auth_token = kwargs.pop("use_auth_token", None) subfolder = kwargs.pop("subfolder", None) from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) commit_hash = kwargs.pop("_commit_hash", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token user_agent = {"file_type": "tokenizer", "from_auto_class": from_auto_class, "is_fast": "Fast" in cls.__name__} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) vocab_files = {} init_configuration = {} is_local = os.path.isdir(pretrained_model_name_or_path) single_file_id = None if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): if len(cls.vocab_files_names) > 1: raise ValueError( f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is not " "supported for this tokenizer. Use a model identifier or the path to a directory instead." ) warnings.warn( f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is deprecated and " "won't be possible anymore in v5. Use a model identifier or the path to a directory instead.", FutureWarning, ) file_id = list(cls.vocab_files_names.keys())[0] vocab_files[file_id] = pretrained_model_name_or_path single_file_id = file_id else: # At this point pretrained_model_name_or_path is either a directory or a model identifier name additional_files_names = { "added_tokens_file": ADDED_TOKENS_FILE, # kept only for legacy "special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE, # kept only for legacy "tokenizer_config_file": TOKENIZER_CONFIG_FILE, # tokenizer_file used to initialize a slow from a fast. Properly copy the `addedTokens` instead of adding in random orders "tokenizer_file": FULL_TOKENIZER_FILE, } vocab_files = {**cls.vocab_files_names, **additional_files_names} if "tokenizer_file" in vocab_files: # Try to get the tokenizer config to see if there are versioned tokenizer files. fast_tokenizer_file = FULL_TOKENIZER_FILE resolved_config_file = cached_file( pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, subfolder=subfolder, user_agent=user_agent, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, _commit_hash=commit_hash, ) commit_hash = extract_commit_hash(resolved_config_file, commit_hash) if resolved_config_file is not None: with open(resolved_config_file, encoding="utf-8") as reader: tokenizer_config = json.load(reader) if "fast_tokenizer_files" in tokenizer_config: fast_tokenizer_file = get_fast_tokenizer_file(tokenizer_config["fast_tokenizer_files"]) vocab_files["tokenizer_file"] = fast_tokenizer_file # Get files from url, cache, or disk depending on the case resolved_vocab_files = {} unresolved_files = [] for file_id, file_path in vocab_files.items(): if file_path is None: resolved_vocab_files[file_id] = None elif single_file_id == file_id: if os.path.isfile(file_path): resolved_vocab_files[file_id] = file_path elif is_remote_url(file_path): resolved_vocab_files[file_id] = download_url(file_path, proxies=proxies) else: resolved_vocab_files[file_id] = cached_file( pretrained_model_name_or_path, file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, _commit_hash=commit_hash, ) commit_hash = extract_commit_hash(resolved_vocab_files[file_id], commit_hash) if len(unresolved_files) > 0: logger.info( f"Can't load following files from cache: {unresolved_files} and cannot check if these " "files are necessary for the tokenizer to operate." ) if all(full_file_name is None for full_file_name in resolved_vocab_files.values()): raise EnvironmentError( f"Can't load tokenizer for '{pretrained_model_name_or_path}'. If you were trying to load it from " "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing all relevant files for a {cls.__name__} tokenizer." ) for file_id, file_path in vocab_files.items(): if file_id not in resolved_vocab_files: continue if is_local: logger.info(f"loading file {file_path}") else: logger.info(f"loading file {file_path} from cache at {resolved_vocab_files[file_id]}") return cls._from_pretrained( resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, token=token, cache_dir=cache_dir, local_files_only=local_files_only, _commit_hash=commit_hash, _is_local=is_local, trust_remote_code=trust_remote_code, **kwargs, ) @classmethod def _from_pretrained( cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, token=None, cache_dir=None, local_files_only=False, _commit_hash=None, _is_local=False, trust_remote_code=False, **kwargs, ): # We instantiate fast tokenizers based on a slow tokenizer if we don't have access to the tokenizer.json # file or if `from_slow` is set to True. from_slow = kwargs.get("from_slow", False) has_tokenizer_file = resolved_vocab_files.get("tokenizer_file", None) is not None if (from_slow or not has_tokenizer_file) and cls.slow_tokenizer_class is not None: slow_tokenizer = (cls.slow_tokenizer_class)._from_pretrained( copy.deepcopy(resolved_vocab_files), pretrained_model_name_or_path, copy.deepcopy(init_configuration), *init_inputs, token=token, cache_dir=cache_dir, local_files_only=local_files_only, _commit_hash=_commit_hash, **(copy.deepcopy(kwargs)), ) else: slow_tokenizer = None # Prepare tokenizer initialization kwargs # Did we saved some inputs and kwargs to reload ? tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None) if tokenizer_config_file is not None: with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle: init_kwargs = json.load(tokenizer_config_handle) # First attempt. We get tokenizer_class from tokenizer_config to check mismatch between tokenizers. config_tokenizer_class = init_kwargs.get("tokenizer_class") init_kwargs.pop("tokenizer_class", None) if not has_tokenizer_file: init_kwargs.pop("tokenizer_file", None) saved_init_inputs = init_kwargs.pop("init_inputs", ()) if not init_inputs: init_inputs = saved_init_inputs else: config_tokenizer_class = None init_kwargs = init_configuration if "auto_map" in init_kwargs and not _is_local: # For backward compatibility with odl format. if isinstance(init_kwargs["auto_map"], (tuple, list)): init_kwargs["auto_map"] = {"AutoTokenizer": init_kwargs["auto_map"]} init_kwargs["auto_map"] = add_model_info_to_auto_map( init_kwargs["auto_map"], pretrained_model_name_or_path ) if config_tokenizer_class is None: # Matt: This entire block is only used to decide if the tokenizer class matches the class in the repo. # If not, it raises a warning, but otherwise continues. Since we mostly load tokenizers with # AutoTokenizer these days, it seems like a lot of work (and a source of bugs) for little gain. # Maybe we can just remove this entirely? from .models.auto.configuration_auto import AutoConfig # tests_ignore # Second attempt. If we have not yet found tokenizer_class, let's try to use the config. try: config = AutoConfig.from_pretrained( pretrained_model_name_or_path, token=token, cache_dir=cache_dir, local_files_only=local_files_only, trust_remote_code=trust_remote_code, _commit_hash=_commit_hash, ) config_tokenizer_class = config.tokenizer_class except (OSError, ValueError, KeyError): # skip if an error occurred. config = None if config_tokenizer_class is None: # Third attempt. If we have not yet found the original type of the tokenizer, # we are loading we see if we can infer it from the type of the configuration file from .models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES # tests_ignore if hasattr(config, "model_type"): model_type = config.model_type else: # Fallback: use pattern matching on the string. model_type = None for pattern in TOKENIZER_MAPPING_NAMES.keys(): if pattern in str(pretrained_model_name_or_path): model_type = pattern break if model_type is not None: config_tokenizer_class, config_tokenizer_class_fast = TOKENIZER_MAPPING_NAMES.get( model_type, (None, None) ) if config_tokenizer_class is None: config_tokenizer_class = config_tokenizer_class_fast if config_tokenizer_class is not None: if cls.__name__.replace("Fast", "") != config_tokenizer_class.replace("Fast", ""): logger.warning( "The tokenizer class you load from this checkpoint is not the same type as the class this" " function is called from. It may result in unexpected tokenization. \nThe tokenizer class you" f" load from this checkpoint is '{config_tokenizer_class}'. \nThe class this function is called" f" from is '{cls.__name__}'." ) # Update with newly provided kwargs init_kwargs.update(kwargs) # Set max length if needed if pretrained_model_name_or_path in cls.max_model_input_sizes: # if we're using a pretrained model, ensure the tokenizer # wont index sequences longer than the number of positional embeddings model_max_length = cls.max_model_input_sizes[pretrained_model_name_or_path] if model_max_length is not None and isinstance(model_max_length, (int, float)): model_max_length = min(init_kwargs.get("model_max_length", int(1e30)), model_max_length) # TODO(PVP) - uncomment following line in Transformers v5 # init_kwargs["model_max_length"] = model_max_length # TODO(PVP) - remove in Transformers v5 # --- init_kwargs["model_max_length"] = cls._eventually_correct_t5_max_length( pretrained_model_name_or_path, model_max_length, init_kwargs.get("model_max_length") ) # --- # Merge resolved_vocab_files arguments in init_kwargs. added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None) special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None) for args_name, file_path in resolved_vocab_files.items(): if args_name not in init_kwargs: init_kwargs[args_name] = file_path tokenizer_file = resolved_vocab_files.pop("tokenizer_file", None) if slow_tokenizer is not None: init_kwargs["__slow_tokenizer"] = slow_tokenizer init_kwargs["name_or_path"] = pretrained_model_name_or_path #### Handle tokenizer serialization of added and special tokens added_tokens_decoder: Dict[int, AddedToken] = {} added_tokens_map: Dict[str, AddedToken] = {} # if we have info on the slow added tokens if "added_tokens_decoder" in init_kwargs: for idx, token in init_kwargs["added_tokens_decoder"].items(): if isinstance(token, dict): token = AddedToken(**token) if isinstance(token, AddedToken): added_tokens_decoder[int(idx)] = token added_tokens_map[str(token)] = token else: raise ValueError( f"Found a {token.__class__} in the saved `added_tokens_decoder`, should be a dictionary or an AddedToken instance" ) else: # begin legacy: read the added_tokens_file and update kwargs with special_tokens_map if modified if special_tokens_map_file is not None: with open(special_tokens_map_file, encoding="utf-8") as special_tokens_map_handle: special_tokens_map = json.load(special_tokens_map_handle) for key, value in special_tokens_map.items(): if key in kwargs and kwargs[key]: # This value has already been redefined by the kwargs # We keep this new value and ignore the one stored in the special_tokens_map_file continue if isinstance(value, dict): value = AddedToken(**value, special=True) elif key == "additional_special_tokens" and isinstance(value, list): additional_special_tokens = init_kwargs.pop("additional_special_tokens", []) or [] for token in value: token = AddedToken(**token, special=True) if isinstance(token, dict) else token if token not in additional_special_tokens: additional_special_tokens.append(token) value = additional_special_tokens init_kwargs[key] = value # slow -> slow|fast, legacy: convert the `"added_tokens.json"` file to `added_tokens_decoder`. # this is for legacy purpose. We don't add the tokens after init for efficiency. if added_tokens_file is not None: special_tokens = [] for key in cls.SPECIAL_TOKENS_ATTRIBUTES & init_kwargs.keys(): if init_kwargs[key] is not None: if key == "additional_special_tokens": special_tokens += [str(token) for token in init_kwargs[key]] else: special_tokens.append(str(init_kwargs[key])) with open(added_tokens_file, encoding="utf-8") as added_tokens_handle: added_tok_encoder = json.load(added_tokens_handle) for str_token, index in added_tok_encoder.items(): # if index not in added_tokens_decoder and str_token not in added_tokens_map: special = str_token in special_tokens added_tokens_decoder[index] = AddedToken( str_token, rstrip=False, lstrip=False, normalized=not special, special=special ) added_tokens_map[str(token)] = added_tokens_decoder[index] # allows converting a fast -> slow: add the `tokenizer.json`'s `"added_tokens"` to the slow tokenizer # if `tokenizer_config.json` is `None` if tokenizer_file is not None: # This is for slow so can be done before with open(tokenizer_file, encoding="utf-8") as tokenizer_file_handle: tokenizer_file_handle = json.load(tokenizer_file_handle) added_tokens = tokenizer_file_handle.pop("added_tokens") for serialized_tokens in added_tokens: idx = serialized_tokens.pop("id") added_tokens_decoder[idx] = AddedToken(**serialized_tokens) added_tokens_map[str(added_tokens_decoder[idx])] = added_tokens_decoder[idx] # end legacy # Passing AddedTokens and not strings to the class to prevent it from casting the string to a different AddedToken # convert {'__type': 'AddedToken', 'content': '<ent>', 'lstrip': False, 'normalized': True, ...} to AddedTokens init_kwargs["added_tokens_decoder"] = added_tokens_decoder init_kwargs = cls.convert_added_tokens(init_kwargs, save=False) for key in cls.SPECIAL_TOKENS_ATTRIBUTES & init_kwargs.keys(): if added_tokens_map != {} and init_kwargs[key] is not None: if key != "additional_special_tokens": init_kwargs[key] = added_tokens_map.get(str(init_kwargs[key]), init_kwargs[key]) # Instantiate the tokenizer. try: tokenizer = cls(*init_inputs, **init_kwargs) except OSError: raise OSError( "Unable to load vocabulary from file. " "Please check that the provided vocabulary is accessible and not corrupted." ) if added_tokens_decoder != {} and max(list(added_tokens_decoder.keys())[-1], 0) > tokenizer.vocab_size: logger.warning_advice( "Special tokens have been added in the vocabulary, make sure the associated word embeddings are" " fine-tuned or trained." ) return tokenizer @staticmethod def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length): # This method should be deleted in Transformers v5 # Its only purpose is to potentially throw a warning # that incorrectly defined max lengths of T5's tokenizer are used # which we will correct in Transformers v5. return max_model_length @classmethod def convert_added_tokens(cls, obj: Union[AddedToken, Any], save=False, add_type_field=True): if isinstance(obj, dict) and "__type" in obj and obj["__type"] == "AddedToken": obj.pop("__type") return AddedToken(**obj) if isinstance(obj, AddedToken) and save: obj = obj.__getstate__() if add_type_field: obj["__type"] = "AddedToken" else: # Don't save "special" for previous tokenizers obj.pop("special") return obj elif isinstance(obj, (list, tuple)): return [cls.convert_added_tokens(o, save=save, add_type_field=add_type_field) for o in obj] elif isinstance(obj, dict): return {k: cls.convert_added_tokens(v, save=save, add_type_field=add_type_field) for k, v in obj.items()} return obj def save_pretrained( self, save_directory: Union[str, os.PathLike], legacy_format: Optional[bool] = None, filename_prefix: Optional[str] = None, push_to_hub: bool = False, **kwargs, ) -> Tuple[str]: """ Save the full tokenizer state. This method make sure the full tokenizer can then be re-loaded using the [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] class method.. Warning,None This won't save modifications you may have applied to the tokenizer after the instantiation (for instance, modifying `tokenizer.do_lower_case` after creation). Args: save_directory (`str` or `os.PathLike`): The path to a directory where the tokenizer will be saved. legacy_format (`bool`, *optional*): Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate added_tokens files. If `False`, will only save the tokenizer in the unified JSON format. This format is incompatible with "slow" tokenizers (not powered by the *tokenizers* library), so the tokenizer will not be able to be loaded in the corresponding "slow" tokenizer. If `True`, will save the tokenizer in legacy format. If the "slow" tokenizer doesn't exits, a value error is raised. filename_prefix (`str`, *optional*): A prefix to add to the names of the files saved by the tokenizer. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. Returns: A tuple of `str`: The files saved. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) special_tokens_map_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE ) tokenizer_config_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE ) tokenizer_config = copy.deepcopy(self.init_kwargs) # Let's save the init kwargs target_keys = set(self.init_kwargs.keys()) # Let's save the special tokens map (only the strings) target_keys.update(["model_max_length", "clean_up_tokenization_spaces"]) for k in target_keys: if hasattr(self, k): tokenizer_config[k] = getattr(self, k) # Let's make sure we properly save the special tokens. tokenizer_config.update(self.special_tokens_map) if self.chat_template is not None: if isinstance(self.chat_template, dict): # Chat template dicts are saved to the config as lists of dicts with fixed key names. # They will be reconstructed as a single dict during loading. tokenizer_config["chat_template"] = [{"name": k, "template": v} for k, v in self.chat_template.items()] else: tokenizer_config["chat_template"] = self.chat_template if len(self.init_inputs) > 0: tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs) for file_id in self.vocab_files_names.keys(): tokenizer_config.pop(file_id, None) # no typefields, this way old fast and slow can load it tokenizer_config = self.convert_added_tokens(tokenizer_config, add_type_field=True, save=True) # Process added tokens seperatly: allows previous versions to ignore it! added_tokens = {} for key, value in self.added_tokens_decoder.items(): added_tokens[key] = value.__getstate__() tokenizer_config["added_tokens_decoder"] = added_tokens # Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained tokenizer_class = self.__class__.__name__ # Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast` if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast": tokenizer_class = tokenizer_class[:-4] tokenizer_config["tokenizer_class"] = tokenizer_class if getattr(self, "_auto_map", None) is not None: tokenizer_config["auto_map"] = self._auto_map if getattr(self, "_processor_class", None) is not None: tokenizer_config["processor_class"] = self._processor_class # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: custom_object_save(self, save_directory, config=tokenizer_config) # remove private information if "name_or_path" in tokenizer_config: tokenizer_config.pop("name_or_path") tokenizer_config.pop("special_tokens_map_file", None) tokenizer_config.pop("tokenizer_file", None) with open(tokenizer_config_file, "w", encoding="utf-8") as f: out_str = json.dumps(tokenizer_config, indent=2, sort_keys=True, ensure_ascii=False) + "\n" f.write(out_str) logger.info(f"tokenizer config file saved in {tokenizer_config_file}") # Sanitize AddedTokens in special_tokens_map # kept for forward compatibility, will be removed in transoformers 5. Typefields are not saved for FC, special should not be save either write_dict = self.convert_added_tokens(self.special_tokens_map_extended, save=True, add_type_field=False) with open(special_tokens_map_file, "w", encoding="utf-8") as f: out_str = json.dumps(write_dict, indent=2, sort_keys=True, ensure_ascii=False) + "\n" f.write(out_str) logger.info(f"Special tokens file saved in {special_tokens_map_file}") file_names = (tokenizer_config_file, special_tokens_map_file) save_files = self._save_pretrained( save_directory=save_directory, file_names=file_names, legacy_format=legacy_format, filename_prefix=filename_prefix, ) if push_to_hub: self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=kwargs.get("token"), ) return save_files def _save_pretrained( self, save_directory: Union[str, os.PathLike], file_names: Tuple[str], legacy_format: Optional[bool] = None, filename_prefix: Optional[str] = None, ) -> Tuple[str]: """ Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens. Fast tokenizers can also be saved in a unique JSON file containing {config + vocab + added-tokens} using the specific [`~tokenization_utils_fast.PreTrainedTokenizerFast._save_pretrained`] """ if legacy_format is False: raise ValueError( "Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format." ) save_directory = str(save_directory) added_tokens_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE ) # the new get_added_vocab() also returns special tokens and tokens that have an index < vocab_size added_vocab = {tok: index for tok, index in self.added_tokens_encoder.items() if index >= self.vocab_size} if added_vocab: with open(added_tokens_file, "w", encoding="utf-8") as f: out_str = json.dumps(added_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n" f.write(out_str) logger.info(f"added tokens file saved in {added_tokens_file}") vocab_files = self.save_vocabulary(save_directory, filename_prefix=filename_prefix) return file_names + vocab_files + (added_tokens_file,) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Save only the vocabulary of the tokenizer (vocabulary + added tokens). This method won't save the configuration and special token mappings of the tokenizer. Use [`~PreTrainedTokenizerFast._save_pretrained`] to save the whole state of the tokenizer. Args: save_directory (`str`): The directory in which to save the vocabulary. filename_prefix (`str`, *optional*): An optional prefix to add to the named of the saved files. Returns: `Tuple(str)`: Paths to the files saved. """ raise NotImplementedError def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: """ Converts a string into a sequence of tokens, replacing unknown tokens with the `unk_token`. Args: text (`str`): The sequence to be encoded. pair (`str`, *optional*): A second sequence to be encoded with the first. add_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to add the special tokens associated with the corresponding model. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific encode method. See details in [`~PreTrainedTokenizerBase.__call__`] Returns: `List[str]`: The list of tokens. """ raise NotImplementedError @add_end_docstrings( ENCODE_KWARGS_DOCSTRING, """ **kwargs: Passed along to the `.tokenize()` method. """, """ Returns: `List[int]`, `torch.Tensor`, `tf.Tensor` or `np.ndarray`: The tokenized ids of the text. """, ) def encode( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary. Same as doing `self.convert_tokens_to_ids(self.tokenize(text))`. Args: text (`str`, `List[str]` or `List[int]`): The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method). text_pair (`str`, `List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method). """ encoded_inputs = self.encode_plus( text, text_pair=text_pair, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] def num_special_tokens_to_add(self, pair: bool = False) -> int: raise NotImplementedError def _get_padding_truncation_strategies( self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs ): """ Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy and pad_to_max_length) and behaviors. """ old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate") old_pad_to_max_length = kwargs.pop("pad_to_max_length", False) # Backward compatibility for previous behavior, maybe we should deprecate it: # If you only set max_length, it activates truncation for max_length if max_length is not None and padding is False and truncation is None: if verbose: if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False): logger.warning( "Truncation was not explicitly activated but `max_length` is provided a specific value, please" " use `truncation=True` to explicitly truncate examples to max length. Defaulting to" " 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the" " tokenizer you can select this strategy more precisely by providing a specific strategy to" " `truncation`." ) self.deprecation_warnings["Truncation-not-explicitly-activated"] = True truncation = "longest_first" # Get padding strategy if padding is False and old_pad_to_max_length: if verbose: warnings.warn( "The `pad_to_max_length` argument is deprecated and will be removed in a future version, " "use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or " "use `padding='max_length'` to pad to a max length. In this case, you can give a specific " "length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the " "maximal input size of the model (e.g. 512 for Bert).", FutureWarning, ) if max_length is None: padding_strategy = PaddingStrategy.LONGEST else: padding_strategy = PaddingStrategy.MAX_LENGTH elif padding is not False: if padding is True: if verbose: if max_length is not None and ( truncation is None or truncation is False or truncation == "do_not_truncate" ): warnings.warn( "`max_length` is ignored when `padding`=`True` and there is no truncation strategy. " "To pad to max length, use `padding='max_length'`." ) if old_pad_to_max_length is not False: warnings.warn("Though `pad_to_max_length` = `True`, it is ignored because `padding`=`True`.") padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(padding, PaddingStrategy): padding_strategy = PaddingStrategy(padding) elif isinstance(padding, PaddingStrategy): padding_strategy = padding else: padding_strategy = PaddingStrategy.DO_NOT_PAD # Get truncation strategy if truncation is None and old_truncation_strategy != "do_not_truncate": if verbose: warnings.warn( "The `truncation_strategy` argument is deprecated and will be removed in a future version, use" " `truncation=True` to truncate examples to a max length. You can give a specific length with" " `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the maximal input" " size of the model (e.g. 512 for Bert). If you have pairs of inputs, you can give a specific" " truncation strategy selected among `truncation='only_first'` (will only truncate the first" " sentence in the pairs) `truncation='only_second'` (will only truncate the second sentence in the" " pairs) or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence" " in the pairs).", FutureWarning, ) truncation_strategy = TruncationStrategy(old_truncation_strategy) elif truncation is not False and truncation is not None: if truncation is True: truncation_strategy = ( TruncationStrategy.LONGEST_FIRST ) # Default to truncate the longest sequences in pairs of inputs elif not isinstance(truncation, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation) elif isinstance(truncation, TruncationStrategy): truncation_strategy = truncation else: truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: if self.model_max_length > LARGE_INTEGER: if verbose: if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False): logger.warning( "Asking to pad to max_length but no maximum length is provided and the model has no" " predefined maximum length. Default to no padding." ) self.deprecation_warnings["Asking-to-pad-to-max_length"] = True padding_strategy = PaddingStrategy.DO_NOT_PAD else: max_length = self.model_max_length if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE: if self.model_max_length > LARGE_INTEGER: if verbose: if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False): logger.warning( "Asking to truncate to max_length but no maximum length is provided and the model has" " no predefined maximum length. Default to no truncation." ) self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE else: max_length = self.model_max_length # Test if we have a padding token if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.pad_token is None or self.pad_token_id < 0): raise ValueError( "Asking to pad but the tokenizer does not have a padding token. " "Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` " "or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`." ) # Check that we will truncate to a multiple of pad_to_multiple_of if both are provided if ( truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and padding_strategy != PaddingStrategy.DO_NOT_PAD and pad_to_multiple_of is not None and max_length is not None and (max_length % pad_to_multiple_of != 0) ): raise ValueError( "Truncation and padding are both activated but " f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})." ) return padding_strategy, truncation_strategy, max_length, kwargs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair_target: Optional[ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] ] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences. Args: text (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). """ # To avoid duplicating all_kwargs = { "add_special_tokens": add_special_tokens, "padding": padding, "truncation": truncation, "max_length": max_length, "stride": stride, "is_split_into_words": is_split_into_words, "pad_to_multiple_of": pad_to_multiple_of, "return_tensors": return_tensors, "return_token_type_ids": return_token_type_ids, "return_attention_mask": return_attention_mask, "return_overflowing_tokens": return_overflowing_tokens, "return_special_tokens_mask": return_special_tokens_mask, "return_offsets_mapping": return_offsets_mapping, "return_length": return_length, "verbose": verbose, } all_kwargs.update(kwargs) if text is None and text_target is None: raise ValueError("You need to specify either `text` or `text_target`.") if text is not None: # The context manager will send the inputs as normal texts and not text_target, but we shouldn't change the # input mode in this case. if not self._in_target_context_manager: self._switch_to_input_mode() encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs) if text_target is not None: self._switch_to_target_mode() target_encodings = self._call_one(text=text_target, text_pair=text_pair_target, **all_kwargs) # Leave back tokenizer in input mode self._switch_to_input_mode() if text_target is None: return encodings elif text is None: return target_encodings else: encodings["labels"] = target_encodings["input_ids"] return encodings def _call_one( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if not _is_valid_text_input(text): raise ValueError( "text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None and not _is_valid_text_input(text_pair): raise ValueError( "text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) " "or `List[List[str]]` (batch of pretokenized examples)." ) if is_split_into_words: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) if is_batched: if isinstance(text_pair, str): raise TypeError( "when tokenizing batches of text, `text_pair` must be a list or tuple with the same length as" " `text`." ) if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> Args: text (`str`, `List[str]` or `List[int]` (the latter only for not-fast tokenizers)): The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method). text_pair (`str`, `List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, text_pair=text_pair, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: raise NotImplementedError @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], List[EncodedInput], List[EncodedInputPair], ], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a list of sequences or a list of pairs of sequences. <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> Args: batch_text_or_text_pairs (`List[str]`, `List[Tuple[str, str]]`, `List[List[str]]`, `List[Tuple[List[str], List[str]]]`, and for not-fast tokenizers, also `List[List[int]]`, `List[Tuple[List[int], List[int]]]`): Batch of sequences or pair of sequences to be encoded. This can be a list of string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see details in `encode_plus`). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], List[EncodedInput], List[EncodedInputPair], ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: raise NotImplementedError def pad( self, encoded_inputs: Union[ BatchEncoding, List[BatchEncoding], Dict[str, EncodedInput], Dict[str, List[EncodedInput]], List[Dict[str, EncodedInput]], ], padding: Union[bool, str, PaddingStrategy] = True, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, verbose: bool = True, ) -> BatchEncoding: """ Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`). Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. <Tip> If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the specific device of your tensors however. </Tip> Args: encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str, List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see the note above for the return type. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. """ if self.__class__.__name__.endswith("Fast"): if not self.deprecation_warnings.get("Asking-to-pad-a-fast-tokenizer", False): logger.warning_advice( f"You're using a {self.__class__.__name__} tokenizer. Please note that with a fast tokenizer," " using the `__call__` method is faster than using a method to encode the text followed by a call" " to the `pad` method to get a padded encoding." ) self.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping): encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} # The model's main input name, usually `input_ids`, has be passed for padding if self.model_input_names[0] not in encoded_inputs: raise ValueError( "You should supply an encoding or a list of encodings to this method " f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}" ) required_input = encoded_inputs[self.model_input_names[0]] if required_input is None or (isinstance(required_input, Sized) and len(required_input) == 0): if return_attention_mask: encoded_inputs["attention_mask"] = [] return encoded_inputs # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch first_element = required_input[0] if isinstance(first_element, (list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. for item in required_input: if len(item) != 0: first_element = item[0] break # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do. if not isinstance(first_element, (int, list, tuple)): if is_tf_tensor(first_element): return_tensors = "tf" if return_tensors is None else return_tensors elif is_torch_tensor(first_element): return_tensors = "pt" if return_tensors is None else return_tensors elif isinstance(first_element, np.ndarray): return_tensors = "np" if return_tensors is None else return_tensors else: raise ValueError( f"type of {first_element} unknown: {type(first_element)}. " "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in encoded_inputs.items(): encoded_inputs[key] = to_py_obj(value) # Convert padding_strategy in PaddingStrategy padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( padding=padding, max_length=max_length, verbose=verbose ) required_input = encoded_inputs[self.model_input_names[0]] if required_input and not isinstance(required_input[0], (list, tuple)): encoded_inputs = self._pad( encoded_inputs, max_length=max_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) return BatchEncoding(encoded_inputs, tensor_type=return_tensors) batch_size = len(required_input) assert all( len(v) == batch_size for v in encoded_inputs.values() ), "Some items in the output dictionary have a different batch size than others." if padding_strategy == PaddingStrategy.LONGEST: max_length = max(len(inputs) for inputs in required_input) padding_strategy = PaddingStrategy.MAX_LENGTH batch_outputs = {} for i in range(batch_size): inputs = {k: v[i] for k, v in encoded_inputs.items()} outputs = self._pad( inputs, max_length=max_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) return BatchEncoding(batch_outputs, tensor_type=return_tensors) def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create the token type IDs corresponding to the sequences passed. [What are token type IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of building those. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The token type ids. """ if token_ids_1 is None: return len(token_ids_0) * [0] return [0] * len(token_ids_0) + [1] * len(token_ids_1) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. This implementation does not add special tokens and this method should be overridden in a subclass. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The model input with special tokens. """ if token_ids_1 is None: return token_ids_0 return token_ids_0 + token_ids_1 @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, ids: List[int], pair_ids: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Compute the total size of the returned encodings total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) # Build output dictionary encoded_inputs["input_ids"] = sequence if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def truncate_sequences( self, ids: List[int], pair_ids: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, TruncationStrategy] = "longest_first", stride: int = 0, ) -> Tuple[List[int], List[int], List[int]]: """ Truncates a sequence pair in-place following the strategy. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. num_tokens_to_remove (`int`, *optional*, defaults to 0): Number of tokens to remove using the truncation strategy. truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): The strategy to follow for truncation. Can be: - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). stride (`int`, *optional*, defaults to 0): If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. Returns: `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair of sequences (or a batch of pairs) is provided. """ if num_tokens_to_remove <= 0: return ids, pair_ids, [] if not isinstance(truncation_strategy, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation_strategy) overflowing_tokens = [] if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None ): if len(ids) > num_tokens_to_remove: window_len = min(len(ids), stride + num_tokens_to_remove) if self.truncation_side == "left": overflowing_tokens = ids[:window_len] ids = ids[num_tokens_to_remove:] elif self.truncation_side == "right": overflowing_tokens = ids[-window_len:] ids = ids[:-num_tokens_to_remove] else: raise ValueError(f"invalid truncation strategy: {self.truncation_side}, use 'left' or 'right'.") else: error_msg = ( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the first sequence has a length {len(ids)}. " ) if truncation_strategy == TruncationStrategy.ONLY_FIRST: error_msg = ( error_msg + "Please select another truncation strategy than " f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." ) logger.error(error_msg) elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: logger.warning( "Be aware, overflowing tokens are not returned for the setting you have chosen," f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " "truncation strategy. So the returned list will always be empty even if some " "tokens have been removed." ) len_pair_ids = len(pair_ids) if pair_ids is not None else 0 len_ids = len(ids) first_remove = min(abs(len_pair_ids - len_ids), num_tokens_to_remove) second_remove = num_tokens_to_remove - first_remove if len_ids > len_pair_ids: ids_to_move = first_remove + second_remove // 2 pair_ids_to_move = second_remove - second_remove // 2 else: ids_to_move = second_remove // 2 pair_ids_to_move = first_remove + second_remove - (second_remove // 2) if self.truncation_side == "right": ids = ids[:-ids_to_move] if ids_to_move > 0 else ids pair_ids = pair_ids[:-pair_ids_to_move] if pair_ids is not None and pair_ids_to_move > 0 else pair_ids elif self.truncation_side == "left": ids = ids[ids_to_move:] pair_ids = pair_ids[pair_ids_to_move:] if pair_ids is not None else None else: raise ValueError("invalid truncation strategy:" + str(self.truncation_side)) elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: if len(pair_ids) > num_tokens_to_remove: window_len = min(len(pair_ids), stride + num_tokens_to_remove) if self.truncation_side == "right": overflowing_tokens = pair_ids[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] elif self.truncation_side == "left": overflowing_tokens = pair_ids[:window_len] pair_ids = pair_ids[num_tokens_to_remove:] else: raise ValueError("invalid truncation strategy:" + str(self.truncation_side)) else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the second sequence has a length {len(pair_ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " "for instance 'longest_first' or 'only_first'." ) return (ids, pair_ids, overflowing_tokens) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs def convert_tokens_to_string(self, tokens: List[str]) -> str: """ Converts a sequence of tokens in a single string. The most simple way to do it is `" ".join(tokens)` but we often want to remove sub-word tokenization artifacts at the same time. Args: tokens (`List[str]`): The token to join in a string. Returns: `str`: The joined tokens. """ raise NotImplementedError def batch_decode( self, sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> List[str]: """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `List[str]`: The list of decoded sentences. """ return [ self.decode( seq, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) for seq in sequences ] def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ # Convert inputs to python lists token_ids = to_py_obj(token_ids) return self._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> str: raise NotImplementedError def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of ids of the first sequence. token_ids_1 (`List[int]`, *optional*): List of ids of the second sequence. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ assert already_has_special_tokens and token_ids_1 is None, ( "You cannot use ``already_has_special_tokens=False`` with this tokenizer. " "Please use a slow (full python) tokenizer to activate this argument. " "Or set `return_special_tokens_mask=True` when calling the encoding method " "to get the special tokens mask in any tokenizer. " ) all_special_ids = self.all_special_ids # cache the property special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0] return special_tokens_mask @staticmethod def clean_up_tokenization(out_string: str) -> str: """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms. Args: out_string (`str`): The text to clean up. Returns: `str`: The cleaned-up string. """ out_string = ( out_string.replace(" .", ".") .replace(" ?", "?") .replace(" !", "!") .replace(" ,", ",") .replace(" ' ", "'") .replace(" n't", "n't") .replace(" 'm", "'m") .replace(" 's", "'s") .replace(" 've", "'ve") .replace(" 're", "'re") ) return out_string def _eventual_warn_about_too_long_sequence(self, ids: List[int], max_length: Optional[int], verbose: bool): """ Depending on the input and internal state we might trigger a warning about a sequence that is too long for its corresponding model Args: ids (`List[str]`): The ids produced by the tokenization max_length (`int`, *optional*): The max_length desired (does not trigger a warning if it is set) verbose (`bool`): Whether or not to print more information and warnings. """ if max_length is None and len(ids) > self.model_max_length and verbose: if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False): logger.warning( "Token indices sequence length is longer than the specified maximum sequence length " f"for this model ({len(ids)} > {self.model_max_length}). Running this sequence through the model " "will result in indexing errors" ) self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True def _switch_to_input_mode(self): """ Private method to put the tokenizer in input mode (when it has different modes for input/outputs) """ pass def _switch_to_target_mode(self): """ Private method to put the tokenizer in target mode (when it has different modes for input/outputs) """ pass @contextmanager def as_target_tokenizer(self): """ Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to sequence-to-sequence models that need a slightly different processing for the labels. """ warnings.warn( "`as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your " "labels by using the argument `text_target` of the regular `__call__` method (either in the same call as " "your input texts if you use the same keyword arguments, or in a separate call." ) self._switch_to_target_mode() self._in_target_context_manager = True yield self._in_target_context_manager = False self._switch_to_input_mode() @classmethod def register_for_auto_class(cls, auto_class="AutoTokenizer"): """ Register this class with a given auto class. This should only be used for custom tokenizers as the ones in the library are already mapped with `AutoTokenizer`. <Tip warning={true}> This API is experimental and may have some slight breaking changes in the next releases. </Tip> Args: auto_class (`str` or `type`, *optional*, defaults to `"AutoTokenizer"`): The auto class to register this new tokenizer with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class def prepare_seq2seq_batch( self, src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = "longest", return_tensors: str = None, truncation: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare model inputs for translation. For best performance, translate one sentence at a time. Arguments: src_texts (`List[str]`): List of documents to summarize or source language texts. tgt_texts (`list`, *optional*): List of summaries or target language texts. max_length (`int`, *optional*): Controls the maximum length for encoder inputs (documents to summarize or source language texts) If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. max_target_length (`int`, *optional*): Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set to `None`, this will use the max_length value. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `True`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). **kwargs: Additional keyword arguments passed along to `self.__call__`. Return: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to the encoder. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model. - **labels** -- List of token ids for tgt_texts. The full set of keys `[input_ids, attention_mask, labels]`, will only be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys. """ # docstyle-ignore formatted_warning = """ `prepare_seq2seq_batch` is deprecated and will be removed in version 5 of HuggingFace Transformers. Use the regular `__call__` method to prepare your inputs and targets. Here is a short example: model_inputs = tokenizer(src_texts, text_target=tgt_texts, ...) If you either need to use different keyword arguments for the source and target texts, you should do two calls like this: model_inputs = tokenizer(src_texts, ...) labels = tokenizer(text_target=tgt_texts, ...) model_inputs["labels"] = labels["input_ids"] See the documentation of your specific tokenizer for more details on the specific arguments to the tokenizer of choice. For a more complete example, see the implementation of `prepare_seq2seq_batch`. """ warnings.warn(formatted_warning, FutureWarning) # mBART-specific kwargs that should be ignored by other models. kwargs.pop("src_lang", None) kwargs.pop("tgt_lang", None) if max_length is None: max_length = self.model_max_length model_inputs = self( src_texts, add_special_tokens=True, return_tensors=return_tensors, max_length=max_length, padding=padding, truncation=truncation, **kwargs, ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: max_target_length = max_length with self.as_target_tokenizer(): labels = self( tgt_texts, add_special_tokens=True, return_tensors=return_tensors, padding=padding, max_length=max_target_length, truncation=truncation, **kwargs, ) model_inputs["labels"] = labels["input_ids"] return model_inputs def get_fast_tokenizer_file(tokenization_files: List[str]) -> str: """ Get the tokenization file to use for this version of transformers. Args: tokenization_files (`List[str]`): The list of available configuration files. Returns: `str`: The tokenization file to use. """ tokenizer_files_map = {} for file_name in tokenization_files: search = _re_tokenizer_file.search(file_name) if search is not None: v = search.groups()[0] tokenizer_files_map[v] = file_name available_versions = sorted(tokenizer_files_map.keys()) # Defaults to FULL_TOKENIZER_FILE and then try to look at some newer versions. tokenizer_file = FULL_TOKENIZER_FILE transformers_version = version.parse(__version__) for v in available_versions: if version.parse(v) <= transformers_version: tokenizer_file = tokenizer_files_map[v] else: # No point going further since the versions are sorted. break return tokenizer_file # To update the docstring, we need to copy the method, otherwise we change the original docstring. PreTrainedTokenizerBase.push_to_hub = copy_func(PreTrainedTokenizerBase.push_to_hub) if PreTrainedTokenizerBase.push_to_hub.__doc__ is not None: PreTrainedTokenizerBase.push_to_hub.__doc__ = PreTrainedTokenizerBase.push_to_hub.__doc__.format( object="tokenizer", object_class="AutoTokenizer", object_files="tokenizer files" )
transformers/src/transformers/tokenization_utils_base.py/0
{ "file_path": "transformers/src/transformers/tokenization_utils_base.py", "repo_id": "transformers", "token_count": 86873 }
405
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer from .base import PipelineTool class TextSummarizationTool(PipelineTool): """ Example: ```py from transformers.tools import TextSummarizationTool summarizer = TextSummarizationTool() summarizer(long_text) ``` """ default_checkpoint = "philschmid/bart-large-cnn-samsum" description = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) name = "summarizer" pre_processor_class = AutoTokenizer model_class = AutoModelForSeq2SeqLM inputs = ["text"] outputs = ["text"] def encode(self, text): return self.pre_processor(text, return_tensors="pt", truncation=True) def forward(self, inputs): return self.model.generate(**inputs)[0] def decode(self, outputs): return self.pre_processor.decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)
transformers/src/transformers/tools/text_summarization.py/0
{ "file_path": "transformers/src/transformers/tools/text_summarization.py", "repo_id": "transformers", "token_count": 560 }
406
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import requires_backends LAYOUTLM_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None class LayoutLMv2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["detectron2"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["detectron2"])
transformers/src/transformers/utils/dummy_detectron2_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_detectron2_objects.py", "repo_id": "transformers", "token_count": 156 }
407
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import re class TrialShortNamer: PREFIX = "hp" DEFAULTS = {} NAMING_INFO = None @classmethod def set_defaults(cls, prefix, defaults): cls.PREFIX = prefix cls.DEFAULTS = defaults cls.build_naming_info() @staticmethod def shortname_for_word(info, word): if len(word) == 0: return "" short_word = None if any(char.isdigit() for char in word): raise Exception(f"Parameters should not contain numbers: '{word}' contains a number") if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(word) + 1): prefix = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: short_word = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(integer): s = "" while integer != 0: s = chr(ord("A") + integer % 10) + s integer //= 10 return s i = 0 while True: sword = word + "#" + int_to_alphabetic(i) if sword in info["reverse_short_word"]: continue else: short_word = sword break info["short_word"][word] = short_word info["reverse_short_word"][short_word] = word return short_word @staticmethod def shortname_for_key(info, param_name): words = param_name.split("_") shortname_parts = [TrialShortNamer.shortname_for_word(info, word) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name separators = ["", "_"] for separator in separators: shortname = separator.join(shortname_parts) if shortname not in info["reverse_short_param"]: info["short_param"][param_name] = shortname info["reverse_short_param"][shortname] = param_name return shortname return param_name @staticmethod def add_new_param_name(info, param_name): short_name = TrialShortNamer.shortname_for_key(info, param_name) info["short_param"][param_name] = short_name info["reverse_short_param"][short_name] = param_name @classmethod def build_naming_info(cls): if cls.NAMING_INFO is not None: return info = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } field_keys = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(info, k) cls.NAMING_INFO = info @classmethod def shortname(cls, params): cls.build_naming_info() assert cls.PREFIX is not None name = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"You should provide a default value for the param name {k} with value {v}") if v == cls.DEFAULTS[k]: # The default value is not added to the name continue key = cls.NAMING_INFO["short_param"][k] if isinstance(v, bool): v = 1 if v else 0 sep = "" if isinstance(v, (int, float)) else "-" e = f"{key}{sep}{v}" name.append(e) return "_".join(name) @classmethod def parse_repr(cls, repr): repr = repr[len(cls.PREFIX) + 1 :] if repr == "": values = [] else: values = repr.split("_") parameters = {} for value in values: if "-" in value: p_k, p_v = value.split("-") else: p_k = re.sub("[0-9.]", "", value) p_v = float(re.sub("[^0-9.]", "", value)) key = cls.NAMING_INFO["reverse_short_param"][p_k] parameters[key] = p_v for k in cls.DEFAULTS: if k not in parameters: parameters[k] = cls.DEFAULTS[k] return parameters
transformers/src/transformers/utils/hp_naming.py/0
{ "file_path": "transformers/src/transformers/utils/hp_naming.py", "repo_id": "transformers", "token_count": 2393 }
408
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 {{cookiecutter.authors}} and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning a 🤗 Transformers model on {{cookiecutter.example_name}}. """ # You can also adapt this script on your own {{cookiecutter.example_name}} task. Pointers for this are left as comments. {%- if cookiecutter.with_trainer == "True" %} import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional, List import datasets import torch from datasets import load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, {{cookiecutter.model_class}}, AutoTokenizer, DataCollatorWithPadding, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import send_example_telemetry logger = logging.getLogger(__name__) {%- if cookiecutter.can_train_from_scratch == "True" %} # You should update this to your particular problem to have better documentation of `model_type` MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) {%- elif cookiecutter.can_train_from_scratch == "False" %} @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) {% endif %} @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to predict the label on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." }, ) def __post_init__(self): if ( self.dataset_name is None and self.train_file is None and self.validation_file is None and self.test_file is None ): raise ValueError("Need either a dataset name or a training/validation/test file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." if self.test_file is not None: extension = self.test_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`test_file` should be a csv, a json or a txt file." def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_{{cookiecutter.example_shortcut}}", model_args, data_args) # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] if extension == "txt": extension = "text" raw_datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. {%- if cookiecutter.can_train_from_scratch == "True" %} config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.token, "trust_remote_code": model_args.trust_remote_code, } if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") tokenizer_kwargs = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "token": model_args.token, "trust_remote_code": model_args.trust_remote_code, } if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = {{cookiecutter.model_class}}.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: logger.info("Training new model from scratch") model = {{cookiecutter.model_class}}.from_config(config) model.resize_token_embeddings(len(tokenizer)) {%- elif cookiecutter.can_train_from_scratch == "False" %} config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, # num_labels=num_labels, Uncomment if you have a certain number of labels finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) {% endif %} # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = raw_datasets["train"].column_names elif training_args.do_eval: column_names = raw_datasets["validation"].column_names elif training_args.do_predict: column_names = raw_datasets["test"].column_names text_column_name = "text" if "text" in column_names else column_names[0] def tokenize_function(examples): return tokenizer(examples[text_column_name], padding="max_length", truncation=True) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: # Select Sample from Dataset train_dataset = train_dataset.select(range(data_args.max_train_samples)) # tokenize train dataset in batch with training_args.main_process_first(desc="train dataset map tokenization"): train_dataset = train_dataset.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = raw_datasets["validation"] # Selecting samples from dataset if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) # tokenize validation dataset with training_args.main_process_first(desc="validation dataset map tokenization"): eval_dataset = eval_dataset.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_predict: if "test" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = raw_datasets["test"] # Selecting samples from dataset if data_args.max_predict_samples is not None: predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) # tokenize predict dataset with training_args.main_process_first(desc="prediction dataset map tokenization"): predict_dataset = predict_dataset.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Data collator data_collator=default_data_collator if not training_args.fp16 else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: {%- if cookiecutter.can_train_from_scratch == "False" %} if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None {%- elif cookiecutter.can_train_from_scratch == "True" %} if last_checkpoint is not None: checkpoint = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None {% endif %} train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Prediction if training_args.do_predict: logger.info("*** Predict ***") predictions, labels, metrics = trainer.predict(predict_dataset) max_predict_samples = data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) # write custom code for saving predictions according to task def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main() {%- elif cookiecutter.with_trainer == "False" %} import argparse import logging import math import os import random import datasets from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from accelerate import Accelerator from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AdamW, AutoConfig, {{cookiecutter.model_class}}, AutoTokenizer, DataCollatorWithPadding, PretrainedConfig, SchedulerType, default_data_collator, get_scheduler, set_seed, ) from transformers.utils import send_example_telemetry logger = logging.getLogger(__name__) {%- if cookiecutter.can_train_from_scratch == "True" %} # You should update this to your particular problem to have better documentation of `model_type` MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) {% endif %} def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help= "The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") {%- if cookiecutter.can_train_from_scratch == "True" %} parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) {% endif %} args = parser.parse_args() # Sanity checks if args.task_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a task name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) return args def main(): args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_{{cookiecutter.example_shortcut}", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file extension = args.train_file.split(".")[-1] if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.validation_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. {%- if cookiecutter.can_train_from_scratch == "True" %} if model_args.config_name: config = AutoConfig.from_pretrained(args.model_name_or_path) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, use_fast=not args.use_slow_tokenizer) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, use_fast=not args.use_slow_tokenizer) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = {{cookiecutter.model_class}}.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, ) else: logger.info("Training new model from scratch") model = {{cookiecutter.model_class}}.from_config(config) model.resize_token_embeddings(len(tokenizer)) {%- elif cookiecutter.can_train_from_scratch == "False" %} config = AutoConfig.from_pretrained( args.config_name if model_args.config_name else args.model_name_or_path, # num_labels=num_labels, Uncomment if you have a certain number of labels finetuning_task=data_args.task_name, ) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if model_args.tokenizer_name else args.model_name_or_path, use_fast=not args.use_slow_tokenizer, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, ) {% endif %} # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] padding = "max_length" if args.pad_to_max_length else False def tokenize_function(examples): result = tokenizer(examples[text_column_name], padding=padding, max_length=args.max_length, truncation=True) if "label" in examples: result["labels"] = examples["label"] return result processed_datasets = raw_datasets.map( preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be # shorter in multiprocess) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # TODO Get the proper metric function # metric = load_metric(xxx) # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 for epoch in range(args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if completed_steps >= args.max_train_steps: break model.eval() for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) metric.add_batch( predictions=accelerator.gather(predictions), references=accelerator.gather(batch["labels"]), ) eval_metric = metric.compute() logger.info(f"epoch {epoch}: {eval_metric}") if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if __name__ == "__main__": main() {% endif %}
transformers/templates/adding_a_new_example_script/{{cookiecutter.directory_name}}/run_{{cookiecutter.example_shortcut}}.py/0
{ "file_path": "transformers/templates/adding_a_new_example_script/{{cookiecutter.directory_name}}/run_{{cookiecutter.example_shortcut}}.py", "repo_id": "transformers", "token_count": 15166 }
409
{ "modelname": "BrandNewBERT", "uppercase_modelname": "BRAND_NEW_BERT", "lowercase_modelname": "brand_new_bert", "camelcase_modelname": "BrandNewBert", "authors": "The HuggingFace Team", "checkpoint_identifier": "brand-new-bert-base-cased", "tokenizer_type": ["Based on BERT", "Based on BART", "Standalone"], "generate_tensorflow_pytorch_and_flax": [ "PyTorch, TensorFlow and Flax", "PyTorch & TensorFlow", "PyTorch & Flax", "TensorFlow & Flax", "PyTorch", "TensorFlow", "Flax" ], "is_encoder_decoder_model": ["True", "False"] }
transformers/templates/adding_a_new_model/cookiecutter.json/0
{ "file_path": "transformers/templates/adding_a_new_model/cookiecutter.json", "repo_id": "transformers", "token_count": 245 }
410
# coding=utf-8 # Copyright 2023 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class BetterTransformerIntegrationTest(unittest.TestCase): # refer to the full test suite in Optimum library: # https://github.com/huggingface/optimum/tree/main/tests/bettertransformer def test_transform_and_reverse(self): r""" Classic tests to simply check if the conversion has been successfull. """ model_id = "hf-internal-testing/tiny-random-t5" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSeq2SeqLM.from_pretrained(model_id) inp = tokenizer("This is me", return_tensors="pt") model = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules())) output = model.generate(**inp) model = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules())) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_reloaded = AutoModelForSeq2SeqLM.from_pretrained(tmpdirname) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules()) ) output_from_pretrained = model_reloaded.generate(**inp) self.assertTrue(torch.allclose(output, output_from_pretrained)) def test_error_save_pretrained(self): r""" The save_pretrained method should raise a ValueError if the model is in BetterTransformer mode. All should be good if the model is reversed. """ model_id = "hf-internal-testing/tiny-random-t5" model = AutoModelForSeq2SeqLM.from_pretrained(model_id) model = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(ValueError): model.save_pretrained(tmpdirname) model = model.reverse_bettertransformer() model.save_pretrained(tmpdirname)
transformers/tests/bettertransformer/test_integration.py/0
{ "file_path": "transformers/tests/bettertransformer/test_integration.py", "repo_id": "transformers", "token_count": 1117 }
411
# coding=utf-8 # Copyright 2021 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class AutoImageProcessorTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 def test_image_processor_from_model_shortcut(self): config = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32") self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_directory_from_key(self): with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) config = AutoImageProcessor.from_pretrained(tmpdirname) self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_directory_from_feature_extractor_key(self): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) config = AutoImageProcessor.from_pretrained(tmpdirname) self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_directory_from_config(self): with tempfile.TemporaryDirectory() as tmpdirname: model_config = CLIPConfig() # Create a dummy config file with image_proceesor_type processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) # remove image_processor_type to make sure config.json alone is enough to load image processor locally config_dict = AutoImageProcessor.from_pretrained(tmpdirname).to_dict() config_dict.pop("image_processor_type") config = CLIPImageProcessor(**config_dict) # save in new folder model_config.save_pretrained(tmpdirname) config.save_pretrained(tmpdirname) config = AutoImageProcessor.from_pretrained(tmpdirname) # make sure private variable is not incorrectly saved dict_as_saved = json.loads(config.to_json_string()) self.assertTrue("_processor_class" not in dict_as_saved) self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_file(self): with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) config = AutoImageProcessor.from_pretrained(processor_tmpfile) self.assertIsInstance(config, CLIPImageProcessor) def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "clip-base is not a local folder and is not a valid model identifier" ): _ = AutoImageProcessor.from_pretrained("clip-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoImageProcessor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_image_processor_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.", ): _ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model") def test_from_pretrained_dynamic_image_processor(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False ) image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True ) self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(tmp_dir) reloaded_image_processor = AutoImageProcessor.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_image_processor.__class__.__name__, "NewImageProcessor") def test_new_image_processor_registration(self): try: AutoConfig.register("custom", CustomConfig) AutoImageProcessor.register(CustomConfig, CustomImageProcessor) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoImageProcessor.register(CLIPConfig, CLIPImageProcessor) with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) image_processor = CustomImageProcessor.from_pretrained(tmpdirname) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(tmp_dir) new_image_processor = AutoImageProcessor.from_pretrained(tmp_dir) self.assertIsInstance(new_image_processor, CustomImageProcessor) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_image_processor_conflict(self): class NewImageProcessor(CLIPImageProcessor): is_local = True try: AutoConfig.register("custom", CustomConfig) AutoImageProcessor.register(CustomConfig, NewImageProcessor) # If remote code is not set, the default is to use local image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False ) self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True ) self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") self.assertTrue(not hasattr(image_processor, "is_local")) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
transformers/tests/models/auto/test_image_processing_auto.py/0
{ "file_path": "transformers/tests/models/auto/test_image_processing_auto.py", "repo_id": "transformers", "token_count": 4164 }
412
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "facebook/bart-base" tokenizer_class = BartTokenizer rust_tokenizer_class = BartTokenizerFast test_rust_tokenizer = True from_pretrained_filter = filter_roberta_detectors # from_pretrained_kwargs = {'add_prefix_space': True} def setUp(self): super().setUp() vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): return "lower newer", "lower newer" @cached_property def default_tokenizer(self): return BartTokenizer.from_pretrained("facebook/bart-large") @cached_property def default_tokenizer_fast(self): return BartTokenizerFast.from_pretrained("facebook/bart-large") @require_torch def test_prepare_batch(self): src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer(src_text, max_length=len(expected_src_tokens), padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) self.assertEqual((2, 9), batch.input_ids.shape) self.assertEqual((2, 9), batch.attention_mask.shape) result = batch.input_ids.tolist()[0] self.assertListEqual(expected_src_tokens, result) # Test that special tokens are reset @require_torch def test_prepare_batch_empty_target_text(self): src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer(src_text, padding=True, return_tensors="pt") # check if input_ids are returned and no labels self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertNotIn("labels", batch) self.assertNotIn("decoder_attention_mask", batch) @require_torch def test_tokenizer_as_target_length(self): tgt_text = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: targets = tokenizer(text_target=tgt_text, max_length=32, padding="max_length", return_tensors="pt") self.assertEqual(32, targets["input_ids"].shape[1]) @require_torch def test_prepare_batch_not_longer_than_maxlen(self): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer( ["I am a small frog" * 1024, "I am a small frog"], padding=True, truncation=True, return_tensors="pt" ) self.assertIsInstance(batch, BatchEncoding) self.assertEqual(batch.input_ids.shape, (2, 1024)) @require_torch def test_special_tokens(self): src_text = ["A long paragraph for summarization."] tgt_text = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: inputs = tokenizer(src_text, return_tensors="pt") targets = tokenizer(text_target=tgt_text, return_tensors="pt") input_ids = inputs["input_ids"] labels = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
transformers/tests/models/bart/test_tokenization_bart.py/0
{ "file_path": "transformers/tests/models/bart/test_tokenization_bart.py", "repo_id": "transformers", "token_count": 3686 }
413
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class BertGenerationEncoderTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=50, initializer_range=0.02, use_labels=True, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.use_labels = use_labels self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() return config, input_ids, input_mask, token_labels def get_config(self): return BertGenerationConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, token_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, input_mask, token_labels, **kwargs, ): model = BertGenerationEncoder(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, **kwargs, ): config.add_cross_attention = True model = BertGenerationEncoder(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, **kwargs, ): config.is_decoder = True config.add_cross_attention = True model = BertGenerationDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_causal_lm( self, config, input_ids, input_mask, token_labels, *args, ): model = BertGenerationDecoder(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config, input_ids, input_mask, token_labels = self.prepare_config_and_inputs() inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class BertGenerationEncoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () all_generative_model_classes = (BertGenerationDecoder,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def setUp(self): self.model_tester = BertGenerationEncoderTester(self) self.config_tester = ConfigTester(self, config_class=BertGenerationConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_bert(self): config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs() config.model_type = "bert" self.model_tester.create_and_check_model(config, input_ids, input_mask, token_labels) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) @slow def test_model_from_pretrained(self): model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(model) @require_torch class BertGenerationEncoderIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size([1, 8, 1024]) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @require_torch class BertGenerationDecoderIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size([1, 8, 50358]) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/bert_generation/test_modeling_bert_generation.py/0
{ "file_path": "transformers/tests/models/bert_generation/test_modeling_bert_generation.py", "repo_id": "transformers", "token_count": 5707 }
414
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Bit model. """ import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class BitModelTester: def __init__( self, parent, batch_size=3, image_size=32, num_channels=3, embeddings_size=10, hidden_sizes=[8, 16, 32, 64], depths=[1, 1, 2, 1], is_training=True, use_labels=True, hidden_act="relu", num_labels=3, scope=None, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], num_groups=1, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.embeddings_size = embeddings_size self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.num_labels = num_labels self.scope = scope self.num_stages = len(hidden_sizes) self.out_features = out_features self.out_indices = out_indices self.num_groups = num_groups def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return BitConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, out_features=self.out_features, out_indices=self.out_indices, num_groups=self.num_groups, ) def create_and_check_model(self, config, pixel_values, labels): model = BitModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = BitForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_backbone(self, config, pixel_values, labels): model = BitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) # verify backbone works with out_features=None config.out_features = None model = BitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class BitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Bit does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = BitModelTester(self) self.config_tester = ConfigTester(self, config_class=BitConfig, has_text_modality=False) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="Bit does not output attentions") def test_attention_outputs(self): pass @unittest.skip(reason="Bit does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Bit does not support input and output embeddings") def test_model_common_attributes(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config=config) for name, module in model.named_modules(): if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) self.assertTrue( torch.all(module.bias == 0), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() layers_type = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: config.layer_type = layer_type inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) @unittest.skip(reason="Bit does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BitModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class BitModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([[-0.6526, -0.5263, -1.4398]]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch class BitBackboneTest(BackboneTesterMixin, unittest.TestCase): all_model_classes = (BitBackbone,) if is_torch_available() else () config_class = BitConfig has_attentions = False def setUp(self): self.model_tester = BitModelTester(self)
transformers/tests/models/bit/test_modeling_bit.py/0
{ "file_path": "transformers/tests/models/bit/test_modeling_bit.py", "repo_id": "transformers", "token_count": 5077 }
415
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow Blip model. """ from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class BlipTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, bos_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: input_mask = input_mask.numpy() batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, tf.convert_to_tensor(input_mask) def get_config(self): return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def create_and_check_model(self, config, input_ids, input_mask): model = TFBlipTextModel(config=config) result = model(input_ids, attention_mask=input_mask, training=False) result = model(input_ids, training=False) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class BlipTextModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TFBlipTextModel,) if is_tf_available() else () test_onnx = False test_pruning = False test_head_masking = False def setUp(self): self.model_tester = BlipTextModelTester(self) self.config_tester = ConfigTester(self, config_class=BlipTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="Blip does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFBlipTextModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_pt_tf_model_equivalence(self, allow_missing_keys=True): super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys)
transformers/tests/models/blip/test_modeling_tf_blip_text.py/0
{ "file_path": "transformers/tests/models/blip/test_modeling_tf_blip_text.py", "repo_id": "transformers", "token_count": 2795 }
416
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import CLIPImageProcessor class CLIPImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, do_normalize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], do_convert_rgb=True, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class CLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = CLIPImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = CLIPImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_convert_rgb")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
transformers/tests/models/clip/test_image_processing_clip.py/0
{ "file_path": "transformers/tests/models/clip/test_image_processing_clip.py", "repo_id": "transformers", "token_count": 1915 }
417
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Data2VecAudio model. """ import math import unittest import numpy as np from datasets import load_dataset from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask from transformers import Data2VecAudioConfig, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_soundfile, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Data2VecAudioForAudioFrameClassification, Data2VecAudioForCTC, Data2VecAudioForSequenceClassification, Data2VecAudioForXVector, Data2VecAudioModel, Wav2Vec2Processor, ) from transformers.models.data2vec.modeling_data2vec_audio import _compute_mask_indices class Data2VecAudioModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=16, feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, mask_time_prob=0.5, mask_time_length=2, vocab_size=32, num_adapter_layers=1, adapter_stride=2, tdnn_dim=(32, 32), tdnn_kernel=(5, 3), tdnn_dilation=(1, 2), xvector_output_dim=32, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.num_adapter_layers = num_adapter_layers self.adapter_stride = adapter_stride self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.scope = scope self.tdnn_dim = tdnn_dim self.tdnn_kernel = tdnn_kernel self.tdnn_dilation = tdnn_dilation self.xvector_output_dim = xvector_output_dim output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1 def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_values, attention_mask def get_config(self): return Data2VecAudioConfig( hidden_size=self.hidden_size, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, mask_time_prob=self.mask_time_prob, mask_time_length=self.mask_time_length, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, num_adapter_layers=self.num_adapter_layers, adapter_stride=self.adapter_stride, tdnn_dim=self.tdnn_dim, tdnn_kernel=self.tdnn_kernel, tdnn_dilation=self.tdnn_dilation, xvector_output_dim=self.xvector_output_dim, ) def create_and_check_model(self, config, input_values, attention_mask): model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter(self, config, input_values, attention_mask): config.add_adapter = True model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask): config.add_adapter = True config.output_hidden_size = 8 model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size), ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = Data2VecAudioForCTC(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() self.parent.assertTrue(isinstance(sum_loss, float)) self.parent.assertTrue(isinstance(mean_loss, float)) def check_seq_classifier_loss(self, config, input_values, *args): model = Data2VecAudioForSequenceClassification(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() unmasked_loss = model(input_values, labels=labels).loss.item() self.parent.assertTrue(isinstance(masked_loss, float)) self.parent.assertTrue(isinstance(unmasked_loss, float)) self.parent.assertTrue(masked_loss != unmasked_loss) def check_ctc_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Data2VecAudioForCTC(config=config) model.to(torch_device) model.train() # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 if max_length_labels[i] < labels.shape[-1]: # it's important that we make sure that target lengths are at least # one shorter than logit lengths to prevent -inf labels[i, max_length_labels[i] - 1 :] = -100 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_seq_classifier_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Data2VecAudioForSequenceClassification(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_xvector_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Data2VecAudioForXVector(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_labels_out_of_vocab(self, config, input_values, *args): model = Data2VecAudioForCTC(config) model.to(torch_device) model.train() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) with self.parent.assertRaises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_torch class Data2VecAudioModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( Data2VecAudioForCTC, Data2VecAudioModel, Data2VecAudioForSequenceClassification, Data2VecAudioForAudioFrameClassification, Data2VecAudioForXVector, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "audio-classification": Data2VecAudioForSequenceClassification, "automatic-speech-recognition": Data2VecAudioForCTC, "feature-extraction": Data2VecAudioModel, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False def setUp(self): self.model_tester = Data2VecAudioModelTester(self) self.config_tester = ConfigTester(self, config_class=Data2VecAudioConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_adapter(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter(*config_and_inputs) def test_model_with_adapter_proj_dim(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_seq_classifier_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_seq_classifier_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_training(*config_and_inputs) def test_xvector_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_xvector_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # Data2VecAudio has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # Data2VecAudio cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # Data2VecAudio has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_flax_to_pt(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_pt_to_flax(self): pass def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "codevectors") and module.codevectors is not None: module.codevectors.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) def test_mask_feature_prob_ctc(self): model = Data2VecAudioForCTC.from_pretrained( "hf-internal-testing/tiny-random-data2vec-seq-class", mask_feature_prob=0.2, mask_feature_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 1498, 32)) def test_mask_time_prob_ctc(self): model = Data2VecAudioForCTC.from_pretrained( "facebook/data2vec-audio-base-960h", mask_time_prob=0.2, mask_time_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 299, 32)) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = Data2VecAudioModel.from_pretrained("facebook/data2vec-audio-base") self.assertIsNotNone(model) @require_torch class Data2VecAudioUtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)]) def test_compute_mask_indices_low_prob(self): # with these settings num_masked_spans=0.5, which means probabilistic rounding # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in # the other 5 out of 10, cases num_masked_spans=1 n_trials = 100 batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 count_dimensions_masked = 0 count_dimensions_not_masked = 0 for _ in range(n_trials): mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) num_masks = torch.sum(mask).item() if num_masks > 0: count_dimensions_masked += 1 else: count_dimensions_not_masked += 1 # as we test for at least 10 masked dimension and at least # 10 non-masked dimension, this test could fail with probability: # P(100 coin flips, at most 9 heads) = 1.66e-18 self.assertGreater(count_dimensions_masked, int(n_trials * 0.1)) self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1)) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) def test_compute_mask_indices_attn_mask_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) attention_mask[:2, sequence_length // 2 :] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask ) mask = torch.from_numpy(mask).to(torch_device) for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0) def test_compute_mask_indices_short_audio(self): batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) # force one example to be heavily padded attention_mask[0, 5:] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2 ) # make sure that non-padded examples cannot be padded self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any()) @require_torch @require_soundfile @slow class Data2VecAudioModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _load_superb(self, task, num_samples): ds = load_dataset("anton-l/superb_dummy", task, split="test") return ds[:num_samples] def test_inference_ctc_normal(self): model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h") model.to(torch_device) processor = Wav2Vec2Processor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", do_lower_case=True) input_speech = self._load_datasamples(1) input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_batched(self): model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h").to(torch_device) processor = Wav2Vec2Processor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", do_lower_case=True) input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around" " him with thousands of spectators were trivialities not worth thinking about", "his instant of panic was followed by a small sharp blow high on his chest", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
transformers/tests/models/data2vec/test_modeling_data2vec_audio.py/0
{ "file_path": "transformers/tests/models/data2vec/test_modeling_data2vec_audio.py", "repo_id": "transformers", "token_count": 13305 }
418
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Deformable DETR model. """ import inspect import math import unittest from typing import Dict, List, Tuple from transformers import DeformableDetrConfig, ResNetConfig, is_torch_available, is_vision_available from transformers.file_utils import cached_property from transformers.testing_utils import ( require_timm, require_torch, require_torch_accelerator, require_torch_bf16, require_vision, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DeformableDetrForObjectDetection, DeformableDetrModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class DeformableDetrModelTester: def __init__( self, parent, batch_size=8, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=8, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, num_queries=12, num_channels=3, image_size=196, n_targets=8, num_labels=91, num_feature_levels=4, encoder_n_points=2, decoder_n_points=6, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.num_queries = num_queries self.num_channels = num_channels self.image_size = image_size self.n_targets = n_targets self.num_labels = num_labels self.num_feature_levels = num_feature_levels self.encoder_n_points = encoder_n_points self.decoder_n_points = decoder_n_points # we also set the expected seq length for both encoder and decoder self.encoder_seq_length = ( math.ceil(self.image_size / 8) ** 2 + math.ceil(self.image_size / 16) ** 2 + math.ceil(self.image_size / 32) ** 2 + math.ceil(self.image_size / 64) ** 2 ) self.decoder_seq_length = self.num_queries def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device) labels = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) labels = [] for i in range(self.batch_size): target = {} target["class_labels"] = torch.randint( high=self.num_labels, size=(self.n_targets,), device=torch_device ) target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device) labels.append(target) config = self.get_config() return config, pixel_values, pixel_mask, labels def get_config(self): resnet_config = ResNetConfig( num_channels=3, embeddings_size=10, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 2, 1], hidden_act="relu", num_labels=3, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], ) return DeformableDetrConfig( d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, num_queries=self.num_queries, num_labels=self.num_labels, num_feature_levels=self.num_feature_levels, encoder_n_points=self.encoder_n_points, decoder_n_points=self.decoder_n_points, use_timm_backbone=False, backbone=None, backbone_config=resnet_config, use_pretrained_backbone=False, ) def prepare_config_and_inputs_for_common(self): config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def create_and_check_deformable_detr_model(self, config, pixel_values, pixel_mask, labels): model = DeformableDetrModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size)) def create_and_check_deformable_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): model = DeformableDetrForObjectDetection(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) @require_torch class DeformableDetrModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (DeformableDetrModel, DeformableDetrForObjectDetection) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": DeformableDetrModel, "object-detection": DeformableDetrForObjectDetection} if is_torch_available() else {} ) is_encoder_decoder = True test_torchscript = False test_pruning = False test_head_masking = False test_missing_keys = False # special case for head models def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "DeformableDetrForObjectDetection": labels = [] for i in range(self.model_tester.batch_size): target = {} target["class_labels"] = torch.ones( size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long ) target["boxes"] = torch.ones( self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float ) target["masks"] = torch.ones( self.model_tester.n_targets, self.model_tester.image_size, self.model_tester.image_size, device=torch_device, dtype=torch.float, ) labels.append(target) inputs_dict["labels"] = labels return inputs_dict def setUp(self): self.model_tester = DeformableDetrModelTester(self) self.config_tester = ConfigTester(self, config_class=DeformableDetrConfig, has_text_modality=False) def test_config(self): # we don't test common_properties and arguments_init as these don't apply for Deformable DETR self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() def test_deformable_detr_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deformable_detr_model(*config_and_inputs) def test_deformable_detr_object_detection_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deformable_detr_object_detection_head_model(*config_and_inputs) @unittest.skip(reason="Deformable DETR does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Deformable DETR does not have a get_input_embeddings method") def test_model_common_attributes(self): pass @unittest.skip(reason="Deformable DETR is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="Deformable DETR does not use token embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.encoder_n_points, ], ) out_len = len(outputs) correct_outlen = 8 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning # Object Detection model returns pred_logits and pred_boxes if model_class.__name__ == "DeformableDetrForObjectDetection": correct_outlen += 2 self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.decoder_n_points, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.encoder_n_points, ], ) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: print("Model class:", model_class) model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def test_retain_grad_hidden_states_attentions(self): # removed retain_grad and grad on decoder_hidden_states, as queries don't require grad config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) # we take the second output since last_hidden_state is the second item output = outputs[1] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_attentions = outputs.encoder_attentions[0] encoder_hidden_states.retain_grad() encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) def test_forward_auxiliary_loss(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.auxiliary_loss = True # only test for object detection and segmentation model for model_class in self.all_model_classes[1:]: model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) outputs = model(**inputs) self.assertIsNotNone(outputs.auxiliary_outputs) self.assertEqual(len(outputs.auxiliary_outputs), self.model_tester.num_hidden_layers - 1) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = ["pixel_values", "pixel_mask"] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" in arg_names else [] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["pixel_values", "pixel_mask"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_different_timm_backbone(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # let's pick a random timm backbone config.backbone = "tf_mobilenetv3_small_075" config.use_timm_backbone = True config.backbone_config = None for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if model_class.__name__ == "DeformableDetrForObjectDetection": expected_shape = ( self.model_tester.batch_size, self.model_tester.num_queries, self.model_tester.num_labels, ) self.assertEqual(outputs.logits.shape, expected_shape) self.assertTrue(outputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: print("Model class:", model_class) model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if param.requires_grad: if ( "level_embed" in name or "sampling_offsets.bias" in name or "value_proj" in name or "output_proj" in name or "reference_points" in name ): continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_two_stage_training(self): model_class = DeformableDetrForObjectDetection config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True config.two_stage = True config.auxiliary_loss = True config.with_box_refine = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def create_and_check_model_fp16_forward(self): model_class = DeformableDetrForObjectDetection config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) model.to(torch_device) model.half() model.eval() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) output = model(**inputs)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) @require_torch_bf16 def create_and_check_model_bf16_forward(self): model_class = DeformableDetrForObjectDetection config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config, torch_dtype=torch.bfloat16) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) output = model(**inputs)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_timm @require_vision @slow class DeformableDetrModelIntegrationTests(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("SenseTime/deformable-detr") if is_vision_available() else None def test_inference_object_detection_head(self): model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr").to(torch_device) image_processor = self.default_image_processor image = prepare_img() encoding = image_processor(images=image, return_tensors="pt").to(torch_device) pixel_values = encoding["pixel_values"].to(torch_device) pixel_mask = encoding["pixel_mask"].to(torch_device) with torch.no_grad(): outputs = model(pixel_values, pixel_mask) expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels)) self.assertEqual(outputs.logits.shape, expected_shape_logits) expected_logits = torch.tensor( [[-9.6645, -4.3449, -5.8705], [-9.7035, -3.8504, -5.0724], [-10.5634, -5.3379, -7.5116]] ).to(torch_device) expected_boxes = torch.tensor( [[0.8693, 0.2289, 0.2492], [0.3150, 0.5489, 0.5845], [0.5563, 0.7580, 0.8518]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) expected_shape_boxes = torch.Size((1, model.config.num_queries, 4)) self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) # verify postprocessing results = image_processor.post_process_object_detection( outputs, threshold=0.3, target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor([0.7999, 0.7894, 0.6331, 0.4720, 0.4382]).to(torch_device) expected_labels = [17, 17, 75, 75, 63] expected_slice_boxes = torch.tensor([16.5028, 52.8390, 318.2544, 470.7841]).to(torch_device) self.assertEqual(len(results["scores"]), 5) self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) self.assertSequenceEqual(results["labels"].tolist(), expected_labels) self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) def test_inference_object_detection_head_with_box_refine_two_stage(self): model = DeformableDetrForObjectDetection.from_pretrained( "SenseTime/deformable-detr-with-box-refine-two-stage" ).to(torch_device) image_processor = self.default_image_processor image = prepare_img() encoding = image_processor(images=image, return_tensors="pt").to(torch_device) pixel_values = encoding["pixel_values"].to(torch_device) pixel_mask = encoding["pixel_mask"].to(torch_device) with torch.no_grad(): outputs = model(pixel_values, pixel_mask) expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels)) self.assertEqual(outputs.logits.shape, expected_shape_logits) expected_logits = torch.tensor( [[-6.7108, -4.3213, -6.3777], [-8.9014, -6.1799, -6.7240], [-6.9315, -4.4735, -6.2298]] ).to(torch_device) expected_boxes = torch.tensor( [[0.2583, 0.5499, 0.4683], [0.7652, 0.9068, 0.4882], [0.5490, 0.2763, 0.0564]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) expected_shape_boxes = torch.Size((1, model.config.num_queries, 4)) self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) @require_torch_accelerator def test_inference_object_detection_head_equivalence_cpu_gpu(self): image_processor = self.default_image_processor image = prepare_img() encoding = image_processor(images=image, return_tensors="pt") pixel_values = encoding["pixel_values"] pixel_mask = encoding["pixel_mask"] # 1. run model on CPU model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr-single-scale") with torch.no_grad(): cpu_outputs = model(pixel_values, pixel_mask) # 2. run model on GPU model.to(torch_device) with torch.no_grad(): gpu_outputs = model(pixel_values.to(torch_device), pixel_mask.to(torch_device)) # 3. assert equivalence for key in cpu_outputs.keys(): assert torch.allclose(cpu_outputs[key], gpu_outputs[key].cpu(), atol=1e-4) expected_logits = torch.tensor( [[-9.9051, -4.2541, -6.4852], [-9.6947, -4.0854, -6.8033], [-10.0665, -5.8470, -7.7003]] ) assert torch.allclose(cpu_outputs.logits[0, :3, :3], expected_logits, atol=1e-4)
transformers/tests/models/deformable_detr/test_modeling_deformable_detr.py/0
{ "file_path": "transformers/tests/models/deformable_detr/test_modeling_deformable_detr.py", "repo_id": "transformers", "token_count": 14595 }
419
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Dinov2 model. """ import unittest from transformers import Dinov2Config from transformers.testing_utils import ( is_flaky, require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import Dinov2Backbone, Dinov2ForImageClassification, Dinov2Model from transformers.models.dinov2.modeling_dinov2 import DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class Dinov2ModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope # in Dinov2, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return Dinov2Config( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = Dinov2Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_backbone(self, config, pixel_values, labels): model = Dinov2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) expected_size = self.image_size // config.patch_size self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], expected_size, expected_size] ) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) # verify backbone works with out_features=None config.out_features = None model = Dinov2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], expected_size, expected_size] ) # verify channels self.parent.assertEqual(len(model.channels), 1) # verify backbone works with apply_layernorm=False and reshape_hidden_states=False config.apply_layernorm = False config.reshape_hidden_states = False model = Dinov2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, self.seq_length, self.hidden_size] ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = Dinov2ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = Dinov2ForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class Dinov2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Dinov2 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( Dinov2Model, Dinov2ForImageClassification, Dinov2Backbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": Dinov2Model, "image-classification": Dinov2ForImageClassification} if is_torch_available() else {} ) fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Dinov2ModelTester(self) self.config_tester = ConfigTester(self, config_class=Dinov2Config, has_text_modality=False, hidden_size=37) @is_flaky(max_attempts=3, description="`torch.nn.init.trunc_normal_` is flaky.") def test_initialization(self): super().test_initialization() def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Dinov2 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @unittest.skip(reason="Dinov2 does not support feedforward chunking yet") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): for model_name in DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Dinov2Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class Dinov2ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("facebook/dinov2-base") if is_vision_available() else None @slow def test_inference_no_head(self): model = Dinov2Model.from_pretrained("facebook/dinov2-base").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the last hidden states expected_shape = torch.Size((1, 257, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[-2.1747, -0.4729, 1.0936], [-3.2780, -0.8269, -0.9210], [-2.9129, 1.1284, -0.7306]], device=torch_device, ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) @require_torch class Dinov2BackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (Dinov2Backbone,) if is_torch_available() else () config_class = Dinov2Config has_attentions = False def setUp(self): self.model_tester = Dinov2ModelTester(self)
transformers/tests/models/dinov2/test_modeling_dinov2.py/0
{ "file_path": "transformers/tests/models/dinov2/test_modeling_dinov2.py", "repo_id": "transformers", "token_count": 5087 }
420
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import ElectraTokenizerFast from transformers.models.electra.tokenization_electra import ( VOCAB_FILES_NAMES, BasicTokenizer, ElectraTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class ElectraTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "google/electra-small-generator" tokenizer_class = ElectraTokenizer rust_tokenizer_class = ElectraTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True from_pretrained_filter = filter_non_english def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11]) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) # With lower casing tokenizer = self.get_tokenizer(do_lower_case=True) rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True) sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_chinese(self): tokenizer = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_no_lower(self): tokenizer = BasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def test_clean_text(self): tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]] ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("google/electra-base-discriminator") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_2 + [102] def test_offsets_with_special_characters(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False expected_results = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) def test_change_tokenize_chinese_chars(self): list_of_commun_chinese_char = ["的", "人", "有"] text_with_chinese_char = "".join(list_of_commun_chinese_char) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): kwargs["tokenize_chinese_chars"] = True tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(tokens_without_spe_char_p, list_of_commun_chinese_char) self.assertListEqual(tokens_without_spe_char_r, list_of_commun_chinese_char) kwargs["tokenize_chinese_chars"] = False tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that only the first Chinese character is not preceded by "##". expected_tokens = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(list_of_commun_chinese_char) ] self.assertListEqual(tokens_without_spe_char_p, expected_tokens) self.assertListEqual(tokens_without_spe_char_r, expected_tokens)
transformers/tests/models/electra/test_tokenization_electra.py/0
{ "file_path": "transformers/tests/models/electra/test_tokenization_electra.py", "repo_id": "transformers", "token_count": 6779 }
421
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.modeling_tf_utils import keras from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) # copied from tests.test_modeling_tf_roberta class TFEsmModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, pad_token_id=1, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels): model = TFEsmModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFEsmModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs, encoder_hidden_states=encoder_hidden_states) # Also check the case where encoder outputs are not passed result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFEsmForMaskedLM(config=config) result = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFEsmForTokenClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFEsmModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFEsmModelTester(self) self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): """Test the base model""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): """Test the base model as a decoder (of an encoder-decoder architecture) is_deocder=True + cross_attention + pass encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFEsmModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip("Protein models do not support embedding resizing.") def test_resize_token_embeddings(self): pass @unittest.skip("Protein models do not support embedding resizing.") def test_save_load_after_resize_token_embeddings(self): pass def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer name = model.get_bias() assert isinstance(name, dict) for k, v in name.items(): assert isinstance(v, tf.Variable) else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None @require_tf class TFEsmModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 33] self.assertEqual(list(output.numpy().shape), expected_shape) # compare the actual values for a slice. expected_slice = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-2)) @slow def test_inference_no_head(self): model = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D") input_ids = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
transformers/tests/models/esm/test_modeling_tf_esm.py/0
{ "file_path": "transformers/tests/models/esm/test_modeling_tf_esm.py", "repo_id": "transformers", "token_count": 5430 }
422
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Gemma model. """ import tempfile import unittest import pytest from parameterized import parameterized from transformers import AutoModelForCausalLM, AutoTokenizer, GemmaConfig, is_torch_available from transformers.testing_utils import ( require_bitsandbytes, require_flash_attn, require_read_token, require_torch, require_torch_gpu, require_torch_sdpa, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GemmaForCausalLM, GemmaForSequenceClassification, GemmaModel class GemmaModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, num_key_value_heads=2, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope self.head_dim = self.hidden_size // self.num_attention_heads # Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels # Ignore copy def get_config(self): return GemmaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, num_key_value_heads=self.num_key_value_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, head_dim=self.head_dim, ) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Gemma def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = GemmaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Gemma def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = GemmaModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Gemma def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = GemmaForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Gemma def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = GemmaForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Gemma def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class GemmaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GemmaModel, GemmaForCausalLM, GemmaForSequenceClassification) if is_torch_available() else () all_generative_model_classes = (GemmaForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": GemmaModel, "text-classification": GemmaForSequenceClassification, "text-generation": GemmaForCausalLM, "zero-shot": GemmaForSequenceClassification, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False # Need to remove 0.9 in `test_cpu_offload` # This is because we are hitting edge cases with the causal_mask buffer model_split_percents = [0.5, 0.6] # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146 def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def setUp(self): self.model_tester = GemmaModelTester(self) self.config_tester = ConfigTester(self, config_class=GemmaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_Gemma_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() print(config) config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = GemmaForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_Gemma_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = GemmaForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_Gemma_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = GemmaForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("TODO @gante fix this for Llama") @parameterized.expand([(1, False), (1, True), (4, False)]) def test_new_cache_format(self, num_beams, do_sample): pass @unittest.skip("Gemma buffers include complex numbers, which breaks this test") def test_save_load_fast_init_from_base(self): pass @unittest.skip("Gemma uses GQA on all models so the KV cache is a non standard format") def test_past_key_values_format(self): pass @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_generate_padding_right(self): import torch for model_class in self.all_generative_model_classes: config, _ = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to( torch_device ) dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device) dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device) model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False) model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2", low_cpu_mem_usage=True, ).to(torch_device) with self.assertRaises(ValueError): _ = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False ) @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_generate_use_cache(self): import torch max_new_tokens = 30 for model_class in self.all_generative_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() dummy_input = inputs_dict[model_class.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) # NOTE: Gemma apparently does not support right padding + use_cache with FA2. dummy_attention_mask[:, -1] = 1 model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2", low_cpu_mem_usage=True, ).to(torch_device) # Just test that a large cache works as expected _ = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False, use_cache=True, ) @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_inference_padding_right(self): self.skipTest("Gemma flash attention does not support right padding") @require_torch_sdpa @require_torch_gpu @slow def test_sdpa_equivalence(self): for model_class in self.all_model_classes: if not model_class._supports_sdpa: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_sdpa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa" ) model_sdpa.to(torch_device) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager") model.to(torch_device) dummy_input = inputs_dict[model_class.main_input_name] dummy_input = dummy_input.to(torch_device) outputs = model(dummy_input, output_hidden_states=True) outputs_sdpa = model_sdpa(dummy_input, output_hidden_states=True) logits = outputs.hidden_states[-1] logits_sdpa = outputs_sdpa.hidden_states[-1] # gemma sdpa needs a high tolerance assert torch.allclose(logits_sdpa, logits, atol=3e-3) @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_equivalence(self): for model_class in self.all_model_classes: if not model_class._supports_flash_attn_2: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_fa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2" ) model_fa.to(torch_device) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager") model.to(torch_device) dummy_input = inputs_dict[model_class.main_input_name] dummy_input = dummy_input.to(torch_device) outputs = model(dummy_input, output_hidden_states=True) outputs_fa = model_fa(dummy_input, output_hidden_states=True) logits = outputs.hidden_states[-1] logits_fa = outputs_fa.hidden_states[-1] # gemma flash attention 2 needs a high tolerance assert torch.allclose(logits_fa, logits, atol=3e-3) @require_torch_gpu @slow @require_read_token class GemmaIntegrationTest(unittest.TestCase): input_text = ["Hello I am doing", "Hi today"] def test_model_2b_fp32(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) def test_model_2b_fp16(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to( torch_device ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) def test_model_2b_fp16_static_cache(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to( torch_device ) model.generation_config.cache_implementation = "static" tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) def test_model_2b_bf16(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to( torch_device ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) def test_model_2b_eager(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I am looking for some information on the ", "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat", ] model = AutoModelForCausalLM.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager" ) model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_torch_sdpa def test_model_2b_sdpa(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi", ] model = AutoModelForCausalLM.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="sdpa" ) model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @pytest.mark.flash_attn_test @require_flash_attn def test_model_2b_flash_attn(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat", ] model = AutoModelForCausalLM.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_bitsandbytes def test_model_2b_4bit(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project and I need to make a 3d model of a house. I have been using", "Hi today I'd like to share with you my experience with the new wattpad wattpad wattpad wattpad wattpad wattpad wattpad", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @unittest.skip("The test will not fit our CI runners") def test_model_7b_fp32(self): model_id = "google/gemma-7b" EXPECTED_TEXTS = [ "Hello my name is ***** ***** I will be assisting you today. I am sorry to hear about your issue. I will", "Hi,\n\nI have a problem with my 2005 1.6 16", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) def test_model_7b_fp16(self): model_id = "google/gemma-7b" EXPECTED_TEXTS = [ """Hello I am doing a project on a 1999 4.0L 4x4. I""", "Hi today I am going to show you how to make a simple and easy to make a DIY 3D", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to( torch_device ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) def test_model_7b_bf16(self): model_id = "google/gemma-7b" EXPECTED_TEXTS = [ """Hello I am doing a project on a 1991 240sx and I am trying to find""", "Hi today I am going to show you how to make a very simple and easy to make a very simple and", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to( torch_device ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) def test_model_7b_fp16_static_cache(self): model_id = "google/gemma-7b" EXPECTED_TEXTS = [ """Hello I am doing a project on a 1999 4.0L 4x4. I""", "Hi today I am going to show you how to make a simple and easy to make a DIY 3D", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to( torch_device ) model.generation_config.cache_implementation = "static" tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_bitsandbytes def test_model_7b_4bit(self): model_id = "google/gemma-7b" EXPECTED_TEXTS = [ "Hello I am doing a project for my school and I am trying to make a program that will take a number and then", """Hi today I am going to talk about the new update for the game called "The new update" and I""", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS)
transformers/tests/models/gemma/test_modeling_gemma.py/0
{ "file_path": "transformers/tests/models/gemma/test_modeling_gemma.py", "repo_id": "transformers", "token_count": 14791 }
423
# coding=utf-8 # Copyright 2023 Toshiyuki Sakamoto(tanreinama) and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_jinja, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class GPTSanJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "Tanrei/GPTSAN-japanese" tokenizer_class = GPTSanJapaneseTokenizer test_rust_tokenizer = False from_pretrained_kwargs = {"do_clean_text": False, "add_prefix_space": False} def setUp(self): super().setUp() vocab_tokens = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: skip emoji_tokens = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.emoji_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["emoji_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) with open(self.emoji_file, "w") as emoji_writer: emoji_writer.write(json.dumps(emoji_tokens)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname, **kwargs) # Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.get_input_output_texts def get_input_output_texts(self, tokenizer): input_text = "こんにちは、世界。 \nこんばんは、㔺界。😀" output_text = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text # Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.get_clean_sequence def get_clean_sequence(self, tokenizer): input_text, output_text = self.get_input_output_texts(tokenizer) ids = tokenizer.encode(output_text, add_special_tokens=False) text = tokenizer.decode(ids, clean_up_tokenization_spaces=False) return text, ids # Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_pretokenized_inputs def test_pretokenized_inputs(self): pass # TODO add if relevant # Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_maximum_encoding_length_pair_input def test_maximum_encoding_length_pair_input(self): pass # TODO add if relevant # Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_maximum_encoding_length_single_input def test_maximum_encoding_length_single_input(self): pass # TODO add if relevant # Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_full_tokenizer def test_full_tokenizer(self): tokenizer = self.get_tokenizer() # Testing tokenization input_text = "こんにちは、世界。 こんばんは、㔺界。" expected_token = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] tokens = tokenizer.tokenize(input_text) self.assertListEqual(tokens, expected_token) # Testing conversion to ids without special tokens expected_ids = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] input_ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual(input_ids, expected_ids) # Testing conversion to ids with special tokens input_tokens = tokens + [tokenizer.unk_token] expected_ids = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] input_ids = tokenizer.convert_tokens_to_ids(input_tokens) self.assertListEqual(input_ids, expected_ids) def test_token_bagging(self): tokenizer = self.get_tokenizer() # Testing tokenization input_text = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" expected_text = "こんにちは、、、、世界。こんばんは、、、、世界。" tokens = tokenizer.encode(input_text) output_text = tokenizer.decode(tokens) self.assertEqual(output_text, expected_text) @slow def test_prefix_input(self): tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese") # Testing tokenization prefix_text = "こんにちは、世界。" input_text = "こんばんは、㔺界。😀" expected_text = "こんにちは、世界。こんばんは、世界。😀" tokens_1 = tokenizer.encode(prefix_text + input_text) tokens_2 = tokenizer.encode("", prefix_text=prefix_text + input_text) tokens_3 = tokenizer.encode(input_text, prefix_text=prefix_text) output_text_1 = tokenizer.decode(tokens_1) output_text_2 = tokenizer.decode(tokens_2) output_text_3 = tokenizer.decode(tokens_3) self.assertEqual(output_text_1, expected_text) self.assertEqual(output_text_2, expected_text) self.assertEqual(output_text_3, expected_text) @slow def test_token_type_ids(self): tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese") # Testing tokenization prefix_text = "こんにちは、世界。" input_text = "こんばんは、㔺界。😀" len_prefix = len(tokenizer.encode(prefix_text)) - 2 len_text = len(tokenizer.encode(input_text)) - 2 expected_mask_1 = [1] + [0] * (len_prefix + len_text + 1) expected_mask_2 = [1] * (len_prefix + len_text + 1) + [0] expected_mask_3 = [1] + [1] * (len_prefix) + [0] * (len_text + 1) type_id_1 = tokenizer(prefix_text + input_text).token_type_ids type_id_2 = tokenizer("", prefix_text=prefix_text + input_text).token_type_ids type_id_3 = tokenizer(input_text, prefix_text=prefix_text).token_type_ids self.assertListEqual(type_id_1, expected_mask_1) self.assertListEqual(type_id_2, expected_mask_2) self.assertListEqual(type_id_3, expected_mask_3) @slow def test_prefix_tokens(self): tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese") x_token_1 = tokenizer.encode("あンいワ") x_token_2 = tokenizer.encode("", prefix_text="あンいワ") x_token_3 = tokenizer.encode("いワ", prefix_text="あン") self.assertEqual(tokenizer.decode(x_token_1), tokenizer.decode(x_token_2)) self.assertEqual(tokenizer.decode(x_token_1), tokenizer.decode(x_token_3)) self.assertNotEqual(x_token_1, x_token_2) self.assertNotEqual(x_token_1, x_token_3) self.assertEqual(x_token_1[1], x_token_2[-1]) # SEG token self.assertEqual(x_token_1[1], x_token_3[3]) # SEG token @slow def test_batch_encode(self): tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese") input_pairs = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] x_token = tokenizer(input_pairs, padding=True) x_token_2 = tokenizer.batch_encode_plus(input_pairs, padding=True) # fmt: off expected_outputs = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] expected_typeids = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] expected_attmask = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids, expected_outputs) self.assertListEqual(x_token.token_type_ids, expected_typeids) self.assertListEqual(x_token.attention_mask, expected_attmask) self.assertListEqual(x_token_2.input_ids, expected_outputs) self.assertListEqual(x_token_2.token_type_ids, expected_typeids) self.assertListEqual(x_token_2.attention_mask, expected_attmask) # Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_conversion_reversible def test_conversion_reversible(self): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass # Copied from tests.models.gpt_neox_japanese.test_tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizationTest.test_padding_different_model_input_name def test_padding_different_model_input_name(self): # tokenizer has no padding token pass @require_jinja def test_tokenization_for_chat(self): tokenizer = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese") # This is in English, but it's just here to make sure the chat control tokens are being added properly test_chats = [ [{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}], [ {"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Nice to meet you."}, ], [{"role": "assistant", "content": "Nice to meet you."}, {"role": "user", "content": "Hello!"}], ] tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats] # fmt: off expected_tokens = [ [35993, 35998, 35637, 35659, 35665, 35716, 35645, 35662, 35649, 35716, 35645, 35716, 35652, 35649, 35656, 35660, 35650, 35665, 35656, 35716, 35647, 35652, 35645, 35664, 35646, 35659, 35664, 35595, 35716, 35999, 35993, 35998, 35620, 35649, 35656, 35656, 35659, 35582, 35716, 35999], [35993, 35998, 35637, 35659, 35665, 35716, 35645, 35662, 35649, 35716, 35645, 35716, 35652, 35649, 35656, 35660, 35650, 35665, 35656, 35716, 35647, 35652, 35645, 35664, 35646, 35659, 35664, 35595, 35716, 35999, 35993, 35998, 35620, 35649, 35656, 35656, 35659, 35582, 35716, 35999, 35993, 35998, 35626, 35653, 35647, 35649, 35716, 35664, 35659, 35716, 35657, 35649, 35649, 35664, 35716, 35669, 35659, 35665, 35595, 35716, 35999], [35993, 35998, 35626, 35653, 35647, 35649, 35716, 35664, 35659, 35716, 35657, 35649, 35649, 35664, 35716, 35669, 35659, 35665, 35595, 35716, 35999, 35993, 35998, 35620, 35649, 35656, 35656, 35659, 35582, 35716, 35999] ] # fmt: on for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens): self.assertListEqual(tokenized_chat, expected_tokens)
transformers/tests/models/gptsan_japanese/test_tokenization_gptsan_japanese.py/0
{ "file_path": "transformers/tests/models/gptsan_japanese/test_tokenization_gptsan_japanese.py", "repo_id": "transformers", "token_count": 5068 }
424
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from transformers.testing_utils import TestCasePlus, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, IdeficsImageProcessor, IdeficsProcessor, LlamaTokenizerFast, PreTrainedTokenizerFast, ) @require_torch @require_vision class IdeficsProcessorTest(TestCasePlus): def setUp(self): super().setUp() self.checkpoint_path = self.get_auto_remove_tmp_dir() image_processor = IdeficsImageProcessor() tokenizer = LlamaTokenizerFast.from_pretrained("HuggingFaceM4/tiny-random-idefics") processor = IdeficsProcessor(image_processor, tokenizer) processor.save_pretrained(self.checkpoint_path) self.input_keys = ["pixel_values", "input_ids", "attention_mask", "image_attention_mask"] def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).image_processor def prepare_prompts(self): """This function prepares a list of PIL images""" num_images = 2 images = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8) for x in range(num_images)] images = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in images] # print([type(x) for x in images]) # die prompts = [ # text and 1 image [ "User:", images[0], "Describe this image.\nAssistant:", ], # text and images [ "User:", images[0], "Describe this image.\nAssistant: An image of two dogs.\n", "User:", images[1], "Describe this image.\nAssistant:", ], # only text [ "User:", "Describe this image.\nAssistant: An image of two kittens.\n", "User:", "Describe this image.\nAssistant:", ], # only images [ images[0], images[1], ], ] return prompts def test_save_load_pretrained_additional_features(self): processor = IdeficsProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.checkpoint_path) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = IdeficsProcessor.from_pretrained( self.checkpoint_path, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, IdeficsImageProcessor) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor) prompts = self.prepare_prompts() # test that all prompts succeeded input_processor = processor(prompts, return_tensors="pt") for key in self.input_keys: assert torch.is_tensor(input_processor[key]) def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_tokenizer_padding(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer(padding_side="right") processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_tokens = [ "<s> Describe this image.\nAssistant:<unk><unk><unk><unk><unk><unk><unk><unk><unk>", "<s> Describe this image.\nAssistant:<unk><unk><unk><unk><unk><unk><unk><unk><unk><unk>", ] prompts = [[prompt] for prompt in self.prepare_prompts()[2]] max_length = processor(prompts, padding="max_length", truncation=True, max_length=20) longest = processor(prompts, padding="longest", truncation=True, max_length=30) decoded_max_length = processor.tokenizer.decode(max_length["input_ids"][-1]) decoded_longest = processor.tokenizer.decode(longest["input_ids"][-1]) self.assertEqual(decoded_max_length, predicted_tokens[1]) self.assertEqual(decoded_longest, predicted_tokens[0]) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor) prompts = self.prepare_prompts() inputs = processor(prompts) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertSetEqual(set(inputs.keys()), set(self.input_keys))
transformers/tests/models/idefics/test_processor_idefics.py/0
{ "file_path": "transformers/tests/models/idefics/test_processor_idefics.py", "repo_id": "transformers", "token_count": 2692 }
425
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import LayoutLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LayoutLMForMaskedLM, LayoutLMForQuestionAnswering, LayoutLMForSequenceClassification, LayoutLMForTokenClassification, LayoutLMModel, ) class LayoutLMModelTester: """You can also import this e.g from .test_modeling_layoutlm import LayoutLMModelTester""" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def create_and_check_model( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LayoutLMModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, bbox, token_type_ids=token_type_ids) result = model(input_ids, bbox) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LayoutLMForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = LayoutLMForSequenceClassification(config) model.to(torch_device) model.eval() result = model( input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = LayoutLMForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LayoutLMForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class LayoutLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( LayoutLMModel, LayoutLMForMaskedLM, LayoutLMForSequenceClassification, LayoutLMForTokenClassification, LayoutLMForQuestionAnswering, ) if is_torch_available() else None ) pipeline_model_mapping = ( { "document-question-answering": LayoutLMForQuestionAnswering, "feature-extraction": LayoutLMModel, "fill-mask": LayoutLMForMaskedLM, "text-classification": LayoutLMForSequenceClassification, "token-classification": LayoutLMForTokenClassification, "zero-shot": LayoutLMForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True def setUp(self): self.model_tester = LayoutLMModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def prepare_layoutlm_batch_inputs(): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off input_ids = torch.tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]],device=torch_device) # noqa: E231 attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],],device=torch_device) # noqa: E231 bbox = torch.tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]],device=torch_device) # noqa: E231 token_type_ids = torch.tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],device=torch_device) # noqa: E231 # these are sequence labels (i.e. at the token level) labels = torch.tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]],device=torch_device) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_torch class LayoutLMModelIntegrationTest(unittest.TestCase): @slow def test_forward_pass_no_head(self): model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased").to(torch_device) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the sequence output on [0, :3, :3] expected_slice = torch.tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], device=torch_device, ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3)) # test the pooled output on [1, :3] expected_slice = torch.tensor([-0.6580, -0.0214, 0.8552], device=torch_device) self.assertTrue(torch.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3)) @slow def test_forward_pass_sequence_classification(self): # initialize model with randomly initialized sequence classification head model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2).to( torch_device ) input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=torch.tensor([1, 1], device=torch_device), ) # test whether we get a loss as a scalar loss = outputs.loss expected_shape = torch.Size([]) self.assertEqual(loss.shape, expected_shape) # test the shape of the logits logits = outputs.logits expected_shape = torch.Size((2, 2)) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_token_classification(self): # initialize model with randomly initialized token classification head model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13).to( torch_device ) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels ) # test the loss calculation to be around 2.65 # expected_loss = torch.tensor(2.65, device=torch_device) # The loss is currently somewhat random and can vary between 0.1-0.3 atol. # self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=0.1)) # test the shape of the logits logits = outputs.logits expected_shape = torch.Size((2, 25, 13)) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_question_answering(self): # initialize model with randomly initialized token classification head model = LayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased").to(torch_device) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the shape of the logits expected_shape = torch.Size((2, 25)) self.assertEqual(outputs.start_logits.shape, expected_shape) self.assertEqual(outputs.end_logits.shape, expected_shape)
transformers/tests/models/layoutlm/test_modeling_layoutlm.py/0
{ "file_path": "transformers/tests/models/layoutlm/test_modeling_layoutlm.py", "repo_id": "transformers", "token_count": 8034 }
426
# coding=utf-8 # Copyright 2018 LXMERT Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class LxmertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "unc-nlp/lxmert-base-uncased" tokenizer_class = LxmertTokenizer rust_tokenizer_class = LxmertTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9]) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids)
transformers/tests/models/lxmert/test_tokenization_lxmert.py/0
{ "file_path": "transformers/tests/models/lxmert/test_tokenization_lxmert.py", "repo_id": "transformers", "token_count": 1313 }
427
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class MobileBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=64, embedding_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.embedding_size = embedding_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, embedding_size=self.embedding_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_mobilebert_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_mobilebert_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_mobilebert_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_mobilebert_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_mobilebert_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MobileBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_mobilebert_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MobileBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_mobilebert_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MobileBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_mobilebert_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = MobileBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class MobileBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict # TODO (@SunMarc): Fix me @unittest.skip("It's broken.") def test_resize_tokens_embeddings(self): super().test_resize_tokens_embeddings() def setUp(self): self.model_tester = MobileBertModelTester(self) self.config_tester = ConfigTester(self, config_class=MobileBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_mobilebert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs) def _long_tensor(tok_lst): return torch.tensor( tok_lst, dtype=torch.long, device=torch_device, ) TOLERANCE = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class MobileBertModelIntegrationTests(unittest.TestCase): @slow def test_inference_no_head(self): model = MobileBertModel.from_pretrained("google/mobilebert-uncased").to(torch_device) input_ids = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 9, 512)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [ [ [-2.4736526e07, 8.2691656e04, 1.6521838e05], [-5.7541704e-01, 3.9056022e00, 4.4011507e00], [2.6047359e00, 1.5677652e00, -1.7324188e-01], ] ], device=torch_device, ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lower_bound = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE) upper_bound = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE) self.assertTrue(lower_bound and upper_bound)
transformers/tests/models/mobilebert/test_modeling_mobilebert.py/0
{ "file_path": "transformers/tests/models/mobilebert/test_modeling_mobilebert.py", "repo_id": "transformers", "token_count": 7069 }
428
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team, Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class MPNetModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def get_large_model_config(self): return MPNetConfig.from_pretrained("microsoft/mpnet-base") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return MPNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def create_and_check_mpnet_model( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MPNetModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_mpnet_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MPNetForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_mpnet_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MPNetForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_mpnet_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = MPNetForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_mpnet_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MPNetForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class MPNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = True def setUp(self): self.model_tester = MPNetModelTester(self) self.config_tester = ConfigTester(self, config_class=MPNetConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_mpnet_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*config_and_inputs) @unittest.skip("TFMPNet adds poolers to all models, unlike the PT model class.") def test_tf_from_pt_safetensors(self): return @require_torch class MPNetModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = MPNetModel.from_pretrained("microsoft/mpnet-base") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/mpnet/test_modeling_mpnet.py/0
{ "file_path": "transformers/tests/models/mpnet/test_modeling_mpnet.py", "repo_id": "transformers", "token_count": 4626 }
429
# coding=utf-8 # Copyright 2024, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Musicgen Melody model. """ import copy import inspect import math import unittest import numpy as np from transformers import ( EncodecConfig, MusicgenMelodyConfig, MusicgenMelodyDecoderConfig, PretrainedConfig, T5Config, ) from transformers.testing_utils import ( is_torch_available, is_torchaudio_available, require_torch, require_torch_fp16, require_torchaudio, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MusicgenMelodyForCausalLM, MusicgenMelodyForConditionalGeneration, MusicgenMelodyModel, set_seed, ) from transformers.generation import ( GenerateDecoderOnlyOutput, ) if is_torchaudio_available(): from transformers import MusicgenMelodyProcessor def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) if isinstance(getattr(configs_no_init, key, None), PretrainedConfig): no_init_subconfig = _config_zero_init(getattr(configs_no_init, key)) setattr(configs_no_init, key, no_init_subconfig) return configs_no_init def prepare_musicgen_melody_decoder_inputs_dict( config, input_ids, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, ): if attention_mask is None: attention_mask = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1])[:, 0, :] attention_mask = attention_mask.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=torch_device) if encoder_attention_mask is None and encoder_hidden_states is not None: encoder_attention_mask = torch.ones(encoder_hidden_states.shape[:2], device=torch_device) return { "input_ids": input_ids, "attention_mask": attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "head_mask": head_mask, } class MusicgenMelodyDecoderTester: def __init__( self, parent, batch_size=3, # need batch_size != num_hidden_layers because of #29297 seq_length=7, is_training=False, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=100, pad_token_id=99, bos_token_id=99, num_codebooks=4, conditional_seq_length=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.num_codebooks = num_codebooks self.conditional_seq_length = conditional_seq_length self.encoder_seq_length = conditional_seq_length + seq_length def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size * self.num_codebooks, self.seq_length], self.vocab_size) encoder_hidden_states = floats_tensor([self.batch_size, self.conditional_seq_length, self.hidden_size]) config = self.get_config() inputs_dict = prepare_musicgen_melody_decoder_inputs_dict( config, input_ids, encoder_hidden_states=encoder_hidden_states ) return config, inputs_dict def get_config(self): config = MusicgenMelodyDecoderConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, d_ff=self.intermediate_size, pad_token_id=self.pad_token_id, decoder_start_token_id=self.bos_token_id, bos_token_id=self.bos_token_id, num_codebooks=self.num_codebooks, tie_word_embeddings=False, ) return config def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict @require_torch class MusicgenMelodyDecoderTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (MusicgenMelodyModel, MusicgenMelodyForCausalLM) if is_torch_available() else () greedy_sample_model_classes = ( (MusicgenMelodyForCausalLM,) if is_torch_available() else () ) # the model uses a custom generation method so we only run a specific subset of the generation tests test_pruning = False test_resize_embeddings = False def setUp(self): self.model_tester = MusicgenMelodyDecoderTester(self) self.config_tester = ConfigTester(self, config_class=MusicgenMelodyDecoderConfig, hidden_size=16) def test_config(self): self.config_tester.run_common_tests() # override since we have to compute the input embeddings over codebooks def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_ids = inputs["input_ids"] del inputs["input_ids"] embed_tokens = model.get_input_embeddings() input_ids = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1]) inputs["inputs_embeds"] = sum( [embed_tokens[codebook](input_ids[:, codebook]) for codebook in range(config.num_codebooks)] ) with torch.no_grad(): model(**inputs)[0] # override since we have embeddings / LM heads over multiple codebooks def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) first_embed = model.get_input_embeddings()[0] self.assertIsInstance(first_embed, torch.nn.Embedding) lm_heads = model.get_output_embeddings() self.assertTrue(lm_heads is None or isinstance(lm_heads[0], torch.nn.Linear)) @unittest.skip("this model doesn't support all arguments tested") def test_model_outputs_equivalence(self): pass @unittest.skip("this model has multiple inputs embeds and lm heads that should not be tied") def test_tie_model_weights(self): pass @unittest.skip("this model has multiple inputs embeds and lm heads that should not be tied") def test_tied_weights_keys(self): pass def _get_input_ids_and_config(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict["input_ids"] # take max batch_size sequence_length = input_ids.shape[-1] input_ids = input_ids[: batch_size * config.num_codebooks, :] # generate max 3 tokens max_length = input_ids.shape[-1] + 3 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long) return config, input_ids, attention_mask, max_length @staticmethod def _get_logits_processor_and_warper_kwargs( input_length, forced_bos_token_id=None, forced_eos_token_id=None, max_length=None, ): process_kwargs = { "min_length": input_length + 1 if max_length is None else max_length - 1, } warper_kwargs = {} return process_kwargs, warper_kwargs def test_greedy_generate_stereo_outputs(self): for model_class in self.greedy_sample_model_classes: config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() config.audio_channels = 2 model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate( model=model, input_ids=input_ids.to(torch_device), attention_mask=attention_mask.to(torch_device), max_length=max_length, output_scores=True, output_hidden_states=True, output_attentions=True, return_dict_in_generate=True, ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) self.assertNotIn(config.pad_token_id, output_generate) def prepare_musicgen_melody_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, ): if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.reshape( -1, config.decoder.num_codebooks, decoder_input_ids.shape[-1] )[:, 0, :] decoder_attention_mask = decoder_attention_mask.ne(config.decoder.pad_token_id) if head_mask is None: head_mask = torch.ones( config.text_encoder.num_hidden_layers, config.text_encoder.num_attention_heads, device=torch_device ) if decoder_head_mask is None: decoder_head_mask = torch.ones( config.decoder.num_hidden_layers, config.decoder.num_attention_heads, device=torch_device ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } class MusicgenMelodyTester: def __init__( self, parent, batch_size=3, # need batch_size != num_hidden_layers because of #29297 seq_length=7, is_training=False, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=100, pad_token_id=99, bos_token_id=99, num_codebooks=4, num_filters=4, codebook_size=128, conditional_seq_length=3, chroma_length=24, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.num_codebooks = num_codebooks self.num_filters = num_filters self.codebook_size = codebook_size self.conditional_seq_length = conditional_seq_length self.chroma_length = chroma_length self.encoder_seq_length = conditional_seq_length + seq_length def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.conditional_seq_length], self.vocab_size) decoder_input_ids = ids_tensor([self.batch_size * self.num_codebooks, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_musicgen_melody_inputs_dict(config, input_ids, decoder_input_ids=decoder_input_ids) return config, inputs_dict def get_config(self): text_encoder_config = T5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.intermediate_size, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, ) audio_encoder_config = EncodecConfig( hidden_size=self.vocab_size, compress=1, num_filters=self.num_filters, codebook_size=self.codebook_size, codebook_dim=self.vocab_size, ) decoder_config = MusicgenMelodyDecoderConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, pad_token_id=self.pad_token_id, decoder_start_token_id=self.bos_token_id, bos_token_id=self.bos_token_id, num_codebooks=self.num_codebooks, tie_word_embeddings=False, ) config = MusicgenMelodyConfig.from_sub_models_config( text_encoder_config, audio_encoder_config, decoder_config, chroma_length=self.chroma_length ) return config def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict @require_torch # Copied from tests.models.musicgen.test_modeling_musicgen.MusicgenTest with Musicgen->MusicgenMelody, musicgen->musicgen_melody, EncoderDecoder->DecoderOnly, input_values->input_features class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MusicgenMelodyForConditionalGeneration,) if is_torch_available() else () greedy_sample_model_classes = (MusicgenMelodyForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = {"text-to-audio": MusicgenMelodyForConditionalGeneration} if is_torch_available() else {} test_pruning = False # training is not supported yet for MusicGen test_headmasking = False test_resize_embeddings = False # not to test torchscript as the model tester doesn't prepare `input_features` and `padding_mask` # (and `torchscript` hates `None` values). test_torchscript = False def setUp(self): self.model_tester = MusicgenMelodyTester(self) # Ignore copy def _check_output_with_attentions(self, outputs, config, input_ids, decoder_input_ids): decoder_config = config.decoder decoder_attentions = outputs["attentions"] num_decoder_layers = decoder_config.num_hidden_layers self.assertEqual(len(decoder_attentions), num_decoder_layers) output_shape = decoder_input_ids.shape[-1] + input_ids.shape[-1] + self.model_tester.chroma_length self.assertEqual( decoder_attentions[0].shape[-3:], (decoder_config.num_attention_heads, output_shape, output_shape), ) def check_musicgen_melody_model_output_attentions( self, model_class, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs, ): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, output_attentions=True, **kwargs, ) self._check_output_with_attentions(outputs, config, input_ids, decoder_input_ids) # Ignore copy def check_musicgen_melody_model_output_attentions_from_config( self, model_class, config, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, **kwargs, ): # Similar to `check_musicgen_melody_model_output_attentions`, but with `output_attentions` triggered from the # config file. Contrarily to most models, changing the model's config won't work -- the defaults are loaded # from the inner models' configurations. config.output_attentions = True # model config -> won't work model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, **kwargs, ) self.assertTrue(all(key not in outputs for key in ["encoder_attentions", "decoder_attentions"])) config.text_encoder.output_attentions = True # inner model config -> will work config.audio_encoder.output_attentions = True config.decoder.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, **kwargs, ) self._check_output_with_attentions(outputs, config, input_ids, decoder_input_ids) # override since changing `output_attentions` from the top-level model config won't work def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.check_musicgen_melody_model_output_attentions(model_class, config, **inputs_dict) self.check_musicgen_melody_model_output_attentions_from_config(model_class, config, **inputs_dict) # override since we have a specific forward signature for musicgen_melody # Ignore copy def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_ids", "attention_mask", "input_features", "decoder_input_ids", "decoder_attention_mask", ] if "head_mask" and "decoder_head_mask" in arg_names: expected_arg_names.extend(["head_mask", "decoder_head_mask"]) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) # override since changing `gradient_checkpointing` from the top-level model config won't work def test_gradient_checkpointing_backward_compatibility(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if not model_class.supports_gradient_checkpointing: continue config.text_encoder.gradient_checkpointing = True config.audio_encoder.gradient_checkpointing = True config.decoder.gradient_checkpointing = True model = model_class(config) self.assertTrue(model.is_gradient_checkpointing) # skip as this model has multiple inputs embeds and lm heads that should not be tied def test_tie_model_weights(self): pass # skip as this model has multiple inputs embeds and lm heads that should not be tied def test_tied_model_weights_key_ignore(self): pass # skip as this model has multiple inputs embeds and lm heads that should not be tied def test_tied_weights_keys(self): pass # override since changing `output_hidden_states` / `output_attentions` from the top-level model config won't work # Ignore copy def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.text_encoder.output_hidden_states = True config.audio_encoder.output_hidden_states = True config.decoder.output_hidden_states = True config.text_encoder.output_attentions = True config.decoder.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] encoder_hidden_states = outputs.encoder_hidden_states encoder_hidden_states.retain_grad() decoder_hidden_states = outputs.hidden_states[0] decoder_hidden_states.retain_grad() if self.has_attentions: decoder_attentions = outputs.attentions[0] decoder_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(decoder_hidden_states.grad) if self.has_attentions: self.assertIsNotNone(decoder_attentions.grad) # override since changing `output_hidden_states` from the top-level model config won't work def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states expected_num_layers = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(hidden_states), expected_num_layers) # Ignore copy seq_length = self.model_tester.conditional_seq_length + self.model_tester.chroma_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) # Ignore copy seq_length = self.model_tester.encoder_seq_length + self.model_tester.chroma_length # Ignore copy expected_num_layers = self.model_tester.num_hidden_layers + 1 # Ignore copy hidden_states = outputs.hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.text_encoder.output_hidden_states = True config.audio_encoder.output_hidden_states = True config.decoder.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # override since the conv layers and lstm's in encodec are exceptions def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = ["conv"] ignore_init = ["lstm"] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) elif not any(x in name for x in ignore_init): self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # override since we have embeddings / LM heads over multiple codebooks def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), torch.nn.Embedding) lm_heads = model.get_output_embeddings() self.assertTrue(lm_heads is None or isinstance(lm_heads[0], torch.nn.Linear)) def _get_input_ids_and_config(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict["input_ids"] # take max batch_size sequence_length = input_ids.shape[-1] input_ids = input_ids[:batch_size, :] attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long) # generate max 3 tokens max_length = 3 return config, input_ids, attention_mask, max_length # override since the `input_ids` cannot be used as the `decoder_input_ids` for musicgen_melody (input / outputs are # different modalities -> different shapes) def _greedy_generate( self, model, input_ids, attention_mask, max_length, output_scores=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, ): logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs( input_ids.shape[-1], max_length=max_length, ) model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} output_generate = model.generate( input_ids, do_sample=False, num_beams=1, max_length=max_length, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_scores=output_scores, return_dict_in_generate=return_dict_in_generate, remove_invalid_values=True, **logits_process_kwargs, **model_kwargs, ) return output_generate # override since the `input_ids` cannot be used as the `decoder_input_ids` for musicgen_melody (input / outputs are # different modalities -> different shapes) def _sample_generate( self, model, input_ids, attention_mask, max_length, num_return_sequences, logits_warper_kwargs, process_kwargs, output_scores=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, ): torch.manual_seed(0) model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} output_generate = model.generate( input_ids, do_sample=True, num_beams=1, max_length=max_length, num_return_sequences=num_return_sequences, output_scores=output_scores, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, remove_invalid_values=True, **logits_warper_kwargs, **process_kwargs, **model_kwargs, ) return output_generate @staticmethod def _get_logits_processor_and_warper_kwargs( input_length, forced_bos_token_id=None, forced_eos_token_id=None, max_length=None, ): process_kwargs = { "min_length": input_length + 1 if max_length is None else max_length - 1, } warper_kwargs = {} return process_kwargs, warper_kwargs def test_greedy_generate_dict_outputs(self): for model_class in self.greedy_sample_model_classes: # disable cache config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() config.use_cache = False model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate( model=model, input_ids=input_ids.to(torch_device), attention_mask=attention_mask.to(torch_device), max_length=max_length, output_scores=True, output_hidden_states=True, output_attentions=True, return_dict_in_generate=True, ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) self.assertNotIn(config.pad_token_id, output_generate) def test_greedy_generate_dict_outputs_use_cache(self): for model_class in self.greedy_sample_model_classes: # enable cache config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() config.use_cache = True config.is_decoder = True model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate( model=model, input_ids=input_ids.to(torch_device), attention_mask=attention_mask.to(torch_device), max_length=max_length, output_scores=True, output_hidden_states=True, output_attentions=True, return_dict_in_generate=True, ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) def test_sample_generate(self): for model_class in self.greedy_sample_model_classes: config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() model = model_class(config).to(torch_device).eval() process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs( input_ids.shape[-1], max_length=max_length, ) # check `generate()` and `sample()` are equal output_generate = self._sample_generate( model=model, input_ids=input_ids.to(torch_device), attention_mask=attention_mask.to(torch_device), max_length=max_length, num_return_sequences=1, logits_warper_kwargs=logits_warper_kwargs, process_kwargs=process_kwargs, ) self.assertIsInstance(output_generate, torch.Tensor) def test_sample_generate_dict_output(self): for model_class in self.greedy_sample_model_classes: # disable cache config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() config.use_cache = False model = model_class(config).to(torch_device).eval() process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs( input_ids.shape[-1], max_length=max_length, ) output_generate = self._sample_generate( model=model, input_ids=input_ids.to(torch_device), attention_mask=attention_mask.to(torch_device), max_length=max_length, num_return_sequences=3, logits_warper_kwargs=logits_warper_kwargs, process_kwargs=process_kwargs, output_scores=True, output_hidden_states=True, output_attentions=True, return_dict_in_generate=True, ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) def test_generate_without_input_ids(self): config, _, _, max_length = self._get_input_ids_and_config() # if no bos token id => cannot generate from None if config.bos_token_id is None: return for model_class in self.greedy_sample_model_classes: model = model_class(config).to(torch_device) model.eval() output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True) self.assertIsNotNone(output_ids_generate) @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.greedy_sample_model_classes: model = model_class(config).eval().to(torch_device) model.half() # greedy model.generate(input_dict["input_ids"], attention_mask=input_dict["attention_mask"], max_new_tokens=10) # sampling model.generate( input_dict["input_ids"], attention_mask=input_dict["attention_mask"], do_sample=True, max_new_tokens=10 ) def test_greedy_generate_stereo_outputs(self): for model_class in self.greedy_sample_model_classes: config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() config.audio_channels = 2 model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate( model=model, input_ids=input_ids.to(torch_device), attention_mask=attention_mask.to(torch_device), max_length=max_length, output_scores=True, output_hidden_states=True, output_attentions=True, return_dict_in_generate=True, ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) self.assertNotIn(config.pad_token_id, output_generate) # Copied from tests.models.musicgen.test_modeling_musicgen.get_bip_bip def get_bip_bip(bip_duration=0.125, duration=0.5, sample_rate=32000): """Produces a series of 'bip bip' sounds at a given frequency.""" timesteps = np.arange(int(duration * sample_rate)) / sample_rate wav = np.cos(2 * math.pi * 440 * timesteps) time_period = (timesteps % (2 * bip_duration)) / (2 * bip_duration) envelope = time_period >= 0.5 return wav * envelope @require_torch @require_torchaudio class MusicgenMelodyIntegrationTests(unittest.TestCase): @cached_property def model(self): return MusicgenMelodyForConditionalGeneration.from_pretrained("ylacombe/musicgen-melody").to(torch_device) @cached_property def processor(self): return MusicgenMelodyProcessor.from_pretrained("ylacombe/musicgen-melody") @slow def test_logits_text_prompt(self): model = self.model processor = self.processor inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt") # prepare the encoder inputs input_ids = inputs.input_ids.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) # prepare the decoder inputs pad_token_id = model.generation_config.pad_token_id decoder_input_ids = ( torch.ones((input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long).to(torch_device) * pad_token_id ) with torch.no_grad(): logits = model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, ).logits # fmt: off EXPECTED_LOGITS = torch.tensor([ 1.1100, -2.1065, -3.7699, -0.7102, 1.3707, -1.7028, -2.6802, -6.0367, 1.0504, -2.5358, -4.3497, 0.7338, 0.4823, -2.5260, 1.2717, 1.5427 ]) # fmt: on EXPECTED_OUTPUT_LENGTH = input_ids.shape[1] + 1 + self.model.config.chroma_length logits_shape = ( input_ids.shape[0] * model.decoder.num_codebooks, EXPECTED_OUTPUT_LENGTH, model.decoder.config.vocab_size, ) self.assertTrue(logits.shape == logits_shape) self.assertTrue(torch.allclose(logits[0, -1, :16].cpu(), EXPECTED_LOGITS, atol=1e-4)) @slow def test_logits_text_audio_prompt(self): model = self.model processor = self.processor audio = [get_bip_bip(duration=0.5), get_bip_bip(duration=1.0)] text = ["80s music", "Club techno"] inputs = processor(audio=audio, text=text, padding=True, return_tensors="pt") # prepare the text encoder inputs input_ids = inputs.input_ids.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) # prepare the audio encoder inputs input_features = inputs.input_features.to(torch_device) # prepare the decoder inputs pad_token_id = model.generation_config.pad_token_id decoder_input_ids = ( torch.ones((input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long).to(torch_device) * pad_token_id ) with torch.no_grad(): logits = model( input_ids, attention_mask=attention_mask, input_features=input_features, decoder_input_ids=decoder_input_ids, ).logits # fmt: off EXPECTED_LOGITS = torch.tensor([ [ 0.7479, 0.3742, 0.6253, -7.9405, 0.7105, -6.9995, 0.7792, -3.0482], [-2.7905, 0.7492, -0.2556, -8.1586, -1.6740, 0.5771, -8.3650, -0.0908] ]) # fmt: on self.assertTrue(logits.shape == (8, 240, 2048)) self.assertTrue(torch.allclose(logits[1:3, -1, 32:40].cpu(), EXPECTED_LOGITS, atol=1e-4)) @slow def test_generate_unconditional_greedy(self): model = self.model # only generate 1 sample with greedy - since it's deterministic all elements of the batch will be the same unconditional_inputs = self.processor.get_unconditional_inputs(num_samples=1).to(torch_device) output_values = model.generate(**unconditional_inputs, do_sample=False, max_new_tokens=10, guidance_scale=1.0) # fmt: off EXPECTED_VALUES = torch.tensor( [ 1.2741e-04, -8.0466e-05, 5.5789e-04, 1.0402e-03, 2.6547e-04, 1.5587e-05, -1.4210e-04, -9.7303e-05, 6.4504e-04, 5.0903e-04, 9.6474e-04, 1.0498e-03, 3.7210e-05, -5.3652e-04, -3.6579e-04, -2.5678e-04 ] ) # fmt: on self.assertTrue(output_values.shape == (1, 1, 4480)) self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4)) @slow def test_generate_unconditional_sampling(self): model = self.model # for stochastic sampling we can generate multiple outputs unconditional_inputs = self.processor.get_unconditional_inputs(num_samples=2).to(torch_device) set_seed(0) output_values = model.generate( **unconditional_inputs, do_sample=True, max_new_tokens=10, guidance_scale=1.0, temperature=1.0, top_k=250 ) # fmt: off EXPECTED_VALUES = torch.tensor( [ -0.0085, -0.0160, 0.0028, 0.0005, -0.0095, 0.0028, -0.0122, -0.0299, -0.0052, -0.0145, 0.0092, 0.0063, -0.0378, -0.0621, -0.0784, -0.0120, ] ) # fmt: on self.assertTrue(output_values.shape == (2, 1, 4480)) self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4)) @slow def test_generate_text_prompt_greedy(self): model = self.model processor = self.processor inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt") # prepare the encoder inputs input_ids = inputs.input_ids.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) output_values = model.generate( input_ids, attention_mask=attention_mask, do_sample=False, guidance_scale=None, max_new_tokens=10 ) # fmt: off EXPECTED_VALUES = torch.tensor( [ 1.2741e-04, -8.0474e-05, 5.5789e-04, 1.0402e-03, 2.6547e-04, 1.5597e-05, -1.4210e-04, -9.7309e-05, 6.4504e-04, 5.0903e-04 ] ) # fmt: on self.assertTrue(output_values.shape == (2, 1, 4480)) self.assertTrue(torch.allclose(output_values[0, 0, :10].cpu(), EXPECTED_VALUES, atol=1e-4)) @slow def test_generate_text_prompt_greedy_with_classifier_free_guidance(self): model = self.model processor = self.processor inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt") # prepare the encoder inputs input_ids = inputs.input_ids.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) output_values = model.generate( input_ids, attention_mask=attention_mask, do_sample=False, guidance_scale=3, max_new_tokens=10 ) # fmt: off EXPECTED_VALUES = torch.tensor( [ 1.2741e-04, -8.0474e-05, 5.5789e-04, 1.0402e-03, 2.6547e-04, 1.5597e-05, -1.4210e-04, -9.7309e-05, 6.4504e-04, 5.0903e-04, 9.6475e-04, 1.0499e-03, 3.7215e-05, -5.3651e-04, -3.6578e-04, -2.5678e-04 ] ) # fmt: on self.assertTrue(output_values.shape == (2, 1, 4480)) self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4)) @slow def test_generate_text_prompt_sampling(self): model = self.model processor = self.processor inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt") # prepare the encoder inputs input_ids = inputs.input_ids.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) set_seed(0) output_values = model.generate( input_ids, attention_mask=attention_mask, do_sample=True, guidance_scale=None, max_new_tokens=10, temperature=1.0, top_k=250, ) # fmt: off EXPECTED_VALUES = torch.tensor( [ -0.0165, -0.0222, -0.0041, -0.0058, -0.0145, -0.0023, -0.0160, -0.0310, -0.0055, -0.0127, 0.0104, 0.0105, -0.0326, -0.0611, -0.0744, -0.0083 ] ) # fmt: on self.assertTrue(output_values.shape == (2, 1, 4480)) self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4)) @slow def test_generate_text_audio_prompt(self): model = self.model processor = self.processor audio = [get_bip_bip(duration=0.5), get_bip_bip(duration=1.0)] text = ["80s music", "Club techno"] inputs = processor(audio=audio, text=text, padding=True, return_tensors="pt").to(torch_device) output_values = model.generate(**inputs, do_sample=False, guidance_scale=None, max_new_tokens=10) # fmt: off EXPECTED_VALUES = torch.tensor( [ -1.1999e-04, -2.2303e-04, 4.6296e-04, 1.0524e-03, 2.4827e-04, -4.0294e-05, -1.2468e-04, 4.9846e-05, 7.1484e-04, 4.4198e-04, 7.9063e-04, 8.8141e-04, -6.1807e-05, -6.1856e-04, -3.6235e-04, -2.7226e-04 ] ) # fmt: on self.assertTrue(output_values.shape == (2, 1, 4480)) self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4)) @require_torch @require_torchaudio class MusicgenMelodyStereoIntegrationTests(unittest.TestCase): @cached_property def model(self): return MusicgenMelodyForConditionalGeneration.from_pretrained("ylacombe/musicgen-stereo-melody").to( torch_device ) @cached_property def processor(self): return MusicgenMelodyProcessor.from_pretrained("ylacombe/musicgen-stereo-melody") @slow def test_generate_unconditional_greedy(self): model = self.model # only generate 1 sample with greedy - since it's deterministic all elements of the batch will be the same unconditional_inputs = self.processor.get_unconditional_inputs(num_samples=1).to(torch_device) output_values = model.generate(**unconditional_inputs, do_sample=False, max_new_tokens=12, guidance_scale=1.0) # fmt: off EXPECTED_VALUES_LEFT = torch.tensor( [ 1.2742e-04, -8.0480e-05, 5.5788e-04, 1.0401e-03, 2.6547e-04, 1.5587e-05, -1.4211e-04, -9.7308e-05, 6.4503e-04, 5.0903e-04, 9.6475e-04, 1.0499e-03, 3.7205e-05, -5.3652e-04, -3.6579e-04, 2.5679e-04 ] ) # fmt: on # (bsz, channels, seq_len) self.assertTrue(output_values.shape == (1, 2, 5760)) self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES_LEFT, atol=6e-4)) self.assertTrue(torch.allclose(output_values[0, 1, :16].cpu(), EXPECTED_VALUES_LEFT, atol=6e-4)) @slow def test_generate_text_audio_prompt(self): model = self.model processor = self.processor audio = [get_bip_bip(duration=0.5), get_bip_bip(duration=1.0)] text = ["80s music", "Club techno"] inputs = processor(audio=audio, text=text, padding=True, return_tensors="pt").to(torch_device) output_values = model.generate(**inputs, do_sample=False, guidance_scale=3.0, max_new_tokens=12) # fmt: off EXPECTED_VALUES_LEFT_FIRST_SAMPLE = torch.tensor( [ -0.0862, -0.1021, -0.0936, -0.0754, -0.0616, -0.0456, -0.0354, -0.0298, -0.0036, 0.0222, 0.0523, 0.0660, 0.0496, 0.0356, 0.0457, 0.0769 ] ) EXPECTED_VALUES_RIGHT_SECOND_SAMPLE = torch.tensor( [ -0.0327, -0.0450, -0.0264, -0.0278, -0.0365, -0.0272, -0.0401, -0.0574, -0.0413, -0.0508, -0.0269, -0.0323, -0.0762, -0.1115, -0.1390, -0.0790 ] ) # fmt: on # (bsz, channels, seq_len) self.assertTrue(output_values.shape == (2, 2, 5760)) self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES_LEFT_FIRST_SAMPLE, atol=1e-4)) self.assertTrue(torch.allclose(output_values[1, 1, :16].cpu(), EXPECTED_VALUES_RIGHT_SECOND_SAMPLE, atol=1e-4))
transformers/tests/models/musicgen_melody/test_modeling_musicgen_melody.py/0
{ "file_path": "transformers/tests/models/musicgen_melody/test_modeling_musicgen_melody.py", "repo_id": "transformers", "token_count": 23097 }
430
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Owlv2 model. """ import inspect import os import tempfile import unittest import numpy as np import requests from transformers import Owlv2Config, Owlv2TextConfig, Owlv2VisionConfig from transformers.testing_utils import ( require_torch, require_torch_accelerator, require_torch_fp16, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import Owlv2ForObjectDetection, Owlv2Model, Owlv2TextModel, Owlv2VisionModel from transformers.models.owlv2.modeling_owlv2 import OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import OwlViTProcessor # Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTVisionModelTester with OwlViT->Owlv2 class Owlv2VisionModelTester: def __init__( self, parent, batch_size=12, image_size=32, patch_size=2, num_channels=3, is_training=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return Owlv2VisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = Owlv2VisionModel(config=config).to(torch_device) model.eval() pixel_values = pixel_values.to(torch.float32) with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) num_patches = (self.image_size // self.patch_size) ** 2 self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch # Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTVisionModelTest with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2 class Owlv2VisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as OWLV2 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (Owlv2VisionModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Owlv2VisionModelTester(self) self.config_tester = ConfigTester( self, config_class=Owlv2VisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="OWLV2 does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="OwlV2 does not support training yet") def test_training(self): pass @unittest.skip(reason="OwlV2 does not support training yet") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="Owlv2VisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Owlv2VisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Owlv2VisionModel.from_pretrained(model_name) self.assertIsNotNone(model) # Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTTextModelTester with OwlViT->Owlv2 class Owlv2TextModelTester: def __init__( self, parent, batch_size=12, num_queries=4, seq_length=16, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=12, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=16, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.num_queries = num_queries self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size * self.num_queries, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size * self.num_queries, self.seq_length]) if input_mask is not None: num_text, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(num_text,)) for idx, start_index in enumerate(rnd_start_indices): input_mask[idx, :start_index] = 1 input_mask[idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return Owlv2TextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, input_ids, input_mask): model = Owlv2TextModel(config=config).to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids=input_ids, attention_mask=input_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size * self.num_queries, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.num_queries, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch # Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTTextModelTest with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2 class Owlv2TextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (Owlv2TextModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_head_masking = False def setUp(self): self.model_tester = Owlv2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=Owlv2TextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="OwlV2 does not support training yet") def test_training(self): pass @unittest.skip(reason="OwlV2 does not support training yet") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="OWLV2 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Owlv2TextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Owlv2TextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Owlv2TextModel.from_pretrained(model_name) self.assertIsNotNone(model) class Owlv2ModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = Owlv2TextModelTester(parent, **text_kwargs) self.vision_model_tester = Owlv2VisionModelTester(parent, **vision_kwargs) self.is_training = is_training self.text_config = self.text_model_tester.get_config().to_dict() self.vision_config = self.vision_model_tester.get_config().to_dict() self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return Owlv2Config.from_text_vision_configs(self.text_config, self.vision_config, projection_dim=64) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = Owlv2Model(config).to(torch_device).eval() with torch.no_grad(): result = model( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, ) image_logits_size = ( self.vision_model_tester.batch_size, self.text_model_tester.batch_size * self.text_model_tester.num_queries, ) text_logits_size = ( self.text_model_tester.batch_size * self.text_model_tester.num_queries, self.vision_model_tester.batch_size, ) self.parent.assertEqual(result.logits_per_image.shape, image_logits_size) self.parent.assertEqual(result.logits_per_text.shape, text_logits_size) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask, "return_loss": False, } return config, inputs_dict @require_torch # Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTModelTest with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2 class Owlv2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Owlv2Model,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": Owlv2Model, "zero-shot-object-detection": Owlv2ForObjectDetection, } if is_torch_available() else {} ) fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = Owlv2ModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Owlv2Model does not have input/output embeddings") def test_model_common_attributes(self): pass # override as the `logit_scale` parameter initilization is different for OWLV2 def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init).to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # OWLV2 needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") loaded_model = loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save Owlv2Config and check if we can load Owlv2VisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = Owlv2VisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save Owlv2Config and check if we can load Owlv2TextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = Owlv2TextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Owlv2Model.from_pretrained(model_name) self.assertIsNotNone(model) # Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTForObjectDetectionTester with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2 class Owlv2ForObjectDetectionTester: def __init__(self, parent, is_training=True): self.parent = parent self.text_model_tester = Owlv2TextModelTester(parent) self.vision_model_tester = Owlv2VisionModelTester(parent) self.is_training = is_training self.text_config = self.text_model_tester.get_config().to_dict() self.vision_config = self.vision_model_tester.get_config().to_dict() self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, pixel_values, input_ids, attention_mask def get_config(self): return Owlv2Config.from_text_vision_configs(self.text_config, self.vision_config, projection_dim=64) def create_and_check_model(self, config, pixel_values, input_ids, attention_mask): model = Owlv2ForObjectDetection(config).to(torch_device).eval() with torch.no_grad(): result = model( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, return_dict=True, ) pred_boxes_size = ( self.vision_model_tester.batch_size, (self.vision_model_tester.image_size // self.vision_model_tester.patch_size) ** 2, 4, ) pred_logits_size = ( self.vision_model_tester.batch_size, (self.vision_model_tester.image_size // self.vision_model_tester.patch_size) ** 2, 4, ) pred_class_embeds_size = ( self.vision_model_tester.batch_size, (self.vision_model_tester.image_size // self.vision_model_tester.patch_size) ** 2, self.text_model_tester.hidden_size, ) self.parent.assertEqual(result.pred_boxes.shape, pred_boxes_size) self.parent.assertEqual(result.logits.shape, pred_logits_size) self.parent.assertEqual(result.class_embeds.shape, pred_class_embeds_size) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, input_ids, attention_mask = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch # Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTForObjectDetectionTest with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2 class Owlv2ForObjectDetectionTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (Owlv2ForObjectDetection,) if is_torch_available() else () fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = Owlv2ForObjectDetectionTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Owlv2Model does not have input/output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="Test_initialization is tested in individual model tests") def test_initialization(self): pass @unittest.skip(reason="Test_forward_signature is tested in individual model tests") def test_forward_signature(self): pass @unittest.skip(reason="Test_save_load_fast_init_from_base is tested in individual model tests") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="OwlV2 does not support training yet") def test_training(self): pass @unittest.skip(reason="OwlV2 does not support training yet") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init).to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # OWLV2 needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") loaded_model = loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) @slow def test_model_from_pretrained(self): for model_name in OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Owlv2ForObjectDetection.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch class Owlv2ModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "google/owlv2-base-patch16" model = Owlv2Model.from_pretrained(model_name).to(torch_device) processor = OwlViTProcessor.from_pretrained(model_name) image = prepare_img() inputs = processor( text=[["a photo of a cat", "a photo of a dog"]], images=image, max_length=16, padding="max_length", return_tensors="pt", ).to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits self.assertEqual( outputs.logits_per_image.shape, torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), ) self.assertEqual( outputs.logits_per_text.shape, torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), ) expected_logits = torch.tensor([[-6.2229, -8.2601]], device=torch_device) self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3)) @slow def test_inference_object_detection(self): model_name = "google/owlv2-base-patch16" model = Owlv2ForObjectDetection.from_pretrained(model_name).to(torch_device) processor = OwlViTProcessor.from_pretrained(model_name) image = prepare_img() inputs = processor( text=[["a photo of a cat", "a photo of a dog"]], images=image, max_length=16, padding="max_length", return_tensors="pt", ).to(torch_device) with torch.no_grad(): outputs = model(**inputs) num_queries = int((model.config.vision_config.image_size / model.config.vision_config.patch_size) ** 2) self.assertEqual(outputs.pred_boxes.shape, torch.Size((1, num_queries, 4))) expected_slice_logits = torch.tensor( [[-21.413497, -21.612638], [-19.008193, -19.548841], [-20.958896, -21.382694]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4)) expected_slice_boxes = torch.tensor( [[0.241309, 0.051896, 0.453267], [0.139474, 0.045701, 0.250660], [0.233022, 0.050479, 0.427671]], ).to(torch_device) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)) @slow def test_inference_one_shot_object_detection(self): model_name = "google/owlv2-base-patch16" model = Owlv2ForObjectDetection.from_pretrained(model_name).to(torch_device) processor = OwlViTProcessor.from_pretrained(model_name) image = prepare_img() query_image = prepare_img() inputs = processor( images=image, query_images=query_image, max_length=16, padding="max_length", return_tensors="pt", ).to(torch_device) with torch.no_grad(): outputs = model.image_guided_detection(**inputs) num_queries = int((model.config.vision_config.image_size / model.config.vision_config.patch_size) ** 2) self.assertEqual(outputs.target_pred_boxes.shape, torch.Size((1, num_queries, 4))) expected_slice_boxes = torch.tensor( [[0.2413, 0.0519, 0.4533], [0.1395, 0.0457, 0.2507], [0.2330, 0.0505, 0.4277]], ).to(torch_device) self.assertTrue(torch.allclose(outputs.target_pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)) @slow @require_torch_accelerator @require_torch_fp16 def test_inference_one_shot_object_detection_fp16(self): model_name = "google/owlv2-base-patch16" model = Owlv2ForObjectDetection.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device) processor = OwlViTProcessor.from_pretrained(model_name) image = prepare_img() query_image = prepare_img() inputs = processor( images=image, query_images=query_image, max_length=16, padding="max_length", return_tensors="pt", ).to(torch_device) with torch.no_grad(): outputs = model.image_guided_detection(**inputs) # No need to check the logits, we just check inference runs fine. num_queries = int((model.config.vision_config.image_size / model.config.vision_config.patch_size) ** 2) self.assertEqual(outputs.target_pred_boxes.shape, torch.Size((1, num_queries, 4)))
transformers/tests/models/owlv2/test_modeling_owlv2.py/0
{ "file_path": "transformers/tests/models/owlv2/test_modeling_owlv2.py", "repo_id": "transformers", "token_count": 15878 }
431
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class ReformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "google/reformer-crime-and-punishment" tokenizer_class = ReformerTokenizer rust_tokenizer_class = ReformerTokenizerFast test_rust_tokenizer = True test_seq2seq = False test_sentencepiece = True def setUp(self): super().setUp() tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True) tokenizer.save_pretrained(self.tmpdirname) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<s>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") self.assertEqual(vocab_keys[-1], "j") self.assertEqual(len(vocab_keys), 1_000) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 1_000) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_padding(self, max_length=15): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Simple input s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, padding="max_length", ) # Pair input self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, padding="max_length", ) # tokenizer has no padding token def test_padding_different_model_input_name(self): pass def test_full_tokenizer(self): tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) @cached_property def big_tokenizer(self): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") @slow def test_tokenization_base_easy_symbols(self): symbols = "Hello World!" original_tokenizer_encodings = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @slow def test_tokenization_base_hard_symbols(self): symbols = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) original_tokenizer_encodings = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @require_torch @slow def test_torch_encode_plus_sent_to_model(self): import torch from transformers import ReformerConfig, ReformerModel # Build sequence first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt") batch_encoded_sequence = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt") config = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) config.axial_pos_shape = encoded_sequence["input_ids"].shape model = ReformerModel(config) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**encoded_sequence) model(**batch_encoded_sequence) @slow def test_tokenizer_integration(self): expected_encoding = {'input_ids': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # fmt: skip # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 sequences = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="google/reformer-crime-and-punishment", revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a", padding=False, sequences=sequences, )
transformers/tests/models/reformer/test_tokenization_reformer.py/0
{ "file_path": "transformers/tests/models/reformer/test_tokenization_reformer.py", "repo_id": "transformers", "token_count": 6399 }
432
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import RobertaConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.roberta.modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaModel, ) class TFRobertaModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFRobertaModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_causal_lm_base_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.is_decoder = True model = TFRobertaModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFRobertaModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) # Also check the case where encoder outputs are not passed result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_causal_lm_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.is_decoder = True model = TFRobertaForCausalLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } prediction_scores = model(inputs)["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] ) def create_and_check_causal_lm_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFRobertaForCausalLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) prediction_scores = result["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] ) def create_and_check_causal_lm_model_past( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TFRobertaForCausalLM(config=config) # special to `RobertaEmbeddings` in `Roberta`: # - its `padding_idx` and its effect on `position_ids` # (TFRobertaEmbeddings.create_position_ids_from_input_ids) # - `1` here is `TFRobertaEmbeddings.padding_idx` input_ids = tf.where(input_ids == 1, 2, input_ids) # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0] output_from_past = model( next_tokens, past_key_values=past_key_values, output_hidden_states=True ).hidden_states[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_causal_lm_model_past_with_attn_mask( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TFRobertaForCausalLM(config=config) # special to `RobertaEmbeddings` in `Roberta`: # - its `padding_idx` and its effect on `position_ids` # (TFRobertaEmbeddings.create_position_ids_from_input_ids) # - `1` here is `TFRobertaEmbeddings.padding_idx` # avoid `padding_idx` in the past input_ids = tf.where(input_ids == 1, 2, input_ids) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass outputs = model(input_ids, attention_mask=attn_mask, use_cache=True) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) past_key_values = outputs.past_key_values # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # avoid `padding_idx` in the past input_ids = tf.where(input_ids == 1, 2, input_ids) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat( [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], axis=1, ) output_from_no_past = model( next_input_ids, attention_mask=attn_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True ).hidden_states[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_causal_lm_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TFRobertaForCausalLM(config=config) # special to `RobertaEmbeddings` in `Roberta`: # - its `padding_idx` and its effect on `position_ids` # (TFRobertaEmbeddings.create_position_ids_from_input_ids) # - `1` here is `TFRobertaEmbeddings.padding_idx` # avoid `padding_idx` in the past input_ids = tf.where(input_ids == 1, 2, input_ids) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, use_cache=True) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, ).hidden_states[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFRobertaForCausalLM(config=config) # special to `RobertaEmbeddings` in `Roberta`: # - its `padding_idx` and its effect on `position_ids` # (TFRobertaEmbeddings.create_position_ids_from_input_ids) # - `1` here is `TFRobertaEmbeddings.padding_idx` # avoid `padding_idx` in the past input_ids = tf.where(input_ids == 1, 2, input_ids) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] encoder_hidden_states = encoder_hidden_states[:1, :, :] encoder_attention_mask = encoder_attention_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, ).hidden_states[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFRobertaForMaskedLM(config=config) result = model([input_ids, input_mask, token_type_ids]) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFRobertaForTokenClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFRobertaForQuestionAnswering(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFRobertaForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFRobertaModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFRobertaModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaForQuestionAnswering, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFRobertaModel, "fill-mask": TFRobertaForMaskedLM, "question-answering": TFRobertaForQuestionAnswering, "text-classification": TFRobertaForSequenceClassification, "text-generation": TFRobertaForCausalLM, "token-classification": TFRobertaForTokenClassification, "zero-shot": TFRobertaForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFRobertaModelTester(self) self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): """Test the base model""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_causal_lm_base_model(self): """Test the base model of the causal LM model is_deocder=True, no cross_attention, no encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs) def test_model_as_decoder(self): """Test the base model as a decoder (of an encoder-decoder architecture) is_deocder=True + cross_attention + pass encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_causal_lm(self): """Test the causal LM model""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model(*config_and_inputs) def test_causal_lm_model_as_decoder(self): """Test the causal LM model as a decoder""" config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs) def test_causal_lm_model_past(self): """Test causal LM model with `past_key_values`""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs) def test_causal_lm_model_past_with_attn_mask(self): """Test the causal LM model with `past_key_values` and `attention_mask`""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs) def test_causal_lm_model_past_with_large_inputs(self): """Test the causal LM model with `past_key_values` and a longer decoder sequence length""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): """Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention""" config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFRobertaModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf @require_sentencepiece @require_tokenizers class TFRobertaModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFRobertaForMaskedLM.from_pretrained("FacebookAI/roberta-base") input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids)[0] expected_shape = [1, 11, 50265] self.assertEqual(list(output.numpy().shape), expected_shape) # compare the actual values for a slice. expected_slice = tf.constant( [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4)) @slow def test_inference_no_head(self): model = TFRobertaModel.from_pretrained("FacebookAI/roberta-base") input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = tf.constant( [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4)) @slow def test_inference_classification_head(self): model = TFRobertaForSequenceClassification.from_pretrained("FacebookAI/roberta-large-mnli") input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids)[0] expected_shape = [1, 3] self.assertEqual(list(output.numpy().shape), expected_shape) expected_tensor = tf.constant([[-0.9469, 0.3913, 0.5118]]) self.assertTrue(numpy.allclose(output.numpy(), expected_tensor.numpy(), atol=1e-4))
transformers/tests/models/roberta/test_modeling_tf_roberta.py/0
{ "file_path": "transformers/tests/models/roberta/test_modeling_tf_roberta.py", "repo_id": "transformers", "token_count": 12729 }
433
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.models.seggpt.modeling_seggpt import SegGptImageSegmentationOutput if is_vision_available(): from transformers import SegGptImageProcessor class SegGptImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def expected_post_processed_shape(self): return self.size["height"] // 2, self.size["width"] def get_fake_image_segmentation_output(self): torch.manual_seed(42) return SegGptImageSegmentationOutput( pred_masks=torch.rand(self.batch_size, self.num_channels, self.size["height"], self.size["width"]) ) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) def prepare_mask(): ds = load_dataset("EduardoPacheco/seggpt-example-data")["train"] return ds[0]["mask"].convert("L") def prepare_img(): ds = load_dataset("EduardoPacheco/seggpt-example-data")["train"] images = [image.convert("RGB") for image in ds["image"]] masks = [image.convert("RGB") for image in ds["mask"]] return images, masks @require_torch @require_vision class SegGptImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = SegGptImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = SegGptImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) def test_image_processor_palette(self): num_labels = 3 image_processing = self.image_processing_class(**self.image_processor_dict) palette = image_processing.get_palette(num_labels) self.assertEqual(len(palette), num_labels + 1) self.assertEqual(palette[0], (0, 0, 0)) def test_mask_equivalence(self): image_processor = SegGptImageProcessor() mask_binary = prepare_mask() mask_rgb = mask_binary.convert("RGB") inputs_binary = image_processor(images=None, prompt_masks=mask_binary, return_tensors="pt") inputs_rgb = image_processor(images=None, prompt_masks=mask_rgb, return_tensors="pt") self.assertTrue((inputs_binary["prompt_masks"] == inputs_rgb["prompt_masks"]).all().item()) def test_mask_to_rgb(self): image_processing = self.image_processing_class(**self.image_processor_dict) mask = prepare_mask() mask = np.array(mask) mask = (mask > 0).astype(np.uint8) def check_two_colors(image, color1=(0, 0, 0), color2=(255, 255, 255)): pixels = image.transpose(1, 2, 0).reshape(-1, 3) unique_colors = np.unique(pixels, axis=0) if len(unique_colors) == 2 and (color1 in unique_colors) and (color2 in unique_colors): return True else: return False num_labels = 1 palette = image_processing.get_palette(num_labels) # Should only duplicate repeat class indices map, hence only (0,0,0) and (1,1,1) mask_duplicated = image_processing.mask_to_rgb(mask) # Mask using palette, since only 1 class is present we have colors (0,0,0) and (255,255,255) mask_painted = image_processing.mask_to_rgb(mask, palette=palette) self.assertTrue(check_two_colors(mask_duplicated, color2=(1, 1, 1))) self.assertTrue(check_two_colors(mask_painted, color2=(255, 255, 255))) def test_post_processing_semantic_segmentation(self): image_processor = self.image_processing_class(**self.image_processor_dict) outputs = self.image_processor_tester.get_fake_image_segmentation_output() post_processed = image_processor.post_process_semantic_segmentation(outputs) self.assertEqual(len(post_processed), self.image_processor_tester.batch_size) expected_semantic_map_shape = self.image_processor_tester.expected_post_processed_shape() self.assertEqual(post_processed[0].shape, expected_semantic_map_shape) @slow def test_pixel_values(self): images, masks = prepare_img() input_image = images[1] prompt_image = images[0] prompt_mask = masks[0] image_processor = SegGptImageProcessor.from_pretrained("BAAI/seggpt-vit-large") inputs = image_processor( images=input_image, prompt_images=prompt_image, prompt_masks=prompt_mask, return_tensors="pt" ) # Verify pixel values expected_prompt_pixel_values = torch.tensor( [ [[-0.6965, -0.6965, -0.6965], [-0.6965, -0.6965, -0.6965], [-0.6965, -0.6965, -0.6965]], [[1.6583, 1.6583, 1.6583], [1.6583, 1.6583, 1.6583], [1.6583, 1.6583, 1.6583]], [[2.3088, 2.3088, 2.3088], [2.3088, 2.3088, 2.3088], [2.3088, 2.3088, 2.3088]], ] ) expected_pixel_values = torch.tensor( [ [[1.6324, 1.6153, 1.5810], [1.6153, 1.5982, 1.5810], [1.5810, 1.5639, 1.5639]], [[1.2731, 1.2556, 1.2206], [1.2556, 1.2381, 1.2031], [1.2206, 1.2031, 1.1681]], [[1.6465, 1.6465, 1.6465], [1.6465, 1.6465, 1.6465], [1.6291, 1.6291, 1.6291]], ] ) expected_prompt_masks = torch.tensor( [ [[-2.1179, -2.1179, -2.1179], [-2.1179, -2.1179, -2.1179], [-2.1179, -2.1179, -2.1179]], [[-2.0357, -2.0357, -2.0357], [-2.0357, -2.0357, -2.0357], [-2.0357, -2.0357, -2.0357]], [[-1.8044, -1.8044, -1.8044], [-1.8044, -1.8044, -1.8044], [-1.8044, -1.8044, -1.8044]], ] ) self.assertTrue(torch.allclose(inputs.pixel_values[0, :, :3, :3], expected_pixel_values, atol=1e-4)) self.assertTrue( torch.allclose(inputs.prompt_pixel_values[0, :, :3, :3], expected_prompt_pixel_values, atol=1e-4) ) self.assertTrue(torch.allclose(inputs.prompt_masks[0, :, :3, :3], expected_prompt_masks, atol=1e-4))
transformers/tests/models/seggpt/test_image_processing_seggpt.py/0
{ "file_path": "transformers/tests/models/seggpt/test_image_processing_seggpt.py", "repo_id": "transformers", "token_count": 4116 }
434
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow Speech2Text model. """ from __future__ import annotations import inspect import unittest from transformers import Speech2TextConfig from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property, is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration, TFSpeech2TextModel def prepare_speech_to_text_inputs_dict( config, input_features, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.math.not_equal(input_features, 0) if decoder_attention_mask is None: decoder_attention_mask = tf.math.not_equal(decoder_input_ids, config.pad_token_id) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_features": input_features, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFSpeech2TextModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, num_conv_layers=2, conv_kernel_sizes=(5, 5), conv_channels=32, input_feat_per_channel=24, input_channels=1, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, max_source_positions=20, max_target_positions=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, scale_embedding=False, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.num_conv_layers = num_conv_layers self.conv_kernel_sizes = conv_kernel_sizes self.conv_channels = conv_channels self.input_feat_per_channel = input_feat_per_channel self.input_channels = input_channels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.scale_embedding = scale_embedding def prepare_config_and_inputs(self): input_features = floats_tensor( [self.batch_size, self.seq_length, self.input_feat_per_channel], self.vocab_size ) attention_mask = tf.ones([self.batch_size, self.seq_length], dtype=tf.int64) decoder_input_ids = tf.math.maximum(ids_tensor([self.batch_size, self.seq_length], self.vocab_size), 2) config = self.get_config() inputs_dict = prepare_speech_to_text_inputs_dict( config, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, ) return config, inputs_dict def get_config(self): return Speech2TextConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, num_conv_layers=self.num_conv_layers, conv_kernel_sizes=self.conv_kernel_sizes, conv_channels=self.conv_channels, input_feat_per_channel=self.input_feat_per_channel, input_channels=self.input_channels, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, max_source_positions=self.max_source_positions, max_target_positions=self.max_target_positions, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, scale_embedding=self.scale_embedding, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_subsampled_output_lengths(self, input_lengths): """ Computes the output length of the convolutional layers """ for _ in range(self.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFSpeech2TextModel(config=config).get_decoder() input_ids = inputs_dict["decoder_input_ids"] attention_mask = inputs_dict["decoder_attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) _, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = tf.math.maximum(ids_tensor((self.batch_size, 3), config.vocab_size), 2) next_attn_mask = ids_tensor((self.batch_size, 3), 2, dtype=tf.int64) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, atol=1e-2) @require_tf class TFSpeech2TextModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFSpeech2TextModel, TFSpeech2TextForConditionalGeneration) if is_tf_available() else () all_generative_model_classes = (TFSpeech2TextForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = {"feature-extraction": TFSpeech2TextModel} if is_tf_available() else {} is_encoder_decoder = True test_pruning = False test_missing_keys = False test_onnx = False input_name = "input_ids" def setUp(self): self.model_tester = TFSpeech2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=Speech2TextConfig) self.maxDiff = 3000 def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) # not implemented currently def test_inputs_embeds(self): pass # training is not supported yet def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_generate_fp16(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length else: seq_length = self.model_tester.seq_length subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length) self.assertListEqual( list(hidden_states[0].shape[-2:]), [subsampled_seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length) subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) out_len = len(outputs) correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, subsampled_encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) def test_resize_token_embeddings(self): # Overwritten method from parent; see `test_resize_embeddings_untied` pass def test_resize_tokens_embeddings(self): # see `test_resize_embeddings_untied` pass def test_resize_embeddings_untied(self): # TODO: copy test from PT. Not working at the moment because the test relies on `model.resize_token_embeddings`, # whose TF implementation assumes the use of `TFWrappedEmbeddings`. But with a `TFWrappedEmbeddings` we can't # load the weights from PT (also, it induces TF1 behavior, so we might want to rework how # `model.resize_token_embeddings` operates). pass def test_generate_without_input_ids(self): pass @staticmethod def _get_encoder_outputs( model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 ): encoder = model.get_encoder() encoder_outputs = encoder( input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) encoder_outputs["last_hidden_state"] = tf.repeat(encoder_outputs.last_hidden_state, num_interleave, axis=0) input_ids = input_ids[:, :, 0] input_ids = tf.zeros_like(input_ids[:, :1], dtype=tf.int64) + model._get_decoder_start_token_id() attention_mask = None return encoder_outputs, input_ids, attention_mask def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1): batch_size, seq_length = input_ids.shape[:2] subsampled_seq_length = self.model_tester.get_subsampled_output_lengths(seq_length) num_sequences_in_output = batch_size * num_return_sequences gen_len = ( output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length ) # scores self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config) # Attentions # encoder self._check_encoder_attention_for_generate( output.encoder_attentions, batch_size, config, subsampled_seq_length ) # decoder self._check_attentions_for_generate( num_sequences_in_output, output.decoder_attentions, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # Hidden States # encoder self._check_encoder_hidden_states_for_generate( output.encoder_hidden_states, batch_size, config, subsampled_seq_length ) # decoder self._check_hidden_states_for_generate( num_sequences_in_output, output.decoder_hidden_states, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # overwritten from parent due to the inability to work when non-text inputs are not passed AND because the input is # `input_features` def test_lm_head_model_random_no_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_features = inputs_dict.get("input_features", None) # iterate over all generative models for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined model needs input_features with self.assertRaises(AssertionError): model.generate(do_sample=True, max_length=5) # num_return_sequences = 1 self._check_generated_ids(model.generate(input_features, do_sample=True)) with self.assertRaises(ValueError): # generating multiple sequences when no beam search generation # is not allowed as it would always generate the same sequences model.generate(input_features, do_sample=False, num_return_sequences=2) # num_return_sequences > 1, sample self._check_generated_ids(model.generate(input_features, do_sample=True, num_return_sequences=2)) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_features, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_features.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) # overwritten from parent due to the inability to work when non-text inputs are not passed AND because the input is # `input_features` def test_lm_head_model_random_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_features = inputs_dict.get("input_features", None) for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined model needs input_ids, num_return_sequences = 1 self._check_generated_ids(model.generate(input_features, do_sample=True, num_beams=2)) with self.assertRaises(ValueError): # generating more sequences than having beams leads is not possible model.generate(input_features, do_sample=False, num_return_sequences=3, num_beams=2) # num_return_sequences > 1, sample self._check_generated_ids( model.generate( input_features, do_sample=True, num_beams=2, num_return_sequences=2, ) ) # num_return_sequences > 1, greedy self._check_generated_ids( model.generate(input_features, do_sample=False, num_beams=2, num_return_sequences=2) ) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_features, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_features.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) # overwritten from parent -- the input is `input_features`, not `input_ids` def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_features", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_pt_tf_model_equivalence(self, allow_missing_keys=True): # Allow missing keys since TF doesn't cache the sinusoidal embeddings in an attribute super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys) @require_tf @require_sentencepiece @require_tokenizers @slow class TFSpeech2TextModelIntegrationTests(unittest.TestCase): @cached_property def default_processor(self): return Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_generation_librispeech(self): model = TFSpeech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = self.default_processor input_speech = self._load_datasamples(1) input_features = processor(input_speech, return_tensors="tf").input_features generated_ids = model.generate(input_features) generated_transcript = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel" ] self.assertListEqual(generated_transcript, EXPECTED_TRANSCRIPTIONS) def test_generation_librispeech_batched(self): model = TFSpeech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = self.default_processor input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="tf", padding=True) generated_ids = model.generate(inputs.input_features, attention_mask=inputs.attention_mask) generated_transcripts = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel", "nor is mister cultar's manner less interesting than his matter", "he tells us that at this festive season of the year with christmas and roast beef looming before us" " similes drawn from eating and its results occur most readily to the mind", "he has grave doubts whether sir frederick leyton's work is really greek after all and can discover in it" " but little of rocky ithaca", ] self.assertListEqual(generated_transcripts, EXPECTED_TRANSCRIPTIONS)
transformers/tests/models/speech_to_text/test_modeling_tf_speech_to_text.py/0
{ "file_path": "transformers/tests/models/speech_to_text/test_modeling_tf_speech_to_text.py", "repo_id": "transformers", "token_count": 11904 }
435
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Swinv2 model. """ import collections import inspect import unittest from transformers import Swinv2Config from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import Swinv2Backbone, Swinv2ForImageClassification, Swinv2ForMaskedImageModeling, Swinv2Model from transformers.models.swinv2.modeling_swinv2 import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class Swinv2ModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=2, num_channels=3, embed_dim=16, depths=[1, 2, 1], num_heads=[2, 2, 4], window_size=2, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=True, type_sequence_label_size=10, encoder_stride=8, out_features=["stage1", "stage2"], out_indices=[1, 2], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.type_sequence_label_size = type_sequence_label_size self.encoder_stride = encoder_stride self.out_features = out_features self.out_indices = out_indices def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return Swinv2Config( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels): model = Swinv2Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim)) def create_and_check_backbone(self, config, pixel_values, labels): model = Swinv2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) # verify backbone works with out_features=None config.out_features = None model = Swinv2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), 1) def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): model = Swinv2ForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images config.num_channels = 1 model = Swinv2ForMaskedImageModeling(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = Swinv2ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class Swinv2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( Swinv2Model, Swinv2ForImageClassification, Swinv2ForMaskedImageModeling, Swinv2Backbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": Swinv2Model, "image-classification": Swinv2ForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Swinv2ModelTester(self) self.config_tester = ConfigTester(self, config_class=Swinv2Config, embed_dim=37) def test_config(self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) # TODO: check if this works again for PyTorch 2.x.y @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.") def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="Swinv2 does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = len(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True window_size_squared = config.window_size**2 model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # also another +1 for reshaped_hidden_states added_hidden_states = 1 if model_class.__name__ == "Swinv2Backbone" else 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Swinv2 has a different seq_length patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]), [num_patches, self.model_tester.embed_dim], ) if not model_class.__name__ == "Swinv2Backbone": reshaped_hidden_states = outputs.reshaped_hidden_states self.assertEqual(len(reshaped_hidden_states), expected_num_layers) batch_size, num_channels, height, width = reshaped_hidden_states[0].shape reshaped_hidden_states = ( reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]), [num_patches, self.model_tester.embed_dim], ) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) def test_hidden_states_output_with_padding(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.patch_size = 3 image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Swinv2Model.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="Swinv2 does not support feedforward chunking yet") def test_feed_forward_chunking(self): pass def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @require_vision @require_torch class Swinv2ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = Swinv2ForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256").to( torch_device ) image_processor = self.default_image_processor image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.3947, -0.4306, 0.0026]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch class Swinv2BackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (Swinv2Backbone,) if is_torch_available() else () config_class = Swinv2Config def setUp(self): self.model_tester = Swinv2ModelTester(self)
transformers/tests/models/swinv2/test_modeling_swinv2.py/0
{ "file_path": "transformers/tests/models/swinv2/test_modeling_swinv2.py", "repo_id": "transformers", "token_count": 8749 }
436
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch VitMatte model. """ import unittest from huggingface_hub import hf_hub_download from transformers import VitMatteConfig from transformers.testing_utils import ( require_torch, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import VitDetConfig, VitMatteForImageMatting from transformers.models.vitmatte.modeling_vitmatte import VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import VitMatteImageProcessor class VitMatteModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=16, num_channels=4, is_training=True, use_labels=False, hidden_size=2, num_hidden_layers=2, num_attention_heads=2, hidden_act="gelu", type_sequence_label_size=10, initializer_range=0.02, scope=None, out_features=["stage1"], fusion_hidden_sizes=[128, 64, 32, 16], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.out_features = out_features self.fusion_hidden_sizes = fusion_hidden_sizes self.seq_length = (self.image_size // self.patch_size) ** 2 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: raise NotImplementedError("Training is not yet supported") config = self.get_config() return config, pixel_values, labels def get_backbone_config(self): return VitDetConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_size=self.hidden_size, is_training=self.is_training, hidden_act=self.hidden_act, out_features=self.out_features, ) def get_config(self): return VitMatteConfig( backbone_config=self.get_backbone_config(), backbone=None, hidden_size=self.hidden_size, fusion_hidden_sizes=self.fusion_hidden_sizes, ) def create_and_check_model(self, config, pixel_values, labels): model = VitMatteForImageMatting(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.alphas.shape, (self.batch_size, 1, self.image_size, self.image_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class VitMatteModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as VitMatte does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (VitMatteForImageMatting,) if is_torch_available() else () pipeline_model_mapping = {} fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = VitMatteModelTester(self) self.config_tester = ConfigTester(self, config_class=VitMatteConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="VitMatte does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Training is not yet supported") def test_training(self): pass @unittest.skip(reason="Training is not yet supported") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="ViTMatte does not support input and output embeddings") def test_model_common_attributes(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = VitMatteForImageMatting.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="ViTMatte does not support retaining gradient on attention logits") def test_retain_grad_hidden_states_attentions(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [2, 2], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True print("Hello we're here") check_hidden_states_output(inputs_dict, config, model_class) @require_torch class VitMatteModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k") model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k").to(torch_device) filepath = hf_hub_download( repo_id="hf-internal-testing/image-matting-fixtures", filename="image.png", repo_type="dataset" ) image = Image.open(filepath).convert("RGB") filepath = hf_hub_download( repo_id="hf-internal-testing/image-matting-fixtures", filename="trimap.png", repo_type="dataset" ) trimap = Image.open(filepath).convert("L") # prepare image + trimap for the model inputs = processor(images=image, trimaps=trimap, return_tensors="pt").to(torch_device) with torch.no_grad(): alphas = model(**inputs).alphas expected_shape = torch.Size((1, 1, 640, 960)) self.assertEqual(alphas.shape, expected_shape) expected_slice = torch.tensor( [[0.9977, 0.9987, 0.9990], [0.9980, 0.9998, 0.9998], [0.9983, 0.9998, 0.9998]], device=torch_device ) self.assertTrue(torch.allclose(alphas[0, 0, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/vitmatte/test_modeling_vitmatte.py/0
{ "file_path": "transformers/tests/models/vitmatte/test_modeling_vitmatte.py", "repo_id": "transformers", "token_count": 4116 }
437
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from transformers.models.seamless_m4t import SeamlessM4TFeatureExtractor from transformers.models.wav2vec2 import Wav2Vec2CTCTokenizer from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES from transformers.models.wav2vec2_bert import Wav2Vec2BertProcessor from transformers.utils import FEATURE_EXTRACTOR_NAME from ..wav2vec2.test_feature_extraction_wav2vec2 import floats_list # Copied from tests.models.wav2vec2.test_processor_wav2vec2.Wav2Vec2ProcessorTest with Wav2Vec2FeatureExtractor->SeamlessM4TFeatureExtractor, Wav2Vec2Processor->Wav2Vec2BertProcessor class Wav2Vec2BertProcessorTest(unittest.TestCase): def setUp(self): vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ") vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.add_kwargs_tokens_map = { "pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } feature_extractor_map = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16000, "return_attention_mask": False, "do_normalize": True, } self.tmpdirname = tempfile.mkdtemp() self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.feature_extraction_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(feature_extractor_map) + "\n") def get_tokenizer(self, **kwargs_init): kwargs = self.add_kwargs_tokens_map.copy() kwargs.update(kwargs_init) return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return SeamlessM4TFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = Wav2Vec2BertProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = Wav2Vec2BertProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, SeamlessM4TFeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = Wav2Vec2BertProcessor( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = Wav2Vec2BertProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, SeamlessM4TFeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Wav2Vec2BertProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Wav2Vec2BertProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Wav2Vec2BertProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Wav2Vec2BertProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", )
transformers/tests/models/wav2vec2_bert/test_processor_wav2vec2_bert.py/0
{ "file_path": "transformers/tests/models/wav2vec2_bert/test_processor_wav2vec2_bert.py", "repo_id": "transformers", "token_count": 2700 }
438
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class TFFlaubertModelIntegrationTest(unittest.TestCase): @slow def test_output_embeds_base_model(self): model = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base") features = { "input_ids": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]], dtype=tf.int32), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]], dtype=tf.int32), } output = model(features)["last_hidden_state"] expected_shape = tf.TensorShape((1, 6, 768)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ], dtype=tf.float32, ) self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
transformers/tests/models/xlm_roberta/test_modeling_tf_xlm_roberta.py/0
{ "file_path": "transformers/tests/models/xlm_roberta/test_modeling_tf_xlm_roberta.py", "repo_id": "transformers", "token_count": 850 }
439
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ( MODEL_FOR_IMAGE_TO_IMAGE_MAPPING, AutoImageProcessor, AutoModelForImageToImage, ImageToImagePipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class Image: @staticmethod def open(*args, **kwargs): pass @is_pipeline_test @require_torch @require_vision class ImageToImagePipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_IMAGE_TO_IMAGE_MAPPING examples = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "http://images.cocodataset.org/val2017/000000039769.jpg", ] @require_torch @require_vision @slow def test_pipeline(self): model_id = "caidas/swin2SR-classical-sr-x2-64" upscaler = pipeline("image-to-image", model=model_id) upscaled_list = upscaler(self.examples) self.assertEqual(len(upscaled_list), len(self.examples)) for output in upscaled_list: self.assertIsInstance(output, Image.Image) self.assertEqual(upscaled_list[0].size, (1296, 976)) self.assertEqual(upscaled_list[1].size, (1296, 976)) @require_torch @require_vision @slow def test_pipeline_model_processor(self): model_id = "caidas/swin2SR-classical-sr-x2-64" model = AutoModelForImageToImage.from_pretrained(model_id) image_processor = AutoImageProcessor.from_pretrained(model_id) upscaler = ImageToImagePipeline(model=model, image_processor=image_processor) upscaled_list = upscaler(self.examples) self.assertEqual(len(upscaled_list), len(self.examples)) for output in upscaled_list: self.assertIsInstance(output, Image.Image) self.assertEqual(upscaled_list[0].size, (1296, 976)) self.assertEqual(upscaled_list[1].size, (1296, 976))
transformers/tests/pipelines/test_pipelines_image_to_image.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_image_to_image.py", "repo_id": "transformers", "token_count": 1057 }
440
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class ZeroShotAudioClassificationPipelineTests(unittest.TestCase): # Deactivating auto tests since we don't have a good MODEL_FOR_XX mapping, # and only CLAP would be there for now. # model_mapping = {CLAPConfig: CLAPModel} @require_torch def test_small_model_pt(self): audio_classifier = pipeline( task="zero-shot-audio-classification", model="hf-internal-testing/tiny-clap-htsat-unfused" ) dataset = load_dataset("ashraq/esc50") audio = dataset["train"]["audio"][-1]["array"] output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"]) self.assertEqual( nested_simplify(output), [{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}], ) @unittest.skip("No models are available in TF") def test_small_model_tf(self): pass @slow @require_torch def test_large_model_pt(self): audio_classifier = pipeline( task="zero-shot-audio-classification", model="laion/clap-htsat-unfused", ) # This is an audio of a dog dataset = load_dataset("ashraq/esc50") audio = dataset["train"]["audio"][-1]["array"] output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"]) self.assertEqual( nested_simplify(output), [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ) output = audio_classifier([audio] * 5, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"]) self.assertEqual( nested_simplify(output), [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5, ) output = audio_classifier( [audio] * 5, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"], batch_size=5 ) self.assertEqual( nested_simplify(output), [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5, ) @unittest.skip("No models are available in TF") def test_large_model_tf(self): pass
transformers/tests/pipelines/test_pipelines_zero_shot_audio_classification.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_zero_shot_audio_classification.py", "repo_id": "transformers", "token_count": 1482 }
441
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import sys import unittest git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) from check_docstrings import get_default_description, replace_default_in_arg_description # noqa: E402 class CheckDostringsTested(unittest.TestCase): def test_replace_default_in_arg_description(self): # Standard docstring with default. desc_with_default = "`float`, *optional*, defaults to 2.0" self.assertEqual( replace_default_in_arg_description(desc_with_default, 2.0), "`float`, *optional*, defaults to 2.0" ) self.assertEqual( replace_default_in_arg_description(desc_with_default, 1.0), "`float`, *optional*, defaults to 1.0" ) self.assertEqual(replace_default_in_arg_description(desc_with_default, inspect._empty), "`float`") # Standard docstring with default but optional is not using the stars. desc_with_default_typo = "`float`, `optional`, defaults to 2.0" self.assertEqual( replace_default_in_arg_description(desc_with_default_typo, 2.0), "`float`, *optional*, defaults to 2.0" ) self.assertEqual( replace_default_in_arg_description(desc_with_default_typo, 1.0), "`float`, *optional*, defaults to 1.0" ) # If the default is None we do not erase the value in the docstring. self.assertEqual( replace_default_in_arg_description(desc_with_default, None), "`float`, *optional*, defaults to 2.0" ) # If the default is None (and set as such in the docstring), we do not include it. desc_with_default = "`float`, *optional*, defaults to None" self.assertEqual(replace_default_in_arg_description(desc_with_default, None), "`float`, *optional*") desc_with_default = "`float`, *optional*, defaults to `None`" self.assertEqual(replace_default_in_arg_description(desc_with_default, None), "`float`, *optional*") # Operations are not replaced, but put in backtiks. desc_with_default = "`float`, *optional*, defaults to 1/255" self.assertEqual( replace_default_in_arg_description(desc_with_default, 1 / 255), "`float`, *optional*, defaults to `1/255`" ) desc_with_default = "`float`, *optional*, defaults to `1/255`" self.assertEqual( replace_default_in_arg_description(desc_with_default, 1 / 255), "`float`, *optional*, defaults to `1/255`" ) desc_with_optional = "`float`, *optional*" self.assertEqual( replace_default_in_arg_description(desc_with_optional, 2.0), "`float`, *optional*, defaults to 2.0" ) self.assertEqual( replace_default_in_arg_description(desc_with_optional, 1.0), "`float`, *optional*, defaults to 1.0" ) self.assertEqual(replace_default_in_arg_description(desc_with_optional, None), "`float`, *optional*") self.assertEqual(replace_default_in_arg_description(desc_with_optional, inspect._empty), "`float`") desc_with_no_optional = "`float`" self.assertEqual( replace_default_in_arg_description(desc_with_no_optional, 2.0), "`float`, *optional*, defaults to 2.0" ) self.assertEqual( replace_default_in_arg_description(desc_with_no_optional, 1.0), "`float`, *optional*, defaults to 1.0" ) self.assertEqual(replace_default_in_arg_description(desc_with_no_optional, None), "`float`, *optional*") self.assertEqual(replace_default_in_arg_description(desc_with_no_optional, inspect._empty), "`float`") def test_get_default_description(self): # Fake function to have arguments to test. def _fake_function(a, b: int, c=1, d: float = 2.0, e: str = "blob"): pass params = inspect.signature(_fake_function).parameters assert get_default_description(params["a"]) == "`<fill_type>`" assert get_default_description(params["b"]) == "`int`" assert get_default_description(params["c"]) == "`<fill_type>`, *optional*, defaults to 1" assert get_default_description(params["d"]) == "`float`, *optional*, defaults to 2.0" assert get_default_description(params["e"]) == '`str`, *optional*, defaults to `"blob"`'
transformers/tests/repo_utils/test_check_docstrings.py/0
{ "file_path": "transformers/tests/repo_utils/test_check_docstrings.py", "repo_id": "transformers", "token_count": 1935 }
442
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import tempfile from transformers.testing_utils import require_torch, torch_device from transformers.utils.backbone_utils import BackboneType @require_torch class BackboneTesterMixin: all_model_classes = () has_attentions = True def test_config(self): config_class = self.config_class # test default config config = config_class() self.assertIsNotNone(config) num_stages = len(config.depths) if hasattr(config, "depths") else config.num_hidden_layers expected_stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_stages + 1)] self.assertEqual(config.stage_names, expected_stage_names) self.assertTrue(set(config.out_features).issubset(set(config.stage_names))) # Test out_features and out_indices are correctly set # out_features and out_indices both None config = config_class(out_features=None, out_indices=None) self.assertEqual(config.out_features, [config.stage_names[-1]]) self.assertEqual(config.out_indices, [len(config.stage_names) - 1]) # out_features and out_indices both set config = config_class(out_features=["stem", "stage1"], out_indices=[0, 1]) self.assertEqual(config.out_features, ["stem", "stage1"]) self.assertEqual(config.out_indices, [0, 1]) # Only out_features set config = config_class(out_features=["stage1", "stage3"]) self.assertEqual(config.out_features, ["stage1", "stage3"]) self.assertEqual(config.out_indices, [1, 3]) # Only out_indices set config = config_class(out_indices=[0, 2]) self.assertEqual(config.out_features, [config.stage_names[0], config.stage_names[2]]) self.assertEqual(config.out_indices, [0, 2]) # Error raised when out_indices do not correspond to out_features with self.assertRaises(ValueError): config = config_class(out_features=["stage1", "stage2"], out_indices=[0, 2]) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_config_save_pretrained(self): config_class = self.config_class config_first = config_class(out_indices=[0, 1, 2, 3]) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(tmpdirname) config_second = self.config_class.from_pretrained(tmpdirname) self.assertEqual(config_second.to_dict(), config_first.to_dict()) def test_channels(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertEqual(len(model.channels), len(config.out_features)) num_features = model.num_features out_indices = [config.stage_names.index(feat) for feat in config.out_features] out_channels = [num_features[idx] for idx in out_indices] self.assertListEqual(model.channels, out_channels) new_config = copy.deepcopy(config) new_config.out_features = None model = model_class(new_config) self.assertEqual(len(model.channels), 1) self.assertListEqual(model.channels, [num_features[-1]]) new_config = copy.deepcopy(config) new_config.out_indices = None model = model_class(new_config) self.assertEqual(len(model.channels), 1) self.assertListEqual(model.channels, [num_features[-1]]) def test_create_from_modified_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() result = model(**inputs_dict) self.assertEqual(len(result.feature_maps), len(config.out_features)) self.assertEqual(len(model.channels), len(config.out_features)) self.assertEqual(len(result.feature_maps), len(config.out_indices)) self.assertEqual(len(model.channels), len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None modified_config = copy.deepcopy(config) modified_config.out_features = None model = model_class(modified_config) model.to(torch_device) model.eval() result = model(**inputs_dict) self.assertEqual(len(result.feature_maps), 1) self.assertEqual(len(model.channels), 1) modified_config = copy.deepcopy(config) modified_config.out_indices = None model = model_class(modified_config) model.to(torch_device) model.eval() result = model(**inputs_dict) self.assertEqual(len(result.feature_maps), 1) self.assertEqual(len(model.channels), 1) # Check backbone can be initialized with fresh weights modified_config = copy.deepcopy(config) modified_config.use_pretrained_backbone = False model = model_class(modified_config) model.to(torch_device) model.eval() result = model(**inputs_dict) def test_backbone_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for backbone_class in self.all_model_classes: backbone = backbone_class(config) self.assertTrue(hasattr(backbone, "backbone_type")) self.assertTrue(hasattr(backbone, "stage_names")) self.assertTrue(hasattr(backbone, "num_features")) self.assertTrue(hasattr(backbone, "out_indices")) self.assertTrue(hasattr(backbone, "out_features")) self.assertTrue(hasattr(backbone, "out_feature_channels")) self.assertTrue(hasattr(backbone, "channels")) self.assertIsInstance(backbone.backbone_type, BackboneType) # Verify num_features has been initialized in the backbone init self.assertIsNotNone(backbone.num_features) self.assertTrue(len(backbone.channels) == len(backbone.out_indices)) self.assertTrue(len(backbone.stage_names) == len(backbone.num_features)) self.assertTrue(len(backbone.channels) <= len(backbone.num_features)) self.assertTrue(len(backbone.out_feature_channels) == len(backbone.stage_names)) def test_backbone_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() batch_size = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: backbone = backbone_class(config) backbone.to(torch_device) backbone.eval() outputs = backbone(**inputs_dict) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps, tuple) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True outputs = backbone(**inputs_dict, output_hidden_states=True) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states), len(backbone.stage_names)) for hidden_state, n_channels in zip(outputs.hidden_states, backbone.channels): self.assertTrue(hidden_state.shape[:2], (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: outputs = backbone(**inputs_dict, output_attentions=True) self.assertIsNotNone(outputs.attentions) def test_backbone_stage_selection(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() batch_size = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: config.out_indices = [-2, -1] backbone = backbone_class(config) backbone.to(torch_device) backbone.eval() outputs = backbone(**inputs_dict) # Test number of feature maps returned self.assertIsInstance(outputs.feature_maps, tuple) self.assertTrue(len(outputs.feature_maps) == 2) # Order of channels returned is same as order of channels iterating over stage names channels_from_stage_names = [ backbone.out_feature_channels[name] for name in backbone.stage_names if name in backbone.out_features ] self.assertEqual(backbone.channels, channels_from_stage_names) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels))
transformers/tests/test_backbone_common.py/0
{ "file_path": "transformers/tests/test_backbone_common.py", "repo_id": "transformers", "token_count": 4375 }
443
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import tempfile import unittest from transformers import CLIPTokenizerFast, ProcessorMixin from transformers.models.auto.processing_auto import processor_class_from_name from transformers.testing_utils import ( check_json_file_has_correct_format, require_tokenizers, require_torch, require_vision, ) from transformers.utils import is_vision_available if is_vision_available(): from transformers import CLIPImageProcessor @require_torch class ProcessorTesterMixin: processor_class = None def prepare_processor_dict(self): return {} def get_component(self, attribute, **kwargs): assert attribute in self.processor_class.attributes component_class_name = getattr(self.processor_class, f"{attribute}_class") if isinstance(component_class_name, tuple): component_class_name = component_class_name[0] component_class = processor_class_from_name(component_class_name) component = component_class.from_pretrained(self.tmpdirname, **kwargs) # noqa return component def prepare_components(self): components = {} for attribute in self.processor_class.attributes: component = self.get_component(attribute) components[attribute] = component return components def get_processor(self): components = self.prepare_components() processor = self.processor_class(**components, **self.prepare_processor_dict()) return processor def test_processor_to_json_string(self): processor = self.get_processor() obj = json.loads(processor.to_json_string()) for key, value in self.prepare_processor_dict().items(): self.assertEqual(obj[key], value) self.assertEqual(getattr(processor, key, None), value) def test_processor_from_and_save_pretrained(self): processor_first = self.get_processor() with tempfile.TemporaryDirectory() as tmpdirname: saved_files = processor_first.save_pretrained(tmpdirname) if len(saved_files) > 0: check_json_file_has_correct_format(saved_files[0]) processor_second = self.processor_class.from_pretrained(tmpdirname) self.assertEqual(processor_second.to_dict(), processor_first.to_dict()) class MyProcessor(ProcessorMixin): attributes = ["image_processor", "tokenizer"] image_processor_class = "CLIPImageProcessor" tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, processor_attr_1=1, processor_attr_2=True): super().__init__(image_processor, tokenizer) self.processor_attr_1 = processor_attr_1 self.processor_attr_2 = processor_attr_2 @require_tokenizers @require_vision class ProcessorTest(unittest.TestCase): processor_class = MyProcessor def prepare_processor_dict(self): return {"processor_attr_1": 1, "processor_attr_2": False} def get_processor(self): image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-large-patch14") processor = MyProcessor(image_processor, tokenizer, **self.prepare_processor_dict()) return processor def test_processor_to_json_string(self): processor = self.get_processor() obj = json.loads(processor.to_json_string()) for key, value in self.prepare_processor_dict().items(): self.assertEqual(obj[key], value) self.assertEqual(getattr(processor, key, None), value) def test_processor_from_and_save_pretrained(self): processor_first = self.get_processor() with tempfile.TemporaryDirectory() as tmpdirname: saved_file = processor_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) processor_second = self.processor_class.from_pretrained(tmpdirname) self.assertEqual(processor_second.to_dict(), processor_first.to_dict())
transformers/tests/test_processing_common.py/0
{ "file_path": "transformers/tests/test_processing_common.py", "repo_id": "transformers", "token_count": 1720 }
444
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin TEXT = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class TextQuestionAnsweringToolTester(unittest.TestCase, ToolTesterMixin): def setUp(self): self.tool = load_tool("text-question-answering") self.tool.setup() self.remote_tool = load_tool("text-question-answering", remote=True) def test_exact_match_arg(self): result = self.tool(TEXT, "What did Hugging Face do in April 2021?") self.assertEqual(result, "launched the BigScience Research Workshop") def test_exact_match_arg_remote(self): result = self.remote_tool(TEXT, "What did Hugging Face do in April 2021?") self.assertEqual(result, "launched the BigScience Research Workshop") def test_exact_match_kwarg(self): result = self.tool(text=TEXT, question="What did Hugging Face do in April 2021?") self.assertEqual(result, "launched the BigScience Research Workshop") def test_exact_match_kwarg_remote(self): result = self.remote_tool(text=TEXT, question="What did Hugging Face do in April 2021?") self.assertEqual(result, "launched the BigScience Research Workshop")
transformers/tests/tools/test_text_question_answering.py/0
{ "file_path": "transformers/tests/tools/test_text_question_answering.py", "repo_id": "transformers", "token_count": 742 }
445
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import tempfile import unittest from pathlib import Path import transformers from transformers.commands.add_new_model_like import ( ModelPatterns, _re_class_func, add_content_to_file, add_content_to_text, clean_frameworks_in_init, duplicate_doc_file, duplicate_module, filter_framework_files, find_base_model_checkpoint, get_model_files, get_module_from_file, parse_module_content, replace_model_patterns, retrieve_info_for_model, retrieve_model_classes, simplify_replacements, ) from transformers.testing_utils import require_flax, require_tf, require_torch BERT_MODEL_FILES = { "src/transformers/models/bert/__init__.py", "src/transformers/models/bert/configuration_bert.py", "src/transformers/models/bert/tokenization_bert.py", "src/transformers/models/bert/tokenization_bert_fast.py", "src/transformers/models/bert/tokenization_bert_tf.py", "src/transformers/models/bert/modeling_bert.py", "src/transformers/models/bert/modeling_flax_bert.py", "src/transformers/models/bert/modeling_tf_bert.py", "src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py", "src/transformers/models/bert/convert_bert_original_tf2_checkpoint_to_pytorch.py", "src/transformers/models/bert/convert_bert_pytorch_checkpoint_to_original_tf.py", "src/transformers/models/bert/convert_bert_token_dropping_original_tf2_checkpoint_to_pytorch.py", } VIT_MODEL_FILES = { "src/transformers/models/vit/__init__.py", "src/transformers/models/vit/configuration_vit.py", "src/transformers/models/vit/convert_dino_to_pytorch.py", "src/transformers/models/vit/convert_vit_timm_to_pytorch.py", "src/transformers/models/vit/feature_extraction_vit.py", "src/transformers/models/vit/image_processing_vit.py", "src/transformers/models/vit/modeling_vit.py", "src/transformers/models/vit/modeling_tf_vit.py", "src/transformers/models/vit/modeling_flax_vit.py", } WAV2VEC2_MODEL_FILES = { "src/transformers/models/wav2vec2/__init__.py", "src/transformers/models/wav2vec2/configuration_wav2vec2.py", "src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py", "src/transformers/models/wav2vec2/convert_wav2vec2_original_s3prl_checkpoint_to_pytorch.py", "src/transformers/models/wav2vec2/feature_extraction_wav2vec2.py", "src/transformers/models/wav2vec2/modeling_wav2vec2.py", "src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py", "src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py", "src/transformers/models/wav2vec2/processing_wav2vec2.py", "src/transformers/models/wav2vec2/tokenization_wav2vec2.py", } REPO_PATH = Path(transformers.__path__[0]).parent.parent @require_torch @require_tf @require_flax class TestAddNewModelLike(unittest.TestCase): def init_file(self, file_name, content): with open(file_name, "w", encoding="utf-8") as f: f.write(content) def check_result(self, file_name, expected_result): with open(file_name, "r", encoding="utf-8") as f: result = f.read() self.assertEqual(result, expected_result) def test_re_class_func(self): self.assertEqual(_re_class_func.search("def my_function(x, y):").groups()[0], "my_function") self.assertEqual(_re_class_func.search("class MyClass:").groups()[0], "MyClass") self.assertEqual(_re_class_func.search("class MyClass(SuperClass):").groups()[0], "MyClass") def test_model_patterns_defaults(self): model_patterns = ModelPatterns("GPT-New new", "huggingface/gpt-new-base") self.assertEqual(model_patterns.model_type, "gpt-new-new") self.assertEqual(model_patterns.model_lower_cased, "gpt_new_new") self.assertEqual(model_patterns.model_camel_cased, "GPTNewNew") self.assertEqual(model_patterns.model_upper_cased, "GPT_NEW_NEW") self.assertEqual(model_patterns.config_class, "GPTNewNewConfig") self.assertIsNone(model_patterns.tokenizer_class) self.assertIsNone(model_patterns.feature_extractor_class) self.assertIsNone(model_patterns.processor_class) def test_parse_module_content(self): test_code = """SOME_CONSTANT = a constant CONSTANT_DEFINED_ON_SEVERAL_LINES = [ first_item, second_item ] def function(args): some code # Copied from transformers.some_module class SomeClass: some code """ expected_parts = [ "SOME_CONSTANT = a constant\n", "CONSTANT_DEFINED_ON_SEVERAL_LINES = [\n first_item,\n second_item\n]", "", "def function(args):\n some code\n", "# Copied from transformers.some_module\nclass SomeClass:\n some code\n", ] self.assertEqual(parse_module_content(test_code), expected_parts) def test_add_content_to_text(self): test_text = """all_configs = { "gpt": "GPTConfig", "bert": "BertConfig", "t5": "T5Config", }""" expected = """all_configs = { "gpt": "GPTConfig", "gpt2": "GPT2Config", "bert": "BertConfig", "t5": "T5Config", }""" line = ' "gpt2": "GPT2Config",' self.assertEqual(add_content_to_text(test_text, line, add_before="bert"), expected) self.assertEqual(add_content_to_text(test_text, line, add_before="bert", exact_match=True), test_text) self.assertEqual( add_content_to_text(test_text, line, add_before=' "bert": "BertConfig",', exact_match=True), expected ) self.assertEqual(add_content_to_text(test_text, line, add_before=re.compile(r'^\s*"bert":')), expected) self.assertEqual(add_content_to_text(test_text, line, add_after="gpt"), expected) self.assertEqual(add_content_to_text(test_text, line, add_after="gpt", exact_match=True), test_text) self.assertEqual( add_content_to_text(test_text, line, add_after=' "gpt": "GPTConfig",', exact_match=True), expected ) self.assertEqual(add_content_to_text(test_text, line, add_after=re.compile(r'^\s*"gpt":')), expected) def test_add_content_to_file(self): test_text = """all_configs = { "gpt": "GPTConfig", "bert": "BertConfig", "t5": "T5Config", }""" expected = """all_configs = { "gpt": "GPTConfig", "gpt2": "GPT2Config", "bert": "BertConfig", "t5": "T5Config", }""" line = ' "gpt2": "GPT2Config",' with tempfile.TemporaryDirectory() as tmp_dir: file_name = os.path.join(tmp_dir, "code.py") self.init_file(file_name, test_text) add_content_to_file(file_name, line, add_before="bert") self.check_result(file_name, expected) self.init_file(file_name, test_text) add_content_to_file(file_name, line, add_before="bert", exact_match=True) self.check_result(file_name, test_text) self.init_file(file_name, test_text) add_content_to_file(file_name, line, add_before=' "bert": "BertConfig",', exact_match=True) self.check_result(file_name, expected) self.init_file(file_name, test_text) add_content_to_file(file_name, line, add_before=re.compile(r'^\s*"bert":')) self.check_result(file_name, expected) self.init_file(file_name, test_text) add_content_to_file(file_name, line, add_after="gpt") self.check_result(file_name, expected) self.init_file(file_name, test_text) add_content_to_file(file_name, line, add_after="gpt", exact_match=True) self.check_result(file_name, test_text) self.init_file(file_name, test_text) add_content_to_file(file_name, line, add_after=' "gpt": "GPTConfig",', exact_match=True) self.check_result(file_name, expected) self.init_file(file_name, test_text) add_content_to_file(file_name, line, add_after=re.compile(r'^\s*"gpt":')) self.check_result(file_name, expected) def test_simplify_replacements(self): self.assertEqual(simplify_replacements([("Bert", "NewBert")]), [("Bert", "NewBert")]) self.assertEqual( simplify_replacements([("Bert", "NewBert"), ("bert", "new-bert")]), [("Bert", "NewBert"), ("bert", "new-bert")], ) self.assertEqual( simplify_replacements([("BertConfig", "NewBertConfig"), ("Bert", "NewBert"), ("bert", "new-bert")]), [("Bert", "NewBert"), ("bert", "new-bert")], ) def test_replace_model_patterns(self): bert_model_patterns = ModelPatterns("Bert", "google-bert/bert-base-cased") new_bert_model_patterns = ModelPatterns("New Bert", "huggingface/bert-new-base") bert_test = '''class TFBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" is_parallelizable = True supports_gradient_checkpointing = True model_type = "bert" BERT_CONSTANT = "value" ''' bert_expected = '''class TFNewBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = NewBertConfig load_tf_weights = load_tf_weights_in_new_bert base_model_prefix = "new_bert" is_parallelizable = True supports_gradient_checkpointing = True model_type = "new-bert" NEW_BERT_CONSTANT = "value" ''' bert_converted, replacements = replace_model_patterns(bert_test, bert_model_patterns, new_bert_model_patterns) self.assertEqual(bert_converted, bert_expected) # Replacements are empty here since bert as been replaced by bert_new in some instances and bert-new # in others. self.assertEqual(replacements, "") # If we remove the model type, we will get replacements bert_test = bert_test.replace(' model_type = "bert"\n', "") bert_expected = bert_expected.replace(' model_type = "new-bert"\n', "") bert_converted, replacements = replace_model_patterns(bert_test, bert_model_patterns, new_bert_model_patterns) self.assertEqual(bert_converted, bert_expected) self.assertEqual(replacements, "BERT->NEW_BERT,Bert->NewBert,bert->new_bert") gpt_model_patterns = ModelPatterns("GPT2", "gpt2") new_gpt_model_patterns = ModelPatterns("GPT-New new", "huggingface/gpt-new-base") gpt_test = '''class GPT2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPT2Config load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True GPT2_CONSTANT = "value" ''' gpt_expected = '''class GPTNewNewPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTNewNewConfig load_tf_weights = load_tf_weights_in_gpt_new_new base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True GPT_NEW_NEW_CONSTANT = "value" ''' gpt_converted, replacements = replace_model_patterns(gpt_test, gpt_model_patterns, new_gpt_model_patterns) self.assertEqual(gpt_converted, gpt_expected) # Replacements are empty here since GPT2 as been replaced by GPTNewNew in some instances and GPT_NEW_NEW # in others. self.assertEqual(replacements, "") roberta_model_patterns = ModelPatterns("RoBERTa", "FacebookAI/roberta-base", model_camel_cased="Roberta") new_roberta_model_patterns = ModelPatterns( "RoBERTa-New", "huggingface/roberta-new-base", model_camel_cased="RobertaNew" ) roberta_test = '''# Copied from transformers.models.bert.BertModel with Bert->Roberta class RobertaModel(RobertaPreTrainedModel): """ The base RoBERTa model. """ checkpoint = FacebookAI/roberta-base base_model_prefix = "roberta" ''' roberta_expected = '''# Copied from transformers.models.bert.BertModel with Bert->RobertaNew class RobertaNewModel(RobertaNewPreTrainedModel): """ The base RoBERTa-New model. """ checkpoint = huggingface/roberta-new-base base_model_prefix = "roberta_new" ''' roberta_converted, replacements = replace_model_patterns( roberta_test, roberta_model_patterns, new_roberta_model_patterns ) self.assertEqual(roberta_converted, roberta_expected) def test_get_module_from_file(self): self.assertEqual( get_module_from_file("/git/transformers/src/transformers/models/bert/modeling_tf_bert.py"), "transformers.models.bert.modeling_tf_bert", ) self.assertEqual( get_module_from_file("/transformers/models/gpt2/modeling_gpt2.py"), "transformers.models.gpt2.modeling_gpt2", ) with self.assertRaises(ValueError): get_module_from_file("/models/gpt2/modeling_gpt2.py") def test_duplicate_module(self): bert_model_patterns = ModelPatterns("Bert", "google-bert/bert-base-cased") new_bert_model_patterns = ModelPatterns("New Bert", "huggingface/bert-new-base") bert_test = '''class TFBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" is_parallelizable = True supports_gradient_checkpointing = True BERT_CONSTANT = "value" ''' bert_expected = '''class TFNewBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = NewBertConfig load_tf_weights = load_tf_weights_in_new_bert base_model_prefix = "new_bert" is_parallelizable = True supports_gradient_checkpointing = True NEW_BERT_CONSTANT = "value" ''' bert_expected_with_copied_from = ( "# Copied from transformers.bert_module.TFBertPreTrainedModel with Bert->NewBert,bert->new_bert\n" + bert_expected ) with tempfile.TemporaryDirectory() as tmp_dir: work_dir = os.path.join(tmp_dir, "transformers") os.makedirs(work_dir) file_name = os.path.join(work_dir, "bert_module.py") dest_file_name = os.path.join(work_dir, "new_bert_module.py") self.init_file(file_name, bert_test) duplicate_module(file_name, bert_model_patterns, new_bert_model_patterns) self.check_result(dest_file_name, bert_expected_with_copied_from) self.init_file(file_name, bert_test) duplicate_module(file_name, bert_model_patterns, new_bert_model_patterns, add_copied_from=False) self.check_result(dest_file_name, bert_expected) def test_duplicate_module_with_copied_from(self): bert_model_patterns = ModelPatterns("Bert", "google-bert/bert-base-cased") new_bert_model_patterns = ModelPatterns("New Bert", "huggingface/bert-new-base") bert_test = '''# Copied from transformers.models.xxx.XxxModel with Xxx->Bert class TFBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" is_parallelizable = True supports_gradient_checkpointing = True BERT_CONSTANT = "value" ''' bert_expected = '''# Copied from transformers.models.xxx.XxxModel with Xxx->NewBert class TFNewBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = NewBertConfig load_tf_weights = load_tf_weights_in_new_bert base_model_prefix = "new_bert" is_parallelizable = True supports_gradient_checkpointing = True NEW_BERT_CONSTANT = "value" ''' with tempfile.TemporaryDirectory() as tmp_dir: work_dir = os.path.join(tmp_dir, "transformers") os.makedirs(work_dir) file_name = os.path.join(work_dir, "bert_module.py") dest_file_name = os.path.join(work_dir, "new_bert_module.py") self.init_file(file_name, bert_test) duplicate_module(file_name, bert_model_patterns, new_bert_model_patterns) # There should not be a new Copied from statement, the old one should be adapated. self.check_result(dest_file_name, bert_expected) self.init_file(file_name, bert_test) duplicate_module(file_name, bert_model_patterns, new_bert_model_patterns, add_copied_from=False) self.check_result(dest_file_name, bert_expected) def test_filter_framework_files(self): files = ["modeling_bert.py", "modeling_tf_bert.py", "modeling_flax_bert.py", "configuration_bert.py"] self.assertEqual(filter_framework_files(files), files) self.assertEqual(set(filter_framework_files(files, ["pt", "tf", "flax"])), set(files)) self.assertEqual(set(filter_framework_files(files, ["pt"])), {"modeling_bert.py", "configuration_bert.py"}) self.assertEqual(set(filter_framework_files(files, ["tf"])), {"modeling_tf_bert.py", "configuration_bert.py"}) self.assertEqual( set(filter_framework_files(files, ["flax"])), {"modeling_flax_bert.py", "configuration_bert.py"} ) self.assertEqual( set(filter_framework_files(files, ["pt", "tf"])), {"modeling_tf_bert.py", "modeling_bert.py", "configuration_bert.py"}, ) self.assertEqual( set(filter_framework_files(files, ["tf", "flax"])), {"modeling_tf_bert.py", "modeling_flax_bert.py", "configuration_bert.py"}, ) self.assertEqual( set(filter_framework_files(files, ["pt", "flax"])), {"modeling_bert.py", "modeling_flax_bert.py", "configuration_bert.py"}, ) def test_get_model_files(self): # BERT bert_files = get_model_files("bert") doc_file = str(Path(bert_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/bert.md") model_files = {str(Path(f).relative_to(REPO_PATH)) for f in bert_files["model_files"]} self.assertEqual(model_files, BERT_MODEL_FILES) self.assertEqual(bert_files["module_name"], "bert") test_files = {str(Path(f).relative_to(REPO_PATH)) for f in bert_files["test_files"]} bert_test_files = { "tests/models/bert/test_tokenization_bert.py", "tests/models/bert/test_modeling_bert.py", "tests/models/bert/test_modeling_tf_bert.py", "tests/models/bert/test_modeling_flax_bert.py", } self.assertEqual(test_files, bert_test_files) # VIT vit_files = get_model_files("vit") doc_file = str(Path(vit_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/vit.md") model_files = {str(Path(f).relative_to(REPO_PATH)) for f in vit_files["model_files"]} self.assertEqual(model_files, VIT_MODEL_FILES) self.assertEqual(vit_files["module_name"], "vit") test_files = {str(Path(f).relative_to(REPO_PATH)) for f in vit_files["test_files"]} vit_test_files = { "tests/models/vit/test_image_processing_vit.py", "tests/models/vit/test_modeling_vit.py", "tests/models/vit/test_modeling_tf_vit.py", "tests/models/vit/test_modeling_flax_vit.py", } self.assertEqual(test_files, vit_test_files) # Wav2Vec2 wav2vec2_files = get_model_files("wav2vec2") doc_file = str(Path(wav2vec2_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/wav2vec2.md") model_files = {str(Path(f).relative_to(REPO_PATH)) for f in wav2vec2_files["model_files"]} self.assertEqual(model_files, WAV2VEC2_MODEL_FILES) self.assertEqual(wav2vec2_files["module_name"], "wav2vec2") test_files = {str(Path(f).relative_to(REPO_PATH)) for f in wav2vec2_files["test_files"]} wav2vec2_test_files = { "tests/models/wav2vec2/test_feature_extraction_wav2vec2.py", "tests/models/wav2vec2/test_modeling_wav2vec2.py", "tests/models/wav2vec2/test_modeling_tf_wav2vec2.py", "tests/models/wav2vec2/test_modeling_flax_wav2vec2.py", "tests/models/wav2vec2/test_processor_wav2vec2.py", "tests/models/wav2vec2/test_tokenization_wav2vec2.py", } self.assertEqual(test_files, wav2vec2_test_files) def test_get_model_files_only_pt(self): # BERT bert_files = get_model_files("bert", frameworks=["pt"]) doc_file = str(Path(bert_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/bert.md") model_files = {str(Path(f).relative_to(REPO_PATH)) for f in bert_files["model_files"]} bert_model_files = BERT_MODEL_FILES - { "src/transformers/models/bert/modeling_tf_bert.py", "src/transformers/models/bert/modeling_flax_bert.py", } self.assertEqual(model_files, bert_model_files) self.assertEqual(bert_files["module_name"], "bert") test_files = {str(Path(f).relative_to(REPO_PATH)) for f in bert_files["test_files"]} bert_test_files = { "tests/models/bert/test_tokenization_bert.py", "tests/models/bert/test_modeling_bert.py", } self.assertEqual(test_files, bert_test_files) # VIT vit_files = get_model_files("vit", frameworks=["pt"]) doc_file = str(Path(vit_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/vit.md") model_files = {str(Path(f).relative_to(REPO_PATH)) for f in vit_files["model_files"]} vit_model_files = VIT_MODEL_FILES - { "src/transformers/models/vit/modeling_tf_vit.py", "src/transformers/models/vit/modeling_flax_vit.py", } self.assertEqual(model_files, vit_model_files) self.assertEqual(vit_files["module_name"], "vit") test_files = {str(Path(f).relative_to(REPO_PATH)) for f in vit_files["test_files"]} vit_test_files = { "tests/models/vit/test_image_processing_vit.py", "tests/models/vit/test_modeling_vit.py", } self.assertEqual(test_files, vit_test_files) # Wav2Vec2 wav2vec2_files = get_model_files("wav2vec2", frameworks=["pt"]) doc_file = str(Path(wav2vec2_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/wav2vec2.md") model_files = {str(Path(f).relative_to(REPO_PATH)) for f in wav2vec2_files["model_files"]} wav2vec2_model_files = WAV2VEC2_MODEL_FILES - { "src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py", "src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py", } self.assertEqual(model_files, wav2vec2_model_files) self.assertEqual(wav2vec2_files["module_name"], "wav2vec2") test_files = {str(Path(f).relative_to(REPO_PATH)) for f in wav2vec2_files["test_files"]} wav2vec2_test_files = { "tests/models/wav2vec2/test_feature_extraction_wav2vec2.py", "tests/models/wav2vec2/test_modeling_wav2vec2.py", "tests/models/wav2vec2/test_processor_wav2vec2.py", "tests/models/wav2vec2/test_tokenization_wav2vec2.py", } self.assertEqual(test_files, wav2vec2_test_files) def test_get_model_files_tf_and_flax(self): # BERT bert_files = get_model_files("bert", frameworks=["tf", "flax"]) doc_file = str(Path(bert_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/bert.md") model_files = {str(Path(f).relative_to(REPO_PATH)) for f in bert_files["model_files"]} bert_model_files = BERT_MODEL_FILES - {"src/transformers/models/bert/modeling_bert.py"} self.assertEqual(model_files, bert_model_files) self.assertEqual(bert_files["module_name"], "bert") test_files = {str(Path(f).relative_to(REPO_PATH)) for f in bert_files["test_files"]} bert_test_files = { "tests/models/bert/test_tokenization_bert.py", "tests/models/bert/test_modeling_tf_bert.py", "tests/models/bert/test_modeling_flax_bert.py", } self.assertEqual(test_files, bert_test_files) # VIT vit_files = get_model_files("vit", frameworks=["tf", "flax"]) doc_file = str(Path(vit_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/vit.md") model_files = {str(Path(f).relative_to(REPO_PATH)) for f in vit_files["model_files"]} vit_model_files = VIT_MODEL_FILES - {"src/transformers/models/vit/modeling_vit.py"} self.assertEqual(model_files, vit_model_files) self.assertEqual(vit_files["module_name"], "vit") test_files = {str(Path(f).relative_to(REPO_PATH)) for f in vit_files["test_files"]} vit_test_files = { "tests/models/vit/test_image_processing_vit.py", "tests/models/vit/test_modeling_tf_vit.py", "tests/models/vit/test_modeling_flax_vit.py", } self.assertEqual(test_files, vit_test_files) # Wav2Vec2 wav2vec2_files = get_model_files("wav2vec2", frameworks=["tf", "flax"]) doc_file = str(Path(wav2vec2_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/wav2vec2.md") model_files = {str(Path(f).relative_to(REPO_PATH)) for f in wav2vec2_files["model_files"]} wav2vec2_model_files = WAV2VEC2_MODEL_FILES - {"src/transformers/models/wav2vec2/modeling_wav2vec2.py"} self.assertEqual(model_files, wav2vec2_model_files) self.assertEqual(wav2vec2_files["module_name"], "wav2vec2") test_files = {str(Path(f).relative_to(REPO_PATH)) for f in wav2vec2_files["test_files"]} wav2vec2_test_files = { "tests/models/wav2vec2/test_feature_extraction_wav2vec2.py", "tests/models/wav2vec2/test_modeling_tf_wav2vec2.py", "tests/models/wav2vec2/test_modeling_flax_wav2vec2.py", "tests/models/wav2vec2/test_processor_wav2vec2.py", "tests/models/wav2vec2/test_tokenization_wav2vec2.py", } self.assertEqual(test_files, wav2vec2_test_files) def test_find_base_model_checkpoint(self): self.assertEqual(find_base_model_checkpoint("bert"), "google-bert/bert-base-uncased") self.assertEqual(find_base_model_checkpoint("gpt2"), "gpt2") def test_retrieve_model_classes(self): gpt_classes = {k: set(v) for k, v in retrieve_model_classes("gpt2").items()} expected_gpt_classes = { "pt": {"GPT2ForTokenClassification", "GPT2Model", "GPT2LMHeadModel", "GPT2ForSequenceClassification"}, "tf": {"TFGPT2Model", "TFGPT2ForSequenceClassification", "TFGPT2LMHeadModel"}, "flax": {"FlaxGPT2Model", "FlaxGPT2LMHeadModel"}, } self.assertEqual(gpt_classes, expected_gpt_classes) del expected_gpt_classes["flax"] gpt_classes = {k: set(v) for k, v in retrieve_model_classes("gpt2", frameworks=["pt", "tf"]).items()} self.assertEqual(gpt_classes, expected_gpt_classes) del expected_gpt_classes["pt"] gpt_classes = {k: set(v) for k, v in retrieve_model_classes("gpt2", frameworks=["tf"]).items()} self.assertEqual(gpt_classes, expected_gpt_classes) def test_retrieve_info_for_model_with_bert(self): bert_info = retrieve_info_for_model("bert") bert_classes = [ "BertForTokenClassification", "BertForQuestionAnswering", "BertForNextSentencePrediction", "BertForSequenceClassification", "BertForMaskedLM", "BertForMultipleChoice", "BertModel", "BertForPreTraining", "BertLMHeadModel", ] expected_model_classes = { "pt": set(bert_classes), "tf": {f"TF{m}" for m in bert_classes}, "flax": {f"Flax{m}" for m in bert_classes[:-1] + ["BertForCausalLM"]}, } self.assertEqual(set(bert_info["frameworks"]), {"pt", "tf", "flax"}) model_classes = {k: set(v) for k, v in bert_info["model_classes"].items()} self.assertEqual(model_classes, expected_model_classes) all_bert_files = bert_info["model_files"] model_files = {str(Path(f).relative_to(REPO_PATH)) for f in all_bert_files["model_files"]} self.assertEqual(model_files, BERT_MODEL_FILES) test_files = {str(Path(f).relative_to(REPO_PATH)) for f in all_bert_files["test_files"]} bert_test_files = { "tests/models/bert/test_tokenization_bert.py", "tests/models/bert/test_modeling_bert.py", "tests/models/bert/test_modeling_tf_bert.py", "tests/models/bert/test_modeling_flax_bert.py", } self.assertEqual(test_files, bert_test_files) doc_file = str(Path(all_bert_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/bert.md") self.assertEqual(all_bert_files["module_name"], "bert") bert_model_patterns = bert_info["model_patterns"] self.assertEqual(bert_model_patterns.model_name, "BERT") self.assertEqual(bert_model_patterns.checkpoint, "google-bert/bert-base-uncased") self.assertEqual(bert_model_patterns.model_type, "bert") self.assertEqual(bert_model_patterns.model_lower_cased, "bert") self.assertEqual(bert_model_patterns.model_camel_cased, "Bert") self.assertEqual(bert_model_patterns.model_upper_cased, "BERT") self.assertEqual(bert_model_patterns.config_class, "BertConfig") self.assertEqual(bert_model_patterns.tokenizer_class, "BertTokenizer") self.assertIsNone(bert_model_patterns.feature_extractor_class) self.assertIsNone(bert_model_patterns.processor_class) def test_retrieve_info_for_model_pt_tf_with_bert(self): bert_info = retrieve_info_for_model("bert", frameworks=["pt", "tf"]) bert_classes = [ "BertForTokenClassification", "BertForQuestionAnswering", "BertForNextSentencePrediction", "BertForSequenceClassification", "BertForMaskedLM", "BertForMultipleChoice", "BertModel", "BertForPreTraining", "BertLMHeadModel", ] expected_model_classes = {"pt": set(bert_classes), "tf": {f"TF{m}" for m in bert_classes}} self.assertEqual(set(bert_info["frameworks"]), {"pt", "tf"}) model_classes = {k: set(v) for k, v in bert_info["model_classes"].items()} self.assertEqual(model_classes, expected_model_classes) all_bert_files = bert_info["model_files"] model_files = {str(Path(f).relative_to(REPO_PATH)) for f in all_bert_files["model_files"]} bert_model_files = BERT_MODEL_FILES - {"src/transformers/models/bert/modeling_flax_bert.py"} self.assertEqual(model_files, bert_model_files) test_files = {str(Path(f).relative_to(REPO_PATH)) for f in all_bert_files["test_files"]} bert_test_files = { "tests/models/bert/test_tokenization_bert.py", "tests/models/bert/test_modeling_bert.py", "tests/models/bert/test_modeling_tf_bert.py", } self.assertEqual(test_files, bert_test_files) doc_file = str(Path(all_bert_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/bert.md") self.assertEqual(all_bert_files["module_name"], "bert") bert_model_patterns = bert_info["model_patterns"] self.assertEqual(bert_model_patterns.model_name, "BERT") self.assertEqual(bert_model_patterns.checkpoint, "google-bert/bert-base-uncased") self.assertEqual(bert_model_patterns.model_type, "bert") self.assertEqual(bert_model_patterns.model_lower_cased, "bert") self.assertEqual(bert_model_patterns.model_camel_cased, "Bert") self.assertEqual(bert_model_patterns.model_upper_cased, "BERT") self.assertEqual(bert_model_patterns.config_class, "BertConfig") self.assertEqual(bert_model_patterns.tokenizer_class, "BertTokenizer") self.assertIsNone(bert_model_patterns.feature_extractor_class) self.assertIsNone(bert_model_patterns.processor_class) def test_retrieve_info_for_model_with_vit(self): vit_info = retrieve_info_for_model("vit") vit_classes = ["ViTForImageClassification", "ViTModel"] pt_only_classes = ["ViTForMaskedImageModeling"] expected_model_classes = { "pt": set(vit_classes + pt_only_classes), "tf": {f"TF{m}" for m in vit_classes}, "flax": {f"Flax{m}" for m in vit_classes}, } self.assertEqual(set(vit_info["frameworks"]), {"pt", "tf", "flax"}) model_classes = {k: set(v) for k, v in vit_info["model_classes"].items()} self.assertEqual(model_classes, expected_model_classes) all_vit_files = vit_info["model_files"] model_files = {str(Path(f).relative_to(REPO_PATH)) for f in all_vit_files["model_files"]} self.assertEqual(model_files, VIT_MODEL_FILES) test_files = {str(Path(f).relative_to(REPO_PATH)) for f in all_vit_files["test_files"]} vit_test_files = { "tests/models/vit/test_image_processing_vit.py", "tests/models/vit/test_modeling_vit.py", "tests/models/vit/test_modeling_tf_vit.py", "tests/models/vit/test_modeling_flax_vit.py", } self.assertEqual(test_files, vit_test_files) doc_file = str(Path(all_vit_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/vit.md") self.assertEqual(all_vit_files["module_name"], "vit") vit_model_patterns = vit_info["model_patterns"] self.assertEqual(vit_model_patterns.model_name, "ViT") self.assertEqual(vit_model_patterns.checkpoint, "google/vit-base-patch16-224-in21k") self.assertEqual(vit_model_patterns.model_type, "vit") self.assertEqual(vit_model_patterns.model_lower_cased, "vit") self.assertEqual(vit_model_patterns.model_camel_cased, "ViT") self.assertEqual(vit_model_patterns.model_upper_cased, "VIT") self.assertEqual(vit_model_patterns.config_class, "ViTConfig") self.assertEqual(vit_model_patterns.feature_extractor_class, "ViTFeatureExtractor") self.assertEqual(vit_model_patterns.image_processor_class, "ViTImageProcessor") self.assertIsNone(vit_model_patterns.tokenizer_class) self.assertIsNone(vit_model_patterns.processor_class) def test_retrieve_info_for_model_with_wav2vec2(self): wav2vec2_info = retrieve_info_for_model("wav2vec2") wav2vec2_classes = [ "Wav2Vec2Model", "Wav2Vec2ForPreTraining", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", ] expected_model_classes = { "pt": set(wav2vec2_classes), "tf": {f"TF{m}" for m in wav2vec2_classes[:1]}, "flax": {f"Flax{m}" for m in wav2vec2_classes[:2]}, } self.assertEqual(set(wav2vec2_info["frameworks"]), {"pt", "tf", "flax"}) model_classes = {k: set(v) for k, v in wav2vec2_info["model_classes"].items()} self.assertEqual(model_classes, expected_model_classes) all_wav2vec2_files = wav2vec2_info["model_files"] model_files = {str(Path(f).relative_to(REPO_PATH)) for f in all_wav2vec2_files["model_files"]} self.assertEqual(model_files, WAV2VEC2_MODEL_FILES) test_files = {str(Path(f).relative_to(REPO_PATH)) for f in all_wav2vec2_files["test_files"]} wav2vec2_test_files = { "tests/models/wav2vec2/test_feature_extraction_wav2vec2.py", "tests/models/wav2vec2/test_modeling_wav2vec2.py", "tests/models/wav2vec2/test_modeling_tf_wav2vec2.py", "tests/models/wav2vec2/test_modeling_flax_wav2vec2.py", "tests/models/wav2vec2/test_processor_wav2vec2.py", "tests/models/wav2vec2/test_tokenization_wav2vec2.py", } self.assertEqual(test_files, wav2vec2_test_files) doc_file = str(Path(all_wav2vec2_files["doc_file"]).relative_to(REPO_PATH)) self.assertEqual(doc_file, "docs/source/en/model_doc/wav2vec2.md") self.assertEqual(all_wav2vec2_files["module_name"], "wav2vec2") wav2vec2_model_patterns = wav2vec2_info["model_patterns"] self.assertEqual(wav2vec2_model_patterns.model_name, "Wav2Vec2") self.assertEqual(wav2vec2_model_patterns.checkpoint, "facebook/wav2vec2-base-960h") self.assertEqual(wav2vec2_model_patterns.model_type, "wav2vec2") self.assertEqual(wav2vec2_model_patterns.model_lower_cased, "wav2vec2") self.assertEqual(wav2vec2_model_patterns.model_camel_cased, "Wav2Vec2") self.assertEqual(wav2vec2_model_patterns.model_upper_cased, "WAV_2_VEC_2") self.assertEqual(wav2vec2_model_patterns.config_class, "Wav2Vec2Config") self.assertEqual(wav2vec2_model_patterns.feature_extractor_class, "Wav2Vec2FeatureExtractor") self.assertEqual(wav2vec2_model_patterns.processor_class, "Wav2Vec2Processor") self.assertEqual(wav2vec2_model_patterns.tokenizer_class, "Wav2Vec2CTCTokenizer") def test_clean_frameworks_in_init_with_gpt(self): test_init = """ from typing import TYPE_CHECKING from ...utils import _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available _import_structure = { "configuration_gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2OnnxConfig"], "tokenization_gpt2": ["GPT2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_gpt2_fast"] = ["GPT2TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_gpt2"] = ["GPT2Model"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_gpt2"] = ["TFGPT2Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_gpt2"] = ["FlaxGPT2Model"] if TYPE_CHECKING: from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2OnnxConfig from .tokenization_gpt2 import GPT2Tokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt2_fast import GPT2TokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt2 import GPT2Model try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_gpt2 import TFGPT2Model try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt2 import FlaxGPT2Model else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) """ init_no_tokenizer = """ from typing import TYPE_CHECKING from ...utils import _LazyModule, is_flax_available, is_tf_available, is_torch_available _import_structure = { "configuration_gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_gpt2"] = ["GPT2Model"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_gpt2"] = ["TFGPT2Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_gpt2"] = ["FlaxGPT2Model"] if TYPE_CHECKING: from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2OnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt2 import GPT2Model try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_gpt2 import TFGPT2Model try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt2 import FlaxGPT2Model else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) """ init_pt_only = """ from typing import TYPE_CHECKING from ...utils import _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2OnnxConfig"], "tokenization_gpt2": ["GPT2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_gpt2_fast"] = ["GPT2TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_gpt2"] = ["GPT2Model"] if TYPE_CHECKING: from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2OnnxConfig from .tokenization_gpt2 import GPT2Tokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt2_fast import GPT2TokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt2 import GPT2Model else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) """ init_pt_only_no_tokenizer = """ from typing import TYPE_CHECKING from ...utils import _LazyModule, is_torch_available _import_structure = { "configuration_gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_gpt2"] = ["GPT2Model"] if TYPE_CHECKING: from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2OnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt2 import GPT2Model else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) """ with tempfile.TemporaryDirectory() as tmp_dir: file_name = os.path.join(tmp_dir, "../__init__.py") self.init_file(file_name, test_init) clean_frameworks_in_init(file_name, keep_processing=False) self.check_result(file_name, init_no_tokenizer) self.init_file(file_name, test_init) clean_frameworks_in_init(file_name, frameworks=["pt"]) self.check_result(file_name, init_pt_only) self.init_file(file_name, test_init) clean_frameworks_in_init(file_name, frameworks=["pt"], keep_processing=False) self.check_result(file_name, init_pt_only_no_tokenizer) def test_clean_frameworks_in_init_with_vit(self): test_init = """ from typing import TYPE_CHECKING from ...utils import _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available _import_structure = { "configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_vit"] = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_vit"] = ["ViTModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_vit"] = ["TFViTModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_vit"] = ["FlaxViTModel"] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ViTModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) """ init_no_feature_extractor = """ from typing import TYPE_CHECKING from ...utils import _LazyModule, is_flax_available, is_tf_available, is_torch_available _import_structure = { "configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_vit"] = ["ViTModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_vit"] = ["TFViTModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_vit"] = ["FlaxViTModel"] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ViTModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) """ init_pt_only = """ from typing import TYPE_CHECKING from ...utils import _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_vit"] = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_vit"] = ["ViTModel"] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ViTModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) """ init_pt_only_no_feature_extractor = """ from typing import TYPE_CHECKING from ...utils import _LazyModule, is_torch_available _import_structure = { "configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_vit"] = ["ViTModel"] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ViTModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) """ with tempfile.TemporaryDirectory() as tmp_dir: file_name = os.path.join(tmp_dir, "../__init__.py") self.init_file(file_name, test_init) clean_frameworks_in_init(file_name, keep_processing=False) self.check_result(file_name, init_no_feature_extractor) self.init_file(file_name, test_init) clean_frameworks_in_init(file_name, frameworks=["pt"]) self.check_result(file_name, init_pt_only) self.init_file(file_name, test_init) clean_frameworks_in_init(file_name, frameworks=["pt"], keep_processing=False) self.check_result(file_name, init_pt_only_no_feature_extractor) def test_duplicate_doc_file(self): test_doc = """ # GPT2 ## Overview Overview of the model. ## GPT2Config [[autodoc]] GPT2Config ## GPT2Tokenizer [[autodoc]] GPT2Tokenizer - save_vocabulary ## GPT2TokenizerFast [[autodoc]] GPT2TokenizerFast ## GPT2 specific outputs [[autodoc]] models.gpt2.modeling_gpt2.GPT2DoubleHeadsModelOutput [[autodoc]] models.gpt2.modeling_tf_gpt2.TFGPT2DoubleHeadsModelOutput ## GPT2Model [[autodoc]] GPT2Model - forward ## TFGPT2Model [[autodoc]] TFGPT2Model - call ## FlaxGPT2Model [[autodoc]] FlaxGPT2Model - __call__ """ test_new_doc = """ # GPT-New New ## Overview The GPT-New New model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>. <INSERT SHORT SUMMARY HERE> The abstract from the paper is the following: *<INSERT PAPER ABSTRACT HERE>* Tips: <INSERT TIPS ABOUT MODEL HERE> This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>). The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>). ## GPTNewNewConfig [[autodoc]] GPTNewNewConfig ## GPTNewNewTokenizer [[autodoc]] GPTNewNewTokenizer - save_vocabulary ## GPTNewNewTokenizerFast [[autodoc]] GPTNewNewTokenizerFast ## GPTNewNew specific outputs [[autodoc]] models.gpt_new_new.modeling_gpt_new_new.GPTNewNewDoubleHeadsModelOutput [[autodoc]] models.gpt_new_new.modeling_tf_gpt_new_new.TFGPTNewNewDoubleHeadsModelOutput ## GPTNewNewModel [[autodoc]] GPTNewNewModel - forward ## TFGPTNewNewModel [[autodoc]] TFGPTNewNewModel - call ## FlaxGPTNewNewModel [[autodoc]] FlaxGPTNewNewModel - __call__ """ with tempfile.TemporaryDirectory() as tmp_dir: doc_file = os.path.join(tmp_dir, "gpt2.md") new_doc_file = os.path.join(tmp_dir, "gpt-new-new.md") gpt2_model_patterns = ModelPatterns("GPT2", "gpt2", tokenizer_class="GPT2Tokenizer") new_model_patterns = ModelPatterns( "GPT-New New", "huggingface/gpt-new-new", tokenizer_class="GPTNewNewTokenizer" ) self.init_file(doc_file, test_doc) duplicate_doc_file(doc_file, gpt2_model_patterns, new_model_patterns) self.check_result(new_doc_file, test_new_doc) test_new_doc_pt_only = test_new_doc.replace( """ ## TFGPTNewNewModel [[autodoc]] TFGPTNewNewModel - call ## FlaxGPTNewNewModel [[autodoc]] FlaxGPTNewNewModel - __call__ """, "", ) self.init_file(doc_file, test_doc) duplicate_doc_file(doc_file, gpt2_model_patterns, new_model_patterns, frameworks=["pt"]) self.check_result(new_doc_file, test_new_doc_pt_only) test_new_doc_no_tok = test_new_doc.replace( """ ## GPTNewNewTokenizer [[autodoc]] GPTNewNewTokenizer - save_vocabulary ## GPTNewNewTokenizerFast [[autodoc]] GPTNewNewTokenizerFast """, "", ) new_model_patterns = ModelPatterns( "GPT-New New", "huggingface/gpt-new-new", tokenizer_class="GPT2Tokenizer" ) self.init_file(doc_file, test_doc) duplicate_doc_file(doc_file, gpt2_model_patterns, new_model_patterns) print(test_new_doc_no_tok) self.check_result(new_doc_file, test_new_doc_no_tok) test_new_doc_pt_only_no_tok = test_new_doc_no_tok.replace( """ ## TFGPTNewNewModel [[autodoc]] TFGPTNewNewModel - call ## FlaxGPTNewNewModel [[autodoc]] FlaxGPTNewNewModel - __call__ """, "", ) self.init_file(doc_file, test_doc) duplicate_doc_file(doc_file, gpt2_model_patterns, new_model_patterns, frameworks=["pt"]) self.check_result(new_doc_file, test_new_doc_pt_only_no_tok)
transformers/tests/utils/test_add_new_model_like.py/0
{ "file_path": "transformers/tests/utils/test_add_new_model_like.py", "repo_id": "transformers", "token_count": 25291 }
446
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import os import tempfile from importlib import import_module from math import isnan from transformers import is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import _tf_gpu_memory_limit, require_tf, slow from ..test_modeling_tf_common import ids_tensor if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TFSharedEmbeddings, ) from transformers.modeling_tf_utils import keras if _tf_gpu_memory_limit is not None: gpus = tf.config.list_physical_devices("GPU") for gpu in gpus: # Restrict TensorFlow to only allocate x GB of memory on the GPUs try: tf.config.set_logical_device_configuration( gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] ) logical_gpus = tf.config.list_logical_devices("GPU") print("Logical GPUs", logical_gpus) except RuntimeError as e: # Virtual devices must be set before GPUs have been initialized print(e) @require_tf class TFCoreModelTesterMixin: model_tester = None all_model_classes = () all_generative_model_classes = () test_mismatched_shapes = True test_resize_embeddings = True test_head_masking = True is_encoder_decoder = False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: inputs_dict = copy.deepcopy(inputs_dict) if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict = { k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(v, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING): inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in [ *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), ]: inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING): inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in [ *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING), *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING), *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING), *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING), *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING), ]: inputs_dict["labels"] = tf.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32 ) return inputs_dict @slow def test_graph_mode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:2]: inputs = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @tf.function def run_in_graph_mode(): return model(inputs) outputs = run_in_graph_mode() self.assertIsNotNone(outputs) @slow def test_xla_mode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:2]: inputs = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @tf.function(experimental_compile=True) def run_in_graph_mode(): return model(inputs) outputs = run_in_graph_mode() self.assertIsNotNone(outputs) @slow def test_xla_fit(self): # This is a copy of the test_keras_fit method, but we use XLA compilation instead of eager config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:2]: model = model_class(config) if getattr(model, "hf_compute_loss", None): # Test that model correctly compute the loss with kwargs prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) # Is there a better way to remove these decoder inputs? prepared_for_class = { key: val for key, val in prepared_for_class.items() if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "decoder_input_ids") } possible_label_cols = { "labels", "label", "label_ids", "start_positions", "start_position", "end_positions", "end_position", "next_sentence_label", } label_names = possible_label_cols.intersection(set(prepared_for_class)) self.assertGreater(len(label_names), 0, msg="No matching label names found!") labels = {key: val for key, val in prepared_for_class.items() if key in label_names} inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names} self.assertGreater(len(inputs_minus_labels), 0) # Make sure it works with XLA! model.compile(optimizer=keras.optimizers.SGD(0.0), jit_compile=True) # Make sure the model fits without crashing regardless of where we pass the labels history = model.fit( prepared_for_class, validation_data=prepared_for_class, steps_per_epoch=1, validation_steps=1, shuffle=False, verbose=0, ) loss = history.history["loss"][0] self.assertTrue(not isnan(loss)) val_loss = history.history["val_loss"][0] self.assertTrue(not isnan(val_loss)) # Now test it with separate labels, to make sure that path works in XLA too. model = model_class(config) model.compile(optimizer=keras.optimizers.SGD(0.0), jit_compile=True) history = model.fit( inputs_minus_labels, labels, validation_data=(inputs_minus_labels, labels), steps_per_epoch=1, validation_steps=1, shuffle=False, verbose=0, ) loss = history.history["loss"][0] self.assertTrue(not isnan(loss)) val_loss = history.history["val_loss"][0] self.assertTrue(not isnan(val_loss)) @slow def test_saved_model_creation_extended(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True if hasattr(config, "use_cache"): config.use_cache = True encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes[:2]: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) model.build_in_name_scope() num_out = len(model(class_inputs_dict)) for key in list(class_inputs_dict.keys()): # Remove keys not in the serving signature, as the SavedModel will not be compiled to deal with them if key not in model.input_signature: del class_inputs_dict[key] # Check it's a tensor, in case the inputs dict has some bools in it too elif isinstance(class_inputs_dict[key], tf.Tensor) and class_inputs_dict[key].dtype.is_integer: class_inputs_dict[key] = tf.cast(class_inputs_dict[key], tf.int32) if set(class_inputs_dict.keys()) != set(model.input_signature.keys()): continue # Some models have inputs that the preparation functions don't create, we skip those with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=True) saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") model = keras.models.load_model(saved_model_dir) outputs = model(class_inputs_dict) if self.is_encoder_decoder: output_hidden_states = outputs["encoder_hidden_states"] output_attentions = outputs["encoder_attentions"] else: output_hidden_states = outputs["hidden_states"] output_attentions = outputs["attentions"] self.assertEqual(len(outputs), num_out) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(output_hidden_states), expected_num_layers) self.assertListEqual( list(output_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) @slow def test_mixed_precision(self): keras.mixed_precision.set_global_policy("mixed_float16") # try/finally block to ensure subsequent tests run in float32 try: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:2]: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) outputs = model(class_inputs_dict) self.assertIsNotNone(outputs) finally: keras.mixed_precision.set_global_policy("float32") @slow def test_train_pipeline_custom_model(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # head_mask and decoder_head_mask has different shapes than other input args if "head_mask" in inputs_dict: del inputs_dict["head_mask"] if "decoder_head_mask" in inputs_dict: del inputs_dict["decoder_head_mask"] if "cross_attn_head_mask" in inputs_dict: del inputs_dict["cross_attn_head_mask"] tf_main_layer_classes = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(module) if module_member_name.endswith("MainLayer") for module_member in (getattr(module, module_member_name),) if isinstance(module_member, type) and keras.layers.Layer in module_member.__bases__ and getattr(module_member, "_keras_serializable", False) } for main_layer_class in tf_main_layer_classes: # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter if "T5" in main_layer_class.__name__: # Take the same values than in TFT5ModelTester for this shared layer shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared") config.use_cache = False main_layer = main_layer_class(config, embed_tokens=shared) else: main_layer = main_layer_class(config) symbolic_inputs = { name: keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() } if hasattr(self.model_tester, "num_labels"): num_labels = self.model_tester.num_labels else: num_labels = 2 X = tf.data.Dataset.from_tensor_slices( (inputs_dict, np.ones((self.model_tester.batch_size, self.model_tester.seq_length, num_labels, 1))) ).batch(1) hidden_states = main_layer(symbolic_inputs)[0] outputs = keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states) model = keras.models.Model(inputs=symbolic_inputs, outputs=[outputs]) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"]) model.fit(X, epochs=1) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "keras_model.h5") model.save(filepath) if "T5" in main_layer_class.__name__: model = keras.models.load_model( filepath, custom_objects={ main_layer_class.__name__: main_layer_class, "TFSharedEmbeddings": TFSharedEmbeddings, }, ) else: model = keras.models.load_model( filepath, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(model, keras.Model) model(inputs_dict) @slow def test_graph_mode_with_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:2]: model = model_class(config) inputs = copy.deepcopy(inputs_dict) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) if not self.is_encoder_decoder: inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids) else: inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids) inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids) inputs = self._prepare_for_class(inputs, model_class) @tf.function def run_in_graph_mode(): return model(inputs) outputs = run_in_graph_mode() self.assertIsNotNone(outputs) def _generate_random_bad_tokens(self, num_bad_tokens, model): # special tokens cannot be bad tokens special_tokens = [] if model.config.bos_token_id is not None: special_tokens.append(model.config.bos_token_id) if model.config.pad_token_id is not None: special_tokens.append(model.config.pad_token_id) if model.config.eos_token_id is not None: special_tokens.append(model.config.eos_token_id) # create random bad tokens that are not special tokens bad_tokens = [] while len(bad_tokens) < num_bad_tokens: token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0] if token not in special_tokens: bad_tokens.append(token) return bad_tokens def _check_generated_ids(self, output_ids): for token_id in output_ids[0].numpy().tolist(): self.assertGreaterEqual(token_id, 0) self.assertLess(token_id, self.model_tester.vocab_size) def _check_match_tokens(self, generated_ids, bad_words_ids): # for all bad word tokens for bad_word_ids in bad_words_ids: # for all slices in batch for generated_ids_slice in generated_ids: # for all word idx for i in range(len(bad_word_ids), len(generated_ids_slice)): # if tokens match if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids: return True return False
transformers/tests/utils/test_modeling_tf_core.py/0
{ "file_path": "transformers/tests/utils/test_modeling_tf_core.py", "repo_id": "transformers", "token_count": 9190 }
447
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that performs several consistency checks on the repo. This includes: - checking all models are properly defined in the __init__ of models/ - checking all models are in the main __init__ - checking all models are properly tested - checking all object in the main __init__ are documented - checking all models are in at least one auto class - checking all the auto mapping are properly defined (no typos, importable) - checking the list of deprecated models is up to date Use from the root of the repo with (as used in `make repo-consistency`): ```bash python utils/check_repo.py ``` It has no auto-fix mode. """ import inspect import os import re import sys import types import warnings from collections import OrderedDict from difflib import get_close_matches from pathlib import Path from typing import List, Tuple from transformers import is_flax_available, is_tf_available, is_torch_available from transformers.models.auto import get_values from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_repo.py PATH_TO_TRANSFORMERS = "src/transformers" PATH_TO_TESTS = "tests" PATH_TO_DOC = "docs/source/en" # Update this list with models that are supposed to be private. PRIVATE_MODELS = [ "AltRobertaModel", "DPRSpanPredictor", "UdopStack", "LongT5Stack", "RealmBertModel", "T5Stack", "MT5Stack", "UMT5Stack", "Pop2PianoStack", "SwitchTransformersStack", "TFDPRSpanPredictor", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", "BridgeTowerTextModel", "BridgeTowerVisionModel", "Kosmos2TextModel", "Kosmos2TextForCausalLM", "Kosmos2VisionModel", "SeamlessM4Tv2TextToUnitModel", "SeamlessM4Tv2CodeHifiGan", "SeamlessM4Tv2TextToUnitForConditionalGeneration", ] # Update this list for models that are not tested with a comment explaining the reason it should not be. # Being in this list is an exception and should **not** be the rule. IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [ # models to ignore for not tested "FuyuForCausalLM", # Not tested fort now "InstructBlipQFormerModel", # Building part of bigger (tested) model. "UMT5EncoderModel", # Building part of bigger (tested) model. "Blip2QFormerModel", # Building part of bigger (tested) model. "ErnieMForInformationExtraction", "FastSpeech2ConformerHifiGan", # Already tested by SpeechT5HifiGan (# Copied from) "FastSpeech2ConformerWithHifiGan", # Built with two smaller (tested) models. "GraphormerDecoderHead", # Building part of bigger (tested) model. "JukeboxVQVAE", # Building part of bigger (tested) model. "JukeboxPrior", # Building part of bigger (tested) model. "DecisionTransformerGPT2Model", # Building part of bigger (tested) model. "SegformerDecodeHead", # Building part of bigger (tested) model. "MgpstrModel", # Building part of bigger (tested) model. "BertLMHeadModel", # Needs to be setup as decoder. "MegatronBertLMHeadModel", # Building part of bigger (tested) model. "RealmBertModel", # Building part of bigger (tested) model. "RealmReader", # Not regular model. "RealmScorer", # Not regular model. "RealmForOpenQA", # Not regular model. "ReformerForMaskedLM", # Needs to be setup as decoder. "TFElectraMainLayer", # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?) "TFRobertaForMultipleChoice", # TODO: fix "TFRobertaPreLayerNormForMultipleChoice", # TODO: fix "SeparableConv1D", # Building part of bigger (tested) model. "FlaxBartForCausalLM", # Building part of bigger (tested) model. "FlaxBertForCausalLM", # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM. "OPTDecoderWrapper", "TFSegformerDecodeHead", # Not a regular model. "AltRobertaModel", # Building part of bigger (tested) model. "BlipTextLMHeadModel", # No need to test it as it is tested by BlipTextVision models "TFBlipTextLMHeadModel", # No need to test it as it is tested by BlipTextVision models "BridgeTowerTextModel", # No need to test it as it is tested by BridgeTowerModel model. "BridgeTowerVisionModel", # No need to test it as it is tested by BridgeTowerModel model. "BarkCausalModel", # Building part of bigger (tested) model. "BarkModel", # Does not have a forward signature - generation tested with integration tests. "SeamlessM4TTextToUnitModel", # Building part of bigger (tested) model. "SeamlessM4TCodeHifiGan", # Building part of bigger (tested) model. "SeamlessM4TTextToUnitForConditionalGeneration", # Building part of bigger (tested) model. ] # Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't # trigger the common tests. TEST_FILES_WITH_NO_COMMON_TESTS = [ "models/decision_transformer/test_modeling_decision_transformer.py", "models/camembert/test_modeling_camembert.py", "models/mt5/test_modeling_flax_mt5.py", "models/mbart/test_modeling_mbart.py", "models/mt5/test_modeling_mt5.py", "models/pegasus/test_modeling_pegasus.py", "models/camembert/test_modeling_tf_camembert.py", "models/mt5/test_modeling_tf_mt5.py", "models/xlm_roberta/test_modeling_tf_xlm_roberta.py", "models/xlm_roberta/test_modeling_flax_xlm_roberta.py", "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py", "models/xlm_roberta/test_modeling_xlm_roberta.py", "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py", "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py", "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py", "models/decision_transformer/test_modeling_decision_transformer.py", "models/bark/test_modeling_bark.py", ] # Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and # should **not** be the rule. IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [ # models to ignore for model xxx mapping "AlignTextModel", "AlignVisionModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", "Blip2ForConditionalGeneration", "Blip2QFormerModel", "Blip2VisionModel", "ErnieMForInformationExtraction", "FastSpeech2ConformerHifiGan", "FastSpeech2ConformerWithHifiGan", "GitVisionModel", "GraphormerModel", "GraphormerForGraphClassification", "BlipForConditionalGeneration", "BlipForImageTextRetrieval", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextLMHeadModel", "BlipTextModel", "BrosSpadeEEForTokenClassification", "BrosSpadeELForTokenClassification", "TFBlipForConditionalGeneration", "TFBlipForImageTextRetrieval", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextLMHeadModel", "TFBlipTextModel", "Swin2SRForImageSuperResolution", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerForContrastiveLearning", "CLIPSegForImageSegmentation", "CLIPSegVisionModel", "CLIPSegTextModel", "EsmForProteinFolding", "GPTSanJapaneseModel", "TimeSeriesTransformerForPrediction", "InformerForPrediction", "AutoformerForPrediction", "PatchTSTForPretraining", "PatchTSTForPrediction", "JukeboxVQVAE", "JukeboxPrior", "SamModel", "DPTForDepthEstimation", "DecisionTransformerGPT2Model", "GLPNForDepthEstimation", "ViltForImagesAndTextClassification", "ViltForImageAndTextRetrieval", "ViltForTokenClassification", "ViltForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "SegformerDecodeHead", "TFSegformerDecodeHead", "FlaxBeitForMaskedImageModeling", "BeitForMaskedImageModeling", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModelWithProjection", "ClvpForCausalLM", "ClvpModel", "GroupViTTextModel", "GroupViTVisionModel", "TFCLIPTextModel", "TFCLIPVisionModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", "FlaxCLIPTextModel", "FlaxCLIPTextModelWithProjection", "FlaxCLIPVisionModel", "FlaxWav2Vec2ForCTC", "DetrForSegmentation", "Pix2StructVisionModel", "Pix2StructTextModel", "Pix2StructForConditionalGeneration", "ConditionalDetrForSegmentation", "DPRReader", "FlaubertForQuestionAnswering", "FlavaImageCodebook", "FlavaTextModel", "FlavaImageModel", "FlavaMultimodalModel", "GPT2DoubleHeadsModel", "GPTSw3DoubleHeadsModel", "InstructBlipVisionModel", "InstructBlipQFormerModel", "LayoutLMForQuestionAnswering", "LukeForMaskedLM", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "MgpstrModel", "OpenAIGPTDoubleHeadsModel", "OwlViTTextModel", "OwlViTVisionModel", "Owlv2TextModel", "Owlv2VisionModel", "OwlViTForObjectDetection", "PatchTSMixerForPrediction", "PatchTSMixerForPretraining", "RagModel", "RagSequenceForGeneration", "RagTokenForGeneration", "RealmEmbedder", "RealmForOpenQA", "RealmScorer", "RealmReader", "TFDPRReader", "TFGPT2DoubleHeadsModel", "TFLayoutLMForQuestionAnswering", "TFOpenAIGPTDoubleHeadsModel", "TFRagModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", "Wav2Vec2ForCTC", "HubertForCTC", "SEWForCTC", "SEWDForCTC", "XLMForQuestionAnswering", "XLNetForQuestionAnswering", "SeparableConv1D", "VisualBertForRegionToPhraseAlignment", "VisualBertForVisualReasoning", "VisualBertForQuestionAnswering", "VisualBertForMultipleChoice", "TFWav2Vec2ForCTC", "TFHubertForCTC", "XCLIPVisionModel", "XCLIPTextModel", "AltCLIPTextModel", "AltCLIPVisionModel", "AltRobertaModel", "TvltForAudioVisualClassification", "BarkCausalModel", "BarkCoarseModel", "BarkFineModel", "BarkSemanticModel", "MusicgenMelodyModel", "MusicgenModel", "MusicgenForConditionalGeneration", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5HifiGan", "VitMatteForImageMatting", "SeamlessM4TTextToUnitModel", "SeamlessM4TTextToUnitForConditionalGeneration", "SeamlessM4TCodeHifiGan", "SeamlessM4TForSpeechToSpeech", # no auto class for speech-to-speech "TvpForVideoGrounding", "UdopForConditionalGeneration", "SeamlessM4Tv2NARTextToUnitModel", "SeamlessM4Tv2NARTextToUnitForConditionalGeneration", "SeamlessM4Tv2CodeHifiGan", "SeamlessM4Tv2ForSpeechToSpeech", # no auto class for speech-to-speech "SegGptForImageSegmentation", "SiglipVisionModel", "SiglipTextModel", ] # DO NOT edit this list! # (The corresponding pytorch objects should never have been in the main `__init__`, but it's too late to remove) OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK = [ "FlaxBertLayer", "FlaxBigBirdLayer", "FlaxRoFormerLayer", "TFBertLayer", "TFLxmertEncoder", "TFLxmertXLayer", "TFMPNetLayer", "TFMobileBertLayer", "TFSegformerLayer", "TFViTMAELayer", ] # Update this list for models that have multiple model types for the same model doc. MODEL_TYPE_TO_DOC_MAPPING = OrderedDict( [ ("data2vec-text", "data2vec"), ("data2vec-audio", "data2vec"), ("data2vec-vision", "data2vec"), ("donut-swin", "donut"), ] ) # This is to make sure the transformers module imported is the one in the repo. transformers = direct_transformers_import(PATH_TO_TRANSFORMERS) def check_missing_backends(): """ Checks if all backends are installed (otherwise the check of this script is incomplete). Will error in the CI if that's not the case but only throw a warning for users running this. """ missing_backends = [] if not is_torch_available(): missing_backends.append("PyTorch") if not is_tf_available(): missing_backends.append("TensorFlow") if not is_flax_available(): missing_backends.append("Flax") if len(missing_backends) > 0: missing = ", ".join(missing_backends) if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: raise Exception( "Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the " f"Transformers repo, the following are missing: {missing}." ) else: warnings.warn( "Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the " f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you " "didn't make any change in one of those backends modeling files, you should probably execute the " "command above to be on the safe side." ) def check_model_list(): """ Checks the model listed as subfolders of `models` match the models available in `transformers.models`. """ # Get the models from the directory structure of `src/transformers/models/` models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models") _models = [] for model in os.listdir(models_dir): if model == "deprecated": continue model_dir = os.path.join(models_dir, model) if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir): _models.append(model) # Get the models in the submodule `transformers.models` models = [model for model in dir(transformers.models) if not model.startswith("__")] missing_models = sorted(set(_models).difference(models)) if missing_models: raise Exception( f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}." ) # If some modeling modules should be ignored for all checks, they should be added in the nested list # _ignore_modules of this function. def get_model_modules() -> List[str]: """Get all the model modules inside the transformers library (except deprecated models).""" _ignore_modules = [ "modeling_auto", "modeling_encoder_decoder", "modeling_marian", "modeling_mmbt", "modeling_outputs", "modeling_retribert", "modeling_utils", "modeling_flax_auto", "modeling_flax_encoder_decoder", "modeling_flax_utils", "modeling_speech_encoder_decoder", "modeling_flax_speech_encoder_decoder", "modeling_flax_vision_encoder_decoder", "modeling_timm_backbone", "modeling_tf_auto", "modeling_tf_encoder_decoder", "modeling_tf_outputs", "modeling_tf_pytorch_utils", "modeling_tf_utils", "modeling_tf_vision_encoder_decoder", "modeling_vision_encoder_decoder", ] modules = [] for model in dir(transformers.models): # There are some magic dunder attributes in the dir, we ignore them if model == "deprecated" or model.startswith("__"): continue model_module = getattr(transformers.models, model) for submodule in dir(model_module): if submodule.startswith("modeling") and submodule not in _ignore_modules: modeling_module = getattr(model_module, submodule) if inspect.ismodule(modeling_module): modules.append(modeling_module) return modules def get_models(module: types.ModuleType, include_pretrained: bool = False) -> List[Tuple[str, type]]: """ Get the objects in a module that are models. Args: module (`types.ModuleType`): The module from which we are extracting models. include_pretrained (`bool`, *optional*, defaults to `False`): Whether or not to include the `PreTrainedModel` subclass (like `BertPreTrainedModel`) or not. Returns: List[Tuple[str, type]]: List of models as tuples (class name, actual class). """ models = [] model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel) for attr_name in dir(module): if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name): continue attr = getattr(module, attr_name) if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__: models.append((attr_name, attr)) return models def is_building_block(model: str) -> bool: """ Returns `True` if a model is a building block part of a bigger model. """ if model.endswith("Wrapper"): return True if model.endswith("Encoder"): return True if model.endswith("Decoder"): return True if model.endswith("Prenet"): return True def is_a_private_model(model: str) -> bool: """Returns `True` if the model should not be in the main init.""" if model in PRIVATE_MODELS: return True return is_building_block(model) def check_models_are_in_init(): """Checks all models defined in the library are in the main init.""" models_not_in_init = [] dir_transformers = dir(transformers) for module in get_model_modules(): models_not_in_init += [ model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers ] # Remove private models models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)] if len(models_not_in_init) > 0: raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.") # If some test_modeling files should be ignored when checking models are all tested, they should be added in the # nested list _ignore_files of this function. def get_model_test_files() -> List[str]: """ Get the model test files. Returns: `List[str]`: The list of test files. The returned files will NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files. """ _ignore_files = [ "test_modeling_common", "test_modeling_encoder_decoder", "test_modeling_flax_encoder_decoder", "test_modeling_flax_speech_encoder_decoder", "test_modeling_marian", "test_modeling_tf_common", "test_modeling_tf_encoder_decoder", ] test_files = [] model_test_root = os.path.join(PATH_TO_TESTS, "models") model_test_dirs = [] for x in os.listdir(model_test_root): x = os.path.join(model_test_root, x) if os.path.isdir(x): model_test_dirs.append(x) for target_dir in [PATH_TO_TESTS] + model_test_dirs: for file_or_dir in os.listdir(target_dir): path = os.path.join(target_dir, file_or_dir) if os.path.isfile(path): filename = os.path.split(path)[-1] if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files: file = os.path.join(*path.split(os.sep)[1:]) test_files.append(file) return test_files # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class # for the all_model_classes variable. def find_tested_models(test_file: str) -> List[str]: """ Parse the content of test_file to detect what's in `all_model_classes`. This detects the models that inherit from the common test class. Args: test_file (`str`): The path to the test file to check Returns: `List[str]`: The list of models tested in that file. """ with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f: content = f.read() all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content) # Check with one less parenthesis as well all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content) if len(all_models) > 0: model_tested = [] for entry in all_models: for line in entry.split(","): name = line.strip() if len(name) > 0: model_tested.append(name) return model_tested def should_be_tested(model_name: str) -> bool: """ Whether or not a model should be tested. """ if model_name in IGNORE_NON_TESTED: return False return not is_building_block(model_name) def check_models_are_tested(module: types.ModuleType, test_file: str) -> List[str]: """Check models defined in a module are all tested in a given file. Args: module (`types.ModuleType`): The module in which we get the models. test_file (`str`): The path to the file where the module is tested. Returns: `List[str]`: The list of error messages corresponding to models not tested. """ # XxxPreTrainedModel are not tested defined_models = get_models(module) tested_models = find_tested_models(test_file) if tested_models is None: if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS: return return [ f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. " + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file " + "`utils/check_repo.py`." ] failures = [] for model_name, _ in defined_models: if model_name not in tested_models and should_be_tested(model_name): failures.append( f"{model_name} is defined in {module.__name__} but is not tested in " + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file." + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`" + "in the file `utils/check_repo.py`." ) return failures def check_all_models_are_tested(): """Check all models are properly tested.""" modules = get_model_modules() test_files = get_model_test_files() failures = [] for module in modules: # Matches a module to its test file. test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file] if len(test_file) == 0: failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.") elif len(test_file) > 1: failures.append(f"{module.__name__} has several test files: {test_file}.") else: test_file = test_file[0] new_failures = check_models_are_tested(module, test_file) if new_failures is not None: failures += new_failures if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures)) def get_all_auto_configured_models() -> List[str]: """Return the list of all models in at least one auto class.""" result = set() # To avoid duplicates we concatenate all model classes in a set. if is_torch_available(): for attr_name in dir(transformers.models.auto.modeling_auto): if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"): result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name))) if is_tf_available(): for attr_name in dir(transformers.models.auto.modeling_tf_auto): if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"): result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name))) if is_flax_available(): for attr_name in dir(transformers.models.auto.modeling_flax_auto): if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"): result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name))) return list(result) def ignore_unautoclassed(model_name: str) -> bool: """Rules to determine if a model should be in an auto class.""" # Special white list if model_name in IGNORE_NON_AUTO_CONFIGURED: return True # Encoder and Decoder should be ignored if "Encoder" in model_name or "Decoder" in model_name: return True return False def check_models_are_auto_configured(module: types.ModuleType, all_auto_models: List[str]) -> List[str]: """ Check models defined in module are each in an auto class. Args: module (`types.ModuleType`): The module in which we get the models. all_auto_models (`List[str]`): The list of all models in an auto class (as obtained with `get_all_auto_configured_models()`). Returns: `List[str]`: The list of error messages corresponding to models not tested. """ defined_models = get_models(module) failures = [] for model_name, _ in defined_models: if model_name not in all_auto_models and not ignore_unautoclassed(model_name): failures.append( f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. " "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file " "`utils/check_repo.py`." ) return failures def check_all_models_are_auto_configured(): """Check all models are each in an auto class.""" # This is where we need to check we have all backends or the check is incomplete. check_missing_backends() modules = get_model_modules() all_auto_models = get_all_auto_configured_models() failures = [] for module in modules: new_failures = check_models_are_auto_configured(module, all_auto_models) if new_failures is not None: failures += new_failures if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures)) def check_all_auto_object_names_being_defined(): """Check all names defined in auto (name) mappings exist in the library.""" # This is where we need to check we have all backends or the check is incomplete. check_missing_backends() failures = [] mappings_to_check = { "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES, "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES, "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES, "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES, } # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way. for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]: module = getattr(transformers.models.auto, module_name, None) if module is None: continue # all mappings in a single auto modeling file mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")] mappings_to_check.update({name: getattr(module, name) for name in mapping_names}) for name, mapping in mappings_to_check.items(): for _, class_names in mapping.items(): if not isinstance(class_names, tuple): class_names = (class_names,) for class_name in class_names: if class_name is None: continue # dummy object is accepted if not hasattr(transformers, class_name): # If the class name is in a model name mapping, let's not check if there is a definition in any modeling # module, if it's a private model defined in this file. if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name): continue if name.endswith("MODEL_FOR_IMAGE_MAPPING_NAMES") and is_a_private_model(class_name): continue failures.append( f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library." ) if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures)) def check_all_auto_mapping_names_in_config_mapping_names(): """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`.""" # This is where we need to check we have all backends or the check is incomplete. check_missing_backends() failures = [] # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule. mappings_to_check = { "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES, "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES, "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES, } # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way. for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]: module = getattr(transformers.models.auto, module_name, None) if module is None: continue # all mappings in a single auto modeling file mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")] mappings_to_check.update({name: getattr(module, name) for name in mapping_names}) for name, mapping in mappings_to_check.items(): for model_type in mapping: if model_type not in CONFIG_MAPPING_NAMES: failures.append( f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of " "`CONFIG_MAPPING_NAMES`." ) if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures)) def check_all_auto_mappings_importable(): """Check all auto mappings can be imported.""" # This is where we need to check we have all backends or the check is incomplete. check_missing_backends() failures = [] mappings_to_check = {} # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way. for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]: module = getattr(transformers.models.auto, module_name, None) if module is None: continue # all mappings in a single auto modeling file mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")] mappings_to_check.update({name: getattr(module, name) for name in mapping_names}) for name in mappings_to_check: name = name.replace("_MAPPING_NAMES", "_MAPPING") if not hasattr(transformers, name): failures.append(f"`{name}`") if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures)) def check_objects_being_equally_in_main_init(): """ Check if a (TensorFlow or Flax) object is in the main __init__ iif its counterpart in PyTorch is. """ attrs = dir(transformers) failures = [] for attr in attrs: obj = getattr(transformers, attr) if not hasattr(obj, "__module__") or "models.deprecated" in obj.__module__: continue module_path = obj.__module__ module_name = module_path.split(".")[-1] module_dir = ".".join(module_path.split(".")[:-1]) if ( module_name.startswith("modeling_") and not module_name.startswith("modeling_tf_") and not module_name.startswith("modeling_flax_") ): parent_module = sys.modules[module_dir] frameworks = [] if is_tf_available(): frameworks.append("TF") if is_flax_available(): frameworks.append("Flax") for framework in frameworks: other_module_path = module_path.replace("modeling_", f"modeling_{framework.lower()}_") if os.path.isfile("src/" + other_module_path.replace(".", "/") + ".py"): other_module_name = module_name.replace("modeling_", f"modeling_{framework.lower()}_") other_module = getattr(parent_module, other_module_name) if hasattr(other_module, f"{framework}{attr}"): if not hasattr(transformers, f"{framework}{attr}"): if f"{framework}{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK: failures.append(f"{framework}{attr}") if hasattr(other_module, f"{framework}_{attr}"): if not hasattr(transformers, f"{framework}_{attr}"): if f"{framework}_{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK: failures.append(f"{framework}_{attr}") if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures)) _re_decorator = re.compile(r"^\s*@(\S+)\s+$") def check_decorator_order(filename: str) -> List[int]: """ Check that in a given test file, the slow decorator is always last. Args: filename (`str`): The path to a test file to check. Returns: `List[int]`: The list of failures as a list of indices where there are problems. """ with open(filename, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() decorator_before = None errors = [] for i, line in enumerate(lines): search = _re_decorator.search(line) if search is not None: decorator_name = search.groups()[0] if decorator_before is not None and decorator_name.startswith("parameterized"): errors.append(i) decorator_before = decorator_name elif decorator_before is not None: decorator_before = None return errors def check_all_decorator_order(): """Check that in all test files, the slow decorator is always last.""" errors = [] for fname in os.listdir(PATH_TO_TESTS): if fname.endswith(".py"): filename = os.path.join(PATH_TO_TESTS, fname) new_errors = check_decorator_order(filename) errors += [f"- {filename}, line {i}" for i in new_errors] if len(errors) > 0: msg = "\n".join(errors) raise ValueError( "The parameterized decorator (and its variants) should always be first, but this is not the case in the" f" following files:\n{msg}" ) def find_all_documented_objects() -> List[str]: """ Parse the content of all doc files to detect which classes and functions it documents. Returns: `List[str]`: The list of all object names being documented. """ documented_obj = [] for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"): with open(doc_file, "r", encoding="utf-8", newline="\n") as f: content = f.read() raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content) documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs] for doc_file in Path(PATH_TO_DOC).glob("**/*.md"): with open(doc_file, "r", encoding="utf-8", newline="\n") as f: content = f.read() raw_doc_objs = re.findall(r"\[\[autodoc\]\]\s+(\S+)\s+", content) documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs] return documented_obj # One good reason for not being documented is to be deprecated. Put in this list deprecated objects. DEPRECATED_OBJECTS = [ "AutoModelWithLMHead", "BartPretrainedModel", "DataCollator", "DataCollatorForSOP", "GlueDataset", "GlueDataTrainingArguments", "LineByLineTextDataset", "LineByLineWithRefDataset", "LineByLineWithSOPTextDataset", "NerPipeline", "PretrainedBartModel", "PretrainedFSMTModel", "SingleSentenceClassificationProcessor", "SquadDataTrainingArguments", "SquadDataset", "SquadExample", "SquadFeatures", "SquadV1Processor", "SquadV2Processor", "TFAutoModelWithLMHead", "TFBartPretrainedModel", "TextDataset", "TextDatasetForNextSentencePrediction", "Wav2Vec2ForMaskedLM", "Wav2Vec2Tokenizer", "glue_compute_metrics", "glue_convert_examples_to_features", "glue_output_modes", "glue_processors", "glue_tasks_num_labels", "squad_convert_examples_to_features", "xnli_compute_metrics", "xnli_output_modes", "xnli_processors", "xnli_tasks_num_labels", "TFTrainingArguments", ] # Exceptionally, some objects should not be documented after all rules passed. # ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT! UNDOCUMENTED_OBJECTS = [ "AddedToken", # This is a tokenizers class. "BasicTokenizer", # Internal, should never have been in the main init. "CharacterTokenizer", # Internal, should never have been in the main init. "DPRPretrainedReader", # Like an Encoder. "DummyObject", # Just picked by mistake sometimes. "MecabTokenizer", # Internal, should never have been in the main init. "ModelCard", # Internal type. "SqueezeBertModule", # Internal building block (should have been called SqueezeBertLayer) "TFDPRPretrainedReader", # Like an Encoder. "TransfoXLCorpus", # Internal type. "WordpieceTokenizer", # Internal, should never have been in the main init. "absl", # External module "add_end_docstrings", # Internal, should never have been in the main init. "add_start_docstrings", # Internal, should never have been in the main init. "convert_tf_weight_name_to_pt_weight_name", # Internal used to convert model weights "logger", # Internal logger "logging", # External module "requires_backends", # Internal function "AltRobertaModel", # Internal module ] # This list should be empty. Objects in it should get their own doc page. SHOULD_HAVE_THEIR_OWN_PAGE = [ # Benchmarks "PyTorchBenchmark", "PyTorchBenchmarkArguments", "TensorFlowBenchmark", "TensorFlowBenchmarkArguments", "AutoBackbone", "BeitBackbone", "BitBackbone", "ConvNextBackbone", "ConvNextV2Backbone", "DinatBackbone", "Dinov2Backbone", "FocalNetBackbone", "MaskFormerSwinBackbone", "MaskFormerSwinConfig", "MaskFormerSwinModel", "NatBackbone", "PvtV2Backbone", "ResNetBackbone", "SwinBackbone", "Swinv2Backbone", "TimmBackbone", "TimmBackboneConfig", "VitDetBackbone", ] def ignore_undocumented(name: str) -> bool: """Rules to determine if `name` should be undocumented (returns `True` if it should not be documented).""" # NOT DOCUMENTED ON PURPOSE. # Constants uppercase are not documented. if name.isupper(): return True # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented. if ( name.endswith("PreTrainedModel") or name.endswith("Decoder") or name.endswith("Encoder") or name.endswith("Layer") or name.endswith("Embeddings") or name.endswith("Attention") ): return True # Submodules are not documented. if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile( os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py") ): return True # All load functions are not documented. if name.startswith("load_tf") or name.startswith("load_pytorch"): return True # is_xxx_available functions are not documented. if name.startswith("is_") and name.endswith("_available"): return True # Deprecated objects are not documented. if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS: return True # MMBT model does not really work. if name.startswith("MMBT"): return True if name in SHOULD_HAVE_THEIR_OWN_PAGE: return True return False def check_all_objects_are_documented(): """Check all models are properly documented.""" documented_objs = find_all_documented_objects() modules = transformers._modules objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")] undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)] if len(undocumented_objs) > 0: raise Exception( "The following objects are in the public init so should be documented:\n - " + "\n - ".join(undocumented_objs) ) check_docstrings_are_in_md() check_model_type_doc_match() def check_model_type_doc_match(): """Check all doc pages have a corresponding model type.""" model_doc_folder = Path(PATH_TO_DOC) / "model_doc" model_docs = [m.stem for m in model_doc_folder.glob("*.md")] model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys()) model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types] errors = [] for m in model_docs: if m not in model_types and m != "auto": close_matches = get_close_matches(m, model_types) error_message = f"{m} is not a proper model identifier." if len(close_matches) > 0: close_matches = "/".join(close_matches) error_message += f" Did you mean {close_matches}?" errors.append(error_message) if len(errors) > 0: raise ValueError( "Some model doc pages do not match any existing model type:\n" + "\n".join(errors) + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in " "models/auto/configuration_auto.py." ) # Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`. _re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`") # Re pattern to catch things between double backquotes. _re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)") # Re pattern to catch example introduction. _re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE) def is_rst_docstring(docstring: str) -> True: """ Returns `True` if `docstring` is written in rst. """ if _re_rst_special_words.search(docstring) is not None: return True if _re_double_backquotes.search(docstring) is not None: return True if _re_rst_example.search(docstring) is not None: return True return False def check_docstrings_are_in_md(): """Check all docstrings are written in md and nor rst.""" files_with_rst = [] for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"): with open(file, encoding="utf-8") as f: code = f.read() docstrings = code.split('"""') for idx, docstring in enumerate(docstrings): if idx % 2 == 0 or not is_rst_docstring(docstring): continue files_with_rst.append(file) break if len(files_with_rst) > 0: raise ValueError( "The following files have docstrings written in rst:\n" + "\n".join([f"- {f}" for f in files_with_rst]) + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n" "(`pip install git+https://github.com/huggingface/doc-builder`)" ) def check_deprecated_constant_is_up_to_date(): """ Check if the constant `DEPRECATED_MODELS` in `models/auto/configuration_auto.py` is up to date. """ deprecated_folder = os.path.join(PATH_TO_TRANSFORMERS, "models", "deprecated") deprecated_models = [m for m in os.listdir(deprecated_folder) if not m.startswith("_")] constant_to_check = transformers.models.auto.configuration_auto.DEPRECATED_MODELS message = [] missing_models = sorted(set(deprecated_models) - set(constant_to_check)) if len(missing_models) != 0: missing_models = ", ".join(missing_models) message.append( "The following models are in the deprecated folder, make sure to add them to `DEPRECATED_MODELS` in " f"`models/auto/configuration_auto.py`: {missing_models}." ) extra_models = sorted(set(constant_to_check) - set(deprecated_models)) if len(extra_models) != 0: extra_models = ", ".join(extra_models) message.append( "The following models are in the `DEPRECATED_MODELS` constant but not in the deprecated folder. Either " f"remove them from the constant or move to the deprecated folder: {extra_models}." ) if len(message) > 0: raise Exception("\n".join(message)) def check_repo_quality(): """Check all models are properly tested and documented.""" print("Checking all models are included.") check_model_list() print("Checking all models are public.") check_models_are_in_init() print("Checking all models are properly tested.") check_all_decorator_order() check_all_models_are_tested() print("Checking all objects are properly documented.") check_all_objects_are_documented() print("Checking all models are in at least one auto class.") check_all_models_are_auto_configured() print("Checking all names in auto name mappings are defined.") check_all_auto_object_names_being_defined() print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.") check_all_auto_mapping_names_in_config_mapping_names() print("Checking all auto mappings could be imported.") check_all_auto_mappings_importable() print("Checking all objects are equally (across frameworks) in the main __init__.") check_objects_being_equally_in_main_init() print("Checking the DEPRECATED_MODELS constant is up to date.") check_deprecated_constant_is_up_to_date() if __name__ == "__main__": check_repo_quality()
transformers/utils/check_repo.py/0
{ "file_path": "transformers/utils/check_repo.py", "repo_id": "transformers", "token_count": 19409 }
448
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import collections import functools import json import operator import os import re import sys import time from typing import Dict, List, Optional, Union import requests from get_ci_error_statistics import get_jobs from get_previous_daily_ci import get_last_daily_ci_reports from slack_sdk import WebClient client = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) NON_MODEL_TEST_MODULES = [ "benchmark", "deepspeed", "extended", "fixtures", "generation", "onnx", "optimization", "pipelines", "sagemaker", "trainer", "utils", ] def handle_test_results(test_results): expressions = test_results.split(" ") failed = 0 success = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. time_spent = expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(expressions): if "failed" in expression: failed += int(expressions[i - 1]) if "passed" in expression: success += int(expressions[i - 1]) return failed, success, time_spent def handle_stacktraces(test_results): # These files should follow the following architecture: # === FAILURES === # <path>:<line>: Error ... # <path>:<line>: Error ... # <empty line> total_stacktraces = test_results.split("\n")[1:-1] stacktraces = [] for stacktrace in total_stacktraces: try: line = stacktrace[: stacktrace.index(" ")].split(":")[-2] error_message = stacktrace[stacktrace.index(" ") :] stacktraces.append(f"(line {line}) {error_message}") except Exception: stacktraces.append("Cannot retrieve error message.") return stacktraces def dicts_to_sum(objects: Union[Dict[str, Dict], List[dict]]): if isinstance(objects, dict): lists = objects.values() else: lists = objects # Convert each dictionary to counter counters = map(collections.Counter, lists) # Sum all the counters return functools.reduce(operator.add, counters) class Message: def __init__( self, title: str, ci_title: str, model_results: Dict, additional_results: Dict, selected_warnings: List = None, prev_ci_artifacts=None, ): self.title = title self.ci_title = ci_title # Failures and success of the modeling tests self.n_model_success = sum(r["success"] for r in model_results.values()) self.n_model_single_gpu_failures = sum(dicts_to_sum(r["failed"])["single"] for r in model_results.values()) self.n_model_multi_gpu_failures = sum(dicts_to_sum(r["failed"])["multi"] for r in model_results.values()) # Some suites do not have a distinction between single and multi GPU. self.n_model_unknown_failures = sum(dicts_to_sum(r["failed"])["unclassified"] for r in model_results.values()) self.n_model_failures = ( self.n_model_single_gpu_failures + self.n_model_multi_gpu_failures + self.n_model_unknown_failures ) # Failures and success of the additional tests self.n_additional_success = sum(r["success"] for r in additional_results.values()) if len(additional_results) > 0: # `dicts_to_sum` uses `dicts_to_sum` which requires a non empty dictionary. Let's just add an empty entry. all_additional_failures = dicts_to_sum([r["failed"] for r in additional_results.values()]) self.n_additional_single_gpu_failures = all_additional_failures["single"] self.n_additional_multi_gpu_failures = all_additional_failures["multi"] self.n_additional_unknown_gpu_failures = all_additional_failures["unclassified"] else: self.n_additional_single_gpu_failures = 0 self.n_additional_multi_gpu_failures = 0 self.n_additional_unknown_gpu_failures = 0 self.n_additional_failures = ( self.n_additional_single_gpu_failures + self.n_additional_multi_gpu_failures + self.n_additional_unknown_gpu_failures ) # Results self.n_failures = self.n_model_failures + self.n_additional_failures self.n_success = self.n_model_success + self.n_additional_success self.n_tests = self.n_failures + self.n_success self.model_results = model_results self.additional_results = additional_results self.thread_ts = None if selected_warnings is None: selected_warnings = [] self.selected_warnings = selected_warnings self.prev_ci_artifacts = prev_ci_artifacts @property def time(self) -> str: all_results = [*self.model_results.values(), *self.additional_results.values()] time_spent = [r["time_spent"].split(", ")[0] for r in all_results if len(r["time_spent"])] total_secs = 0 for time in time_spent: time_parts = time.split(":") # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(time_parts) == 1: time_parts = [0, 0, time_parts[0]] hours, minutes, seconds = int(time_parts[0]), int(time_parts[1]), float(time_parts[2]) total_secs += hours * 3600 + minutes * 60 + seconds hours, minutes, seconds = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(hours)}h{int(minutes)}m{int(seconds)}s" @property def header(self) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def ci_title_section(self) -> Dict: return {"type": "section", "text": {"type": "mrkdwn", "text": self.ci_title}} @property def no_failures(self) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def failures(self) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\n" f"Number of model failures: {self.n_model_failures}.\n" f"The suite ran in {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def warnings(self) -> Dict: # If something goes wrong, let's avoid the CI report failing to be sent. button_text = "Check warnings (Link not found)" # Use the workflow run link job_link = f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}" if "Extract warnings in CI artifacts" in github_actions_job_links: button_text = "Check warnings" # Use the actual job link job_link = f"{github_actions_job_links['Extract warnings in CI artifacts']}" huggingface_hub_warnings = [x for x in self.selected_warnings if "huggingface_hub" in x] text = f"There are {len(self.selected_warnings)} warnings being selected." text += f"\n{len(huggingface_hub_warnings)} of them are from `huggingface_hub`." return { "type": "section", "text": { "type": "plain_text", "text": text, "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": button_text, "emoji": True}, "url": job_link, }, } @staticmethod def get_device_report(report, rjust=6): if "single" in report and "multi" in report: return f"{str(report['single']).rjust(rjust)} | {str(report['multi']).rjust(rjust)} | " elif "single" in report: return f"{str(report['single']).rjust(rjust)} | {'0'.rjust(rjust)} | " elif "multi" in report: return f"{'0'.rjust(rjust)} | {str(report['multi']).rjust(rjust)} | " @property def category_failures(self) -> Dict: model_failures = [v["failed"] for v in self.model_results.values()] category_failures = {} for model_failure in model_failures: for key, value in model_failure.items(): if key not in category_failures: category_failures[key] = dict(value) else: category_failures[key]["unclassified"] += value["unclassified"] category_failures[key]["single"] += value["single"] category_failures[key]["multi"] += value["multi"] individual_reports = [] for key, value in category_failures.items(): device_report = self.get_device_report(value) if sum(value.values()): if device_report: individual_reports.append(f"{device_report}{key}") else: individual_reports.append(key) header = "Single | Multi | Category\n" category_failures_report = prepare_reports( title="The following modeling categories had failures", header=header, reports=individual_reports ) return {"type": "section", "text": {"type": "mrkdwn", "text": category_failures_report}} def compute_diff_for_failure_reports(self, curr_failure_report, prev_failure_report): # noqa # Remove the leading and training parts that don't contain failure count information. model_failures = curr_failure_report.split("\n")[3:-2] prev_model_failures = prev_failure_report.split("\n")[3:-2] entries_changed = set(model_failures).difference(prev_model_failures) prev_map = {} for f in prev_model_failures: items = [x.strip() for x in f.split("| ")] prev_map[items[-1]] = [int(x) for x in items[:-1]] curr_map = {} for f in entries_changed: items = [x.strip() for x in f.split("| ")] curr_map[items[-1]] = [int(x) for x in items[:-1]] diff_map = {} for k, v in curr_map.items(): if k not in prev_map: diff_map[k] = v else: diff = [x - y for x, y in zip(v, prev_map[k])] if max(diff) > 0: diff_map[k] = diff entries_changed = [] for model_name, diff_values in diff_map.items(): diff = [str(x) for x in diff_values] diff = [f"+{x}" if (x != "0" and not x.startswith("-")) else x for x in diff] diff = [x.rjust(9) for x in diff] device_report = " | ".join(diff) + " | " report = f"{device_report}{model_name}" entries_changed.append(report) entries_changed = sorted(entries_changed, key=lambda s: s.split("| ")[-1]) return entries_changed @property def model_failures(self) -> List[Dict]: # Obtain per-model failures def per_model_sum(model_category_dict): return dicts_to_sum(model_category_dict["failed"].values()) failures = {} non_model_failures = { k: per_model_sum(v) for k, v in self.model_results.items() if sum(per_model_sum(v).values()) } for k, v in self.model_results.items(): if k in NON_MODEL_TEST_MODULES: pass if sum(per_model_sum(v).values()): dict_failed = dict(v["failed"]) pytorch_specific_failures = dict_failed.pop("PyTorch") tensorflow_specific_failures = dict_failed.pop("TensorFlow") other_failures = dicts_to_sum(dict_failed.values()) failures[k] = { "PyTorch": pytorch_specific_failures, "TensorFlow": tensorflow_specific_failures, "other": other_failures, } model_reports = [] other_module_reports = [] for key, value in non_model_failures.items(): if key in NON_MODEL_TEST_MODULES: device_report = self.get_device_report(value) if sum(value.values()): if device_report: report = f"{device_report}{key}" else: report = key other_module_reports.append(report) for key, value in failures.items(): device_report_values = [ value["PyTorch"]["single"], value["PyTorch"]["multi"], value["TensorFlow"]["single"], value["TensorFlow"]["multi"], sum(value["other"].values()), ] if sum(device_report_values): device_report = " | ".join([str(x).rjust(9) for x in device_report_values]) + " | " report = f"{device_report}{key}" model_reports.append(report) # (Possibly truncated) reports for the current workflow run - to be sent to Slack channels model_header = "Single PT | Multi PT | Single TF | Multi TF | Other | Category\n" sorted_model_reports = sorted(model_reports, key=lambda s: s.split("| ")[-1]) model_failures_report = prepare_reports( title="These following model modules had failures", header=model_header, reports=sorted_model_reports ) module_header = "Single | Multi | Category\n" sorted_module_reports = sorted(other_module_reports, key=lambda s: s.split("| ")[-1]) module_failures_report = prepare_reports( title="The following non-model modules had failures", header=module_header, reports=sorted_module_reports ) # To be sent to Slack channels model_failure_sections = [ {"type": "section", "text": {"type": "mrkdwn", "text": model_failures_report}}, {"type": "section", "text": {"type": "mrkdwn", "text": module_failures_report}}, ] # Save the complete (i.e. no truncation) failure tables (of the current workflow run) # (to be uploaded as artifacts) model_failures_report = prepare_reports( title="These following model modules had failures", header=model_header, reports=sorted_model_reports, to_truncate=False, ) file_path = os.path.join(os.getcwd(), "prev_ci_results/model_failures_report.txt") with open(file_path, "w", encoding="UTF-8") as fp: fp.write(model_failures_report) module_failures_report = prepare_reports( title="The following non-model modules had failures", header=module_header, reports=sorted_module_reports, to_truncate=False, ) file_path = os.path.join(os.getcwd(), "prev_ci_results/module_failures_report.txt") with open(file_path, "w", encoding="UTF-8") as fp: fp.write(module_failures_report) if self.prev_ci_artifacts is not None: # if the last run produces artifact named `prev_ci_results` if ( "prev_ci_results" in self.prev_ci_artifacts and "model_failures_report.txt" in self.prev_ci_artifacts["prev_ci_results"] ): # Compute the difference of the previous/current (model failure) table prev_model_failures = self.prev_ci_artifacts["prev_ci_results"]["model_failures_report.txt"] entries_changed = self.compute_diff_for_failure_reports(model_failures_report, prev_model_failures) if len(entries_changed) > 0: # Save the complete difference diff_report = prepare_reports( title="Changed model modules failures", header=model_header, reports=entries_changed, to_truncate=False, ) file_path = os.path.join(os.getcwd(), "prev_ci_results/changed_model_failures_report.txt") with open(file_path, "w", encoding="UTF-8") as fp: fp.write(diff_report) # To be sent to Slack channels diff_report = prepare_reports( title="*Changed model modules failures*", header=model_header, reports=entries_changed, ) model_failure_sections.append( {"type": "section", "text": {"type": "mrkdwn", "text": diff_report}}, ) return model_failure_sections @property def additional_failures(self) -> Dict: failures = {k: v["failed"] for k, v in self.additional_results.items()} errors = {k: v["error"] for k, v in self.additional_results.items()} individual_reports = [] for key, value in failures.items(): device_report = self.get_device_report(value) if sum(value.values()) or errors[key]: report = f"{key}" if errors[key]: report = f"[Errored out] {report}" if device_report: report = f"{device_report}{report}" individual_reports.append(report) header = "Single | Multi | Category\n" failures_report = prepare_reports( title="The following non-modeling tests had failures", header=header, reports=individual_reports ) return {"type": "section", "text": {"type": "mrkdwn", "text": failures_report}} @property def payload(self) -> str: blocks = [self.header] if self.ci_title: blocks.append(self.ci_title_section) if self.n_model_failures > 0 or self.n_additional_failures > 0: blocks.append(self.failures) if self.n_model_failures > 0: blocks.append(self.category_failures) for block in self.model_failures: if block["text"]["text"]: blocks.append(block) if self.n_additional_failures > 0: blocks.append(self.additional_failures) if self.n_model_failures == 0 and self.n_additional_failures == 0: blocks.append(self.no_failures) if len(self.selected_warnings) > 0: blocks.append(self.warnings) new_failure_blocks = self.get_new_model_failure_blocks(with_header=False) if len(new_failure_blocks) > 0: blocks.extend(new_failure_blocks) return json.dumps(blocks) @staticmethod def error_out(title, ci_title="", runner_not_available=False, runner_failed=False, setup_failed=False): blocks = [] title_block = {"type": "header", "text": {"type": "plain_text", "text": title}} blocks.append(title_block) if ci_title: ci_title_block = {"type": "section", "text": {"type": "mrkdwn", "text": ci_title}} blocks.append(ci_title_block) offline_runners = [] if runner_not_available: text = "💔 CI runners are not available! Tests are not run. 😭" result = os.environ.get("OFFLINE_RUNNERS") if result is not None: offline_runners = json.loads(result) elif runner_failed: text = "💔 CI runners have problems! Tests are not run. 😭" elif setup_failed: text = "💔 Setup job failed. Tests are not run. 😭" else: text = "💔 There was an issue running the tests. 😭" error_block_1 = { "type": "header", "text": { "type": "plain_text", "text": text, }, } text = "" if len(offline_runners) > 0: text = "\n • " + "\n • ".join(offline_runners) text = f"The following runners are offline:\n{text}\n\n" text += "🙏 Let's fix it ASAP! 🙏" error_block_2 = { "type": "section", "text": { "type": "plain_text", "text": text, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } blocks.extend([error_block_1, error_block_2]) payload = json.dumps(blocks) print("Sending the following payload") print(json.dumps({"blocks": blocks})) client.chat_postMessage( channel=os.environ["CI_SLACK_REPORT_CHANNEL_ID"], text=text, blocks=payload, ) def post(self): payload = self.payload print("Sending the following payload") print(json.dumps({"blocks": json.loads(payload)})) text = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else "All tests passed." self.thread_ts = client.chat_postMessage( channel=os.environ["CI_SLACK_REPORT_CHANNEL_ID"], blocks=payload, text=text, ) def get_reply_blocks(self, job_name, job_result, failures, device, text): """ failures: A list with elements of the form {"line": full test name, "trace": error trace} """ # `text` must be less than 3001 characters in Slack SDK # keep some room for adding "[Truncated]" when necessary MAX_ERROR_TEXT = 3000 - len("[Truncated]") failure_text = "" for idx, error in enumerate(failures): new_text = failure_text + f'*{error["line"]}*\n_{error["trace"]}_\n\n' if len(new_text) > MAX_ERROR_TEXT: # `failure_text` here has length <= 3000 failure_text = failure_text + "[Truncated]" break # `failure_text` here has length <= MAX_ERROR_TEXT failure_text = new_text title = job_name if device is not None: title += f" ({device}-gpu)" content = {"type": "section", "text": {"type": "mrkdwn", "text": text}} # TODO: Make sure we always have a valid job link (or at least a way not to break the report sending) # Currently we get the device from a job's artifact name. # If a device is found, the job name should contain the device type, for example, `XXX (single-gpu)`. # This could be done by adding `machine_type` in a job's `strategy`. # (If `job_result["job_link"][device]` is `None`, we get an error: `... [ERROR] must provide a string ...`) if job_result["job_link"] is not None and job_result["job_link"][device] is not None: content["accessory"] = { "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_result["job_link"][device], } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failure_text}}, ] def get_new_model_failure_blocks(self, with_header=True): if self.prev_ci_artifacts is None: return {} sorted_dict = sorted(self.model_results.items(), key=lambda t: t[0]) prev_model_results = {} if ( "prev_ci_results" in self.prev_ci_artifacts and "model_results.json" in self.prev_ci_artifacts["prev_ci_results"] ): prev_model_results = json.loads(self.prev_ci_artifacts["prev_ci_results"]["model_results.json"]) all_failure_lines = {} for job, job_result in sorted_dict: if len(job_result["failures"]): devices = sorted(job_result["failures"].keys(), reverse=True) for device in devices: failures = job_result["failures"][device] prev_error_lines = {} if job in prev_model_results and device in prev_model_results[job]["failures"]: prev_error_lines = {error["line"] for error in prev_model_results[job]["failures"][device]} url = None if job_result["job_link"] is not None and job_result["job_link"][device] is not None: url = job_result["job_link"][device] for idx, error in enumerate(failures): if error["line"] in prev_error_lines: continue new_text = f'{error["line"]}\n\n' if new_text not in all_failure_lines: all_failure_lines[new_text] = [] all_failure_lines[new_text].append(f"<{url}|{device}>" if url is not None else device) MAX_ERROR_TEXT = 3000 - len("[Truncated]") - len("```New model failures```\n\n") failure_text = "" for line, devices in all_failure_lines.items(): new_text = failure_text + f"{'|'.join(devices)} gpu\n{line}" if len(new_text) > MAX_ERROR_TEXT: # `failure_text` here has length <= 3000 failure_text = failure_text + "[Truncated]" break # `failure_text` here has length <= MAX_ERROR_TEXT failure_text = new_text blocks = [] if failure_text: if with_header: blocks.append( {"type": "header", "text": {"type": "plain_text", "text": "New model failures", "emoji": True}} ) else: failure_text = f"*New model failures*\n\n{failure_text}" blocks.append({"type": "section", "text": {"type": "mrkdwn", "text": failure_text}}) return blocks def post_reply(self): if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made.") sorted_dict = sorted(self.model_results.items(), key=lambda t: t[0]) for job, job_result in sorted_dict: if len(job_result["failures"]): for device, failures in job_result["failures"].items(): text = "\n".join( sorted([f"*{k}*: {v[device]}" for k, v in job_result["failed"].items() if v[device]]) ) blocks = self.get_reply_blocks(job, job_result, failures, device, text=text) print("Sending the following reply") print(json.dumps({"blocks": blocks})) client.chat_postMessage( channel=os.environ["CI_SLACK_REPORT_CHANNEL_ID"], text=f"Results for {job}", blocks=blocks, thread_ts=self.thread_ts["ts"], ) time.sleep(1) for job, job_result in self.additional_results.items(): if len(job_result["failures"]): for device, failures in job_result["failures"].items(): blocks = self.get_reply_blocks( job, job_result, failures, device, text=f'Number of failures: {job_result["failed"][device]}', ) print("Sending the following reply") print(json.dumps({"blocks": blocks})) client.chat_postMessage( channel=os.environ["CI_SLACK_REPORT_CHANNEL_ID"], text=f"Results for {job}", blocks=blocks, thread_ts=self.thread_ts["ts"], ) time.sleep(1) blocks = self.get_new_model_failure_blocks() if blocks: print("Sending the following reply") print(json.dumps({"blocks": blocks})) client.chat_postMessage( channel=os.environ["CI_SLACK_REPORT_CHANNEL_ID"], text="Results for new failures", blocks=blocks, thread_ts=self.thread_ts["ts"], ) time.sleep(1) def retrieve_artifact(artifact_path: str, gpu: Optional[str]): if gpu not in [None, "single", "multi"]: raise ValueError(f"Invalid GPU for artifact. Passed GPU: `{gpu}`.") _artifact = {} if os.path.exists(artifact_path): files = os.listdir(artifact_path) for file in files: try: with open(os.path.join(artifact_path, file)) as f: _artifact[file.split(".")[0]] = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(artifact_path, file)}.") from e return _artifact def retrieve_available_artifacts(): class Artifact: def __init__(self, name: str, single_gpu: bool = False, multi_gpu: bool = False): self.name = name self.single_gpu = single_gpu self.multi_gpu = multi_gpu self.paths = [] def __str__(self): return self.name def add_path(self, path: str, gpu: str = None): self.paths.append({"name": self.name, "path": path, "gpu": gpu}) _available_artifacts: Dict[str, Artifact] = {} directories = filter(os.path.isdir, os.listdir()) for directory in directories: artifact_name = directory name_parts = artifact_name.split("_postfix_") if len(name_parts) > 1: artifact_name = name_parts[0] if artifact_name.startswith("single-gpu"): artifact_name = artifact_name[len("single-gpu") + 1 :] if artifact_name in _available_artifacts: _available_artifacts[artifact_name].single_gpu = True else: _available_artifacts[artifact_name] = Artifact(artifact_name, single_gpu=True) _available_artifacts[artifact_name].add_path(directory, gpu="single") elif artifact_name.startswith("multi-gpu"): artifact_name = artifact_name[len("multi-gpu") + 1 :] if artifact_name in _available_artifacts: _available_artifacts[artifact_name].multi_gpu = True else: _available_artifacts[artifact_name] = Artifact(artifact_name, multi_gpu=True) _available_artifacts[artifact_name].add_path(directory, gpu="multi") else: if artifact_name not in _available_artifacts: _available_artifacts[artifact_name] = Artifact(artifact_name) _available_artifacts[artifact_name].add_path(directory) return _available_artifacts def prepare_reports(title, header, reports, to_truncate=True): report = "" MAX_ERROR_TEXT = 3000 - len("[Truncated]") if not to_truncate: MAX_ERROR_TEXT = float("inf") if len(reports) > 0: # `text` must be less than 3001 characters in Slack SDK # keep some room for adding "[Truncated]" when necessary for idx in range(len(reports)): _report = header + "\n".join(reports[: idx + 1]) new_report = f"{title}:\n```\n{_report}\n```\n" if len(new_report) > MAX_ERROR_TEXT: # `report` here has length <= 3000 report = report + "[Truncated]" break report = new_report return report if __name__ == "__main__": # runner_status = os.environ.get("RUNNER_STATUS") # runner_env_status = os.environ.get("RUNNER_ENV_STATUS") setup_status = os.environ.get("SETUP_STATUS") # runner_not_available = True if runner_status is not None and runner_status != "success" else False # runner_failed = True if runner_env_status is not None and runner_env_status != "success" else False # Let's keep the lines regardig runners' status (we might be able to use them again in the future) runner_not_available = False runner_failed = False setup_failed = True if setup_status is not None and setup_status != "success" else False org = "huggingface" repo = "transformers" repository_full_name = f"{org}/{repo}" # This env. variable is set in workflow file (under the job `send_results`). ci_event = os.environ["CI_EVENT"] # To find the PR number in a commit title, for example, `Add AwesomeFormer model (#99999)` pr_number_re = re.compile(r"\(#(\d+)\)$") title = f"🤗 Results of the {ci_event} tests." # Add Commit/PR title with a link for push CI # (check the title in 2 env. variables - depending on the CI is triggered via `push` or `workflow_run` event) ci_title_push = os.environ.get("CI_TITLE_PUSH") ci_title_workflow_run = os.environ.get("CI_TITLE_WORKFLOW_RUN") ci_title = ci_title_push if ci_title_push else ci_title_workflow_run ci_sha = os.environ.get("CI_SHA") ci_url = None if ci_sha: ci_url = f"https://github.com/{repository_full_name}/commit/{ci_sha}" if ci_title is not None: if ci_url is None: raise ValueError( "When a title is found (`ci_title`), it means a `push` event or a `workflow_run` even (triggered by " "another `push` event), and the commit SHA has to be provided in order to create the URL to the " "commit page." ) ci_title = ci_title.strip().split("\n")[0].strip() # Retrieve the PR title and author login to complete the report commit_number = ci_url.split("/")[-1] ci_detail_url = f"https://api.github.com/repos/{repository_full_name}/commits/{commit_number}" ci_details = requests.get(ci_detail_url).json() ci_author = ci_details["author"]["login"] merged_by = None # Find the PR number (if any) and change the url to the actual PR page. numbers = pr_number_re.findall(ci_title) if len(numbers) > 0: pr_number = numbers[0] ci_detail_url = f"https://api.github.com/repos/{repository_full_name}/pulls/{pr_number}" ci_details = requests.get(ci_detail_url).json() ci_author = ci_details["user"]["login"] ci_url = f"https://github.com/{repository_full_name}/pull/{pr_number}" merged_by = ci_details["merged_by"]["login"] if merged_by is None: ci_title = f"<{ci_url}|{ci_title}>\nAuthor: {ci_author}" else: ci_title = f"<{ci_url}|{ci_title}>\nAuthor: {ci_author} | Merged by: {merged_by}" elif ci_sha: ci_title = f"<{ci_url}|commit: {ci_sha}>" else: ci_title = "" if runner_not_available or runner_failed or setup_failed: Message.error_out(title, ci_title, runner_not_available, runner_failed, setup_failed) exit(0) arguments = sys.argv[1:][0] try: folder_slices = ast.literal_eval(arguments) # Need to change from elements like `models/bert` to `models_bert` (the ones used as artifact names). models = [x.replace("models/", "models_") for folders in folder_slices for x in folders] except SyntaxError: Message.error_out(title, ci_title) raise ValueError("Errored out.") github_actions_jobs = get_jobs( workflow_run_id=os.environ["GITHUB_RUN_ID"], token=os.environ["ACCESS_REPO_INFO_TOKEN"] ) github_actions_job_links = {job["name"]: job["html_url"] for job in github_actions_jobs} artifact_name_to_job_map = {} for job in github_actions_jobs: for step in job["steps"]: if step["name"].startswith("Test suite reports artifacts: "): artifact_name = step["name"][len("Test suite reports artifacts: ") :] artifact_name_to_job_map[artifact_name] = job break available_artifacts = retrieve_available_artifacts() modeling_categories = [ "PyTorch", "TensorFlow", "Flax", "Tokenizers", "Pipelines", "Trainer", "ONNX", "Auto", "Unclassified", ] # This dict will contain all the information relative to each model: # - Failures: the total, as well as the number of failures per-category defined above # - Success: total # - Time spent: as a comma-separated list of elapsed time # - Failures: as a line-break separated list of errors model_results = { model: { "failed": {m: {"unclassified": 0, "single": 0, "multi": 0} for m in modeling_categories}, "success": 0, "time_spent": "", "failures": {}, "job_link": {}, } for model in models if f"run_all_tests_gpu_{model}_test_reports" in available_artifacts } unclassified_model_failures = [] for model in model_results.keys(): for artifact_path in available_artifacts[f"run_all_tests_gpu_{model}_test_reports"].paths: artifact = retrieve_artifact(artifact_path["path"], artifact_path["gpu"]) if "stats" in artifact: # Link to the GitHub Action job job = artifact_name_to_job_map[artifact_path["path"]] model_results[model]["job_link"][artifact_path["gpu"]] = job["html_url"] failed, success, time_spent = handle_test_results(artifact["stats"]) model_results[model]["success"] += success model_results[model]["time_spent"] += time_spent[1:-1] + ", " stacktraces = handle_stacktraces(artifact["failures_line"]) for line in artifact["summary_short"].split("\n"): if line.startswith("FAILED "): line = line[len("FAILED ") :] line = line.split()[0].replace("\n", "") if artifact_path["gpu"] not in model_results[model]["failures"]: model_results[model]["failures"][artifact_path["gpu"]] = [] model_results[model]["failures"][artifact_path["gpu"]].append( {"line": line, "trace": stacktraces.pop(0)} ) if re.search("test_modeling_tf_", line): model_results[model]["failed"]["TensorFlow"][artifact_path["gpu"]] += 1 elif re.search("test_modeling_flax_", line): model_results[model]["failed"]["Flax"][artifact_path["gpu"]] += 1 elif re.search("test_modeling", line): model_results[model]["failed"]["PyTorch"][artifact_path["gpu"]] += 1 elif re.search("test_tokenization", line): model_results[model]["failed"]["Tokenizers"][artifact_path["gpu"]] += 1 elif re.search("test_pipelines", line): model_results[model]["failed"]["Pipelines"][artifact_path["gpu"]] += 1 elif re.search("test_trainer", line): model_results[model]["failed"]["Trainer"][artifact_path["gpu"]] += 1 elif re.search("onnx", line): model_results[model]["failed"]["ONNX"][artifact_path["gpu"]] += 1 elif re.search("auto", line): model_results[model]["failed"]["Auto"][artifact_path["gpu"]] += 1 else: model_results[model]["failed"]["Unclassified"][artifact_path["gpu"]] += 1 unclassified_model_failures.append(line) # Additional runs additional_files = { "Examples directory": "run_examples_gpu", "PyTorch pipelines": "run_tests_torch_pipeline_gpu", "TensorFlow pipelines": "run_tests_tf_pipeline_gpu", "Torch CUDA extension tests": "run_tests_torch_cuda_extensions_gpu_test_reports", "Quantization tests": "run_tests_quantization_torch_gpu", } if ci_event in ["push", "Nightly CI"] or ci_event.startswith("Past CI"): del additional_files["Examples directory"] del additional_files["PyTorch pipelines"] del additional_files["TensorFlow pipelines"] elif ci_event.startswith("Scheduled CI (AMD)"): del additional_files["TensorFlow pipelines"] del additional_files["Torch CUDA extension tests"] elif ci_event.startswith("Push CI (AMD)"): additional_files = {} additional_results = { key: { "failed": {"unclassified": 0, "single": 0, "multi": 0}, "success": 0, "time_spent": "", "error": False, "failures": {}, "job_link": {}, } for key in additional_files.keys() } for key in additional_results.keys(): # If a whole suite of test fails, the artifact isn't available. if additional_files[key] not in available_artifacts: additional_results[key]["error"] = True continue for artifact_path in available_artifacts[additional_files[key]].paths: # Link to the GitHub Action job job = artifact_name_to_job_map[artifact_path["path"]] additional_results[key]["job_link"][artifact_path["gpu"]] = job["html_url"] artifact = retrieve_artifact(artifact_path["path"], artifact_path["gpu"]) stacktraces = handle_stacktraces(artifact["failures_line"]) failed, success, time_spent = handle_test_results(artifact["stats"]) additional_results[key]["failed"][artifact_path["gpu"] or "unclassified"] += failed additional_results[key]["success"] += success additional_results[key]["time_spent"] += time_spent[1:-1] + ", " if len(artifact["errors"]): additional_results[key]["error"] = True if failed: for line in artifact["summary_short"].split("\n"): if line.startswith("FAILED "): line = line[len("FAILED ") :] line = line.split()[0].replace("\n", "") if artifact_path["gpu"] not in additional_results[key]["failures"]: additional_results[key]["failures"][artifact_path["gpu"]] = [] additional_results[key]["failures"][artifact_path["gpu"]].append( {"line": line, "trace": stacktraces.pop(0)} ) selected_warnings = [] if "warnings_in_ci" in available_artifacts: directory = available_artifacts["warnings_in_ci"].paths[0]["path"] with open(os.path.join(directory, "selected_warnings.json")) as fp: selected_warnings = json.load(fp) if not os.path.isdir(os.path.join(os.getcwd(), "prev_ci_results")): os.makedirs(os.path.join(os.getcwd(), "prev_ci_results")) with open("prev_ci_results/model_results.json", "w", encoding="UTF-8") as fp: json.dump(model_results, fp, indent=4, ensure_ascii=False) prev_ci_artifacts = None target_workflow = "huggingface/transformers/.github/workflows/self-scheduled.yml@refs/heads/main" if os.environ.get("CI_WORKFLOW_REF") == target_workflow: # Get the last previously completed CI's failure tables artifact_names = ["prev_ci_results"] output_dir = os.path.join(os.getcwd(), "previous_reports") os.makedirs(output_dir, exist_ok=True) prev_ci_artifacts = get_last_daily_ci_reports( artifact_names=artifact_names, output_dir=output_dir, token=os.environ["ACCESS_REPO_INFO_TOKEN"] ) message = Message( title, ci_title, model_results, additional_results, selected_warnings=selected_warnings, prev_ci_artifacts=prev_ci_artifacts, ) # send report only if there is any failure (for push CI) if message.n_failures or (ci_event != "push" and not ci_event.startswith("Push CI (AMD)")): message.post() message.post_reply()
transformers/utils/notification_service.py/0
{ "file_path": "transformers/utils/notification_service.py", "repo_id": "transformers", "token_count": 21541 }
449
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class CustomTokenizerFast(BertTokenizerFast): slow_tokenizer_class = CustomTokenizer pass
transformers/utils/test_module/custom_tokenization_fast.py/0
{ "file_path": "transformers/utils/test_module/custom_tokenization_fast.py", "repo_id": "transformers", "token_count": 54 }
450
<div style="text-align: center"> <img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_banner_dark.png"> </div> # TRL - Transformer Reinforcement Learning > Full stack library to fine-tune and align large language models. <p align="center"> <a href="https://github.com/huggingface/trl/blob/main/LICENSE"> <img alt="License" src="https://img.shields.io/github/license/huggingface/trl.svg?color=blue"> </a> <a href="https://huggingface.co/docs/trl/index"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/trl/index.svg?down_color=red&down_message=offline&up_message=online"> </a> <a href="https://github.com/huggingface/trl/releases"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/trl.svg"> </a> </p> ## What is it? The `trl` library is a full stack tool to fine-tune and align transformer language and diffusion models using methods such as Supervised Fine-tuning step (SFT), Reward Modeling (RM) and the Proximal Policy Optimization (PPO) as well as Direct Preference Optimization (DPO). The library is built on top of the [`transformers`](https://github.com/huggingface/transformers) library and thus allows to use any model architecture available there. ## Highlights - **`Efficient and scalable`**: - [`accelerate`](https://github.com/huggingface/accelerate) is the backbone of `trl` which allows to scale model training from a single GPU to a large scale multi-node cluster with methods such as DDP and DeepSpeed. - [`PEFT`](https://github.com/huggingface/peft) is fully integrated and allows to train even the largest models on modest hardware with quantisation and methods such as LoRA or QLoRA. - [`unsloth`](https://github.com/unslothai/unsloth) is also integrated and allows to significantly speed up training with dedicated kernels. - **`CLI`**: With the [CLI](https://huggingface.co/docs/trl/clis) you can fine-tune and chat with LLMs without writing any code using a single command and a flexible config system. - **`Trainers`**: The Trainer classes are an abstraction to apply many fine-tuning methods with ease such as the [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer), [`DPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.DPOTrainer), [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer), and [`PPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.PPOTrainer). - **`AutoModels`**: The [`AutoModelForCausalLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForCausalLMWithValueHead) & [`AutoModelForSeq2SeqLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForSeq2SeqLMWithValueHead) classes add an additional value head to the model which allows to train them with RL algorithms such as PPO. - **`Examples`**: Train GPT2 to generate positive movie reviews with a BERT sentiment classifier, full RLHF using adapters only, train GPT-j to be less toxic, [StackLlama example](https://huggingface.co/blog/stackllama), etc. following the [examples](https://github.com/huggingface/trl/tree/main/examples). ## Installation ### Python package Install the library with `pip`: ```bash pip install trl ``` ### From source If you want to use the latest features before an official release you can install from source: ```bash pip install git+https://github.com/huggingface/trl.git ``` ### Repository If you want to use the examples you can clone the repository with the following command: ```bash git clone https://github.com/huggingface/trl.git ``` ## Command Line Interface (CLI) You can use TRL Command Line Interface (CLI) to quickly get started with Supervised Fine-tuning (SFT), Direct Preference Optimization (DPO) and test your aligned model with the chat CLI: **SFT:** ```bash trl sft --model_name_or_path facebook/opt-125m --dataset_name imdb --output_dir opt-sft-imdb ``` **DPO:** ```bash trl dpo --model_name_or_path facebook/opt-125m --dataset_name trl-internal-testing/hh-rlhf-trl-style --output_dir opt-sft-hh-rlhf ``` **Chat:** ```bash trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat ``` Read more about CLI in the [relevant documentation section](https://huggingface.co/docs/trl/main/en/clis) or use `--help` for more details. ## How to use For more flexibility and control over the training you can use the dedicated trainer classes to fine-tune the model in Python. ### `SFTTrainer` This is a basic example on how to use the `SFTTrainer` from the library. The `SFTTrainer` is a light wrapper around the `transformers` Trainer to easily fine-tune language models or adapters on a custom dataset. ```python # imports from datasets import load_dataset from trl import SFTTrainer # get dataset dataset = load_dataset("imdb", split="train") # get trainer trainer = SFTTrainer( "facebook/opt-350m", train_dataset=dataset, dataset_text_field="text", max_seq_length=512, ) # train trainer.train() ``` ### `RewardTrainer` This is a basic example on how to use the `RewardTrainer` from the library. The `RewardTrainer` is a wrapper around the `transformers` Trainer to easily fine-tune reward models or adapters on a custom preference dataset. ```python # imports from transformers import AutoModelForSequenceClassification, AutoTokenizer from trl import RewardTrainer # load model and dataset - dataset needs to be in a specific format model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1) tokenizer = AutoTokenizer.from_pretrained("gpt2") ... # load trainer trainer = RewardTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset, ) # train trainer.train() ``` ### `PPOTrainer` This is a basic example on how to use the `PPOTrainer` from the library. Based on a query the language model creates a response which is then evaluated. The evaluation could be a human in the loop or another model's output. ```python # imports import torch from transformers import AutoTokenizer from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model from trl.core import respond_to_batch # get models model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2') model_ref = create_reference_model(model) tokenizer = AutoTokenizer.from_pretrained('gpt2') tokenizer.pad_token = tokenizer.eos_token # initialize trainer ppo_config = PPOConfig(batch_size=1, mini_batch_size=1) # encode a query query_txt = "This morning I went to the " query_tensor = tokenizer.encode(query_txt, return_tensors="pt") # get model response response_tensor = respond_to_batch(model, query_tensor) # create a ppo trainer ppo_trainer = PPOTrainer(ppo_config, model, model_ref, tokenizer) # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0)] # train model for one step with ppo train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward) ``` ### `DPOTrainer` `DPOTrainer` is a trainer that uses [Direct Preference Optimization algorithm](https://arxiv.org/abs/2305.18290). This is a basic example on how to use the `DPOTrainer` from the library. The `DPOTrainer` is a wrapper around the `transformers` Trainer to easily fine-tune reward models or adapters on a custom preference dataset. ```python # imports from transformers import AutoModelForCausalLM, AutoTokenizer from trl import DPOTrainer # load model and dataset - dataset needs to be in a specific format model = AutoModelForCausalLM.from_pretrained("gpt2") tokenizer = AutoTokenizer.from_pretrained("gpt2") ... # load trainer trainer = DPOTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset, ) # train trainer.train() ``` ## Development If you want to contribute to `trl` or customizing it to your needs make sure to read the [contribution guide](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md) and make sure you make a dev install: ```bash git clone https://github.com/huggingface/trl.git cd trl/ make dev ``` ## References ### Proximal Policy Optimisation The PPO implementation largely follows the structure introduced in the paper **"Fine-Tuning Language Models from Human Preferences"** by D. Ziegler et al. \[[paper](https://arxiv.org/pdf/1909.08593.pdf), [code](https://github.com/openai/lm-human-preferences)]. ### Direct Preference Optimization DPO is based on the original implementation of **"Direct Preference Optimization: Your Language Model is Secretly a Reward Model"** by E. Mitchell et al. \[[paper](), [code](https://github.com/eric-mitchell/direct-preference-optimization)] ## Citation ```bibtex @misc{vonwerra2022trl, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang}, title = {TRL: Transformer Reinforcement Learning}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
trl/README.md/0
{ "file_path": "trl/README.md", "repo_id": "trl", "token_count": 2932 }
451
# Builds GPU docker image of PyTorch # Uses multi-staged approach to reduce size # Stage 1 # Use base conda image to reduce time FROM continuumio/miniconda3:latest AS compile-image # Specify py version ENV PYTHON_VERSION=3.10 # Install apt libs - copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile RUN apt-get update && \ apt-get install -y curl git wget software-properties-common git-lfs && \ apt-get clean && \ rm -rf /var/lib/apt/lists* # Install audio-related libraries RUN apt-get update && \ apt install -y ffmpeg RUN apt install -y libsndfile1-dev RUN git lfs install # Create our conda env - copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile RUN conda create --name trl python=${PYTHON_VERSION} ipython jupyter pip RUN python3 -m pip install --no-cache-dir --upgrade pip # Below is copied from https://github.com/huggingface/accelerate/blob/main/docker/accelerate-gpu/Dockerfile # We don't install pytorch here yet since CUDA isn't available # instead we use the direct torch wheel ENV PATH /opt/conda/envs/trl/bin:$PATH # Activate our bash shell RUN chsh -s /bin/bash SHELL ["/bin/bash", "-c"] # Stage 2 FROM nvidia/cuda:12.2.2-devel-ubuntu22.04 AS build-image COPY --from=compile-image /opt/conda /opt/conda ENV PATH /opt/conda/bin:$PATH RUN chsh -s /bin/bash SHELL ["/bin/bash", "-c"] RUN source activate trl && \ python3 -m pip install --no-cache-dir bitsandbytes optimum auto-gptq # Install apt libs RUN apt-get update && \ apt-get install -y curl git wget && \ apt-get clean && \ rm -rf /var/lib/apt/lists* # Activate the conda env and install transformers + accelerate from source RUN source activate trl && \ python3 -m pip install -U --no-cache-dir \ librosa \ "soundfile>=0.12.1" \ scipy \ transformers \ accelerate \ peft \ trl[test]@git+https://github.com/huggingface/trl RUN source activate trl && \ pip freeze | grep trl RUN echo "source activate trl" >> ~/.profile # Activate the virtualenv CMD ["/bin/bash"]
trl/docker/trl-latest-gpu/Dockerfile/0
{ "file_path": "trl/docker/trl-latest-gpu/Dockerfile", "repo_id": "trl", "token_count": 774 }
452
# Logging As reinforcement learning algorithms are historically challenging to debug, it's important to pay careful attention to logging. By default, the TRL [`PPOTrainer`] saves a lot of relevant information to `wandb` or `tensorboard`. Upon initialization, pass one of these two options to the [`PPOConfig`]: ``` config = PPOConfig( model_name=args.model_name, log_with=`wandb`, # or `tensorboard` ) ``` If you want to log with tensorboard, add the kwarg `project_kwargs={"logging_dir": PATH_TO_LOGS}` to the PPOConfig. ## PPO Logging Here's a brief explanation for the logged metrics provided in the data: Key metrics to monitor. We want to maximize the reward, maintain a low KL divergence, and maximize entropy: 1. `env/reward_mean`: The average reward obtained from the environment. Alias `ppo/mean_scores`, which is sed to specifically monitor the reward model. 1. `env/reward_std`: The standard deviation of the reward obtained from the environment. Alias ``ppo/std_scores`, which is sed to specifically monitor the reward model. 1. `env/reward_dist`: The histogram distribution of the reward obtained from the environment. 1. `objective/kl`: The mean Kullback-Leibler (KL) divergence between the old and new policies. It measures how much the new policy deviates from the old policy. The KL divergence is used to compute the KL penalty in the objective function. 1. `objective/kl_dist`: The histogram distribution of the `objective/kl`. 1. `objective/kl_coef`: The coefficient for Kullback-Leibler (KL) divergence in the objective function. 1. `ppo/mean_non_score_reward`: The **KL penalty** calculated by `objective/kl * objective/kl_coef` as the total reward for optimization to prevent the new policy from deviating too far from the old policy. 1. `objective/entropy`: The entropy of the model's policy, calculated by `-logprobs.sum(-1).mean()`. High entropy means the model's actions are more random, which can be beneficial for exploration. Training stats: 1. `ppo/learning_rate`: The learning rate for the PPO algorithm. 1. `ppo/policy/entropy`: The entropy of the model's policy, calculated by `pd = torch.nn.functional.softmax(logits, dim=-1); entropy = torch.logsumexp(logits, dim=-1) - torch.sum(pd * logits, dim=-1)`. It measures the randomness of the policy. 1. `ppo/policy/clipfrac`: The fraction of probability ratios (old policy / new policy) that fell outside the clipping range in the PPO objective. This can be used to monitor the optimization process. 1. `ppo/policy/approxkl`: The approximate KL divergence between the old and new policies, measured by `0.5 * masked_mean((logprobs - old_logprobs) ** 2, mask)`, corresponding to the `k2` estimator in http://joschu.net/blog/kl-approx.html 1. `ppo/policy/policykl`: Similar to `ppo/policy/approxkl`, but measured by `masked_mean(old_logprobs - logprobs, mask)`, corresponding to the `k1` estimator in http://joschu.net/blog/kl-approx.html 1. `ppo/policy/ratio`: The histogram distribution of the ratio between the new and old policies, used to compute the PPO objective. 1. `ppo/policy/advantages_mean`: The average of the GAE (Generalized Advantage Estimation) advantage estimates. The advantage function measures how much better an action is compared to the average action at a state. 1. `ppo/policy/advantages`: The histogram distribution of `ppo/policy/advantages_mean`. 1. `ppo/returns/mean`: The mean of the TD(λ) returns, calculated by `returns = advantage + values`, another indicator of model performance. See https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/ for more details. 1. `ppo/returns/var`: The variance of the TD(λ) returns, calculated by `returns = advantage + values`, another indicator of model performance. 1. `ppo/val/mean`: The mean of the values, used to monitor the value function's performance. 1. `ppo/val/var` : The variance of the values, used to monitor the value function's performance. 1. `ppo/val/var_explained`: The explained variance for the value function, used to monitor the value function's performance. 1. `ppo/val/clipfrac`: The fraction of the value function's predicted values that are clipped. 1. `ppo/val/vpred`: The predicted values from the value function. 1. `ppo/val/error`: The mean squared error between the `ppo/val/vpred` and returns, used to monitor the value function's performance. 1. `ppo/loss/policy`: The policy loss for the Proximal Policy Optimization (PPO) algorithm. 1. `ppo/loss/value`: The loss for the value function in the PPO algorithm. This value quantifies how well the function estimates the expected future rewards. 1. `ppo/loss/total`: The total loss for the PPO algorithm. It is the sum of the policy loss and the value function loss. Stats on queries, responses, and logprobs: 1. `tokens/queries_len_mean`: The average length of the queries tokens. 1. `tokens/queries_len_std`: The standard deviation of the length of the queries tokens. 1. `tokens/queries_dist`: The histogram distribution of the length of the queries tokens. 1. `tokens/responses_len_mean`: The average length of the responses tokens. 1. `tokens/responses_len_std`: The standard deviation of the length of the responses tokens. 1. `tokens/responses_dist`: The histogram distribution of the length of the responses tokens. (Costa: inconsistent naming, should be `tokens/responses_len_dist`) 1. `objective/logprobs`: The histogram distribution of the log probabilities of the actions taken by the model. 1. `objective/ref_logprobs`: The histogram distribution of the log probabilities of the actions taken by the reference model. ### Crucial values During training, many values are logged, here are the most important ones: 1. `env/reward_mean`,`env/reward_std`, `env/reward_dist`: the properties of the reward distribution from the "environment" / reward model 1. `ppo/mean_non_score_reward`: The mean negated KL penalty during training (shows the delta between the reference model and the new policy over the batch in the step) Here are some parameters that are useful to monitor for stability (when these diverge or collapse to 0, try tuning variables): 1. `ppo/loss/value`: it will spike / NaN when not going well. 1. `ppo/policy/ratio`: `ratio` being 1 is a baseline value, meaning that the probability of sampling a token is the same under the new and old policy. If the ratio is too high like 200, it means the probability of sampling a token is 200 times higher under the new policy than the old policy. This is a sign that the new policy is too different from the old policy, which will likely cause overoptimization and collapse training later on. 1. `ppo/policy/clipfrac` and `ppo/policy/approxkl`: if `ratio` is too high, the `ratio` is going to get clipped, resulting in high `clipfrac` and high `approxkl` as well. 1. `objective/kl`: it should stay positive so that the policy is not too far away from the reference policy. 1. `objective/kl_coef`: The target coefficient with [`AdaptiveKLController`]. Often increases before numerical instabilities.
trl/docs/source/logging.mdx/0
{ "file_path": "trl/docs/source/logging.mdx", "repo_id": "trl", "token_count": 1961 }
453
compute_environment: LOCAL_MACHINE debug: false deepspeed_config: deepspeed_multinode_launcher: standard gradient_accumulation_steps: 1 offload_optimizer_device: none offload_param_device: none zero3_init_flag: false zero_stage: 2 distributed_type: DEEPSPEED downcast_bf16: 'no' machine_rank: 0 main_training_function: main mixed_precision: 'bf16' num_machines: 1 num_processes: 8 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false
trl/examples/accelerate_configs/deepspeed_zero2.yaml/0
{ "file_path": "trl/examples/accelerate_configs/deepspeed_zero2.yaml", "repo_id": "trl", "token_count": 192 }
454
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Optional import torch from accelerate import Accelerator from datasets import load_dataset from peft import LoraConfig from tqdm import tqdm from transformers import Adafactor, AutoTokenizer, HfArgumentParser, pipeline from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer, set_seed from trl.core import LengthSampler tqdm.pandas() @dataclass class ScriptArguments: """ The name of the Casual LM model we wish to fine-tune with PPO """ # NOTE: gpt2 models use Conv1D instead of Linear layers which are not yet supported in 8 bit mode # models like gpt-neo* models are more suitable. model_name: Optional[str] = field(default="", metadata={"help": "the model name"}) tokenizer_name: Optional[str] = field(default="", metadata={"help": "the tokenizer name"}) reward_model_name: Optional[str] = field(default="", metadata={"help": "the reward model name"}) log_with: Optional[str] = field(default=None, metadata={"help": "use 'wandb' to log with wandb"}) learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"}) output_max_length: Optional[int] = field(default=128, metadata={"help": "maximum length for generation"}) mini_batch_size: Optional[int] = field(default=1, metadata={"help": "the PPO minibatch size"}) batch_size: Optional[int] = field(default=32, metadata={"help": "the batch size"}) ppo_epochs: Optional[int] = field(default=4, metadata={"help": "the number of ppo epochs"}) gradient_accumulation_steps: Optional[int] = field( default=4, metadata={"help": "the number of gradient accumulation steps"} ) adafactor: Optional[bool] = field(default=False, metadata={"help": "whether to use the adafactor optimizer"}) early_stopping: Optional[bool] = field(default=False, metadata={"help": "whether to early stop"}) target_kl: Optional[float] = field(default=0.1, metadata={"help": "kl target for early stopping"}) reward_baseline: Optional[float] = field( default=0.0, metadata={"help": "a baseline value that is subtracted from the reward"}, ) batched_gen: Optional[bool] = field(default=False, metadata={"help": "whether to use the batched text gen"}) save_freq: Optional[int] = field(default=None, metadata={"help": "n steps to save the model"}) output_dir: Optional[str] = field(default="runs/", metadata={"help": "n steps to save the model"}) seed: Optional[int] = field(default=0, metadata={"help": "the seed"}) steps: Optional[int] = field(default=20000, metadata={"help": "number of epochs"}) init_kl_coef: Optional[float] = field( default=0.2, metadata={"help": "Initial KL penalty coefficient (used for adaptive and linear control)"}, ) adap_kl_ctrl: Optional[bool] = field(default=True, metadata={"help": "Use adaptive KL control, otherwise linear"}) load_in_8bit: Optional[bool] = field(default=True, metadata={"help": "whether to load the model in 8bit"}) parser = HfArgumentParser(ScriptArguments) script_args: ScriptArguments = parser.parse_args_into_dataclasses()[0] reward_model_name = script_args.reward_model_name dataset_name = "lvwerra/stack-exchange-paired" config = PPOConfig( steps=script_args.steps, model_name=script_args.model_name, learning_rate=script_args.learning_rate, log_with=script_args.log_with, batch_size=script_args.batch_size, mini_batch_size=script_args.mini_batch_size, gradient_accumulation_steps=script_args.gradient_accumulation_steps, optimize_cuda_cache=True, early_stopping=script_args.early_stopping, target_kl=script_args.target_kl, ppo_epochs=script_args.ppo_epochs, seed=script_args.seed, init_kl_coef=script_args.init_kl_coef, adap_kl_ctrl=script_args.adap_kl_ctrl, ) train_dataset = load_dataset("lvwerra/stack-exchange-paired", data_dir="data/rl", split="train") train_dataset = train_dataset.select(range(100000)) original_columns = train_dataset.column_names # We then define the arguments to pass to the sentiment analysis pipeline. # We set `return_all_scores` to True to get the sentiment score for each token. sent_kwargs = { "return_all_scores": True, "function_to_apply": "none", "batch_size": 16, "truncation": True, } tokenizer = AutoTokenizer.from_pretrained(script_args.tokenizer_name) # GPT-2 tokenizer has a pad token, but it is not eos_token by default. We need to set it to eos_token. # only for this model. if getattr(tokenizer, "pad_token", None) is None: tokenizer.pad_token = tokenizer.eos_token # Below is an example function to build the dataset. In our case, we use the IMDB dataset # from the `datasets` library. One should customize this function to train the model on # its own dataset. def build_dataset( tokenizer, dataset_name="lvwerra/stack-exchange-paired", ): """ Build dataset for training. This builds the dataset from `load_dataset`, one should customize this function to train the model on its own dataset. Args: dataset_name (`str`): The name of the dataset to be loaded. Returns: dataloader (`torch.utils.data.DataLoader`): The dataloader for the dataset. """ num_proc = 24 def preprocess_function(examples): new_examples = { "query": [], "input_ids": [], } for question in examples["question"]: query = "Question: " + question + "\n\nAnswer: " tokenized_question = tokenizer(query, truncation=True) new_examples["query"].append(query) new_examples["input_ids"].append(tokenized_question["input_ids"]) return new_examples ds = train_dataset.map( preprocess_function, batched=True, num_proc=num_proc, remove_columns=original_columns, ) ds = ds.filter(lambda x: len(x["input_ids"]) < 512, batched=False) ds.set_format(type="torch") return ds # We retrieve the dataloader by calling the `build_dataset` function. dataset = build_dataset(tokenizer) def collator(data): return {key: [d[key] for d in data] for key in data[0]} # set seed before initializing value head for deterministic eval set_seed(config.seed) # Now let's build the model, the reference model, and the tokenizer. current_device = Accelerator().local_process_index lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = AutoModelForCausalLMWithValueHead.from_pretrained( config.model_name, load_in_8bit=script_args.load_in_8bit, device_map={"": current_device}, peft_config=lora_config, ) optimizer = None if script_args.adafactor: optimizer = Adafactor( filter(lambda p: p.requires_grad, model.parameters()), scale_parameter=False, relative_step=False, warmup_init=False, lr=config.learning_rate, ) # We then build the PPOTrainer, passing the model, the reference model, the tokenizer ppo_trainer = PPOTrainer( config, model, ref_model=None, tokenizer=tokenizer, dataset=dataset, data_collator=collator, optimizer=optimizer, ) # We then build the sentiment analysis pipeline using our reward model, passing the # model name and the sentiment analysis pipeline arguments. Let's also make sure to # set the device to the same device as the PPOTrainer. device = ppo_trainer.accelerator.device if ppo_trainer.accelerator.num_processes == 1: device = 0 if torch.cuda.is_available() else "cpu" # to avoid a ` pipeline` bug sentiment_pipe = pipeline( "sentiment-analysis", model=reward_model_name, device_map={"": current_device}, model_kwargs={"load_in_8bit": script_args.load_in_8bit}, tokenizer=tokenizer, return_token_type_ids=False, ) if sentiment_pipe.model.config.pad_token_id is None: sentiment_pipe.model.config.pad_token_id = sentiment_pipe.model.config.eos_token_id # We then define the arguments to pass to the `generate` function. These arguments # are passed to the `generate` function of the PPOTrainer, which is a wrapper around # the `generate` function of the trained model. generation_kwargs = { # "min_length": -1, "top_k": 0.0, "top_p": 1.0, "do_sample": True, "pad_token_id": tokenizer.pad_token_id, "eos_token_id": 100_000, } output_min_length = 32 output_max_length = script_args.output_max_length output_length_sampler = LengthSampler(output_min_length, output_max_length) for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)): if epoch >= config.total_ppo_epochs: break question_tensors = batch["input_ids"] response_tensors = ppo_trainer.generate( question_tensors, return_prompt=False, length_sampler=output_length_sampler, **generation_kwargs, ) batch["response"] = tokenizer.batch_decode(response_tensors, skip_special_tokens=True) # Compute reward score (using the sentiment analysis pipeline) texts = [q + r for q, r in zip(batch["query"], batch["response"])] pipe_outputs = sentiment_pipe(texts, **sent_kwargs) rewards = [torch.tensor(output[0]["score"] - script_args.reward_baseline) for output in pipe_outputs] # Run PPO step stats = ppo_trainer.step(question_tensors, response_tensors, rewards) ppo_trainer.log_stats(stats, batch, rewards) if script_args.save_freq and epoch and epoch % script_args.save_freq == 0: ppo_trainer.save_pretrained(script_args.output_dir + f"step_{epoch}")
trl/examples/research_projects/stack_llama/scripts/rl_training.py/0
{ "file_path": "trl/examples/research_projects/stack_llama/scripts/rl_training.py", "repo_id": "trl", "token_count": 3733 }
455
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Run the KTO training script with the following command with some example arguments. In general, the optimal configuration for KTO will be similar to that of DPO: # regular: python examples/scripts/kto.py \ --model_name_or_path=gpt2 \ --per_device_train_batch_size 4 \ --max_steps 1000 \ --learning_rate 1e-3 \ --gradient_accumulation_steps 1 \ --logging_steps 10 \ --eval_steps 500 \ --output_dir="kto_anthropic_hh" \ --warmup_steps 150 \ --report_to wandb \ --bf16 \ --logging_first_step \ --no_remove_unused_columns # peft: python examples/scripts/kto.py \ --model_name_or_path=gpt2 \ --per_device_train_batch_size 4 \ --max_steps 1000 \ --learning_rate 1e-3 \ --gradient_accumulation_steps 1 \ --logging_steps 10 \ --eval_steps 500 \ --output_dir="kto_anthropic_hh" \ --optim rmsprop \ --warmup_steps 150 \ --report_to wandb \ --bf16 \ --logging_first_step \ --no_remove_unused_columns \ --use_peft \ --lora_r=16 \ --lora_alpha=16 """ from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config # Define and parse arguments. @dataclass class ScriptArguments: """ The arguments for the KTO training script. """ # debugging sanity_check: Optional[bool] = field(default=True, metadata={"help": "only train on 1000 samples"}) def extract_anthropic_prompt(prompt_and_response): """Extract the anthropic prompt from a prompt and response pair.""" search_term = "\n\nAssistant:" search_term_idx = prompt_and_response.rfind(search_term) if search_term_idx == -1: raise ValueError(f"Prompt and response does not contain '{search_term}'") return prompt_and_response[: search_term_idx + len(search_term)] def get_hh(split: str, sanity_check: bool = False, silent: bool = False, cache_dir: str = None) -> Dataset: """Load the Anthropic Helpful-Harmless dataset from Hugging Face and convert it to the necessary format. The dataset is converted to a dictionary with the following structure: { 'prompt': List[str], 'completion': List[str], 'label': List[bool], } Prompts should be structured as follows: \n\nHuman: <prompt>\n\nAssistant: Multiple turns are allowed, but the prompt should always start with \n\nHuman: and end with \n\nAssistant:. """ dataset = load_dataset("Anthropic/hh-rlhf", split=split, cache_dir=cache_dir) if sanity_check: dataset = dataset.select(range(min(len(dataset), 1000))) flat_data = { "prompt": [], "completion": [], "label": [], } for sample in dataset: prompt = extract_anthropic_prompt(sample["chosen"]) flat_data["prompt"].append(prompt) flat_data["completion"].append(sample["chosen"][len(prompt) :]) flat_data["label"].append(True) flat_data["prompt"].append(prompt) flat_data["completion"].append(sample["rejected"][len(prompt) :]) flat_data["label"].append(False) return dataset.from_dict(flat_data) if __name__ == "__main__": parser = HfArgumentParser((ScriptArguments, KTOConfig, ModelConfig)) script_args, kto_args, model_args = parser.parse_args_into_dataclasses() # 1. load a pretrained model model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path) model_ref = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # 2. Load the Anthropic Helpful-Harmless dataset train_dataset = get_hh("train", sanity_check=script_args.sanity_check) # 3. Load evaluation dataset eval_dataset = get_hh("test", sanity_check=script_args.sanity_check) # 4. initialize the KTO trainer kto_trainer = KTOTrainer( model, model_ref, args=kto_args, train_dataset=train_dataset, eval_dataset=eval_dataset, tokenizer=tokenizer, peft_config=get_peft_config(model_args), ) # 5. train kto_trainer.train()
trl/examples/scripts/kto.py/0
{ "file_path": "trl/examples/scripts/kto.py", "repo_id": "trl", "token_count": 1883 }
456
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import pytest import torch from datasets import Dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction from trl import RewardConfig, RewardTrainer from trl.trainer import compute_accuracy from .testing_utils import require_peft class RewardTrainerTester(unittest.TestCase): @classmethod def setUpClass(cls): cls.model_id = "trl-internal-testing/dummy-GPT2-correct-vocab" cls.model = AutoModelForSequenceClassification.from_pretrained(cls.model_id) cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_id) cls.tokenizer.pad_token = cls.tokenizer.eos_token def test_accuracy_metrics(self): dummy_eval_predictions = EvalPrediction(torch.FloatTensor([[0.1, 0.9], [0.9, 0.1]]), torch.LongTensor([0, 0])) accuracy = compute_accuracy(dummy_eval_predictions) assert accuracy["accuracy"] == 0.5 def test_reward_trainer(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = RewardConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, evaluation_strategy="steps", ) # fmt: off dummy_dataset_dict = { "input_ids_chosen": [ torch.LongTensor([0, 1, 2]), torch.LongTensor([1, 2]), torch.LongTensor([0, 1, 2]), torch.LongTensor([1, 2]), ], "attention_mask_chosen": [ torch.LongTensor([1, 1, 1]), torch.LongTensor([1, 0]), torch.LongTensor([1, 1, 1]), torch.LongTensor([1, 0]), ], "input_ids_rejected": [ torch.LongTensor([0, 2]), torch.LongTensor([1, 2, 0]), torch.LongTensor([0, 2]), torch.LongTensor([1, 2, 0]), ], "attention_mask_rejected": [ torch.LongTensor([1, 1]), torch.LongTensor([1, 1, 0]), torch.LongTensor([1, 1]), torch.LongTensor([1, 1, 1]), ], } # fmt: on dummy_dataset = Dataset.from_dict(dummy_dataset_dict) trainer = RewardTrainer( model=self.model, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None # check the params have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) # check the params have changed - ignore 0 biases if param.sum() != 0: assert not torch.equal(param, new_param) preds = trainer.predict(dummy_dataset) assert preds.predictions.shape == (4, 2) @require_peft def test_reward_trainer_peft(self): import peft from peft import LoraConfig, TaskType peft_version = peft.__version__ peft_config = LoraConfig( task_type=TaskType.SEQ_CLS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) with tempfile.TemporaryDirectory() as tmp_dir: training_args = RewardConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=6, remove_unused_columns=False, gradient_accumulation_steps=2, learning_rate=9e-1, evaluation_strategy="steps", ) # fmt: off dummy_dataset_dict = { "input_ids_chosen": [ torch.LongTensor([0, 1, 2]), torch.LongTensor([1, 2]), torch.LongTensor([0, 1, 2]), torch.LongTensor([1, 2]), ], "attention_mask_chosen": [ torch.LongTensor([1, 1, 1]), torch.LongTensor([1, 0]), torch.LongTensor([1, 1, 1]), torch.LongTensor([1, 0]), ], "input_ids_rejected": [ torch.LongTensor([0, 2]), torch.LongTensor([1, 2, 0]), torch.LongTensor([0, 2]), torch.LongTensor([1, 2, 0]), ], "attention_mask_rejected": [ torch.LongTensor([1, 1]), torch.LongTensor([1, 1, 0]), torch.LongTensor([1, 1]), torch.LongTensor([1, 1, 1]), ], } # fmt: on dummy_dataset = Dataset.from_dict(dummy_dataset_dict) trainer = RewardTrainer( model=self.model, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, peft_config=peft_config, ) previous_trainable_params = {} previous_non_trainable_params = {} # due to a change in the way the modules to save are dealt in PEFT. trainable_params_name = ["lora", "score"] if peft_version < "0.3.0" else ["lora", "modules_to_save"] # check gradients are not None for n, param in trainer.model.named_parameters(): if any(t in n for t in trainable_params_name): previous_trainable_params[n] = param.clone() else: previous_non_trainable_params[n] = param.clone() trainer.train() assert trainer.state.log_history[(-1)]["train_loss"] is not None # check the params have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) assert not torch.allclose(param, new_param, atol=1e-12, rtol=1e-12) # check the non trainable params have not changed for n, param in previous_non_trainable_params.items(): new_param = trainer.model.get_parameter(n) assert torch.allclose(param, new_param, atol=1e-12, rtol=1e-12) preds = trainer.predict(dummy_dataset) assert preds.predictions.shape == (4, 2) def test_reward_trainer_assert_value_error(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = RewardConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=1, remove_unused_columns=False, ) # fmt: off dummy_dataset_dict = { "input_ids_b": [ torch.LongTensor([0, 1, 2]), torch.LongTensor([1, 2]), torch.LongTensor([0, 1, 2]), torch.LongTensor([1, 2]), ], "attention_mask_c": [ torch.LongTensor([1, 1, 1]), torch.LongTensor([1, 0]), torch.LongTensor([1, 1, 1]), torch.LongTensor([1, 0]), ], "input_ids_f": [ torch.LongTensor([0, 2]), torch.LongTensor([1, 2, 0]), torch.LongTensor([0, 2]), torch.LongTensor([1, 2, 0]), ], "attention_mask_g": [ torch.LongTensor([1, 1]), torch.LongTensor([1, 1, 0]), torch.LongTensor([1, 1]), torch.LongTensor([1, 1, 1]), ], } # fmt: on dummy_dataset = Dataset.from_dict(dummy_dataset_dict) trainer = RewardTrainer( model=self.model, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, ) with pytest.raises(ValueError): trainer.train() training_args = RewardConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=1, remove_unused_columns=True, ) with self.assertWarns(UserWarning): trainer = RewardTrainer( model=self.model, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, ) def test_reward_trainer_margin(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = RewardConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, evaluation_strategy="steps", ) # fmt: off dummy_dataset_dict = { "input_ids_chosen": [ torch.LongTensor([0, 1, 2]), ], "attention_mask_chosen": [ torch.LongTensor([1, 1, 1]), ], "input_ids_rejected": [ torch.LongTensor([0, 2]), ], "attention_mask_rejected": [ torch.LongTensor([1, 1]), ], "margin": [ torch.FloatTensor([1.0]), ] } # fmt: on dummy_dataset = Dataset.from_dict(dummy_dataset_dict) trainer = RewardTrainer( model=self.model, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) batch = [dummy_dataset[0]] batch = trainer.data_collator(batch) loss, outputs = trainer.compute_loss(trainer.model, batch, return_outputs=True) l_val = -torch.nn.functional.logsigmoid( outputs["rewards_chosen"] - outputs["rewards_rejected"] - batch["margin"] ).mean() assert abs(loss - l_val) < 1e-6 def test_reward_trainer_tags(self): with tempfile.TemporaryDirectory() as tmp_dir: training_args = RewardConfig( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=3, remove_unused_columns=False, gradient_accumulation_steps=4, learning_rate=9e-1, evaluation_strategy="steps", ) # fmt: off dummy_dataset_dict = { "input_ids_chosen": [ torch.LongTensor([0, 1, 2]), torch.LongTensor([1, 2]), torch.LongTensor([0, 1, 2]), torch.LongTensor([1, 2]), ], "attention_mask_chosen": [ torch.LongTensor([1, 1, 1]), torch.LongTensor([1, 0]), torch.LongTensor([1, 1, 1]), torch.LongTensor([1, 0]), ], "input_ids_rejected": [ torch.LongTensor([0, 2]), torch.LongTensor([1, 2, 0]), torch.LongTensor([0, 2]), torch.LongTensor([1, 2, 0]), ], "attention_mask_rejected": [ torch.LongTensor([1, 1]), torch.LongTensor([1, 1, 0]), torch.LongTensor([1, 1]), torch.LongTensor([1, 1, 1]), ], } # fmt: on dummy_dataset = Dataset.from_dict(dummy_dataset_dict) trainer = RewardTrainer( model=self.model, args=training_args, tokenizer=self.tokenizer, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, ) assert trainer.model.model_tags == trainer._tag_names
trl/tests/test_reward_trainer.py/0
{ "file_path": "trl/tests/test_reward_trainer.py", "repo_id": "trl", "token_count": 7653 }
457
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os from copy import deepcopy from typing import Optional import torch import torch.nn as nn from accelerate import PartialState from huggingface_hub import hf_hub_download from huggingface_hub.utils import ( EntryNotFoundError, HFValidationError, LocalEntryNotFoundError, RepositoryNotFoundError, ) from safetensors.torch import load_file as safe_load_file from transformers import PreTrainedModel from ..import_utils import is_npu_available, is_peft_available, is_transformers_greater_than, is_xpu_available if is_peft_available(): from peft import ( PeftConfig, PeftModel, PeftModelForCausalLM, PeftModelForSeq2SeqLM, PromptLearningConfig, get_peft_model, prepare_model_for_kbit_training, ) if is_transformers_greater_than("4.33.0"): from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled else: from transformers.deepspeed import is_deepspeed_zero3_enabled LAYER_PATTERNS = [ "transformer.h.{layer}", "model.decoder.layers.{layer}", "gpt_neox.layers.{layer}", "model.layers.{layer}", ] class PreTrainedModelWrapper(nn.Module): r""" A wrapper class around a (`transformers.PreTrainedModel`) to be compatible with the (`~transformers.PreTrained`) class in order to keep some attributes and methods of the (`~transformers.PreTrainedModel`) class. Attributes: pretrained_model: (`transformers.PreTrainedModel`) The model to be wrapped. parent_class: (`transformers.PreTrainedModel`) The parent class of the model to be wrapped. supported_args: (`list`) The list of arguments that are supported by the wrapper class. """ transformers_parent_class = None supported_args = None supported_modules = ("v_head",) supported_rm_modules = ("score",) supported_pretrained_model_architectures = ( (PreTrainedModel) if not is_peft_available() else (PreTrainedModel, PeftModelForCausalLM, PeftModelForSeq2SeqLM) ) def __init__( self, pretrained_model=None, score_module=None, supports_rm_adapter=False, rm_adapter_name=None, **kwargs ): super().__init__() self.pretrained_model = pretrained_model self.config = pretrained_model.config self.prepare_inputs_for_generation = pretrained_model.prepare_inputs_for_generation self.is_loaded_in_8bit = getattr(pretrained_model, "is_loaded_in_8bit", False) self.is_loaded_in_4bit = getattr(pretrained_model, "is_loaded_in_4bit", False) self.is_sequential_parallel = False if hasattr(pretrained_model, "gradient_checkpointing_disable"): self.gradient_checkpointing_disable = pretrained_model.gradient_checkpointing_disable if hasattr(pretrained_model, "gradient_checkpointing_enable"): self.gradient_checkpointing_enable = pretrained_model.gradient_checkpointing_enable self.supports_rm_adapter = supports_rm_adapter self.rm_adapter_name = rm_adapter_name self.policy_adapter_name = "default" if score_module is not None: self.score = score_module @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates a new model from a pretrained model from `transformers`. The pretrained model is loaded using the `from_pretrained` method of the `transformers.PreTrainedModel` class. The arguments that are specific to the `transformers.PreTrainedModel` class are passed along this method and filtered out from the `kwargs` argument. Args: pretrained_model_name_or_path (`str` or `transformers.PreTrainedModel`): The path to the pretrained model or its name. *model_args (`list`, *optional*)): Additional positional arguments passed along to the underlying model's `from_pretrained` method. **kwargs (`dict`, *optional*): Additional keyword arguments passed along to the underlying model's `from_pretrained` method. We also pre-process the kwargs to extract the arguments that are specific to the `transformers.PreTrainedModel` class and the arguments that are specific to trl models. The kwargs also support `prepare_model_for_kbit_training` arguments from `peft` library. """ if kwargs is not None: peft_config = kwargs.pop("peft_config", None) reward_adapter = kwargs.pop("reward_adapter", None) reward_adapter_name = kwargs.pop("reward_adapter_name", "reward_adapter") is_trainable = kwargs.pop("is_trainable", False) trl_model_args, pretrained_kwargs, peft_quantization_kwargs = cls._split_kwargs(kwargs) token = pretrained_kwargs.get("token", None) else: peft_config = None is_trainable = False trl_model_args = {} pretrained_kwargs = {} peft_quantization_kwargs = {} token = None if reward_adapter is not None and not isinstance(reward_adapter, str): raise ValueError( "The `reward_adapter` argument should be a string representing the name of local path or the Hub id to the Reward Modeling adapter." ) is_peft_model = False current_device = cls._get_current_device() if isinstance(pretrained_model_name_or_path, str): is_loaded_in_8bit = pretrained_kwargs["load_in_8bit"] if "load_in_8bit" in pretrained_kwargs else False is_loaded_in_4bit = pretrained_kwargs["load_in_4bit"] if "load_in_4bit" in pretrained_kwargs else False else: is_loaded_in_8bit = getattr(pretrained_model_name_or_path, "is_loaded_in_8bit", False) is_loaded_in_4bit = getattr(pretrained_model_name_or_path, "is_loaded_in_4bit", False) if (is_loaded_in_8bit or is_loaded_in_4bit) and "device_map" not in pretrained_kwargs: # warn users logging.warning( "The `device_map` argument is not provided. We will override the device_map argument." " to set the entire" " model on the current device. If you want to set the model on multiple devices, please provide" " a custom `device_map` argument." ) pretrained_kwargs["device_map"] = {"": current_device} if is_peft_available() and peft_config is not None and not isinstance(peft_config, PeftConfig): raise ValueError("The `peft_config` argument should be an instance of `peft.PeftConfig` class.") # First, load the pre-trained model using the parent-class # either `AutoModelForCausalLM` or `AutoModelForSeq2SeqLM` if isinstance(pretrained_model_name_or_path, str): if is_peft_available(): try: # If there is a trained peft adapter in the hub, load its config. remote_adapter_config = hf_hub_download( pretrained_model_name_or_path, "adapter_config.json", token=token, ) except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError): remote_adapter_config = None else: remote_adapter_config = None local_adapter_present = os.path.exists(os.path.join(pretrained_model_name_or_path, "adapter_config.json")) if (local_adapter_present or remote_adapter_config is not None) and is_peft_available(): if peft_config is not None: logging.warning( "`peft_config` argument ignored since a peft config file was found in " f"{pretrained_model_name_or_path}" ) # Load the trained peft adapter config if local_adapter_present: trained_adapter_config = PeftConfig.from_pretrained(pretrained_model_name_or_path) else: remote_adapter_dir = os.path.dirname(remote_adapter_config) trained_adapter_config = PeftConfig.from_pretrained(remote_adapter_dir) # Load the pretrained base model pretrained_model = cls.transformers_parent_class.from_pretrained( trained_adapter_config.base_model_name_or_path, *model_args, **pretrained_kwargs ) # Wrap the pretrained model with the trained peft adapter pretrained_model = PeftModel.from_pretrained( pretrained_model, pretrained_model_name_or_path, is_trainable=is_trainable ) logging.info("Trained peft adapter loaded") else: pretrained_model = cls.transformers_parent_class.from_pretrained( pretrained_model_name_or_path, *model_args, **pretrained_kwargs ) if peft_config is not None: # Initialize a new peft adapter with the given config if is_loaded_in_8bit or is_loaded_in_4bit: pretrained_model = prepare_model_for_kbit_training( pretrained_model, **peft_quantization_kwargs, ) pretrained_model = get_peft_model(pretrained_model, peft_config) logging.info("peft adapter initialised") elif isinstance(pretrained_model_name_or_path, cls.supported_pretrained_model_architectures): pretrained_model = pretrained_model_name_or_path if peft_config is not None and isinstance(pretrained_model, PreTrainedModel): # Initialize a new peft adapter with the given config if is_loaded_in_8bit or is_loaded_in_4bit: pretrained_model = prepare_model_for_kbit_training( pretrained_model, **peft_quantization_kwargs, ) pretrained_model = get_peft_model(pretrained_model, peft_config) logging.info("peft adapter initialised") else: raise ValueError( "pretrained_model_name_or_path should be a string or a PreTrainedModel, " f"but is {type(pretrained_model_name_or_path)}" ) if is_peft_available(): if isinstance(pretrained_model, PeftModel): is_peft_model = True # for backward compatibility if hasattr(pretrained_model, "active_peft_config") and isinstance( pretrained_model.active_peft_config, PromptLearningConfig ): raise ValueError("PromptLearningConfig is not supported for PPO training.") # Add reward modeling adapter if specified if not is_peft_model and reward_adapter is not None: raise ValueError("reward_adapter can only be used with a PeftModel. ") elif is_peft_model and reward_adapter is not None: score_module = cls.add_and_load_reward_modeling_adapter( pretrained_model, reward_adapter, reward_adapter_name, token=token ) multi_adapter_args = { "score_module": score_module, "supports_rm_adapter": True, "rm_adapter_name": reward_adapter_name, } else: multi_adapter_args = {"supports_rm_adapter": False} # Then, create the full model by instantiating the wrapper class model = cls(pretrained_model, **multi_adapter_args, **trl_model_args) # if resume_training, load the state_dict again - this is ok since the # state_dict is removed from the model after loading it. is_resuming_training = True if isinstance(pretrained_model_name_or_path, str): safe_filename = os.path.join(pretrained_model_name_or_path, "model.safetensors") filename = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") sharded_index_filename = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin.index.json") safe_sharded_index_filename = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json") is_sharded = False use_safe = os.path.exists(safe_filename) if not (os.path.exists(filename) or os.path.exists(safe_filename)): # Try with `pytorch_model.bin` filename, files_to_download, is_sharded, is_resuming_training = cls._get_checkpoint_from_hub( pretrained_model, pretrained_model_name_or_path, sharded_index_filename, token=token, ) # Try with safetensors if filename is None and files_to_download is None: safe_filename, files_to_download, is_sharded, is_resuming_training = cls._get_checkpoint_from_hub( pretrained_model, pretrained_model_name_or_path, safe_sharded_index_filename, token=token, model_name="model.safetensors", model_index_name="model.safetensors.index.json", ) use_safe = True else: use_safe = False loading_func = safe_load_file if use_safe else torch.load load_kwargs = {} if use_safe else {"map_location": "cpu"} if is_resuming_training: if is_sharded: # download each file and add it to the state_dict state_dict = {} for shard_file in files_to_download: filename = hf_hub_download( pretrained_model_name_or_path, shard_file, token=token, ) state_dict.update(loading_func(filename, **load_kwargs)) else: state_dict = loading_func(filename if not use_safe else safe_filename, **load_kwargs) else: state_dict = pretrained_model_name_or_path.state_dict() model.is_peft_model = is_peft_model model.current_device = current_device if is_resuming_training: model.post_init(state_dict=state_dict) return model @classmethod def _get_checkpoint_from_hub( cls, pretrained_model, pretrained_model_name_or_path, index_filename, token=None, model_name="pytorch_model.bin", model_index_name="pytorch_model.bin.index.json", ): files_to_download = None filename = None is_resuming_training = True is_sharded = False try: filename = hf_hub_download( pretrained_model_name_or_path, model_name, token=token, ) # sharded except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError): if os.path.exists(index_filename): index_file_name = index_filename else: try: index_file_name = hf_hub_download( pretrained_model_name_or_path, model_index_name, token=token, ) except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError): # not continue training, do not have v_head weight is_resuming_training = False logging.warning( f"A {type(pretrained_model)} model is loaded from '{pretrained_model_name_or_path}', " f"and no v_head weight is found. This IS expected if you are not resuming PPO training." ) # load json if is_resuming_training: with open(index_file_name) as f: index = json.load(f) # check filename with `v_head` or any known extra module: files_to_download = set() for k, v in index["weight_map"].items(): if any(module in k for module in cls.supported_modules): files_to_download.add(v) is_sharded = True return filename, files_to_download, is_sharded, is_resuming_training @classmethod def _get_current_device(cls): r""" Get the current device. For GPU, we return the local process index using the `accelerate.PartialState` object to handle corner cases when running scripts in distributed environments. Returns: current_device (`Union[int, str]`): The current device. """ state = PartialState() if is_xpu_available(): return f"xpu:{state.local_process_index}" elif is_npu_available(): return f"npu:{state.local_process_index}" else: return state.local_process_index if torch.cuda.is_available() else "cpu" @classmethod def _split_kwargs(cls, kwargs): """ Separate the kwargs from the arguments that we support inside `supported_args` and the ones that we don't. """ check_peft_kwargs = False if is_peft_available(): from peft import prepare_model_for_kbit_training check_peft_kwargs = True supported_kwargs = {} unsupported_kwargs = {} peft_kwargs = {} for key, value in kwargs.items(): if key in cls.supported_args: supported_kwargs[key] = value else: unsupported_kwargs[key] = value if check_peft_kwargs: if key in prepare_model_for_kbit_training.__code__.co_varnames: peft_kwargs[key] = value if key in unsupported_kwargs: unsupported_kwargs.pop(key) return supported_kwargs, unsupported_kwargs, peft_kwargs @classmethod def add_and_load_reward_modeling_adapter( cls, pretrained_model, adapter_model_id, adapter_name="reward_model_adapter", token=None ): r""" Add and load a reward modeling adapter. This method can only be used if the model is a `PeftModel` and if you have initialized the model with the `reward_modeling_adapter_id` argument, pointing to the id of the reward modeling adapter. The latest needs also to contain the score head in order to produce the reward. """ pretrained_model.load_adapter(adapter_model_id, adapter_name, is_trainable=False) pretrained_model.train() filename = os.path.join(adapter_model_id, "adapter_model.bin") safe_loading = False if not os.path.exists(filename): try: local_filename = hf_hub_download( adapter_model_id, "adapter_model.bin", token=token, ) except Exception: filename = os.path.join(adapter_model_id, "adapter_model.safetensors") safe_loading = True if not os.path.exists(filename): try: local_filename = hf_hub_download( adapter_model_id, "adapter_model.safetensors", token=token, ) except Exception as exc: raise ValueError( "Could not find adapter model in the Hub, " "make sure you have the correct adapter model id." ) from exc else: local_filename = filename else: local_filename = filename loading_func = safe_load_file if safe_loading else torch.load load_kwargs = {} if safe_loading else {"map_location": "cpu"} adapter_state_dict = loading_func(local_filename, **load_kwargs) for score_name_candidate in cls.supported_rm_modules: if any(score_name_candidate in name for name in adapter_state_dict.keys()): score_name = score_name_candidate # we have found the correct head name and can break break score_dict = {} for name, param in adapter_state_dict.items(): if score_name in name: key_name = ".".join(name.split(".")[-1:]) score_dict[key_name] = param.to(cls._get_current_device()) num_labels, hidden_dim = score_dict["weight"].shape has_bias = any("bias" in name for name in adapter_state_dict.keys()) score = nn.Linear(hidden_dim, num_labels, bias=has_bias).to( device=cls._get_current_device(), dtype=pretrained_model.dtype, ) score.load_state_dict(score_dict) for param in score.parameters(): param.requires_grad = False return score def push_to_hub(self, *args, **kwargs): r""" Push the pretrained model to the hub. This method is a wrapper around `transformers.PreTrainedModel.push_to_hub`. Please refer to the documentation of `transformers.PreTrainedModel.push_to_hub` for more information. Args: *args (`list`, *optional*): Positional arguments passed along to the underlying model's `push_to_hub` method. **kwargs (`dict`, *optional*): Keyword arguments passed along to the underlying model's `push_to_hub` method. """ raise NotImplementedError def save_pretrained(self, *args, **kwargs): r""" Save the pretrained model to a directory. This method is a wrapper around `transformers.PreTrainedModel.save_pretrained`. Please refer to the documentation of `transformers.PreTrainedModel.save_pretrained` for more information. Args: *args (`list`, *optional*): Positional arguments passed along to the underlying model's `save_pretrained` method. **kwargs (`dict`, *optional*): Keyword arguments passed along to the underlying model's `save_pretrained` method. """ state_dict = kwargs.get("state_dict") if state_dict is None: state_dict = self.state_dict() kwargs["state_dict"] = state_dict # if it is a peft model only save the `v_head` state_dict and # pop the `state_dict` from the kwargs to avoid slient bugs with `peft` if self.is_peft_model: save_path = args[0] save_path = os.path.join(save_path, "pytorch_model.bin") torch.save(state_dict, save_path) _ = kwargs.pop("state_dict", None) return self.pretrained_model.save_pretrained(*args, **kwargs) def state_dict(self, *args, **kwargs): r""" Return the state_dict of the pretrained model. """ raise NotImplementedError def post_init(self, *args, **kwargs): r""" Post initialization method. This method is called after the model is instantiated and loaded from a checkpoint. It can be used to perform additional operations such as loading the state_dict. """ raise NotImplementedError def compute_reward_score(self, input_ids, attention_mask=None, **kwargs): r""" Computes the reward score for a given input. The method has first to enable the adapter and then compute the reward score. After that the model disables the reward modeling adapter and enables the default ppo adapter again. """ if not self.supports_rm_adapter: raise ValueError("This model does not support reward modeling adapter.") # enable rm adapter self.pretrained_model.set_adapter(self.rm_adapter_name) self.pretrained_model.eval() with torch.no_grad(): base_model_output = self.pretrained_model( input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True, return_dict=True, **kwargs, ) last_hidden_states = base_model_output.hidden_states[-1] scores = self.score(last_hidden_states) self.pretrained_model.set_adapter(self.policy_adapter_name) self.pretrained_model.eval() return scores def create_reference_model( model: PreTrainedModelWrapper, num_shared_layers: Optional[int] = None, pattern: Optional[str] = None ) -> PreTrainedModelWrapper: """ Creates a static reference copy of a model. Note that model will be in `.eval()` mode. Args: model (`PreTrainedModelWrapper`): The model to be copied. num_shared_layers (`int`, *optional*): The number of initial layers that are shared between both models and kept frozen. pattern (`str`, *optional*): The shared layers are selected with a string pattern (e.g. "transformer.h.{layer}" for GPT2) and if a custom pattern is necessary it can be passed here. Returns `PreTrainedModelWrapper` """ if is_deepspeed_zero3_enabled(): raise ValueError( "DeepSpeed ZeRO-3 is enabled and is not compatible with `create_reference_model()`. Please instantiate your reference model directly with `AutoCausalLM.from_pretrained()`." ) parameter_names = [n for n, _ in model.named_parameters()] ref_model = deepcopy(model) # if no layers are shared, return copy of model if num_shared_layers is None: for param_name in parameter_names: param = ref_model.get_parameter(param_name) param.requires_grad = False return ref_model.eval() # identify layer name pattern if pattern is not None: pattern = pattern.format(layer=num_shared_layers) else: for pattern_candidate in LAYER_PATTERNS: pattern_candidate = pattern_candidate.format(layer=num_shared_layers) if any(pattern_candidate in name for name in parameter_names): pattern = pattern_candidate break if pattern is None: raise ValueError("Layer pattern could not be matched.") # divide parameters in shared and unshared parameter lists shared_param_list = [] unshared_param_list = [] shared_parameter = True for name, _param in model.named_parameters(): if pattern in name: shared_parameter = False if shared_parameter: shared_param_list.append(name) else: unshared_param_list.append(name) # create reference of the original parameter if they are shared for param_name in shared_param_list: param = model.get_parameter(param_name) param.requires_grad = False _ref_param = ref_model.get_parameter(param_name) # for all other parameters just make sure they don't use gradients for param_name in unshared_param_list: param = ref_model.get_parameter(param_name) param.requires_grad = False if pattern is not None and len(unshared_param_list) == 0: logging.warning("Pattern passed or found, but no layers matched in the model. Check for a typo.") return ref_model.eval()
trl/trl/models/modeling_base.py/0
{ "file_path": "trl/trl/models/modeling_base.py", "repo_id": "trl", "token_count": 13121 }
458
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional from transformers import TrainingArguments @dataclass class RewardConfig(TrainingArguments): """ RewardConfig collects all training arguments related to the [`RewardTrainer`] class. Using [`HfArgumentParser`] we can turn this class into [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the command line. Parameters: max_length (`int`, *optional*, defaults to `None`): The maximum length of the sequences in the batch. This argument is required if you want to use the default data collator. gradient_checkpointing (`bool`, *optional*, defaults to `True`): If True, use gradient checkpointing to save memory at the expense of slower backward pass. """ max_length: Optional[int] = None """The maximum length of the sequences in the batch. This argument is required if you want to use the default data collator."""
trl/trl/trainer/reward_config.py/0
{ "file_path": "trl/trl/trainer/reward_config.py", "repo_id": "trl", "token_count": 461 }
459
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Launching Multi-GPU Training from a Jupyter Environment This tutorial teaches you how to fine tune a computer vision model with 🤗 Accelerate from a Jupyter Notebook on a distributed system. You will also learn how to setup a few requirements needed for ensuring your environment is configured properly, your data has been prepared properly, and finally how to launch training. <Tip> This tutorial is also available as a Jupyter Notebook [here](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_cv_example.ipynb) </Tip> ## Configuring the Environment Before any training can be performed, a 🤗 Accelerate config file must exist in the system. Usually this can be done by running the following in a terminal and answering the prompts: ```bash accelerate config ``` However, if general defaults are fine and you are *not* running on a TPU, 🤗Accelerate has a utility to quickly write your GPU configuration into a config file via [`utils.write_basic_config`]. The following code will restart Jupyter after writing the configuration, as CUDA code was called to perform this. <Tip warning={true}> CUDA can't be initialized more than once on a multi-GPU system. It's fine to debug in the notebook and have calls to CUDA, but in order to finally train a full cleanup and restart will need to be performed. </Tip> ```python import os from accelerate.utils import write_basic_config write_basic_config() # Write a config file os._exit(00) # Restart the notebook ``` ## Preparing the Dataset and Model Next you should prepare your dataset. As mentioned at earlier, great care should be taken when preparing the `DataLoaders` and model to make sure that **nothing** is put on *any* GPU. If you do, it is recommended to put that specific code into a function and call that from within the notebook launcher interface, which will be shown later. Make sure the dataset is downloaded based on the directions [here](https://github.com/huggingface/accelerate/tree/main/examples#simple-vision-example) ```python import os, re, torch, PIL import numpy as np from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator from accelerate.utils import set_seed from timm import create_model ``` First you need to create a function to extract the class name based on a filename: ```python import os data_dir = "../../images" fnames = os.listdir(data_dir) fname = fnames[0] print(fname) ``` ```python out beagle_32.jpg ``` In the case here, the label is `beagle`. Using regex you can extract the label from the filename: ```python import re def extract_label(fname): stem = fname.split(os.path.sep)[-1] return re.search(r"^(.*)_\d+\.jpg$", stem).groups()[0] ``` ```python extract_label(fname) ``` And you can see it properly returned the right name for our file: ```python out "beagle" ``` Next a `Dataset` class should be made to handle grabbing the image and the label: ```python class PetsDataset(Dataset): def __init__(self, file_names, image_transform=None, label_to_id=None): self.file_names = file_names self.image_transform = image_transform self.label_to_id = label_to_id def __len__(self): return len(self.file_names) def __getitem__(self, idx): fname = self.file_names[idx] raw_image = PIL.Image.open(fname) image = raw_image.convert("RGB") if self.image_transform is not None: image = self.image_transform(image) label = extract_label(fname) if self.label_to_id is not None: label = self.label_to_id[label] return {"image": image, "label": label} ``` Now to build the dataset. Outside the training function you can find and declare all the filenames and labels and use them as references inside the launched function: ```python fnames = [os.path.join("../../images", fname) for fname in fnames if fname.endswith(".jpg")] ``` Next gather all the labels: ```python all_labels = [extract_label(fname) for fname in fnames] id_to_label = list(set(all_labels)) id_to_label.sort() label_to_id = {lbl: i for i, lbl in enumerate(id_to_label)} ``` Next, you should make a `get_dataloaders` function that will return your built dataloaders for you. As mentioned earlier, if data is automatically sent to the GPU or a TPU device when building your `DataLoaders`, they must be built using this method. ```python def get_dataloaders(batch_size: int = 64): "Builds a set of dataloaders with a batch_size" random_perm = np.random.permutation(len(fnames)) cut = int(0.8 * len(fnames)) train_split = random_perm[:cut] eval_split = random_perm[cut:] # For training a simple RandomResizedCrop will be used train_tfm = Compose([RandomResizedCrop((224, 224), scale=(0.5, 1.0)), ToTensor()]) train_dataset = PetsDataset([fnames[i] for i in train_split], image_transform=train_tfm, label_to_id=label_to_id) # For evaluation a deterministic Resize will be used eval_tfm = Compose([Resize((224, 224)), ToTensor()]) eval_dataset = PetsDataset([fnames[i] for i in eval_split], image_transform=eval_tfm, label_to_id=label_to_id) # Instantiate dataloaders train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=batch_size * 2, num_workers=4) return train_dataloader, eval_dataloader ``` Finally, you should import the scheduler to be used later: ```python from torch.optim.lr_scheduler import CosineAnnealingLR ``` ## Writing the Training Function Now you can build the training loop. [`notebook_launcher`] works by passing in a function to call that will be ran across the distributed system. Here is a basic training loop for the animal classification problem: <Tip> The code has been split up to allow for explanations on each section. A full version that can be copy and pasted will be available at the end </Tip> ```python def training_loop(mixed_precision="fp16", seed: int = 42, batch_size: int = 64): set_seed(seed) accelerator = Accelerator(mixed_precision=mixed_precision) ``` First you should set the seed and create an [`Accelerator`] object as early in the training loop as possible. <Tip warning={true}> If training on the TPU, your training loop should take in the model as a parameter and it should be instantiated outside of the training loop function. See the [TPU best practices](../concept_guides/training_tpu) to learn why </Tip> Next you should build your dataloaders and create your model: ```python train_dataloader, eval_dataloader = get_dataloaders(batch_size) model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id)) ``` <Tip> You build the model here so that the seed also controls the new weight initialization </Tip> As you are performing transfer learning in this example, the encoder of the model starts out frozen so the head of the model can be trained only initially: ```python for param in model.parameters(): param.requires_grad = False for param in model.get_classifier().parameters(): param.requires_grad = True ``` Normalizing the batches of images will make training a little faster: ```python mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None] std = torch.tensor(model.default_cfg["std"])[None, :, None, None] ``` To make these constants available on the active device, you should set it to the Accelerator's device: ```python mean = mean.to(accelerator.device) std = std.to(accelerator.device) ``` Next instantiate the rest of the PyTorch classes used for training: ```python optimizer = torch.optim.Adam(params=model.parameters(), lr=3e-2 / 25) lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=3e-2, epochs=5, steps_per_epoch=len(train_dataloader)) ``` Before passing everything to [`~Accelerator.prepare`]. <Tip> There is no specific order to remember, you just need to unpack the objects in the same order you gave them to the prepare method. </Tip> ```python model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) ``` Now train the model: ```python for epoch in range(5): model.train() for batch in train_dataloader: inputs = (batch["image"] - mean) / std outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, batch["label"]) accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() ``` The evaluation loop will look slightly different compared to the training loop. The number of elements passed as well as the overall total accuracy of each batch will be added to two constants: ```python model.eval() accurate = 0 num_elems = 0 ``` Next you have the rest of your standard PyTorch loop: ```python for batch in eval_dataloader: inputs = (batch["image"] - mean) / std with torch.no_grad(): outputs = model(inputs) predictions = outputs.argmax(dim=-1) ``` Before finally the last major difference. When performing distributed evaluation, the predictions and labels need to be passed through [`~Accelerator.gather`] so that all of the data is available on the current device and a properly calculated metric can be achieved: ```python accurate_preds = accelerator.gather(predictions) == accelerator.gather(batch["label"]) num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() ``` Now you just need to calculate the actual metric for this problem, and you can print it on the main process using [`~Accelerator.print`]: ```python eval_metric = accurate.item() / num_elems accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}") ``` A full version of this training loop is available below: ```python def training_loop(mixed_precision="fp16", seed: int = 42, batch_size: int = 64): set_seed(seed) # Initialize accelerator accelerator = Accelerator(mixed_precision=mixed_precision) # Build dataloaders train_dataloader, eval_dataloader = get_dataloaders(batch_size) # Instantiate the model (you build the model here so that the seed also controls new weight initaliziations) model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id)) # Freeze the base model for param in model.parameters(): param.requires_grad = False for param in model.get_classifier().parameters(): param.requires_grad = True # You can normalize the batches of images to be a bit faster mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None] std = torch.tensor(model.default_cfg["std"])[None, :, None, None] # To make these constants available on the active device, set it to the accelerator device mean = mean.to(accelerator.device) std = std.to(accelerator.device) # Instantiate the optimizer optimizer = torch.optim.Adam(params=model.parameters(), lr=3e-2 / 25) # Instantiate the learning rate scheduler lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=3e-2, epochs=5, steps_per_epoch=len(train_dataloader)) # Prepare everything # There is no specific order to remember, you just need to unpack the objects in the same order you gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now you train the model for epoch in range(5): model.train() for batch in train_dataloader: inputs = (batch["image"] - mean) / std outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, batch["label"]) accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() accurate = 0 num_elems = 0 for batch in eval_dataloader: inputs = (batch["image"] - mean) / std with torch.no_grad(): outputs = model(inputs) predictions = outputs.argmax(dim=-1) accurate_preds = accelerator.gather(predictions) == accelerator.gather(batch["label"]) num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() eval_metric = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}") ``` ## Using the notebook_launcher All that's left is to use the [`notebook_launcher`]. You pass in the function, the arguments (as a tuple), and the number of processes to train on. (See the [documentation](../package_reference/launchers) for more information) ```python from accelerate import notebook_launcher ``` ```python args = ("fp16", 42, 64) notebook_launcher(training_loop, args, num_processes=2) ``` In the case of running on multiple nodes, you need to set up a Jupyter session at each node and run the launching cell at the same time. For an environment containing 2 nodes (computers) with 8 GPUs each and the main computer with an IP address of "172.31.43.8", it would look like so: ```python notebook_launcher(training_loop, args, master_addr="172.31.43.8", node_rank=0, num_nodes=2, num_processes=8) ``` And in the second Jupyter session on the other machine: <Tip> Notice how the `node_rank` has changed </Tip> ```python notebook_launcher(training_loop, args, master_addr="172.31.43.8", node_rank=1, num_nodes=2, num_processes=8) ``` In the case of running on the TPU, it would look like so: ```python model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id)) args = (model, "fp16", 42, 64) notebook_launcher(training_loop, args, num_processes=8) ``` As it's running it will print the progress as well as state how many devices you ran on. This tutorial was ran with two GPUs: ```python out Launching training on 2 GPUs. epoch 0: 88.12 epoch 1: 91.73 epoch 2: 92.58 epoch 3: 93.90 epoch 4: 94.71 ``` And that's it! ## Debugging A common issue when running the `notebook_launcher` is receiving a CUDA has already been initialized issue. This usually stems from an import or prior code in the notebook that makes a call to the PyTorch `torch.cuda` sublibrary. To help narrow down what went wrong, you can launch the `notebook_launcher` with `ACCELERATE_DEBUG_MODE=yes` in your environment and an additional check will be made when spawning that a regular process can be created and utilize CUDA without issue. (Your CUDA code can still be ran afterwards). ## Conclusion This notebook showed how to perform distributed training from inside of a Jupyter Notebook. Some key notes to remember: - Make sure to save any code that use CUDA (or CUDA imports) for the function passed to [`notebook_launcher`] - Set the `num_processes` to be the number of devices used for training (such as number of GPUs, CPUs, TPUs, etc) - If using the TPU, declare your model outside the training loop function
accelerate/docs/source/basic_tutorials/notebook.md/0
{ "file_path": "accelerate/docs/source/basic_tutorials/notebook.md", "repo_id": "accelerate", "token_count": 5538 }
0
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # The Command Line Below is a list of all the available commands 🤗 Accelerate with their parameters ## accelerate config **Command**: `accelerate config` or `accelerate-config` Launches a series of prompts to create and save a `default_config.yml` configuration file for your training system. Should always be ran first on your machine. **Usage**: ```bash accelerate config [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit ## accelerate config default **Command**: `accelerate config default` or `accelerate-config default` Create a default config file for Accelerate with only a few flags set. **Usage**: ```bash accelerate config default [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit * `--mixed_precision {no,fp16,bf16}` (`str`) -- Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later. ## accelerate config update **Command**: `accelerate config update` or `accelerate-config update` Update an existing config file with the latest defaults while maintaining the old configuration. **Usage**: ```bash accelerate config update [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to the config file to update. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit ## accelerate env **Command**: `accelerate env` or `accelerate-env` or `python -m accelerate.commands.env` Lists the contents of the passed 🤗 Accelerate configuration file. Should always be used when opening an issue on the [GitHub repository](https://github.com/huggingface/accelerate). **Usage**: ```bash accelerate env [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit ## accelerate launch **Command**: `accelerate launch` or `accelerate-launch` or `python -m accelerate.commands.launch` Launches a specified script on a distributed system with the right parameters. **Usage**: ```bash accelerate launch [arguments] {training_script} --{training_script-argument-1} --{training_script-argument-2} ... ``` **Positional Arguments**: - `{training_script}` -- The full path to the script to be launched in parallel - `--{training_script-argument-1}` -- Arguments of the training script **Optional Arguments**: * `-h`, `--help` (`bool`) -- Show a help message and exit * `--config_file CONFIG_FILE` (`str`)-- The config file to use for the default values in the launching script. * `-m`, `--module` (`bool`) -- Change each process to interpret the launch script as a Python module, executing with the same behavior as 'python -m'. * `--no_python` (`bool`) -- Skip prepending the training script with 'python' - just execute it directly. Useful when the script is not a Python script. * `--debug` (`bool`) -- Whether to print out the torch.distributed stack trace when something fails. * `-q`, `--quiet` (`bool`) -- Silence subprocess errors from the launch stack trace to only show the relevant tracebacks. (Only applicable to DeepSpeed and single-process configurations). The rest of these arguments are configured through `accelerate config` and are read in from the specified `--config_file` (or default configuration) for their values. They can also be passed in manually. **Hardware Selection Arguments**: * `--cpu` (`bool`) -- Whether or not to force the training on the CPU. * `--multi_gpu` (`bool`) -- Whether or not this should launch a distributed GPU training. * `--tpu` (`bool`) -- Whether or not this should launch a TPU training. * `--ipex` (`bool`) -- Whether or not this should launch an Intel Pytorch Extension (IPEX) training. **Resource Selection Arguments**: The following arguments are useful for fine-tuning how available hardware should be used * `--mixed_precision {no,fp16,bf16}` (`str`) -- Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later. * `--num_processes NUM_PROCESSES` (`int`) -- The total number of processes to be launched in parallel. * `--num_machines NUM_MACHINES` (`int`) -- The total number of machines used in this training. * `--num_cpu_threads_per_process NUM_CPU_THREADS_PER_PROCESS` (`int`) -- The number of CPU threads per process. Can be tuned for optimal performance. **Training Paradigm Arguments**: The following arguments are useful for selecting which training paradigm to use. * `--use_deepspeed` (`bool`) -- Whether or not to use DeepSpeed for training. * `--use_fsdp` (`bool`) -- Whether or not to use FullyShardedDataParallel for training. * `--use_megatron_lm` (`bool`) -- Whether or not to use Megatron-LM for training. * `--use_xpu` (`bool`) -- Whether to use IPEX plugin to speed up training on XPU specifically. **Distributed GPU Arguments**: The following arguments are only useful when `multi_gpu` is passed or multi-gpu training is configured through `accelerate config`: * `--gpu_ids` (`str`) -- What GPUs (by id) should be used for training on this machine as a comma-seperated list * `--same_network` (`bool`) -- Whether all machines used for multinode training exist on the same local network. * `--machine_rank MACHINE_RANK` (`int`) -- The rank of the machine on which this script is launched. * `--main_process_ip MAIN_PROCESS_IP` (`str`) -- The IP address of the machine of rank 0. * `--main_process_port MAIN_PROCESS_PORT` (`int`) -- The port to use to communicate with the machine of rank 0. * `--rdzv_backend` (`str`) -- The rendezvous method to use, such as "static" or "c10d" * `--rdzv_conf` (`str`) -- Additional rendezvous configuration (<key1>=<value1>,<key2>=<value2>,...). * `--max_restarts` (`int`) -- Maximum number of worker group restarts before failing. * `--monitor_interval` (`float`) -- Interval, in seconds, to monitor the state of workers. **TPU Arguments**: The following arguments are only useful when `tpu` is passed or TPU training is configured through `accelerate config`: * `--main_training_function MAIN_TRAINING_FUNCTION` (`str`) -- The name of the main function to be executed in your script. * `--downcast_bf16` (`bool`) -- Whether when using bf16 precision on TPUs if both float and double tensors are cast to bfloat16 or if double tensors remain as float32. **DeepSpeed Arguments**: The following arguments are only useful when `use_deepspeed` is passed or `deepspeed` is configured through `accelerate config`: * `--deepspeed_config_file` (`str`) -- DeepSpeed config file. * `--zero_stage` (`int`) -- DeepSpeed's ZeRO optimization stage. * `--offload_optimizer_device` (`str`) -- Decides where (none|cpu|nvme) to offload optimizer states. * `--offload_param_device` (`str`) -- Decides where (none|cpu|nvme) to offload parameters. * `--gradient_accumulation_steps` (`int`) -- No of gradient_accumulation_steps used in your training script. * `--gradient_clipping` (`float`) -- Gradient clipping value used in your training script. * `--zero3_init_flag` (`str`) -- Decides Whether (true|false) to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with DeepSpeed ZeRO Stage-3. * `--zero3_save_16bit_model` (`str`) -- Decides Whether (true|false) to save 16-bit model weights when using ZeRO Stage-3. Only applicable with DeepSpeed ZeRO Stage-3. * `--deepspeed_hostfile` (`str`) -- DeepSpeed hostfile for configuring multi-node compute resources. * `--deepspeed_exclusion_filter` (`str`) -- DeepSpeed exclusion filter string when using mutli-node setup. * `--deepspeed_inclusion_filter` (`str`) -- DeepSpeed inclusion filter string when using mutli-node setup. * `--deepspeed_multinode_launcher` (`str`) -- DeepSpeed multi-node launcher to use. **Fully Sharded Data Parallelism Arguments**: The following arguments are only useful when `use_fsdp` is passed or Fully Sharded Data Parallelism is configured through `accelerate config`: * `--fsdp_offload_params` (`str`) -- Decides Whether (true|false) to offload parameters and gradients to CPU. * `--fsdp_min_num_params` (`int`) -- FSDP's minimum number of parameters for Default Auto Wrapping. * `--fsdp_sharding_strategy` (`int`) -- FSDP's Sharding Strategy. * `--fsdp_auto_wrap_policy` (`str`) -- FSDP's auto wrap policy. * `--fsdp_transformer_layer_cls_to_wrap` (`str`) -- Transformer layer class name (case-sensitive) to wrap, e.g, `BertLayer`, `GPTJBlock`, `T5Block` ... * `--fsdp_backward_prefetch_policy` (`str`) -- FSDP's backward prefetch policy. * `--fsdp_state_dict_type` (`str`) -- FSDP's state dict type. **Megatron-LM Arguments**: The following arguments are only useful when `use_megatron_lm` is passed or Megatron-LM is configured through `accelerate config`: * `--megatron_lm_tp_degree` (``) -- Megatron-LM's Tensor Parallelism (TP) degree. * `--megatron_lm_pp_degree` (``) -- Megatron-LM's Pipeline Parallelism (PP) degree. * `--megatron_lm_num_micro_batches` (``) -- Megatron-LM's number of micro batches when PP degree > 1. * `--megatron_lm_sequence_parallelism` (``) -- Decides Whether (true|false) to enable Sequence Parallelism when TP degree > 1. * `--megatron_lm_recompute_activations` (``) -- Decides Whether (true|false) to enable Selective Activation Recomputation. * `--megatron_lm_use_distributed_optimizer` (``) -- Decides Whether (true|false) to use distributed optimizer which shards optimizer state and gradients across Data Parallel (DP) ranks. * `--megatron_lm_gradient_clipping` (``) -- Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable). **AWS SageMaker Arguments**: The following arguments are only useful when training in SageMaker * `--aws_access_key_id AWS_ACCESS_KEY_ID` (`str`) -- The AWS_ACCESS_KEY_ID used to launch the Amazon SageMaker training job * `--aws_secret_access_key AWS_SECRET_ACCESS_KEY` (`str`) -- The AWS_SECRET_ACCESS_KEY used to launch the Amazon SageMaker training job ## accelerate estimate-memory **Command**: `accelerate estimate-memory` or `accelerate-estimate-memory` or `python -m accelerate.commands.estimate` Estimates the total vRAM a particular model hosted on the Hub needs to be loaded in with an estimate for training. Requires that `huggingface_hub` be installed. <Tip> When performing inference, typically add ≤20% to the result as overall allocation [as referenced here](https://blog.eleuther.ai/transformer-math/). We will have more extensive estimations in the future that will automatically be included in the calculation. </Tip> **Usage**: ```bash accelerate estimate-memory {MODEL_NAME} --library_name {LIBRARY_NAME} --dtypes {dtype_1} {dtype_2} ... ``` **Required Arguments**: * `MODEL_NAME` (`str`)-- The model name on the Hugging Face Hub **Optional Arguments**: * `--library_name {timm,transformers}` (`str`) -- The library the model has an integration with, such as `transformers`, needed only if this information is not stored on the Hub * `--dtypes {float32,float16,int8,int4}` (`[{float32,float16,int8,int4} ...]`) -- The dtypes to use for the model, must be one (or many) of `float32`, `float16`, `int8`, and `int4` * `--trust_remote_code` (`bool`) -- Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be passed for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. ## accelerate tpu-config `accelerate tpu-config` **Usage**: ```bash accelerate tpu-config [arguments] ``` **Optional Arguments**: * `-h`, `--help` (`bool`) -- Show a help message and exit **Config Arguments**: Arguments that can be configured through `accelerate config`. * `--config_file` (`str`) -- Path to the config file to use for accelerate. * `--tpu_name` (`str`) -- The name of the TPU to use. If not specified, will use the TPU specified in the config file. * `--tpu_zone` (`str`) -- The zone of the TPU to use. If not specified, will use the zone specified in the config file. **TPU Arguments**: Arguments for options ran inside the TPU. * `--command_file` (`str`) -- The path to the file containing the commands to run on the pod on startup. * `--command` (`str`) -- A command to run on the pod. Can be passed multiple times. * `--install_accelerate` (`bool`) -- Whether to install accelerate on the pod. Defaults to False. * `--accelerate_version` (`str`) -- The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub. * `--debug` (`bool`) -- If set, will print the command that would be run instead of running it. ## accelerate test `accelerate test` or `accelerate-test` Runs `accelerate/test_utils/test_script.py` to verify that 🤗 Accelerate has been properly configured on your system and runs. **Usage**: ```bash accelerate test [arguments] ``` **Optional Arguments**: * `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory (`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`. * `-h`, `--help` (`bool`) -- Show a help message and exit
accelerate/docs/source/package_reference/cli.md/0
{ "file_path": "accelerate/docs/source/package_reference/cli.md", "repo_id": "accelerate", "token_count": 4969 }
1
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Distributed Inference with 🤗 Accelerate Distributed inference can fall into three brackets: 1. Loading an entire model onto each GPU and sending chunks of a batch through each GPU's model copy at a time 2. Loading parts of a model onto each GPU and processing a single input at one time 3. Loading parts of a model onto each GPU and using what is called scheduled Pipeline Parallelism to combine the two prior techniques. We're going to go through the first and the last bracket, showcasing how to do each as they are more realistic scenarios. ## Sending chunks of a batch automatically to each loaded model This is the most memory-intensive solution, as it requires each GPU to keep a full copy of the model in memory at a given time. Normally when doing this, users send the model to a specific device to load it from the CPU, and then move each prompt to a different device. A basic pipeline using the `diffusers` library might look something like so: ```python import torch import torch.distributed as dist from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) ``` Followed then by performing inference based on the specific prompt: ```python def run_inference(rank, world_size): dist.init_process_group("nccl", rank=rank, world_size=world_size) pipe.to(rank) if torch.distributed.get_rank() == 0: prompt = "a dog" elif torch.distributed.get_rank() == 1: prompt = "a cat" result = pipe(prompt).images[0] result.save(f"result_{rank}.png") ``` One will notice how we have to check the rank to know what prompt to send, which can be a bit tedious. A user might then also think that with 🤗 Accelerate, using the `Accelerator` to prepare a dataloader for such a task might also be a simple way to manage this. (To learn more, check out the relevant section in the [Quick Tour](../quicktour#distributed-evaluation)) Can it manage it? Yes. Does it add unneeded extra code however: also yes. With 🤗 Accelerate, we can simplify this process by using the [`Accelerator.split_between_processes`] context manager (which also exists in `PartialState` and `AcceleratorState`). This function will automatically split whatever data you pass to it (be it a prompt, a set of tensors, a dictionary of the prior data, etc.) across all the processes (with a potential to be padded) for you to use right away. Let's rewrite the above example using this context manager: ```python from accelerate import PartialState # Can also be Accelerator or AcceleratorState from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) distributed_state = PartialState() pipe.to(distributed_state.device) # Assume two processes with distributed_state.split_between_processes(["a dog", "a cat"]) as prompt: result = pipe(prompt).images[0] result.save(f"result_{distributed_state.process_index}.png") ``` And then to launch the code, we can use the 🤗 Accelerate: If you have generated a config file to be used using `accelerate config`: ```bash accelerate launch distributed_inference.py ``` If you have a specific config file you want to use: ```bash accelerate launch --config_file my_config.json distributed_inference.py ``` Or if don't want to make any config files and launch on two GPUs: > Note: You will get some warnings about values being guessed based on your system. To remove these you can do `accelerate config default` or go through `accelerate config` to create a config file. ```bash accelerate launch --num_processes 2 distributed_inference.py ``` We've now reduced the boilerplate code needed to split this data to a few lines of code quite easily. But what if we have an odd distribution of prompts to GPUs? For example, what if we have 3 prompts, but only 2 GPUs? Under the context manager, the first GPU would receive the first two prompts and the second GPU the third, ensuring that all prompts are split and no overhead is needed. *However*, what if we then wanted to do something with the results of *all the GPUs*? (Say gather them all and perform some kind of post processing) You can pass in `apply_padding=True` to ensure that the lists of prompts are padded to the same length, with extra data being taken from the last sample. This way all GPUs will have the same number of prompts, and you can then gather the results. <Tip> This is only needed when trying to perform an action such as gathering the results, where the data on each device needs to be the same length. Basic inference does not require this. </Tip> For instance: ```python from accelerate import PartialState # Can also be Accelerator or AcceleratorState from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) distributed_state = PartialState() pipe.to(distributed_state.device) # Assume two processes with distributed_state.split_between_processes(["a dog", "a cat", "a chicken"], apply_padding=True) as prompt: result = pipe(prompt).images ``` On the first GPU, the prompts will be `["a dog", "a cat"]`, and on the second GPU it will be `["a chicken", "a chicken"]`. Make sure to drop the final sample, as it will be a duplicate of the previous one. ## Memory-efficient pipeline parallelism (experimental) This next part will discuss using *pipeline parallelism*. This is an **experimental** API utilizing the [PiPPy library by PyTorch](https://github.com/pytorch/PiPPy/) as a native solution. The general idea with pipeline parallelism is: say you have 4 GPUs and a model big enough it can be *split* on four GPUs using `device_map="auto"`. With this method you can send in 4 inputs at a time (for example here, any amount works) and each model chunk will work on an input, then receive the next input once the prior chunk finished, making it *much* more efficient **and faster** than the method described earlier. Here's a visual taken from the PyTorch repository: ![PiPPy example](https://camo.githubusercontent.com/681d7f415d6142face9dd1b837bdb2e340e5e01a58c3a4b119dea6c0d99e2ce0/68747470733a2f2f692e696d6775722e636f6d2f657955633934372e706e67) To illustrate how you can use this with Accelerate, we have created an [example zoo](https://github.com/huggingface/accelerate/tree/main/examples/inference) showcasing a number of different models and situations. In this tutorial, we'll show this method for GPT2 across two GPUs. Before you proceed, please make sure you have the latest pippy installed by running the following: ```bash pip install torchpippy ``` We require at least version 0.2.0. To confirm that you have the correct version, run `pip show torchpippy`. Start by creating the model on the CPU: ```{python} from transformers import GPT2ForSequenceClassification, GPT2Config config = GPT2Config() model = GPT2ForSequenceClassification(config) model.eval() ``` Next you'll need to create some example inputs to use. These help PiPPy trace the model. <Tip warning={true}> However you make this example will determine the relative batch size that will be used/passed through the model at a given time, so make sure to remember how many items there are! </Tip> ```{python} input = torch.randint( low=0, high=config.vocab_size, size=(2, 1024), # bs x seq_len device="cpu", dtype=torch.int64, requires_grad=False, ) ``` Next we need to actually perform the tracing and get the model ready. To do so, use the [`inference.prepare_pippy`] function and it will fully wrap the model for pipeline parallelism automatically: ```{python} from accelerate.inference import prepare_pippy example_inputs = {"input_ids": input} model = prepare_pippy(model, example_args=(input,)) ``` <Tip> There are a variety of parameters you can pass through to `prepare_pippy`: * `split_points` lets you determine what layers to split the model at. By default we use wherever `device_map="auto" declares, such as `fc` or `conv1`. * `num_chunks` determines how the batch will be split and sent to the model itself (so `num_chunks=1` with four split points/four GPUs will have a naive MP where a single input gets passed between the four layer split points) </Tip> From here, all that's left is to actually perform the distributed inference! <Tip warning={true}> When passing inputs, we highly recommend to pass them in as a tuple of arguments. Using `kwargs` is supported, however, this approach is experimental. </Tip> ```{python} args = some_more_arguments with torch.no_grad(): output = model(*args) ``` When finished all the data will be on the last process only: ```{python} from accelerate import PartialState if PartialState().is_last_process: print(output) ``` <Tip> If you pass in `gather_output=True` to [`inference.prepare_pippy`], the output will be sent across to all the GPUs afterwards without needing the `is_last_process` check. This is `False` by default as it incurs a communication call. </Tip> And that's it! To explore more, please check out the inference examples in the [Accelerate repo](https://github.com/huggingface/accelerate/tree/main/examples/inference) and our [documentation](../package_reference/inference) as we work to improving this integration.
accelerate/docs/source/usage_guides/distributed_inference.md/0
{ "file_path": "accelerate/docs/source/usage_guides/distributed_inference.md", "repo_id": "accelerate", "token_count": 2888 }
2
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to combine both the gradient accumulation # and automatic batch size finder utilities of Accelerate to perfrom # automatic gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) observed_batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") # New Code # # We use the `find_executable_batch_size` decorator, passing in the desired observed batch size # to train on. If a CUDA OOM error occurs, it will retry this loop cutting the batch size in # half each time. From this, we can calculate the number of gradient accumulation steps needed # and modify the Accelerator object as a result @find_executable_batch_size(starting_batch_size=int(observed_batch_size)) def inner_training_loop(batch_size): # Since we need to modify the outside accelerator object, we need to bring it # to the local scope nonlocal accelerator # We can calculate the number of gradient accumulation steps based on the current # batch size vs the starting batch size num_gradient_accumulation_steps = observed_batch_size // batch_size # And then set it in the Accelerator directly: accelerator.gradient_accumulation_steps = num_gradient_accumulation_steps # Next we need to free all of the stored model references in the Accelerator each time accelerator.free_memory() # And set the seed so our results are reproducable each reset set_seed(seed) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # And perform gradient accumulation with accelerator.accumulate(model): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() # New Code # # We modify the starting batch size to be an observed batch size of 256, to guarentee an initial CUDA OOM config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 256} training_function(config, args) if __name__ == "__main__": main()
accelerate/examples/by_feature/automatic_gradient_accumulation.py/0
{ "file_path": "accelerate/examples/by_feature/automatic_gradient_accumulation.py", "repo_id": "accelerate", "token_count": 3689 }
3
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from manim import * class Stage2(Scene): def construct(self): mem = Rectangle(height=0.5,width=0.5) fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0) cpu_left_col_base = [mem.copy() for i in range(6)] cpu_right_col_base = [mem.copy() for i in range(6)] cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0) cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0) cpu_rects = VGroup(cpu_left_col,cpu_right_col).arrange(RIGHT, buff=0) cpu_text = Text("CPU", font_size=24) cpu = Group(cpu_rects,cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) cpu.move_to([-2.5,-.5,0]) self.add(cpu) gpu_base = [mem.copy() for i in range(4)] gpu_rect = VGroup(*gpu_base).arrange(UP,buff=0) gpu_text = Text("GPU", font_size=24) gpu = Group(gpu_rect,gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) gpu.move_to([-1,-1,0]) self.add(gpu) model_base = [mem.copy() for i in range(6)] model_rect = VGroup(*model_base).arrange(RIGHT,buff=0) model_text = Text("Model", font_size=24) model = Group(model_rect,model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) model.move_to([3, -1., 0]) self.add(model) cpu_targs = [] for i,rect in enumerate(model_base): rect.set_stroke(YELLOW) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) cpu_target = Rectangle(height=0.46/4,width=0.46/3).set_stroke(width=0.).set_fill(YELLOW, opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN+LEFT), buff=0.02, direction=UP) cpu_target.set_x(cpu_target.get_x()+0.1) elif i == 3: cpu_target.next_to(cpu_targs[0], direction=UP, buff=0.) else: cpu_target.next_to(cpu_targs[i-1], direction=RIGHT, buff=0.) self.add(cpu_target) cpu_targs.append(cpu_target) checkpoint_base = [mem.copy() for i in range(6)] checkpoint_rect = VGroup(*checkpoint_base).arrange(RIGHT,buff=0) checkpoint_text = Text("Loaded Checkpoint", font_size=24) checkpoint = Group(checkpoint_rect,checkpoint_text).arrange(DOWN, aligned_edge=DOWN, buff=0.4) checkpoint.move_to([3, .5, 0]) key = Square(side_length=2.2) key.move_to([-5, 2, 0]) key_text = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model", font_size=18, ) key_text.move_to([-5, 2.4, 0]) self.add(key_text, key) blue_text = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint", font_size=18, ) blue_text.next_to(key_text, DOWN*2.4, aligned_edge=key_text.get_left()) step_2 = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.', font_size=24 ) step_2.move_to([2, 2, 0]) self.play( Write(step_2), Write(blue_text) ) self.play( Write(checkpoint_text, run_time=1), Create(checkpoint_rect, run_time=1) ) first_animations = [] second_animations = [] for i,rect in enumerate(checkpoint_base): target = fill.copy().set_fill(BLUE, opacity=0.7) target.move_to(rect) first_animations.append(GrowFromCenter(target, run_time=1)) cpu_target = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i+1]) else: cpu_target.target.move_to(cpu_right_col_base[i-5]) second_animations.append(MoveToTarget(cpu_target, run_time=1.5)) self.play(*first_animations) self.play(*second_animations) self.wait()
accelerate/manim_animations/big_model_inference/stage_2.py/0
{ "file_path": "accelerate/manim_animations/big_model_inference/stage_2.py", "repo_id": "accelerate", "token_count": 2354 }
4
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu DYNAMO_BACKENDS = [ "EAGER", "AOT_EAGER", "INDUCTOR", "AOT_TS_NVFUSER", "NVPRIMS_NVFUSER", "CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "TENSORRT", "IPEX", "TVM", ] def _ask_field(input_text, convert_value=None, default=None, error_message=None): ask_again = True while ask_again: result = input(input_text) try: if default is not None and len(result) == 0: return default return convert_value(result) if convert_value is not None else result except Exception: if error_message is not None: print(error_message) def _ask_options(input_text, options=[], convert_value=None, default=0): menu = BulletMenu(input_text, options) result = menu.run(default_choice=default) return convert_value(result) if convert_value is not None else result def _convert_compute_environment(value): value = int(value) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value]) def _convert_distributed_mode(value): value = int(value) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "MULTI_MLU", "XLA"][value]) def _convert_dynamo_backend(value): value = int(value) return DynamoBackend(DYNAMO_BACKENDS[value]).value def _convert_mixed_precision(value): value = int(value) return PrecisionType(["no", "fp16", "bf16", "fp8"][value]) def _convert_sagemaker_distributed_mode(value): value = int(value) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value]) def _convert_yes_no_to_bool(value): return {"yes": True, "no": False}[value.lower()] class SubcommandHelpFormatter(argparse.RawDescriptionHelpFormatter): """ A custom formatter that will remove the usage line from the help message for subcommands. """ def _format_usage(self, usage, actions, groups, prefix): usage = super()._format_usage(usage, actions, groups, prefix) usage = usage.replace("<command> [<args>] ", "") return usage
accelerate/src/accelerate/commands/config/config_utils.py/0
{ "file_path": "accelerate/src/accelerate/commands/config/config_utils.py", "repo_id": "accelerate", "token_count": 1106 }
5
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from contextlib import suppress from typing import Callable, List, Optional, Union import torch from torch.utils.data import BatchSampler, DataLoader, IterableDataset, RandomSampler from .logging import get_logger from .state import AcceleratorState, DistributedType, GradientState, is_torch_xla_available from .utils import ( RNGType, broadcast, broadcast_object_list, concatenate, find_batch_size, get_data_structure, initialize_tensors, is_torch_version, send_to_device, slice_tensors, synchronize_rng_states, ) logger = get_logger(__name__) # kwargs of the DataLoader in min version 1.4.0. _PYTORCH_DATALOADER_KWARGS = { "batch_size": 1, "shuffle": False, "sampler": None, "batch_sampler": None, "num_workers": 0, "collate_fn": None, "pin_memory": False, "drop_last": False, "timeout": 0, "worker_init_fn": None, "multiprocessing_context": None, "generator": None, "prefetch_factor": 2, "persistent_workers": False, } # kwargs added after by version _PYTORCH_DATALOADER_ADDITIONAL_KWARGS = {} for v, additional_kwargs in _PYTORCH_DATALOADER_ADDITIONAL_KWARGS.items(): if is_torch_version(">=", v): _PYTORCH_DATALOADER_KWARGS.update(additional_kwargs) class SeedableRandomSampler(RandomSampler): """ Same as a random sampler, except that in `__iter__` a seed can be used. Needed specifically in distributed cases, when the random generator for each GPU needs to start from the same seed and be fully reproducable on multiple iterations. If a custom `generator` is passed, it will rely on its initial seed as well as the current iteration it is on (stored in `self.epoch`). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.epoch = 0 self.initial_seed = torch.random.initial_seed() def __iter__(self): if self.generator is None: self.generator = torch.Generator() self.generator.manual_seed(self.initial_seed) # Allow `self.epoch` to modify the seed of the generator seed = self.epoch + self.initial_seed # print("Setting seed at epoch", self.epoch, seed) self.generator.manual_seed(seed) yield from super().__iter__() self.set_epoch(self.epoch + 1) def set_epoch(self, epoch: int): "Sets the current iteration of the sampler." self.epoch = epoch class BatchSamplerShard(BatchSampler): """ Wraps a PyTorch `BatchSampler` to generate batches for one of the processes only. Instances of this class will always yield a number of batches that is a round multiple of `num_processes` and that all have the same size. Depending on the value of the `drop_last` attribute of the batch sampler passed, it will either stop the iteration at the first batch that would be too small / not present on all processes or loop with indices from the beginning. Args: batch_sampler (`torch.utils.data.sampler.BatchSampler`): The batch sampler to split in several shards. num_processes (`int`, *optional*, defaults to 1): The number of processes running concurrently. process_index (`int`, *optional*, defaults to 0): The index of the current process. split_batches (`bool`, *optional*, defaults to `False`): Whether the shards should be created by splitting a batch to give a piece of it on each process, or by yielding different full batches on each process. On two processes with a sampler of `[[0, 1, 2, 3], [4, 5, 6, 7]]`, this will result in: - the sampler on process 0 to yield `[0, 1, 2, 3]` and the sampler on process 1 to yield `[4, 5, 6, 7]` if this argument is set to `False`. - the sampler on process 0 to yield `[0, 1]` then `[4, 5]` and the sampler on process 1 to yield `[2, 3]` then `[6, 7]` if this argument is set to `True`. even_batches (`bool`, *optional*, defaults to `True`): Whether or not to loop back at the beginning of the sampler when the number of samples is not a round multiple of (original batch size / number of processes). <Tip warning={true}> `BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches` equal to `False` </Tip>""" def __init__( self, batch_sampler: BatchSampler, num_processes: int = 1, process_index: int = 0, split_batches: bool = False, even_batches: bool = True, ): if split_batches and batch_sampler.batch_size % num_processes != 0: raise ValueError( f"To use `BatchSamplerShard` in `split_batches` mode, the batch size ({batch_sampler.batch_size}) " f"needs to be a round multiple of the number of processes ({num_processes})." ) self.batch_sampler = batch_sampler self.num_processes = num_processes self.process_index = process_index self.split_batches = split_batches self.even_batches = even_batches self.batch_size = getattr(batch_sampler, "batch_size", None) self.drop_last = getattr(batch_sampler, "drop_last", False) if self.batch_size is None and self.even_batches: raise ValueError( "You need to use `even_batches=False` when the batch sampler has no batch size. If you " "are not calling this method directly, set `accelerator.even_batches=False` instead." ) @property def total_length(self): return len(self.batch_sampler) def __len__(self): if self.split_batches: # Split batches does not change the length of the batch sampler return len(self.batch_sampler) if len(self.batch_sampler) % self.num_processes == 0: # If the length is a round multiple of the number of processes, it's easy. return len(self.batch_sampler) // self.num_processes length = len(self.batch_sampler) // self.num_processes if self.drop_last: # Same if we drop the remainder. return length elif self.even_batches: # When we even batches we always get +1 return length + 1 else: # Otherwise it depends on the process index. return length + 1 if self.process_index < len(self.batch_sampler) % self.num_processes else length def __iter__(self): return self._iter_with_split() if self.split_batches else self._iter_with_no_split() def _iter_with_split(self): initial_data = [] batch_length = self.batch_sampler.batch_size // self.num_processes for idx, batch in enumerate(self.batch_sampler): if idx == 0: initial_data = batch if len(batch) == self.batch_size: # If the batch is full, we yield the part of it this process is responsible of. yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] # If drop_last is True of the last batch was full, iteration is over, otherwise... if not self.drop_last and len(initial_data) > 0 and len(batch) < self.batch_size: if not self.even_batches: if len(batch) > batch_length * self.process_index: yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] else: # For degenerate cases where the dataset has less than num_process * batch_size samples while len(initial_data) < self.batch_size: initial_data += initial_data batch = batch + initial_data yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] def _iter_with_no_split(self): initial_data = [] batch_to_yield = [] for idx, batch in enumerate(self.batch_sampler): # We gather the initial indices in case we need to circle back at the end. if not self.drop_last and idx < self.num_processes: initial_data += batch # We identify the batch to yield but wait until we ar sure every process gets a full batch before actually # yielding it. if idx % self.num_processes == self.process_index: batch_to_yield = batch if idx % self.num_processes == self.num_processes - 1 and ( self.batch_size is None or len(batch) == self.batch_size ): yield batch_to_yield batch_to_yield = [] # If drop_last is True, iteration is over, otherwise... if not self.drop_last and len(initial_data) > 0: if not self.even_batches: if len(batch_to_yield) > 0: yield batch_to_yield else: # ... we yield the complete batch we had saved before if it has the proper length if len(batch_to_yield) == self.batch_size: yield batch_to_yield # For degenerate cases where the dataset has less than num_process * batch_size samples while len(initial_data) < self.num_processes * self.batch_size: initial_data += initial_data # If the last batch seen was of the proper size, it has been yielded by its process so we move to the next if len(batch) == self.batch_size: batch = [] idx += 1 # Make sure we yield a multiple of self.num_processes batches cycle_index = 0 while idx % self.num_processes != 0 or len(batch) > 0: end_index = cycle_index + self.batch_size - len(batch) batch += initial_data[cycle_index:end_index] if idx % self.num_processes == self.process_index: yield batch cycle_index = end_index batch = [] idx += 1 class IterableDatasetShard(IterableDataset): """ Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will always yield a number of samples that is a round multiple of the actual batch size (depending of the value of `split_batches`, this is either `batch_size` or `batch_size x num_processes`). Depending on the value of the `drop_last` attribute of the batch sampler passed, it will either stop the iteration at the first batch that would be too small or loop with indices from the beginning. Args: dataset (`torch.utils.data.dataset.IterableDataset`): The batch sampler to split in several shards. batch_size (`int`, *optional*, defaults to 1): The size of the batches per shard (if `split_batches=False`) or the size of the batches (if `split_batches=True`). drop_last (`bool`, *optional*, defaults to `False`): Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the beginning. num_processes (`int`, *optional*, defaults to 1): The number of processes running concurrently. process_index (`int`, *optional*, defaults to 0): The index of the current process. split_batches (`bool`, *optional*, defaults to `False`): Whether the shards should be created by splitting a batch to give a piece of it on each process, or by yielding different full batches on each process. On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7]`, this will result in: - the shard on process 0 to yield `[0, 1, 2, 3]` and the shard on process 1 to yield `[4, 5, 6, 7]` if this argument is set to `False`. - the shard on process 0 to yield `[0, 1, 4, 5]` and the sampler on process 1 to yield `[2, 3, 6, 7]` if this argument is set to `True`. """ def __init__( self, dataset: IterableDataset, batch_size: int = 1, drop_last: bool = False, num_processes: int = 1, process_index: int = 0, split_batches: bool = False, ): if split_batches and batch_size > 1 and batch_size % num_processes != 0: raise ValueError( f"To use `IterableDatasetShard` in `split_batches` mode, the batch size ({batch_size}) " f"needs to be a round multiple of the number of processes ({num_processes})." ) self.dataset = dataset self.batch_size = batch_size self.drop_last = drop_last self.num_processes = num_processes self.process_index = process_index self.split_batches = split_batches def set_epoch(self, epoch): self.epoch = epoch if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch) def __len__(self): # We will just raise the downstream error if the underlying dataset is not sized if self.drop_last: return (len(self.dataset) // (self.batch_size * self.num_processes)) * self.batch_size else: return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size def __iter__(self): if ( not hasattr(self.dataset, "set_epoch") and hasattr(self.dataset, "generator") and isinstance(self.dataset.generator, torch.Generator) ): self.dataset.generator.manual_seed(self.epoch) real_batch_size = self.batch_size if self.split_batches else (self.batch_size * self.num_processes) process_batch_size = (self.batch_size // self.num_processes) if self.split_batches else self.batch_size process_slice = range(self.process_index * process_batch_size, (self.process_index + 1) * process_batch_size) first_batch = None current_batch = [] for element in self.dataset: current_batch.append(element) # Wait to have a full batch before yielding elements. if len(current_batch) == real_batch_size: for i in process_slice: yield current_batch[i] if first_batch is None: first_batch = current_batch.copy() current_batch = [] # Finished if drop_last is True, otherwise complete the last batch with elements from the beginning. if not self.drop_last and len(current_batch) > 0: if first_batch is None: first_batch = current_batch.copy() while len(current_batch) < real_batch_size: current_batch += first_batch for i in process_slice: yield current_batch[i] class DataLoaderStateMixin: """ Mixin class that adds a state to a `DataLoader` to keep track of the status inside the dataloader such as at the end of the iteration, the number of items in the dataset in the last batch relative to the batch size, and other useful information that might be needed. **Available attributes:** - **end_of_dataloader** (`bool`) -- Whether at the last iteration or batch - **remainder** (`int`) -- The number of items that are remaining in the last batch, relative to the total batch size """ def __init_subclass__(cls, **kwargs): cls.end_of_dataloader = False cls.remainder = -1 def reset(self): self.end_of_dataloader = False self.remainder = -1 def begin(self): "Prepares the gradient state for the current dataloader" self.reset() with suppress(Exception): if not self._drop_last: length = getattr(self.dataset, "total_dataset_length", len(self.dataset)) self.remainder = length % self.total_batch_size self.gradient_state._add_dataloader(self) def end(self): "Cleans up the gradient state after exiting the dataloader" self.gradient_state._remove_dataloader(self) class DataLoaderShard(DataLoader, DataLoaderStateMixin): """ Subclass of a PyTorch `DataLoader` that will deal with device placement and current distributed setup. Args: dataset (`torch.utils.data.dataset.Dataset`): The dataset to use to build this datalaoder. device (`torch.device`, *optional*): If passed, the device to put all batches on. rng_types (list of `str` or [`~utils.RNGType`]): The list of random number generators to synchronize at the beginning of each iteration. Should be one or several of: - `"torch"`: the base torch random number generator - `"cuda"`: the CUDA random number generator (GPU only) - `"xla"`: the XLA random number generator (TPU only) - `"generator"`: an optional `torch.Generator` synchronized_generator (`torch.Generator`, *optional*): A random number generator to keep synchronized across processes. skip_batches (`int`, *optional*, defaults to 0): The number of batches to skip at the beginning. kwargs: All other keyword arguments to pass to the regular `DataLoader` initialization. **Available attributes:** - **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes. Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total number of processes - **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes. """ def __init__( self, dataset, device=None, rng_types=None, synchronized_generator=None, skip_batches=0, _drop_last: bool = False, **kwargs, ): super().__init__(dataset, **kwargs) self.device = device self.rng_types = rng_types self.synchronized_generator = synchronized_generator self.skip_batches = skip_batches self.gradient_state = GradientState() self._drop_last = _drop_last self.iteration = 0 def __iter__(self): if self.rng_types is not None: synchronize_rng_states(self.rng_types, self.synchronized_generator) self.begin() self.set_epoch(self.iteration) dataloader_iter = super().__iter__() # We iterate one batch ahead to check when we are at the end try: current_batch = next(dataloader_iter) except StopIteration: yield batch_index = 0 while True: try: # But we still move it to the device so it is done before `StopIteration` is reached if self.device is not None: current_batch = send_to_device(current_batch, self.device) next_batch = next(dataloader_iter) if batch_index >= self.skip_batches: yield current_batch batch_index += 1 current_batch = next_batch except StopIteration: self.end_of_dataloader = True if batch_index >= self.skip_batches: yield current_batch break self.iteration += 1 self.end() def set_epoch(self, epoch: int): # In case it is manually passed in, the user can set it to what they like if self.iteration != epoch: self.iteration = epoch if hasattr(self.batch_sampler, "sampler") and hasattr(self.batch_sampler.sampler, "set_epoch"): self.batch_sampler.sampler.set_epoch(epoch) # We support if a custom `Dataset` implementation has `set_epoch` # or in general HF datasets `Datasets` elif hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch) @property def total_batch_size(self): batch_sampler = self.sampler if isinstance(self.sampler, BatchSampler) else self.batch_sampler return ( batch_sampler.batch_size if getattr(batch_sampler, "split_batches", False) else (batch_sampler.batch_size * getattr(batch_sampler, "num_processes", 1)) ) @property def total_dataset_length(self): if hasattr(self.dataset, "total_length"): return self.dataset.total_length else: return len(self.dataset) if is_torch_xla_available(): import torch_xla.distributed.parallel_loader as xpl class MpDeviceLoaderWrapper(xpl.MpDeviceLoader): """ Wrapper for the xpl.MpDeviceLoader class that knows the total batch size. XLA preloading threads will all call DataLoaderShard's __iter__(). Remove rng_types from DataLoaderShard to prevent it from using the XLA device in the preloading threads, and synchronize the RNG once from the main thread only. **Available attributes:** - **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes. Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total number of processes - **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes. """ def __init__(self, dataloader: DataLoaderShard, device: torch.device): super().__init__(dataloader, device) self._rng_types = self._loader.rng_types self._loader.rng_types = None def __iter__(self): if self._rng_types is not None: synchronize_rng_states(self._rng_types, self._loader.synchronized_generator) return super().__iter__() @property def total_batch_size(self): return self._loader.total_batch_size @property def total_dataset_length(self): return self._loader.total_dataset_length @property def batch_sampler(self): return self._loader.batch_sampler class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin): """ Subclass of a PyTorch `DataLoader` that will iterate and preprocess on process 0 only, then dispatch on each process their part of the batch. Args: split_batches (`bool`, *optional*, defaults to `False`): Whether the resulting `DataLoader` should split the batches of the original data loader across devices or yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of `num_processes` batches at each iteration). Another way to see this is that the observed batch size will be the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial `dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch size of the `dataloader` is a round multiple of `batch_size`. skip_batches (`int`, *optional*, defaults to 0): The number of batches to skip at the beginning of an iteration. **Available attributes:** - **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes. Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total number of processes - **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes. """ def __init__( self, dataset, split_batches: bool = False, skip_batches=0, _drop_last: bool = False, slice_fn=None, **kwargs ): shuffle = False if is_torch_version(">=", "1.11.0"): from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe # We need to save the shuffling state of the DataPipe if isinstance(dataset, ShufflerIterDataPipe): shuffle = dataset._shuffle_enabled super().__init__(dataset, **kwargs) self.split_batches = split_batches if shuffle: torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle) self.gradient_state = GradientState() self.state = AcceleratorState() self._drop_last = _drop_last self.skip_batches = skip_batches self.slice_fn = slice_tensors if slice_fn is None else slice_fn self.iteration = 0 def _fetch_batches(self, iterator): batches, batch = None, None # On process 0, we gather the batch to dispatch. if self.state.process_index == 0: try: if self.split_batches: # One batch of the main iterator is dispatched and split. batch = next(iterator) else: # num_processes batches of the main iterator are concatenated then dispatched and split. # We add the batches one by one so we have the remainder available when drop_last=False. batches = [] for _ in range(self.state.num_processes): batches.append(next(iterator)) try: batch = concatenate(batches, dim=0) except RuntimeError as e: raise RuntimeError( "You can't use batches of different size with `dispatch_batches=True` or when using an `IterableDataset`." "either pass `dispatch_batches=False` and have each process fetch its own batch " " or pass `split_batches=True`. By doing so, the main process will fetch a full batch and " "slice it into `num_processes` batches for each process." ) from e # In both cases, we need to get the structure of the batch that we will broadcast on other # processes to initialize the tensors with the right shape. # data_structure, stop_iteration batch_info = [get_data_structure(batch), False] except StopIteration: batch_info = [None, True] else: batch_info = [None, self._stop_iteration] # This is inplace, so after this instruction, every process has the same `batch_info` as process 0. broadcast_object_list(batch_info) self._stop_iteration = batch_info[1] if self._stop_iteration: # If drop_last is False and split_batches is False, we may have a remainder to take care of. if not self.split_batches and not self._drop_last: if self.state.process_index == 0 and len(batches) > 0: batch = concatenate(batches, dim=0) batch_info = [get_data_structure(batch), False] else: batch_info = [None, True] broadcast_object_list(batch_info) return batch, batch_info def __iter__(self): self.begin() self.set_epoch(self.iteration) main_iterator = None if is_torch_version(">=", "2.0.1"): # NOTE PyTorch DataLoader adds forward compatibilities for DataPipes, which broadcasts # shared seed to all dist processes. Thus, we need to create iterator for all dist processes. # But, we only iterate through the DataLoader on process 0. main_iterator = super().__iter__() elif self.state.process_index == 0: main_iterator = super().__iter__() stop_iteration = False self._stop_iteration = False first_batch = None next_batch, next_batch_info = self._fetch_batches(main_iterator) batch_index = 0 while not stop_iteration: batch, batch_info = next_batch, next_batch_info if self.state.process_index != 0: # Initialize tensors on other processes than process 0. batch = initialize_tensors(batch_info[0]) batch = send_to_device(batch, self.state.device) # Broadcast the batch before splitting it. batch = broadcast(batch, from_process=0) if not self._drop_last and first_batch is None: # We keep at least num processes elements of the first batch to be able to complete the last batch first_batch = self.slice_fn( batch, slice(0, self.state.num_processes), process_index=self.state.process_index, num_processes=self.state.num_processes, ) if batch is None: raise ValueError( f"Batch does not contain any data (`{batch}`). At the end of all iterable data available before expected stop iteration." ) observed_batch_size = find_batch_size(batch) batch_size = observed_batch_size // self.state.num_processes stop_iteration = self._stop_iteration if not stop_iteration: # We may still be at the end of the dataloader without knowing it yet: if there is nothing left in # the dataloader since the number of batches is a round multiple of the number of processes. next_batch, next_batch_info = self._fetch_batches(main_iterator) # next_batch_info[0] is None when there are no more batches, otherwise we still need to process them. if self._stop_iteration and next_batch_info[0] is None: stop_iteration = True if not self._drop_last and stop_iteration and observed_batch_size % self.state.num_processes != 0: # If the last batch is not complete, let's add the first batch to it. batch = concatenate([batch, first_batch], dim=0) # Batch size computation above is wrong, it's off by 1 so we fix it. batch_size += 1 data_slice = slice(self.state.process_index * batch_size, (self.state.process_index + 1) * batch_size) batch = self.slice_fn( batch, data_slice, process_index=self.state.process_index, num_processes=self.state.num_processes, ) if stop_iteration: self.end_of_dataloader = True self.remainder = observed_batch_size if batch_index >= self.skip_batches: yield batch batch_index += 1 self.iteration += 1 self.end() def set_epoch(self, epoch: int): # In case it is manually passed in, the user can set it to what they like if self.iteration != epoch: self.iteration = epoch if hasattr(self.batch_sampler.sampler, "set_epoch"): self.batch_sampler.sampler.set_epoch(epoch) elif hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch) def __len__(self): whole_length = super().__len__() if self.split_batches: return whole_length elif self._drop_last: return whole_length // self.state.num_processes else: return math.ceil(whole_length / self.state.num_processes) @property def total_batch_size(self): return ( self.dataset.batch_size if self.split_batches else (self.dataset.batch_size * self.dataset.num_processes) ) @property def total_dataset_length(self): return len(self.dataset) def prepare_data_loader( dataloader: DataLoader, device: Optional[torch.device] = None, num_processes: Optional[int] = None, process_index: Optional[int] = None, split_batches: bool = False, put_on_device: bool = False, rng_types: Optional[List[Union[str, RNGType]]] = None, dispatch_batches: Optional[bool] = None, even_batches: bool = True, slice_fn_for_dispatch: Optional[Callable] = None, use_seedable_sampler: bool = False, ) -> DataLoader: """ Wraps a PyTorch `DataLoader` to generate batches for one of the processes only. Depending on the value of the `drop_last` attribute of the `dataloader` passed, it will either stop the iteration at the first batch that would be too small / not present on all processes or loop with indices from the beginning. Args: dataloader (`torch.utils.data.dataloader.DataLoader`): The data loader to split across several devices. device (`torch.device`): The target device for the returned `DataLoader`. num_processes (`int`, *optional*): The number of processes running concurrently. Will default to the value given by [`~state.AcceleratorState`]. process_index (`int`, *optional*): The index of the current process. Will default to the value given by [`~state.AcceleratorState`]. split_batches (`bool`, *optional*, defaults to `False`): Whether the resulting `DataLoader` should split the batches of the original data loader across devices or yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of `num_processes` batches at each iteration). Another way to see this is that the observed batch size will be the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial `dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch size of the `dataloader` is a round multiple of `batch_size`. put_on_device (`bool`, *optional*, defaults to `False`): Whether or not to put the batches on `device` (only works if the batches are nested list, tuples or dictionaries of tensors). rng_types (list of `str` or [`~utils.RNGType`]): The list of random number generators to synchronize at the beginning of each iteration. Should be one or several of: - `"torch"`: the base torch random number generator - `"cuda"`: the CUDA random number generator (GPU only) - `"xla"`: the XLA random number generator (TPU only) - `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type. dispatch_batches (`bool`, *optional*): If set to `True`, the datalaoder prepared is only iterated through on the main process and then the batches are split and broadcast to each process. Will default to `True` when the underlying dataset is an `IterableDataset`, `False` otherwise. even_batches (`bool`, *optional*, defaults to `True`): If set to `True`, in cases where the total batch size across all processes does not exactly divide the dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among all workers. slice_fn_for_dispatch (`Callable`, *optional*`): If passed, this function will be used to slice tensors across `num_processes`. Will default to [`~utils.slice_tensors`]. This argument is used only when `dispatch_batches` is set to `True` and will be ignored otherwise. use_seedable_sampler (`bool`, *optional*, defaults to `False`): Whether to use the [`~data_loader.SeedableRandomSampler`] instead of a `RandomSampler` for better reproducability. Comes at a cost of potentially different performances due to different shuffling algorithms but ensures results will be the *exact* same. Should be paired with `set_seed()` at every `self.set_epoch` Returns: `torch.utils.data.dataloader.DataLoader`: A new data loader that will yield the portion of the batches <Tip warning={true}> `BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches` equal to `False` </Tip> """ if dispatch_batches is None: if not put_on_device: dispatch_batches = False else: dispatch_batches = isinstance(dataloader.dataset, IterableDataset) if dispatch_batches and not put_on_device: raise ValueError("Using `dispatch_batches=True` requires `put_on_device=True`.") # Grab defaults from AcceleratorState state = AcceleratorState() if num_processes is None: num_processes = state.num_processes if process_index is None: process_index = state.process_index # Sanity check if split_batches: if dataloader.batch_size is not None: batch_size_for_check = dataloader.batch_size else: # For custom batch_sampler if hasattr(dataloader.batch_sampler, "batch_size"): batch_size_for_check = dataloader.batch_sampler.batch_size else: raise ValueError( "In order to use `split_batches==True` you must have a `batch_size` attribute either in the passed " "`dataloader` or `dataloader.batch_sampler` objects, and it has to return a natural number. " "Your `dataloader.batch_size` is None and `dataloader.batch_sampler` " f"(`{type(dataloader.batch_sampler)}`) does not have the `batch_size` attribute set." ) if batch_size_for_check > 1 and batch_size_for_check % num_processes != 0: raise ValueError( f"To use a `DataLoader` in `split_batches` mode, the batch size ({dataloader.batch_size}) " f"needs to be a round multiple of the number of processes ({num_processes})." ) new_dataset = dataloader.dataset # Iterable dataset doesn't like batch_sampler, but data_loader creates a default one for it new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None sampler_is_batch_sampler = False synchronized_generator = None sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler) if sampler_is_batch_sampler: sampler = getattr(dataloader.sampler, "sampler", None) else: sampler = getattr(dataloader.batch_sampler, "sampler", None) if isinstance(sampler, RandomSampler) and use_seedable_sampler: # When iterating through the dataloader during distributed processes # we want to ensure that on each process we are iterating through the same # samples in the same order if a seed is set. This requires a tweak # to the `torch.utils.data.RandomSampler` class (if used). sampler = SeedableRandomSampler( data_source=sampler.data_source, replacement=sampler.replacement, num_samples=sampler._num_samples, generator=getattr(sampler, "generator", torch.Generator()), ) if isinstance(dataloader.sampler, RandomSampler) and state.distributed_type == DistributedType.XLA: # isinstance(dataloader.sampler, RandomSampler) indicates the original dataloader has `shuffle` enabled. generator = torch.Generator().manual_seed(42) dataloader.generator = generator dataloader.sampler.generator = generator # No change if no multiprocess if (num_processes != 1 or state.distributed_type == DistributedType.MEGATRON_LM) and not dispatch_batches: if isinstance(new_dataset, IterableDataset): if getattr(dataloader.dataset, "generator", None) is not None: synchronized_generator = dataloader.dataset.generator new_dataset = IterableDatasetShard( new_dataset, batch_size=dataloader.batch_size, drop_last=dataloader.drop_last, num_processes=num_processes, process_index=process_index, split_batches=split_batches, ) else: batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler new_batch_sampler = BatchSamplerShard( batch_sampler, num_processes=num_processes, process_index=process_index, split_batches=split_batches, even_batches=even_batches, ) # We ignore all of those since they are all dealt with by our new_batch_sampler ignore_kwargs = [ "batch_size", "shuffle", "sampler", "batch_sampler", "drop_last", ] if rng_types is not None and synchronized_generator is None and "generator" in rng_types: rng_types.remove("generator") kwargs = { k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) for k in _PYTORCH_DATALOADER_KWARGS if k not in ignore_kwargs } # Need to provide batch_size as batch_sampler is None for Iterable dataset if new_batch_sampler is None: kwargs["drop_last"] = dataloader.drop_last kwargs["batch_size"] = ( dataloader.batch_size // num_processes if split_batches and not dispatch_batches else dataloader.batch_size ) if dispatch_batches: kwargs.pop("generator") dataloader = DataLoaderDispatcher( new_dataset, split_batches=split_batches, batch_sampler=new_batch_sampler, _drop_last=dataloader.drop_last, slice_fn=slice_fn_for_dispatch, **kwargs, ) elif sampler_is_batch_sampler: dataloader = DataLoaderShard( new_dataset, device=device if put_on_device and state.distributed_type != DistributedType.XLA else None, sampler=new_batch_sampler, batch_size=dataloader.batch_size, rng_types=rng_types, _drop_last=dataloader.drop_last, synchronized_generator=synchronized_generator, **kwargs, ) else: dataloader = DataLoaderShard( new_dataset, device=device if put_on_device and state.distributed_type != DistributedType.XLA else None, batch_sampler=new_batch_sampler, rng_types=rng_types, synchronized_generator=synchronized_generator, _drop_last=dataloader.drop_last, **kwargs, ) if isinstance(sampler, SeedableRandomSampler) and use_seedable_sampler: if sampler_is_batch_sampler: dataloader.sampler.sampler = sampler else: dataloader.batch_sampler.sampler = sampler if state.distributed_type == DistributedType.XLA: return MpDeviceLoaderWrapper(dataloader, device) return dataloader class SkipBatchSampler(BatchSampler): """ A `torch.utils.data.BatchSampler` that skips the first `n` batches of another `torch.utils.data.BatchSampler`. """ def __init__(self, batch_sampler, skip_batches=0): self.batch_sampler = batch_sampler self.skip_batches = skip_batches def __iter__(self): for index, samples in enumerate(self.batch_sampler): if index >= self.skip_batches: yield samples @property def total_length(self): return len(self.batch_sampler) def __len__(self): return len(self.batch_sampler) - self.skip_batches class SkipDataLoader(DataLoader): """ Subclass of a PyTorch `DataLoader` that will skip the first batches. Args: dataset (`torch.utils.data.dataset.Dataset`): The dataset to use to build this datalaoder. skip_batches (`int`, *optional*, defaults to 0): The number of batches to skip at the beginning. kwargs: All other keyword arguments to pass to the regular `DataLoader` initialization. """ def __init__(self, dataset, skip_batches=0, **kwargs): super().__init__(dataset, **kwargs) self.skip_batches = skip_batches def __iter__(self): for index, batch in enumerate(super().__iter__()): if index >= self.skip_batches: yield batch def skip_first_batches(dataloader, num_batches=0): """ Creates a `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`. """ dataset = dataloader.dataset sampler_is_batch_sampler = False if isinstance(dataset, IterableDataset): new_batch_sampler = None else: sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler) batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler new_batch_sampler = SkipBatchSampler(batch_sampler, skip_batches=num_batches) # We ignore all of those since they are all dealt with by our new_batch_sampler ignore_kwargs = [ "batch_size", "shuffle", "sampler", "batch_sampler", "drop_last", ] kwargs = { k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) for k in _PYTORCH_DATALOADER_KWARGS if k not in ignore_kwargs } # Need to provide batch_size as batch_sampler is None for Iterable dataset if new_batch_sampler is None: kwargs["drop_last"] = dataloader.drop_last kwargs["batch_size"] = dataloader.batch_size if isinstance(dataloader, DataLoaderDispatcher): if new_batch_sampler is None: # Need to manually skip batches in the dataloader kwargs["skip_batches"] = num_batches dataloader = DataLoaderDispatcher( dataset, split_batches=dataloader.split_batches, batch_sampler=new_batch_sampler, _drop_last=dataloader._drop_last, **kwargs, ) elif isinstance(dataloader, DataLoaderShard): if new_batch_sampler is None: # Need to manually skip batches in the dataloader kwargs["skip_batches"] = num_batches elif sampler_is_batch_sampler: kwargs["sampler"] = new_batch_sampler kwargs["batch_size"] = dataloader.batch_size else: kwargs["batch_sampler"] = new_batch_sampler dataloader = DataLoaderShard( dataset, device=dataloader.device, rng_types=dataloader.rng_types, synchronized_generator=dataloader.synchronized_generator, **kwargs, ) else: if new_batch_sampler is None: # Need to manually skip batches in the dataloader dataloader = SkipDataLoader(dataset, skip_batches=num_batches, **kwargs) else: dataloader = DataLoader(dataset, batch_sampler=new_batch_sampler, **kwargs) return dataloader
accelerate/src/accelerate/data_loader.py/0
{ "file_path": "accelerate/src/accelerate/data_loader.py", "repo_id": "accelerate", "token_count": 20547 }
6
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import is_mlu_available, is_npu_available, is_xpu_available from accelerate.utils.deepspeed import DummyOptim, DummyScheduler MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 # Converting Bytes to Megabytes def b2mb(x): return int(x / 2**20) # This context manager is used to track the peak memory usage of the process class TorchTracemalloc: def __enter__(self): gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero self.begin = torch.cuda.memory_allocated() elif is_mlu_available(): torch.mlu.empty_cache() torch.mlu.reset_max_memory_allocated() # reset the peak gauge to zero self.begin = torch.mlu.memory_allocated() elif is_npu_available(): torch.npu.empty_cache() torch.npu.reset_max_memory_allocated() # reset the peak gauge to zero self.begin = torch.npu.memory_allocated() elif is_xpu_available(): torch.xpu.empty_cache() torch.xpu.reset_max_memory_allocated() # reset the peak gauge to zero self.begin = torch.xpu.memory_allocated() return self def __exit__(self, *exc): gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() self.end = torch.cuda.memory_allocated() self.peak = torch.cuda.max_memory_allocated() elif is_mlu_available(): torch.mlu.empty_cache() torch.mlu.memory_allocated() # reset the peak gauge to zero self.begin = torch.mlu.max_memory_allocated() elif is_npu_available(): torch.npu.empty_cache() self.end = torch.npu.memory_allocated() self.peak = torch.npu.max_memory_allocated() elif is_xpu_available(): torch.xpu.empty_cache() self.end = torch.xpu.memory_allocated() self.peak = torch.xpu.max_memory_allocated() self.used = b2mb(self.end - self.begin) self.peaked = b2mb(self.peak - self.begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def get_dataloaders( accelerator: Accelerator, batch_size: int = 16, model_name: str = "bert-base-cased", n_train: int = 320, n_val: int = 160, ): """ Creates a set of `DataLoader`s for the `glue` dataset. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. model_name (`str`, *optional*): The name of the model to use. n_train (`int`, *optional*): The number of training examples to use. n_val (`int`, *optional*): The number of validation examples to use. """ tokenizer = AutoTokenizer.from_pretrained(model_name) datasets = load_dataset( "glue", "mrpc", split={"train": f"train[:{n_train}]", "validation": f"validation[:{n_val}]"} ) def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.XLA: return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader def training_function(config, args): # Initialize accelerator accelerator = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) model_name = args.model_name_or_path set_seed(seed) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name, args.n_train, args.n_val) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True) # Instantiate optimizer optimizer_cls = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) optimizer = optimizer_cls(params=model.parameters(), lr=lr) if accelerator.state.deepspeed_plugin is not None: gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: gradient_accumulation_steps = 1 max_training_steps = (len(train_dataloader) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=max_training_steps, ) else: lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to keep track of how many total steps we have iterated over overall_step = 0 # We also need to keep track of the stating epoch so files are named properly starting_epoch = 0 # Now we train the model train_total_peak_memory = {} for epoch in range(starting_epoch, num_epochs): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print(f"Memory before entering the train : {b2mb(tracemalloc.begin)}") accelerator.print(f"Memory consumed at the end of the train (end-begin): {tracemalloc.used}") accelerator.print(f"Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}") accelerator.print( f"Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" ) train_total_peak_memory[f"epoch-{epoch}"] = tracemalloc.peaked + b2mb(tracemalloc.begin) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "peak_memory_utilization.json"), "w") as f: json.dump(train_total_peak_memory, f) def main(): parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path", type=str, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--output_dir", type=str, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--peak_memory_upper_bound", type=float, default=None, help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.", ) parser.add_argument( "--n_train", type=int, default=320, help="Number of training examples to use.", ) parser.add_argument( "--n_val", type=int, default=160, help="Number of validation examples to use.", ) parser.add_argument( "--num_epochs", type=int, default=1, help="Number of train epochs.", ) args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/external_deps/test_peak_memory_usage.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/external_deps/test_peak_memory_usage.py", "repo_id": "accelerate", "token_count": 4465 }
7
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class HfDeepSpeedConfig: """ This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage. A `weakref` of this object is stored in the module's globals to be able to access the config from areas where things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore it's important that this object remains alive while the program is still running. [`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic the DeepSpeed configuration is not modified in any way. Args: config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict. """ def __init__(self, config_file_or_dict): if isinstance(config_file_or_dict, dict): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden config = deepcopy(config_file_or_dict) elif os.path.exists(config_file_or_dict): with open(config_file_or_dict, encoding="utf-8") as f: config = json.load(f) else: try: config_decoded = base64.urlsafe_b64decode(config_file_or_dict).decode("utf-8") config = json.loads(config_decoded) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}" ) self.config = config self.set_stage_and_offload() def set_stage_and_offload(self): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. self._stage = self.get_value("zero_optimization.stage", -1) # offload self._offload = False if self.is_zero2() or self.is_zero3(): offload_devices_valid = set(["cpu", "nvme"]) offload_devices = set( [ self.get_value("zero_optimization.offload_optimizer.device"), self.get_value("zero_optimization.offload_param.device"), ] ) if len(offload_devices & offload_devices_valid) > 0: self._offload = True def find_config_node(self, ds_key_long): config = self.config # find the config node of interest if it exists nodes = ds_key_long.split(".") ds_key = nodes.pop() for node in nodes: config = config.get(node) if config is None: return None, ds_key return config, ds_key def get_value(self, ds_key_long, default=None): """ Returns the set value or `default` if no value is set """ config, ds_key = self.find_config_node(ds_key_long) if config is None: return default return config.get(ds_key, default) def del_config_sub_tree(self, ds_key_long, must_exist=False): """ Deletes a sub-section of the config file if it's found. Unless `must_exist` is `True` the section doesn't have to exist. """ config = self.config # find the config node of interest if it exists nodes = ds_key_long.split(".") for node in nodes: parent_config = config config = config.get(node) if config is None: if must_exist: raise ValueError(f"Can't find {ds_key_long} entry in the config: {self.config}") else: return # if found remove it if parent_config is not None: parent_config.pop(node) def is_true(self, ds_key_long): """ Returns `True`/``False` only if the value is set, always `False` otherwise. So use this method to ask the very specific question of whether the value is set to `True` (and it's not set to `False`` or isn't set). """ value = self.get_value(ds_key_long) return False if value is None else bool(value) def is_false(self, ds_key_long): """ Returns `True`/``False` only if the value is set, always `False` otherwise. So use this method to ask the very specific question of whether the value is set to `False` (and it's not set to `True`` or isn't set). """ value = self.get_value(ds_key_long) return False if value is None else not bool(value) def is_zero2(self): return self._stage == 2 def is_zero3(self): return self._stage == 3 def is_offload(self): return self._offload class DeepSpeedEngineWrapper: """ Internal wrapper for deepspeed.runtime.engine.DeepSpeedEngine. This is used to follow conventional training loop. Args: engine (deepspeed.runtime.engine.DeepSpeedEngine): deepspeed engine to wrap """ def __init__(self, engine): self.engine = engine def backward(self, loss, **kwargs): # runs backpropagation and handles mixed precision self.engine.backward(loss, **kwargs) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class DeepSpeedOptimizerWrapper(AcceleratedOptimizer): """ Internal wrapper around a deepspeed optimizer. Args: optimizer (`torch.optim.optimizer.Optimizer`): The optimizer to wrap. """ def __init__(self, optimizer): super().__init__(optimizer, device_placement=False, scaler=None) self.__has_overflow__ = hasattr(self.optimizer, "overflow") def zero_grad(self, set_to_none=None): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def step(self): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def step_was_skipped(self): """Whether or not the optimizer step was done, or skipped because of gradient overflow.""" if self.__has_overflow__: return self.optimizer.overflow return False class DeepSpeedSchedulerWrapper(AcceleratedScheduler): """ Internal wrapper around a deepspeed scheduler. Args: scheduler (`torch.optim.lr_scheduler.LambdaLR`): The scheduler to wrap. optimizers (one or a list of `torch.optim.Optimizer`): """ def __init__(self, scheduler, optimizers): super().__init__(scheduler, optimizers) def step(self): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class DummyOptim: """ Dummy optimizer presents model parameters or param groups, this is primarily used to follow conventional training loop when optimizer config is specified in the deepspeed config file. Args: lr (float): Learning rate. params (iterable): iterable of parameters to optimize or dicts defining parameter groups weight_decay (float): Weight decay. **kwargs: Other arguments. """ def __init__(self, params, lr=0.001, weight_decay=0, **kwargs): self.params = params self.lr = lr self.weight_decay = weight_decay self.kwargs = kwargs class DummyScheduler: """ Dummy scheduler presents model parameters or param groups, this is primarily used to follow conventional training loop when scheduler config is specified in the deepspeed config file. Args: optimizer (`torch.optim.optimizer.Optimizer`): The optimizer to wrap. total_num_steps (int, *optional*): Total number of steps. warmup_num_steps (int, *optional*): Number of steps for warmup. lr_scheduler_callable (callable, *optional*): A callable function that creates an LR Scheduler. It accepts only one argument `optimizer`. **kwargs: Other arguments. """ def __init__(self, optimizer, total_num_steps=None, warmup_num_steps=0, lr_scheduler_callable=None, **kwargs): self.optimizer = optimizer self.total_num_steps = total_num_steps self.warmup_num_steps = warmup_num_steps self.lr_scheduler_callable = lr_scheduler_callable self.kwargs = kwargs
accelerate/src/accelerate/utils/deepspeed.py/0
{ "file_path": "accelerate/src/accelerate/utils/deepspeed.py", "repo_id": "accelerate", "token_count": 3992 }
8
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC torch_version = parse(importlib.metadata.version("torch")) def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str): """ Compares a library version to some requirement using a given operation. Args: library_or_version (`str` or `packaging.version.Version`): A library name or a version to check. operation (`str`): A string representation of an operator, such as `">"` or `"<="`. requirement_version (`str`): The version to compare the library version against """ if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}") operation = STR_OPERATION_TO_FUNC[operation] if isinstance(library_or_version, str): library_or_version = parse(importlib.metadata.version(library_or_version)) return operation(library_or_version, parse(requirement_version)) def is_torch_version(operation: str, version: str): """ Compares the current PyTorch version to a given reference with an operation. Args: operation (`str`): A string representation of an operator, such as `">"` or `"<="` version (`str`): A string version of PyTorch """ return compare_versions(torch_version, operation, version)
accelerate/src/accelerate/utils/versions.py/0
{ "file_path": "accelerate/src/accelerate/utils/versions.py", "repo_id": "accelerate", "token_count": 701 }
9
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import os import re import shutil import tempfile import unittest from pathlib import Path from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import ( TempDirTestCase, get_launch_command, require_huggingface_suite, require_multi_gpu, require_pippy, require_trackers, run_command, slow, ) from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) EXCLUDE_EXAMPLES = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", "early_stopping.py", ] class ExampleDifferenceTests(unittest.TestCase): """ This TestCase checks that all of the `complete_*` scripts contain all of the information found in the `by_feature` scripts, line for line. If one fails, then a complete example does not contain all of the features in the features scripts, and should be updated. Each example script should be a single test (such as `test_nlp_example`), and should run `one_complete_example` twice: once with `parser_only=True`, and the other with `parser_only=False`. This is so that when the test failures are returned to the user, they understand if the discrepancy lies in the `main` function, or the `training_loop` function. Otherwise it will be unclear. Also, if there are any expected differences between the base script used and `complete_nlp_example.py` (the canonical base script), these should be included in `special_strings`. These would be differences in how something is logged, print statements, etc (such as calls to `Accelerate.log()`) """ by_feature_path = Path("examples", "by_feature").resolve() examples_path = Path("examples").resolve() def one_complete_example( self, complete_file_name: str, parser_only: bool, secondary_filename: str = None, special_strings: list = None ): """ Tests a single `complete` example against all of the implemented `by_feature` scripts Args: complete_file_name (`str`): The filename of a complete example parser_only (`bool`): Whether to look at the main training function, or the argument parser secondary_filename (`str`, *optional*): A potential secondary base file to strip all script information not relevant for checking, such as "cv_example.py" when testing "complete_cv_example.py" special_strings (`list`, *optional*): A list of strings to potentially remove before checking no differences are left. These should be diffs that are file specific, such as different logging variations between files. """ self.maxDiff = None for item in os.listdir(self.by_feature_path): if item not in EXCLUDE_EXAMPLES: item_path = self.by_feature_path / item if item_path.is_file() and item_path.suffix == ".py": with self.subTest( tested_script=complete_file_name, feature_script=item, tested_section="main()" if parser_only else "training_function()", ): diff = compare_against_test( self.examples_path / complete_file_name, item_path, parser_only, secondary_filename ) diff = "\n".join(diff) if special_strings is not None: for string in special_strings: diff = diff.replace(string, "") assert diff == "" def test_nlp_examples(self): self.one_complete_example("complete_nlp_example.py", True) self.one_complete_example("complete_nlp_example.py", False) def test_cv_examples(self): cv_path = (self.examples_path / "cv_example.py").resolve() special_strings = [ " " * 16 + "{\n\n", " " * 20 + '"accuracy": eval_metric["accuracy"],\n\n', " " * 20 + '"f1": eval_metric["f1"],\n\n', " " * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', " " * 20 + '"epoch": epoch,\n\n', " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py", True, cv_path, special_strings) self.one_complete_example("complete_cv_example.py", False, cv_path, special_strings) @mock.patch.dict(os.environ, {"TESTING_MOCKED_DATALOADERS": "1"}) @require_huggingface_suite class FeatureExamplesTests(TempDirTestCase): clear_on_setup = False @classmethod def setUpClass(cls): super().setUpClass() cls._tmpdir = tempfile.mkdtemp() cls.config_file = Path(cls._tmpdir) / "default_config.yml" write_basic_config(save_location=cls.config_file) cls.launch_args = get_launch_command(config_file=cls.config_file) @classmethod def tearDownClass(cls): super().tearDownClass() shutil.rmtree(cls._tmpdir) def test_checkpointing_by_epoch(self): testargs = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self.launch_args + testargs) assert (self.tmpdir / "epoch_0").exists() def test_checkpointing_by_steps(self): testargs = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() _ = run_command(self.launch_args + testargs) assert (self.tmpdir / "step_2").exists() def test_load_states_by_epoch(self): testargs = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {self.tmpdir / "epoch_0"} """.split() output = run_command(self.launch_args + testargs, return_stdout=True) assert "epoch 0:" not in output assert "epoch 1:" in output def test_load_states_by_steps(self): testargs = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {self.tmpdir / "step_2"} """.split() output = run_command(self.launch_args + testargs, return_stdout=True) if torch.cuda.is_available(): num_processes = torch.cuda.device_count() else: num_processes = 1 if num_processes > 1: assert "epoch 0:" not in output assert "epoch 1:" in output else: assert "epoch 0:" in output assert "epoch 1:" in output @slow def test_cross_validation(self): testargs = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ, {"TESTING_MOCKED_DATALOADERS": "0"}): output = run_command(self.launch_args + testargs, return_stdout=True) results = re.findall("({.+})", output) results = [r for r in results if "accuracy" in r][-1] results = ast.literal_eval(results) assert results["accuracy"] >= 0.75 def test_multi_process_metrics(self): testargs = ["examples/by_feature/multi_process_metrics.py"] run_command(self.launch_args + testargs) @require_trackers @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_tracking(self): with tempfile.TemporaryDirectory() as tmpdir: testargs = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self.launch_args + testargs) assert os.path.exists(os.path.join(tmpdir, "tracking")) def test_gradient_accumulation(self): testargs = ["examples/by_feature/gradient_accumulation.py"] run_command(self.launch_args + testargs) def test_local_sgd(self): testargs = ["examples/by_feature/local_sgd.py"] run_command(self.launch_args + testargs) def test_early_stopping(self): testargs = ["examples/by_feature/early_stopping.py"] run_command(self.launch_args + testargs) @require_pippy @require_multi_gpu def test_pippy_examples_bert(self): testargs = ["examples/inference/bert.py"] run_command(self.launch_args + testargs) @require_pippy @require_multi_gpu def test_pippy_examples_gpt2(self): testargs = ["examples/inference/gpt2.py"] run_command(self.launch_args + testargs) @require_pippy @require_multi_gpu def test_pippy_examples_t5(self): testargs = ["examples/inference/t5.py"] run_command(self.launch_args + testargs) @slow @require_pippy @require_multi_gpu def test_pippy_examples_llama(self): testargs = ["examples/inference/llama.py"] run_command(self.launch_args + testargs)
accelerate/tests/test_examples.py/0
{ "file_path": "accelerate/tests/test_examples.py", "repo_id": "accelerate", "token_count": 4347 }
10
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import logging import os import random import shutil import tempfile import unittest import uuid from contextlib import contextmanager import pytest import torch from parameterized import parameterized_class from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import ( DEFAULT_LAUNCH_COMMAND, execute_subprocess_async, require_non_cpu, require_non_torch_xla, ) from accelerate.utils import DistributedType, ProjectConfiguration, set_seed logger = logging.getLogger(__name__) def dummy_dataloaders(a=2, b=3, batch_size=16, n_train_batches: int = 10, n_valid_batches: int = 2): "Generates a tuple of dummy DataLoaders to test with" def get_dataset(n_batches): x = torch.randn(batch_size * n_batches, 1) return TensorDataset(x, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1)) train_dataset = get_dataset(n_train_batches) valid_dataset = get_dataset(n_valid_batches) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) valid_dataloader = DataLoader(valid_dataset, shuffle=False, batch_size=batch_size, num_workers=4) return (train_dataloader, valid_dataloader) def train(num_epochs, model, dataloader, optimizer, accelerator, scheduler=None): "Trains for `num_epochs`" rands = [] for epoch in range(num_epochs): # Train quickly model.train() for batch in dataloader: x, y = batch outputs = model(x) loss = torch.nn.functional.mse_loss(outputs, y) accelerator.backward(loss) optimizer.step() optimizer.zero_grad() rands.append(random.random()) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class DummyModel(nn.Module): "Simple model to do y=mx+b" def __init__(self): super().__init__() self.a = nn.Parameter(torch.randn(1)) self.b = nn.Parameter(torch.randn(1)) def forward(self, x): return x * self.a + self.b def parameterized_custom_name_func(func, param_num, param): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param param_based_name = "use_safetensors" if param["use_safetensors"] is True else "use_pytorch" return f"{func.__name__}_{param_based_name}" @parameterized_class(("use_safetensors",), [[True], [False]], class_name_func=parameterized_custom_name_func) class CheckpointTest(unittest.TestCase): def check_adam_state(self, state1, state2, distributed_type): # For DistributedType.XLA, the `accelerator.save_state` function calls `xm._maybe_convert_to_cpu` before saving. # As a result, all tuple values are converted to lists. Therefore, we need to convert them back here. # Remove this code once Torch XLA fixes this issue. if distributed_type == DistributedType.XLA: state1["param_groups"][0]["betas"] = tuple(state1["param_groups"][0]["betas"]) state2["param_groups"][0]["betas"] = tuple(state2["param_groups"][0]["betas"]) assert state1 == state2 def test_with_save_limit(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(total_limit=1, project_dir=tmpdir, automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_config=project_config) model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) # Save initial accelerator.save_state(safe_serialization=self.use_safetensors) # Save second state accelerator.save_state(safe_serialization=self.use_safetensors) assert len(os.listdir(accelerator.project_dir)) == 1 def test_can_resume_training_with_folder(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() # Train baseline accelerator = Accelerator() model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) # Save initial initial = os.path.join(tmpdir, "initial") accelerator.save_state(initial, safe_serialization=self.use_safetensors) (a, b) = model.a.item(), model.b.item() opt_state = optimizer.state_dict() ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator) (a1, b1) = model.a.item(), model.b.item() opt_state1 = optimizer.state_dict() # Train partially set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() accelerator = Accelerator() model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) accelerator.load_state(initial) (a2, b2) = model.a.item(), model.b.item() opt_state2 = optimizer.state_dict() self.assertEqual(a, a2) self.assertEqual(b, b2) assert a == a2 assert b == b2 self.check_adam_state(opt_state, opt_state2, accelerator.distributed_type) test_rands = train(2, model, train_dataloader, optimizer, accelerator) # Save everything checkpoint = os.path.join(tmpdir, "checkpoint") accelerator.save_state(checkpoint, safe_serialization=self.use_safetensors) # Load everything back in and make sure all states work accelerator.load_state(checkpoint) test_rands += train(1, model, train_dataloader, optimizer, accelerator) (a3, b3) = model.a.item(), model.b.item() opt_state3 = optimizer.state_dict() assert a1 == a3 assert b1 == b3 self.check_adam_state(opt_state1, opt_state3, accelerator.distributed_type) assert ground_truth_rands == test_rands def test_can_resume_training(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) # Save initial accelerator.save_state(safe_serialization=self.use_safetensors) (a, b) = model.a.item(), model.b.item() opt_state = optimizer.state_dict() ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator) (a1, b1) = model.a.item(), model.b.item() opt_state1 = optimizer.state_dict() # Train partially set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=True) accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_0")) (a2, b2) = model.a.item(), model.b.item() opt_state2 = optimizer.state_dict() assert a == a2 assert b == b2 self.check_adam_state(opt_state, opt_state2, accelerator.distributed_type) test_rands = train(2, model, train_dataloader, optimizer, accelerator) # Save everything accelerator.save_state(safe_serialization=self.use_safetensors) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_1")) test_rands += train(1, model, train_dataloader, optimizer, accelerator) (a3, b3) = model.a.item(), model.b.item() opt_state3 = optimizer.state_dict() assert a1 == a3 assert b1 == b3 self.check_adam_state(opt_state1, opt_state3, accelerator.distributed_type) assert ground_truth_rands == test_rands def test_can_resume_training_checkpoints_relative_path(self): # See #1983 # This test is like test_can_resume_training but uses a relative path for the checkpoint and automatically # infers the checkpoint path when loading. @contextmanager def temporary_relative_directory(): # This is equivalent to tempfile.TemporaryDirectory() except that it returns a relative path rand_dir = f"test_path_{uuid.uuid4()}" os.mkdir(rand_dir) try: yield rand_dir finally: shutil.rmtree(rand_dir) with temporary_relative_directory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) # Save initial accelerator.save_state(safe_serialization=self.use_safetensors) (a, b) = model.a.item(), model.b.item() opt_state = optimizer.state_dict() ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator) (a1, b1) = model.a.item(), model.b.item() opt_state1 = optimizer.state_dict() # Train partially set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=True) accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) accelerator.load_state() # <= infer the directory automatically (a2, b2) = model.a.item(), model.b.item() opt_state2 = optimizer.state_dict() assert a == a2 assert b == b2 self.check_adam_state(opt_state, opt_state2, accelerator.distributed_type) assert opt_state == opt_state2 test_rands = train(2, model, train_dataloader, optimizer, accelerator) # Save everything accelerator.save_state(safe_serialization=self.use_safetensors) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_1")) test_rands += train(1, model, train_dataloader, optimizer, accelerator) (a3, b3) = model.a.item(), model.b.item() opt_state3 = optimizer.state_dict() assert a1 == a3 assert b1 == b3 self.check_adam_state(opt_state1, opt_state3, accelerator.distributed_type) assert ground_truth_rands == test_rands def test_invalid_registration(self): t = torch.tensor([1, 2, 3]) t1 = torch.tensor([2, 3, 4]) net = DummyModel() opt = torch.optim.Adam(net.parameters()) accelerator = Accelerator() with self.assertRaises(ValueError) as ve: accelerator.register_for_checkpointing(t, t1, net, opt) message = str(ve.exception) assert "Item at index 0" in message assert "Item at index 1" in message assert "Item at index 2" not in message assert "Item at index 3" not in message def test_with_scheduler(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) # Save initial accelerator.save_state(safe_serialization=self.use_safetensors) scheduler_state = scheduler.state_dict() train(3, model, train_dataloader, optimizer, accelerator, scheduler) assert scheduler_state != scheduler.state_dict() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_0")) assert scheduler_state == scheduler.state_dict() def test_automatic_loading(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) # Save initial accelerator.save_state(safe_serialization=self.use_safetensors) train(2, model, train_dataloader, optimizer, accelerator, scheduler) (a2, b2) = model.a.item(), model.b.item() # Save a first time accelerator.save_state(safe_serialization=self.use_safetensors) train(1, model, train_dataloader, optimizer, accelerator, scheduler) (a3, b3) = model.a.item(), model.b.item() # Load back in the last saved checkpoint, should point to a2, b2 accelerator.load_state() assert a3 != model.a.item() assert b3 != model.b.item() assert a2 == model.a.item() assert b2 == model.b.item() def test_checkpoint_deletion(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() project_config = ProjectConfiguration(automatic_checkpoint_naming=True, total_limit=2) # Train baseline accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model = accelerator.prepare(model) # Save 3 states: for _ in range(11): accelerator.save_state(safe_serialization=self.use_safetensors) assert not os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_0")) assert os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_9")) assert os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_10")) @require_non_cpu @require_non_torch_xla def test_map_location(self): cmd = DEFAULT_LAUNCH_COMMAND + [inspect.getfile(self.__class__)] execute_subprocess_async( cmd, env={ **os.environ, "USE_SAFETENSORS": str(self.use_safetensors), "OMP_NUM_THREADS": "1", }, ) if __name__ == "__main__": use_safetensors = os.environ.get("USE_SAFETENSORS", "False") == "True" savedir = "/tmp/accelerate/state_checkpointing" model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) model, optimizer = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: param_device = group["params"][0].device break assert param_device.type == accelerator.device.type model = model.cpu() accelerator.wait_for_everyone() accelerator.save_state(safe_serialization=use_safetensors) accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: param_device = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: param_device = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
accelerate/tests/test_state_checkpointing.py/0
{ "file_path": "accelerate/tests/test_state_checkpointing.py", "repo_id": "accelerate", "token_count": 8972 }
11
# Model arguments model_name_or_path: alignment-handbook/mistral-7b-sft-constitutional-ai torch_dtype: null # Data training arguments # For definitions, see: src/h4/training/config.py dataset_mixer: HuggingFaceH4/ultrafeedback_binarized: 1.0 HuggingFaceH4/cai-conversation-harmless: 1.0 dataset_splits: - train_prefs - test_prefs preprocessing_num_workers: 12 # DPOTrainer arguments bf16: true beta: 0.1 do_eval: true do_train: true evaluation_strategy: steps eval_steps: 1000 gradient_accumulation_steps: 1 gradient_checkpointing: true hub_model_id: mistral-7b-dpo-constitutional-ai learning_rate: 5.0e-7 log_level: info logging_steps: 10 lr_scheduler_type: linear max_length: 1024 max_prompt_length: 512 num_train_epochs: 3 optim: rmsprop output_dir: data/mistral-7b-dpo-constitutional-ai per_device_train_batch_size: 2 per_device_eval_batch_size: 8 push_to_hub: true save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1
alignment-handbook/recipes/constitutional-ai/dpo/config_anthropic.yaml/0
{ "file_path": "alignment-handbook/recipes/constitutional-ai/dpo/config_anthropic.yaml", "repo_id": "alignment-handbook", "token_count": 373 }
12
# Model arguments model_name_or_path: alignment-handbook/zephyr-7b-sft-full torch_dtype: null # Data training arguments # For definitions, see: src/h4/training/config.py dataset_mixer: HuggingFaceH4/ultrafeedback_binarized: 1.0 dataset_splits: - train_prefs - test_prefs preprocessing_num_workers: 12 # DPOTrainer arguments bf16: true beta: 0.01 do_eval: true evaluation_strategy: steps eval_steps: 100 gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False hub_model_id: zephyr-7b-dpo-full learning_rate: 5.0e-7 log_level: info logging_steps: 10 lr_scheduler_type: cosine max_length: 1024 max_prompt_length: 512 num_train_epochs: 1 optim: adamw_torch output_dir: data/zephyr-7b-dpo-full per_device_train_batch_size: 8 per_device_eval_batch_size: 8 push_to_hub: true save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1
alignment-handbook/recipes/zephyr-7b-beta/dpo/config_full.yaml/0
{ "file_path": "alignment-handbook/recipes/zephyr-7b-beta/dpo/config_full.yaml", "repo_id": "alignment-handbook", "token_count": 365 }
13
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List from datasets import load_dataset # HumanEval solutions that are considered simple/generic enough to be kept in the training dataset HUMAN_EVAL_STRINGS_OK = ["return x + y", "return len(string)", "return n**2", "return " ".join(strings)"] def extract_docstring(prompt: str) -> str: if '"""' in prompt: if prompt.count('"""') == 2: return prompt.split('"""')[1].strip() elif prompt.count('"""') == 4: return prompt.split('"""')[3].strip() else: raise ValueError() elif "'''" in prompt: assert prompt.count("'''") == 2 return prompt.split("'''")[1].strip() else: raise ValueError() def human_eval_docstrings() -> List[str]: ds = load_dataset("openai_humaneval", split="test") docstrings = [extract_docstring(v["prompt"]) for v in ds] return docstrings def load_dataset_column(dataset: str, column: str, split: str, name=None) -> List[str]: ds = load_dataset(dataset, split=split, name=name) res = [sample[column].strip() for sample in ds] # Only return non-empty strings return [sample for sample in res if len(sample) > 0] FILTER_OUT = { "human_eval_docstrings": human_eval_docstrings(), "human_eval_solutions": [ s for s in load_dataset_column("openai_humaneval", "canonical_solution", "test") if s not in HUMAN_EVAL_STRINGS_OK ], } def normalize_whitespace(text: str) -> str: return " ".join(text.split()) def decontaminate_humaneval( samples: List[Dict[str, Any]], text_column: str = "text", filter_out: Dict[str, List[str]] = FILTER_OUT ) -> List[Dict[str, Any]]: """ filter_out: Dict[str, List[str]] mapping from benchmark name to list of strings that need to be filtered-out. Return a list where each element is True if the corresponding file should be included in the dataset. Otherwise, the element is False. """ output = [] for content in samples[text_column]: content = normalize_whitespace(content.lower()) matched = False for _, substrings in filter_out.items(): for substring in substrings: if normalize_whitespace(substring.lower()) in content: matched = True break if matched: break # we keep files that are not matched output.append(not matched) return output
alignment-handbook/src/alignment/decontaminate.py/0
{ "file_path": "alignment-handbook/src/alignment/decontaminate.py", "repo_id": "alignment-handbook", "token_count": 1160 }
14
# Changelog This documents the main changes to the `candle` crate. ## v0.3.1 - Unreleased ### Added ### Modified ## v0.3.0 - 2023-10-01 ### Added - Added the Mistral 7b v0.1 model [983](https://github.com/huggingface/candle/pull/983). - Quantized version of the Mistral model [1009](https://github.com/huggingface/candle/pull/1009). - Add the gelu-erf op and activation function [969](https://github.com/huggingface/candle/pull/969). - Add the mixformer/phi-v1.5 model [930](https://github.com/huggingface/candle/pull/930). - Add the sclice-scatter op [927](https://github.com/huggingface/candle/pull/927). - Add the Wuerstchen diffusion model [911](https://github.com/huggingface/candle/pull/911). ### Modified - Support for simd128 intrinsics in some quantized vecdots [982](https://github.com/huggingface/candle/pull/982). - Optimize the index-select cuda kernel [976](https://github.com/huggingface/candle/pull/976). - Self-contained safetensor wrappers [946](https://github.com/huggingface/candle/pull/946). ## v0.2.2 - 2023-09-18 ### Added - Support for `top_p` sampling [819](https://github.com/huggingface/candle/pull/819). - T5 model including decoding [864](https://github.com/huggingface/candle/pull/864). - 1-d upsampling [839](https://github.com/huggingface/candle/pull/839). ### Modified - Bugfix for conv2d [820](https://github.com/huggingface/candle/pull/820). - Support tensor based indexing using `.i` [842](https://github.com/huggingface/candle/pull/842). ## v0.2.1 - 2023-09-11 ### Added - Add some RNNs (GRU and LSTM) in `candle-nn` [674](https://github.com/huggingface/candle/pull/674), [688](https://github.com/huggingface/candle/pull/688). - gguf v2 support [725](https://github.com/huggingface/candle/pull/725). - Quantized llama example in Python using the pyo3 api [716](https://github.com/huggingface/candle/pull/716). - `candle-nn` layer for conv2d-transposed [760](https://github.com/huggingface/candle/pull/760). - Add the Segment-Anything Model (SAM) as an example [773](https://github.com/huggingface/candle/pull/773). - TinyViT backbone for the segment anything example [787](https://github.com/huggingface/candle/pull/787). - Shape with holes support [770](https://github.com/huggingface/candle/pull/770). ### Modified - Dilations are now supported in conv-transpose2d. [671](https://github.com/huggingface/candle/pull/671). - Interactive mode for the quantized model [690](https://github.com/huggingface/candle/pull/690). - Faster softmax operation [747](https://github.com/huggingface/candle/pull/747). - Faster convolution operations on CPU and CUDA via im2col [802](https://github.com/huggingface/candle/pull/802). - Moving some models to a more central location [796](https://github.com/huggingface/candle/pull/796). ## v0.2.0 - 2023-08-30 ### Added - Add the powf op [664](https://github.com/huggingface/candle/pull/664). - Stable Diffusion XL support [647](https://github.com/huggingface/candle/pull/647). - Add the conv-transpose2d op [635](https://github.com/huggingface/candle/pull/635). - Refactor the VarBuilder api [627](https://github.com/huggingface/candle/pull/627). - Add some quantization command [625](https://github.com/huggingface/candle/pull/625). - Support more quantized types, e.g. Q2K, Q4K, Q5K... [586](https://github.com/huggingface/candle/pull/586). - Add pose estimation to the yolo example [589](https://github.com/huggingface/candle/pull/589). - Api to write GGUF files [585](https://github.com/huggingface/candle/pull/585). - Support more quantization types [580](https://github.com/huggingface/candle/pull/580). - Add EfficientNet as an example Computer Vision model [572](https://github.com/huggingface/candle/pull/572). - Add a group parameter to convolutions [566](https://github.com/huggingface/candle/pull/566). - New dtype: int64 [563](https://github.com/huggingface/candle/pull/563). - Handling of the GGUF file format. [559](https://github.com/huggingface/candle/pull/559). ## v0.1.2 - 2023-08-21
candle/CHANGELOG.md/0
{ "file_path": "candle/CHANGELOG.md", "repo_id": "candle", "token_count": 1525 }
15
# Chapter 1
candle/candle-book/src/chapter_1.md/0
{ "file_path": "candle/candle-book/src/chapter_1.md", "repo_id": "candle", "token_count": 4 }
16
# MNIST So we now have downloaded the MNIST parquet files, let's put them in a simple struct. ```rust,ignore {{#include ../lib.rs:book_training_3}} ``` The parsing of the file and putting it into single tensors requires the dataset to fit the entire memory. It is quite rudimentary, but simple enough for a small dataset like MNIST.
candle/candle-book/src/training/mnist.md/0
{ "file_path": "candle/candle-book/src/training/mnist.md", "repo_id": "candle", "token_count": 93 }
17
use candle_core::quantized::{gguf_file, GgmlDType, QTensor}; use candle_core::{Device, Result}; use clap::{Parser, Subcommand, ValueEnum}; use rayon::prelude::*; #[derive(ValueEnum, Debug, Clone)] enum QuantizationMode { /// The default quantization includes all 2d tensors, except the output tensor which always /// uses Q6_K. Llama, } impl QuantizationMode { fn quantize(&self, name: &str, tensor: QTensor, dtype: GgmlDType) -> Result<QTensor> { match self { Self::Llama => { // Same behavior as the llama.cpp quantization. let should_quantize = name.ends_with(".weight") && tensor.rank() == 2; if should_quantize { let tensor = tensor.dequantize(&Device::Cpu)?; if name == "output.weight" { QTensor::quantize(&tensor, GgmlDType::Q6K) } else { QTensor::quantize(&tensor, dtype) } } else { Ok(tensor) } } } } } #[derive(ValueEnum, Debug, Clone)] enum Quantization { #[value(name = "q4_0")] Q4_0, #[value(name = "q4_1")] Q4_1, #[value(name = "q5_0")] Q5_0, #[value(name = "q5_1")] Q5_1, #[value(name = "q8_0")] Q8_0, #[value(name = "q8_1")] Q8_1, Q2k, Q3k, Q4k, Q5k, Q6k, Q8k, F16, F32, } impl Quantization { fn dtype(&self) -> GgmlDType { match self { Quantization::Q4_0 => GgmlDType::Q4_0, Quantization::Q4_1 => GgmlDType::Q4_1, Quantization::Q5_0 => GgmlDType::Q5_0, Quantization::Q5_1 => GgmlDType::Q5_1, Quantization::Q8_0 => GgmlDType::Q8_0, Quantization::Q8_1 => GgmlDType::Q8_1, Quantization::Q2k => GgmlDType::Q2K, Quantization::Q3k => GgmlDType::Q3K, Quantization::Q4k => GgmlDType::Q4K, Quantization::Q5k => GgmlDType::Q5K, Quantization::Q6k => GgmlDType::Q6K, Quantization::Q8k => GgmlDType::Q8K, Quantization::F16 => GgmlDType::F16, Quantization::F32 => GgmlDType::F32, } } } #[derive(ValueEnum, Debug, Clone)] enum Format { Safetensors, Npz, Ggml, Gguf, Pth, Pickle, } impl Format { fn infer<P: AsRef<std::path::Path>>(p: P) -> Option<Self> { p.as_ref() .extension() .and_then(|e| e.to_str()) .and_then(|e| match e { // We don't infer any format for .bin as it can be used for ggml/gguf or pytorch. "safetensors" | "safetensor" => Some(Self::Safetensors), "npz" => Some(Self::Npz), "pth" | "pt" => Some(Self::Pth), "ggml" => Some(Self::Ggml), "gguf" => Some(Self::Gguf), _ => None, }) } } #[derive(Subcommand, Debug, Clone)] enum Command { Ls { files: Vec<std::path::PathBuf>, /// The file format to use, if unspecified infer from the file extension. #[arg(long, value_enum)] format: Option<Format>, /// Enable verbose mode. #[arg(short, long)] verbose: bool, }, Quantize { /// The input file(s), in safetensors format. in_file: Vec<std::path::PathBuf>, /// The output file, in gguf format. #[arg(long)] out_file: std::path::PathBuf, /// The quantization schema to apply. #[arg(long, value_enum)] quantization: Quantization, /// Which tensor to quantize. #[arg(long, value_enum, default_value_t = QuantizationMode::Llama)] mode: QuantizationMode, }, Dequantize { /// The input file, in gguf format. in_file: std::path::PathBuf, /// The output file, in safetensors format. #[arg(long)] out_file: std::path::PathBuf, }, } #[derive(Parser, Debug, Clone)] struct Args { #[command(subcommand)] command: Command, } fn run_ls( file: &std::path::PathBuf, format: Option<Format>, verbose: bool, device: &Device, ) -> Result<()> { let format = match format { Some(format) => format, None => match Format::infer(file) { Some(format) => format, None => { println!( "{file:?}: cannot infer format from file extension, use the --format flag" ); return Ok(()); } }, }; match format { Format::Npz => { let tensors = candle_core::npy::NpzTensors::new(file)?; let mut names = tensors.names(); names.sort(); for name in names { let shape_dtype = match tensors.get_shape_and_dtype(name) { Ok((shape, dtype)) => format!("[{shape:?}; {dtype:?}]"), Err(err) => err.to_string(), }; println!("{name}: {shape_dtype}") } } Format::Safetensors => { let tensors = unsafe { candle_core::safetensors::MmapedSafetensors::new(file)? }; let mut tensors = tensors.tensors(); tensors.sort_by(|a, b| a.0.cmp(&b.0)); for (name, view) in tensors.iter() { let dtype = view.dtype(); let dtype = match candle_core::DType::try_from(dtype) { Ok(dtype) => format!("{dtype:?}"), Err(_) => format!("{dtype:?}"), }; let shape = view.shape(); println!("{name}: [{shape:?}; {dtype}]") } } Format::Pth => { let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose, None)?; tensors.sort_by(|a, b| a.name.cmp(&b.name)); for tensor_info in tensors.iter() { println!( "{}: [{:?}; {:?}]", tensor_info.name, tensor_info.layout.shape(), tensor_info.dtype, ); if verbose { println!(" {:?}", tensor_info); } } } Format::Pickle => { let file = std::fs::File::open(file)?; let mut reader = std::io::BufReader::new(file); let mut stack = candle_core::pickle::Stack::empty(); stack.read_loop(&mut reader)?; for (i, obj) in stack.stack().iter().enumerate() { println!("{i} {obj:?}"); } } Format::Ggml => { let mut file = std::fs::File::open(file)?; let content = candle_core::quantized::ggml_file::Content::read(&mut file, device)?; let mut tensors = content.tensors.into_iter().collect::<Vec<_>>(); tensors.sort_by(|a, b| a.0.cmp(&b.0)); for (name, qtensor) in tensors.iter() { println!("{name}: [{:?}; {:?}]", qtensor.shape(), qtensor.dtype()); } } Format::Gguf => { let mut file = std::fs::File::open(file)?; let content = gguf_file::Content::read(&mut file)?; if verbose { let mut metadata = content.metadata.into_iter().collect::<Vec<_>>(); metadata.sort_by(|a, b| a.0.cmp(&b.0)); println!("metadata entries ({})", metadata.len()); for (key, value) in metadata.iter() { println!(" {key}: {value:?}"); } } let mut tensors = content.tensor_infos.into_iter().collect::<Vec<_>>(); tensors.sort_by(|a, b| a.0.cmp(&b.0)); for (name, info) in tensors.iter() { println!("{name}: [{:?}; {:?}]", info.shape, info.ggml_dtype); } } } Ok(()) } fn run_quantize_safetensors( in_files: &[std::path::PathBuf], out_file: std::path::PathBuf, q: Quantization, ) -> Result<()> { let mut out_file = std::fs::File::create(out_file)?; let mut tensors = std::collections::HashMap::new(); for in_file in in_files.iter() { let in_tensors = candle_core::safetensors::load(in_file, &Device::Cpu)?; tensors.extend(in_tensors) } println!("tensors: {}", tensors.len()); let dtype = q.dtype(); let block_size = dtype.block_size(); let qtensors = tensors .into_par_iter() .map(|(name, tensor)| { let should_quantize = tensor.rank() == 2 && tensor.dim(1)? % block_size == 0; println!(" quantizing {name} {tensor:?} {should_quantize}"); let tensor = if should_quantize { QTensor::quantize(&tensor, dtype)? } else { QTensor::quantize(&tensor, GgmlDType::F32)? }; Ok((name, tensor)) }) .collect::<Result<Vec<_>>>()?; let qtensors = qtensors .iter() .map(|(k, v)| (k.as_str(), v)) .collect::<Vec<_>>(); gguf_file::write(&mut out_file, &[], &qtensors)?; Ok(()) } fn run_dequantize( in_file: std::path::PathBuf, out_file: std::path::PathBuf, device: &Device, ) -> Result<()> { let mut in_file = std::fs::File::open(in_file)?; let content = gguf_file::Content::read(&mut in_file)?; let mut tensors = std::collections::HashMap::new(); for (tensor_name, _) in content.tensor_infos.iter() { let tensor = content.tensor(&mut in_file, tensor_name, device)?; let tensor = tensor.dequantize(device)?; tensors.insert(tensor_name.to_string(), tensor); } candle_core::safetensors::save(&tensors, out_file)?; Ok(()) } fn run_quantize( in_files: &[std::path::PathBuf], out_file: std::path::PathBuf, q: Quantization, qmode: QuantizationMode, device: &Device, ) -> Result<()> { if in_files.is_empty() { candle_core::bail!("no specified input files") } if let Some(extension) = out_file.extension() { if extension == "safetensors" { candle_core::bail!("the generated file cannot use the safetensors extension") } } if let Some(extension) = in_files[0].extension() { if extension == "safetensors" { return run_quantize_safetensors(in_files, out_file, q); } } if in_files.len() != 1 { candle_core::bail!("only a single in-file can be used when quantizing gguf files") } // Open the out file early so as to fail directly on missing directories etc. let mut out_file = std::fs::File::create(out_file)?; let mut in_ = std::fs::File::open(&in_files[0])?; let content = gguf_file::Content::read(&mut in_)?; println!("tensors: {}", content.tensor_infos.len()); let dtype = q.dtype(); let qtensors = content .tensor_infos .par_iter() .map(|(name, _)| { println!(" quantizing {name}"); let mut in_file = std::fs::File::open(&in_files[0])?; let tensor = content.tensor(&mut in_file, name, device)?; let tensor = qmode.quantize(name, tensor, dtype)?; Ok((name, tensor)) }) .collect::<Result<Vec<_>>>()?; let qtensors = qtensors .iter() .map(|(k, v)| (k.as_str(), v)) .collect::<Vec<_>>(); let metadata = content .metadata .iter() .map(|(k, v)| (k.as_str(), v)) .collect::<Vec<_>>(); gguf_file::write(&mut out_file, metadata.as_slice(), &qtensors)?; Ok(()) } fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = Device::Cpu; match args.command { Command::Ls { files, format, verbose, } => { let multiple_files = files.len() > 1; for file in files.iter() { if multiple_files { println!("--- {file:?} ---"); } run_ls(file, format.clone(), verbose, &device)? } } Command::Quantize { in_file, out_file, quantization, mode, } => run_quantize(&in_file, out_file, quantization, mode, &device)?, Command::Dequantize { in_file, out_file } => run_dequantize(in_file, out_file, &device)?, } Ok(()) }
candle/candle-core/examples/tensor-tools.rs/0
{ "file_path": "candle/candle-core/examples/tensor-tools.rs", "repo_id": "candle", "token_count": 6585 }
18
/// Pretty printing of tensors /// This implementation should be in line with the PyTorch version. /// https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py use crate::{DType, Result, Tensor, WithDType}; use half::{bf16, f16}; impl Tensor { fn fmt_dt<T: WithDType + std::fmt::Display>( &self, f: &mut std::fmt::Formatter, ) -> std::fmt::Result { let device_str = match self.device().location() { crate::DeviceLocation::Cpu => "".to_owned(), crate::DeviceLocation::Cuda { gpu_id } => { format!(", cuda:{}", gpu_id) } crate::DeviceLocation::Metal { gpu_id } => { format!(", metal:{}", gpu_id) } }; write!(f, "Tensor[")?; match self.dims() { [] => { if let Ok(v) = self.to_scalar::<T>() { write!(f, "{v}")? } } [s] if *s < 10 => { if let Ok(vs) = self.to_vec1::<T>() { for (i, v) in vs.iter().enumerate() { if i > 0 { write!(f, ", ")?; } write!(f, "{v}")?; } } } dims => { write!(f, "dims ")?; for (i, d) in dims.iter().enumerate() { if i > 0 { write!(f, ", ")?; } write!(f, "{d}")?; } } } write!(f, "; {}{}]", self.dtype().as_str(), device_str) } } impl std::fmt::Debug for Tensor { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { match self.dtype() { DType::U8 => self.fmt_dt::<u8>(f), DType::U32 => self.fmt_dt::<u32>(f), DType::I64 => self.fmt_dt::<i64>(f), DType::BF16 => self.fmt_dt::<bf16>(f), DType::F16 => self.fmt_dt::<f16>(f), DType::F32 => self.fmt_dt::<f32>(f), DType::F64 => self.fmt_dt::<f64>(f), } } } /// Options for Tensor pretty printing #[derive(Debug, Clone)] pub struct PrinterOptions { pub precision: usize, pub threshold: usize, pub edge_items: usize, pub line_width: usize, pub sci_mode: Option<bool>, } static PRINT_OPTS: std::sync::Mutex<PrinterOptions> = std::sync::Mutex::new(PrinterOptions::const_default()); impl PrinterOptions { // We cannot use the default trait as it's not const. const fn const_default() -> Self { Self { precision: 4, threshold: 1000, edge_items: 3, line_width: 80, sci_mode: None, } } } pub fn print_options() -> &'static std::sync::Mutex<PrinterOptions> { &PRINT_OPTS } pub fn set_print_options(options: PrinterOptions) { *PRINT_OPTS.lock().unwrap() = options } pub fn set_print_options_default() { *PRINT_OPTS.lock().unwrap() = PrinterOptions::const_default() } pub fn set_print_options_short() { *PRINT_OPTS.lock().unwrap() = PrinterOptions { precision: 2, threshold: 1000, edge_items: 2, line_width: 80, sci_mode: None, } } pub fn set_print_options_full() { *PRINT_OPTS.lock().unwrap() = PrinterOptions { precision: 4, threshold: usize::MAX, edge_items: 3, line_width: 80, sci_mode: None, } } pub fn set_line_width(line_width: usize) { PRINT_OPTS.lock().unwrap().line_width = line_width } pub fn set_precision(precision: usize) { PRINT_OPTS.lock().unwrap().precision = precision } pub fn set_edge_items(edge_items: usize) { PRINT_OPTS.lock().unwrap().edge_items = edge_items } pub fn set_threshold(threshold: usize) { PRINT_OPTS.lock().unwrap().threshold = threshold } pub fn set_sci_mode(sci_mode: Option<bool>) { PRINT_OPTS.lock().unwrap().sci_mode = sci_mode } struct FmtSize { current_size: usize, } impl FmtSize { fn new() -> Self { Self { current_size: 0 } } fn final_size(self) -> usize { self.current_size } } impl std::fmt::Write for FmtSize { fn write_str(&mut self, s: &str) -> std::fmt::Result { self.current_size += s.len(); Ok(()) } } trait TensorFormatter { type Elem: WithDType; fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result; fn max_width(&self, to_display: &Tensor) -> usize { let mut max_width = 1; if let Ok(vs) = to_display.flatten_all().and_then(|t| t.to_vec1()) { for &v in vs.iter() { let mut fmt_size = FmtSize::new(); let _res = self.fmt(v, 1, &mut fmt_size); max_width = usize::max(max_width, fmt_size.final_size()) } } max_width } fn write_newline_indent(i: usize, f: &mut std::fmt::Formatter) -> std::fmt::Result { writeln!(f)?; for _ in 0..i { write!(f, " ")? } Ok(()) } fn fmt_tensor( &self, t: &Tensor, indent: usize, max_w: usize, summarize: bool, po: &PrinterOptions, f: &mut std::fmt::Formatter, ) -> std::fmt::Result { let dims = t.dims(); let edge_items = po.edge_items; write!(f, "[")?; match dims { [] => { if let Ok(v) = t.to_scalar::<Self::Elem>() { self.fmt(v, max_w, f)? } } [v] if summarize && *v > 2 * edge_items => { if let Ok(vs) = t .narrow(0, 0, edge_items) .and_then(|t| t.to_vec1::<Self::Elem>()) { for v in vs.into_iter() { self.fmt(v, max_w, f)?; write!(f, ", ")?; } } write!(f, "...")?; if let Ok(vs) = t .narrow(0, v - edge_items, edge_items) .and_then(|t| t.to_vec1::<Self::Elem>()) { for v in vs.into_iter() { write!(f, ", ")?; self.fmt(v, max_w, f)?; } } } [_] => { let elements_per_line = usize::max(1, po.line_width / (max_w + 2)); if let Ok(vs) = t.to_vec1::<Self::Elem>() { for (i, v) in vs.into_iter().enumerate() { if i > 0 { if i % elements_per_line == 0 { write!(f, ",")?; Self::write_newline_indent(indent, f)? } else { write!(f, ", ")?; } } self.fmt(v, max_w, f)? } } } _ => { if summarize && dims[0] > 2 * edge_items { for i in 0..edge_items { match t.get(i) { Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?, Err(e) => write!(f, "{e:?}")?, } write!(f, ",")?; Self::write_newline_indent(indent, f)? } write!(f, "...")?; Self::write_newline_indent(indent, f)?; for i in dims[0] - edge_items..dims[0] { match t.get(i) { Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?, Err(e) => write!(f, "{e:?}")?, } if i + 1 != dims[0] { write!(f, ",")?; Self::write_newline_indent(indent, f)? } } } else { for i in 0..dims[0] { match t.get(i) { Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?, Err(e) => write!(f, "{e:?}")?, } if i + 1 != dims[0] { write!(f, ",")?; Self::write_newline_indent(indent, f)? } } } } } write!(f, "]")?; Ok(()) } } struct FloatFormatter<S: WithDType> { int_mode: bool, sci_mode: bool, precision: usize, _phantom: std::marker::PhantomData<S>, } impl<S> FloatFormatter<S> where S: WithDType + num_traits::Float + std::fmt::Display, { fn new(t: &Tensor, po: &PrinterOptions) -> Result<Self> { let mut int_mode = true; let mut sci_mode = false; // Rather than containing all values, this should only include // values that end up being displayed according to [threshold]. let values = t .flatten_all()? .to_vec1()? .into_iter() .filter(|v: &S| v.is_finite() && !v.is_zero()) .collect::<Vec<_>>(); if !values.is_empty() { let mut nonzero_finite_min = S::max_value(); let mut nonzero_finite_max = S::min_value(); for &v in values.iter() { let v = v.abs(); if v < nonzero_finite_min { nonzero_finite_min = v } if v > nonzero_finite_max { nonzero_finite_max = v } } for &value in values.iter() { if value.ceil() != value { int_mode = false; break; } } if let Some(v1) = S::from(1000.) { if let Some(v2) = S::from(1e8) { if let Some(v3) = S::from(1e-4) { sci_mode = nonzero_finite_max / nonzero_finite_min > v1 || nonzero_finite_max > v2 || nonzero_finite_min < v3 } } } } match po.sci_mode { None => {} Some(v) => sci_mode = v, } Ok(Self { int_mode, sci_mode, precision: po.precision, _phantom: std::marker::PhantomData, }) } } impl<S> TensorFormatter for FloatFormatter<S> where S: WithDType + num_traits::Float + std::fmt::Display + std::fmt::LowerExp, { type Elem = S; fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result { if self.sci_mode { write!( f, "{v:width$.prec$e}", v = v, width = max_w, prec = self.precision ) } else if self.int_mode { if v.is_finite() { write!(f, "{v:width$.0}.", v = v, width = max_w - 1) } else { write!(f, "{v:max_w$.0}") } } else { write!( f, "{v:width$.prec$}", v = v, width = max_w, prec = self.precision ) } } } struct IntFormatter<S: WithDType> { _phantom: std::marker::PhantomData<S>, } impl<S: WithDType> IntFormatter<S> { fn new() -> Self { Self { _phantom: std::marker::PhantomData, } } } impl<S> TensorFormatter for IntFormatter<S> where S: WithDType + std::fmt::Display, { type Elem = S; fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result { write!(f, "{v:max_w$}") } } fn get_summarized_data(t: &Tensor, edge_items: usize) -> Result<Tensor> { let dims = t.dims(); if dims.is_empty() { Ok(t.clone()) } else if dims.len() == 1 { if dims[0] > 2 * edge_items { Tensor::cat( &[ t.narrow(0, 0, edge_items)?, t.narrow(0, dims[0] - edge_items, edge_items)?, ], 0, ) } else { Ok(t.clone()) } } else if dims[0] > 2 * edge_items { let mut vs: Vec<_> = (0..edge_items) .map(|i| get_summarized_data(&t.get(i)?, edge_items)) .collect::<Result<Vec<_>>>()?; for i in (dims[0] - edge_items)..dims[0] { vs.push(get_summarized_data(&t.get(i)?, edge_items)?) } Tensor::cat(&vs, 0) } else { let vs: Vec<_> = (0..dims[0]) .map(|i| get_summarized_data(&t.get(i)?, edge_items)) .collect::<Result<Vec<_>>>()?; Tensor::cat(&vs, 0) } } impl std::fmt::Display for Tensor { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { let po = PRINT_OPTS.lock().unwrap(); let summarize = self.elem_count() > po.threshold; let to_display = if summarize { match get_summarized_data(self, po.edge_items) { Ok(v) => v, Err(err) => return write!(f, "{err:?}"), } } else { self.clone() }; match self.dtype() { DType::U8 => { let tf: IntFormatter<u8> = IntFormatter::new(); let max_w = tf.max_width(&to_display); tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?; writeln!(f)?; } DType::U32 => { let tf: IntFormatter<u32> = IntFormatter::new(); let max_w = tf.max_width(&to_display); tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?; writeln!(f)?; } DType::I64 => { let tf: IntFormatter<i64> = IntFormatter::new(); let max_w = tf.max_width(&to_display); tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?; writeln!(f)?; } DType::BF16 => { if let Ok(tf) = FloatFormatter::<bf16>::new(&to_display, &po) { let max_w = tf.max_width(&to_display); tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?; writeln!(f)?; } } DType::F16 => { if let Ok(tf) = FloatFormatter::<f16>::new(&to_display, &po) { let max_w = tf.max_width(&to_display); tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?; writeln!(f)?; } } DType::F64 => { if let Ok(tf) = FloatFormatter::<f64>::new(&to_display, &po) { let max_w = tf.max_width(&to_display); tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?; writeln!(f)?; } } DType::F32 => { if let Ok(tf) = FloatFormatter::<f32>::new(&to_display, &po) { let max_w = tf.max_width(&to_display); tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?; writeln!(f)?; } } }; let device_str = match self.device().location() { crate::DeviceLocation::Cpu => "".to_owned(), crate::DeviceLocation::Cuda { gpu_id } => { format!(", cuda:{}", gpu_id) } crate::DeviceLocation::Metal { gpu_id } => { format!(", metal:{}", gpu_id) } }; write!( f, "Tensor[{:?}, {}{}]", self.dims(), self.dtype().as_str(), device_str ) } }
candle/candle-core/src/display.rs/0
{ "file_path": "candle/candle-core/src/display.rs", "repo_id": "candle", "token_count": 9753 }
19
#![allow(unused)] use super::GgmlDType; use crate::{Error, MetalDevice, MetalStorage, Result}; pub struct QMetalStorage { dtype: GgmlDType, device: MetalDevice, } impl QMetalStorage { pub fn zeros(_: &MetalDevice, _: usize, _: GgmlDType) -> Result<Self> { Err(Error::NotCompiledWithMetalSupport) } pub fn dtype(&self) -> GgmlDType { self.dtype } pub fn device(&self) -> &MetalDevice { &self.device } pub fn dequantize(&self, _elem_count: usize) -> Result<MetalStorage> { Err(Error::NotCompiledWithMetalSupport) } pub fn quantize(&mut self, _src: &MetalStorage) -> Result<()> { Err(Error::NotCompiledWithMetalSupport) } pub fn storage_size_in_bytes(&self) -> usize { 0 } pub fn fwd( &self, _self_shape: &crate::Shape, _storage: &MetalStorage, _layout: &crate::Layout, ) -> Result<(MetalStorage, crate::Shape)> { Err(Error::NotCompiledWithMetalSupport) } } pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>( _device: &MetalDevice, _data: &[T], ) -> Result<super::QStorage> { Err(Error::NotCompiledWithMetalSupport) }
candle/candle-core/src/quantized/dummy_metal.rs/0
{ "file_path": "candle/candle-core/src/quantized/dummy_metal.rs", "repo_id": "candle", "token_count": 522 }
20
use crate::{Result, Tensor}; #[macro_export] macro_rules! test_device { // TODO: Switch to generating the two last arguments automatically once concat_idents is // stable. https://github.com/rust-lang/rust/issues/29599 ($fn_name: ident, $test_cpu: ident, $test_cuda: ident, $test_metal: ident) => { #[test] fn $test_cpu() -> Result<()> { $fn_name(&Device::Cpu) } #[cfg(feature = "cuda")] #[test] fn $test_cuda() -> Result<()> { $fn_name(&Device::new_cuda(0)?) } #[cfg(feature = "metal")] #[test] fn $test_metal() -> Result<()> { $fn_name(&Device::new_metal(0)?) } }; } pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> { let b = 10f32.powi(digits); let t = t.to_vec0::<f32>()?; Ok(f32::round(t * b) / b) } pub fn to_vec1_round(t: &Tensor, digits: i32) -> Result<Vec<f32>> { let b = 10f32.powi(digits); let t = t.to_vec1::<f32>()?; let t = t.iter().map(|t| f32::round(t * b) / b).collect(); Ok(t) } pub fn to_vec2_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<f32>>> { let b = 10f32.powi(digits); let t = t.to_vec2::<f32>()?; let t = t .iter() .map(|t| t.iter().map(|t| f32::round(t * b) / b).collect()) .collect(); Ok(t) } pub fn to_vec3_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> { let b = 10f32.powi(digits); let t = t.to_vec3::<f32>()?; let t = t .iter() .map(|t| { t.iter() .map(|t| t.iter().map(|t| f32::round(t * b) / b).collect()) .collect() }) .collect(); Ok(t) }
candle/candle-core/src/test_utils.rs/0
{ "file_path": "candle/candle-core/src/test_utils.rs", "repo_id": "candle", "token_count": 923 }
21
use candle_core::{test_device, test_utils, DType, Device, IndexOp, Result, Tensor, D}; fn zeros(device: &Device) -> Result<()> { let tensor = Tensor::zeros((5, 2), DType::F32, device)?; let (dim1, dim2) = tensor.dims2()?; assert_eq!(dim1, 5); assert_eq!(dim2, 2); Ok(()) } fn ones(device: &Device) -> Result<()> { assert_eq!( Tensor::ones((2, 3), DType::U8, device)?.to_vec2::<u8>()?, [[1, 1, 1], [1, 1, 1]], ); assert_eq!( Tensor::ones((2, 3), DType::U32, device)?.to_vec2::<u32>()?, [[1, 1, 1], [1, 1, 1]], ); assert_eq!( Tensor::ones((2, 3), DType::I64, device)?.to_vec2::<i64>()?, [[1, 1, 1], [1, 1, 1]], ); assert_eq!( Tensor::ones((2, 3), DType::F32, device)?.to_vec2::<f32>()?, [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ); assert_eq!( Tensor::ones((2, 3), DType::F64, device)?.to_vec2::<f64>()?, [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ); Ok(()) } fn full(device: &Device) -> Result<()> { assert_eq!( Tensor::full(42u32, (2, 3), device)?.to_vec2::<u32>()?, [[42, 42, 42], [42, 42, 42]], ); Ok(()) } fn arange(device: &Device) -> Result<()> { assert_eq!( Tensor::arange(0u8, 5u8, device)?.to_vec1::<u8>()?, [0, 1, 2, 3, 4], ); assert_eq!( Tensor::arange_step(0u8, 5u8, 2, device)?.to_vec1::<u8>()?, [0, 2, 4], ); assert_eq!( Tensor::arange_step(0u8, 5u8, 3, device)?.to_vec1::<u8>()?, [0, 3], ); assert_eq!( Tensor::arange_step(5i64, 0i64, -1, device)?.to_vec1::<i64>()?, [5, 4, 3, 2, 1], ); Ok(()) } fn add_mul(device: &Device) -> Result<()> { let tensor = Tensor::new(&[3f32, 1., 4.], device)?; let dim1 = tensor.dims1()?; assert_eq!(dim1, 3); let content: Vec<f32> = tensor.to_vec1()?; assert_eq!(content, [3., 1., 4.]); let tensor = Tensor::add(&tensor, &tensor)?; let content: Vec<f32> = tensor.to_vec1()?; assert_eq!(content, [6., 2., 8.]); let tensor = Tensor::mul(&tensor, &tensor)?; let content: Vec<f32> = tensor.to_vec1()?; assert_eq!(content, [36., 4., 64.]); Ok(()) } fn tensor_2d(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?; let dims = tensor.dims2()?; assert_eq!(dims, (2, 5)); let content: Vec<Vec<f32>> = tensor.to_vec2()?; assert_eq!(content, data); Ok(()) } fn clamp(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?; let tensor = tensor.clamp(1.5, 6.2)?; assert_eq!( tensor.to_vec2::<f32>()?, [[3.0, 1.5, 4.0, 1.5, 5.0], [2.0, 1.5, 6.2, 6.2, 2.0]], ); Ok(()) } fn unary_op(device: &Device) -> Result<()> { let data = &[[-3f32, 1., 4., -0.1, 0.5], [2.7, -1.8, -0.28, 1.8, 2.8]]; let tensor = Tensor::new(data, device)?; assert_eq!( test_utils::to_vec2_round(&tensor.gelu()?, 4)?, [ [-0.0036, 0.8412, 3.9999, -0.046, 0.3457], [2.6911, -0.0647, -0.1091, 1.7353, 2.7933] ] ); assert_eq!( test_utils::to_vec2_round(&tensor.gelu_erf()?, 4)?, [ [-0.004, 0.8413, 3.9999, -0.046, 0.3457], [2.6906, -0.0647, -0.1091, 1.7353, 2.7928] ] ); assert_eq!( test_utils::to_vec2_round(&tensor.erf()?, 4)?, [ [-1.0, 0.8427, 1.0, -0.1125, 0.5205], [0.9999, -0.9891, -0.3079, 0.9891, 0.9999] ] ); assert_eq!( test_utils::to_vec2_round(&tensor.silu()?, 4)?, [ [-0.1423, 0.7311, 3.9281, -0.0475, 0.3112], [2.53, -0.2553, -0.1205, 1.5447, 2.6395] ] ); assert_eq!( test_utils::to_vec2_round(&tensor.ceil()?, 4)?, [[-3.0, 1.0, 4.0, -0.0, 1.0], [3.0, -1.0, -0.0, 2.0, 3.0]] ); assert_eq!( test_utils::to_vec2_round(&tensor.floor()?, 4)?, [[-3.0, 1.0, 4.0, -1.0, 0.0], [2.0, -2.0, -1.0, 1.0, 2.0]] ); assert_eq!( test_utils::to_vec2_round(&tensor.round()?, 4)?, [[-3.0, 1.0, 4.0, -0.0, 1.0], [3.0, -2.0, -0.0, 2.0, 3.0]] ); let tensor = Tensor::new(&[2997.9246, 314.15926f32], device)?; assert_eq!( test_utils::to_vec1_round(&tensor.round_to(2)?, 4)?, [2997.92, 314.16] ); assert_eq!( test_utils::to_vec1_round(&tensor.round_to(-2)?, 4)?, [3000.0, 300.] ); Ok(()) } fn binary_op(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor1 = Tensor::new(data, device)?; let data2 = &[[5f32, 5., 5., 5., 5.], [2., 1., 7., 8., 2.]]; let tensor2 = Tensor::new(data2, device)?; let tensor = (&tensor1 + (&tensor1 * &tensor1)? / (&tensor1 + &tensor2))?; let dims = tensor.dims2()?; assert_eq!(dims, (2, 5)); let content: Vec<Vec<f32>> = tensor.to_vec2()?; assert_eq!(content[0], [4.125, 1.1666666, 5.7777777, 1.1666666, 7.5]); assert_eq!(content[1], [3.0, 1.5, 10.5, 12.0, 3.0]); #[allow(clippy::eq_op)] let tensor = (&tensor - &tensor)?; let content: Vec<Vec<f32>> = tensor.to_vec2()?; assert_eq!(content[0], [0., 0., 0., 0., 0.]); let min = tensor1.minimum(&(&tensor2 * 0.5)?)?; let max = tensor1.maximum(&(&tensor2 * 0.5)?)?; assert_eq!( min.to_vec2::<f32>()?, [[2.5, 1.0, 2.5, 1.0, 2.5], [1.0, 0.5, 3.5, 4.0, 1.0]], ); assert_eq!( max.to_vec2::<f32>()?, [[3.0, 2.5, 4.0, 2.5, 5.0], [2.0, 1.0, 7.0, 8.0, 2.0]] ); Ok(()) } fn transpose(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?.t()?; let dims = tensor.dims2()?; assert_eq!(dims, (5, 2)); assert_eq!( tensor.to_vec2::<f32>()?, &[[3f32, 2.], [1., 1.], [4., 7.], [1., 8.], [5., 2.]] ); assert_eq!(tensor.t()?.to_vec2::<f32>()?, data); assert_eq!(tensor.contiguous()?.t()?.to_vec2::<f32>()?, data); assert_eq!(((tensor + 1.)?.t()? - 1.)?.to_vec2::<f32>()?, data); Ok(()) } fn var(device: &Device) -> Result<()> { // Values taken from https://pytorch.org/docs/stable/generated/torch.var.html let data = &[ [0.2035f32, 1.2959, 1.8101, -0.4644], [1.5027, -0.3270, 0.5905, 0.6538], [-1.5745, 1.3330, -0.5596, -0.6548], [0.1264, -0.5080, 1.6420, 0.1992], ]; let tensor = Tensor::new(data, device)?; assert_eq!( test_utils::to_vec2_round(&tensor.var_keepdim(1)?, 4)?, &[[1.0631], [0.559], [1.4893], [0.8258]] ); Ok(()) } fn sum(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.sum_keepdim(2)?.to_vec3::<u32>()?, &[[[8], [15]], [[10], [18]]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec3::<u32>()?, &[[[5, 2, 11], [9, 7, 17]]], ); assert_eq!(tensor.sum_keepdim((0, 2, 1))?.to_vec3::<u32>()?, &[[[51]]],); assert_eq!( tensor.t()?.sum_keepdim(1)?.t()?.to_vec3::<u32>()?, &[[[8], [15]], [[10], [18]]] ); assert_eq!( tensor.sum_keepdim((2, 1))?.to_vec3::<u32>()?, &[[[8 + 15]], [[10 + 18]]] ); let data: Vec<u32> = (0..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.sum_keepdim(0)?.to_vec1::<u32>()?, &[7998000]); let tensor = tensor.reshape((2000, 2))?; assert_eq!(tensor.sum_keepdim((0, 1))?.to_vec2::<u32>()?, &[[7998000]]); assert_eq!( tensor.sum_keepdim(0)?.sum_keepdim(1)?.to_vec2::<u32>()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(1)?.sum_keepdim(0)?.to_vec2::<u32>()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec2::<u32>()?, &[[3998000, 4000000]] ); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!(tensor.sum_keepdim((0, 1))?.to_vec2::<u32>()?, &[[7998000]]); assert_eq!( tensor.sum_keepdim(0)?.sum_keepdim(1)?.to_vec2::<u32>()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(1)?.sum_keepdim(0)?.to_vec2::<u32>()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec2::<u32>()?, &[[3998000, 4000000]] ); let t1 = tensor.reshape((200, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor.sum_keepdim((0, 1, 2))?.to_vec3::<u32>()?, &[[[7998000]]] ); assert_eq!( tensor .sum_keepdim(0)? .sum_keepdim(2)? .sum_keepdim(1)? .to_vec3::<u32>()?, &[[[7998000]]] ); assert_eq!( tensor .sum_keepdim(0)? .sum_keepdim((1, 2))? .to_vec3::<u32>()?, &[[[7998000]]] ); assert_eq!( tensor .sum_keepdim(1)? .sum_keepdim((0, 2))? .to_vec3::<u32>()?, &[[[7998000]]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec3::<u32>()?, &[[ [398000, 398200, 398400, 398600], [398800, 399000, 399200, 399400], [399600, 399800, 400000, 400200], [400400, 400600, 400800, 401000], [401200, 401400, 401600, 401800] ]] ); } Ok(()) } fn min(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.min_keepdim(2)?.to_vec3::<u32>()?, &[[[1], [1]], [[1], [2]]] ); assert_eq!( tensor.min_keepdim(0)?.to_vec3::<u32>()?, &[[[2, 1, 4], [1, 2, 8]]], ); let data: Vec<u32> = (200..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.min_keepdim(0)?.to_vec1::<u32>()?, &[200]); let tensor = tensor.reshape((1900, 2))?; assert_eq!( tensor.min_keepdim(0)?.min_keepdim(1)?.to_vec2::<u32>()?, &[[200]] ); assert_eq!( tensor.min_keepdim(1)?.min_keepdim(0)?.to_vec2::<u32>()?, &[[200]] ); assert_eq!(tensor.min_keepdim(0)?.to_vec2::<u32>()?, &[[200, 201]]); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!( tensor.min_keepdim(0)?.min_keepdim(1)?.to_vec2::<u32>()?, &[[200]] ); assert_eq!( tensor.min_keepdim(1)?.min_keepdim(0)?.to_vec2::<u32>()?, &[[200]] ); assert_eq!(tensor.min_keepdim(0)?.to_vec2::<u32>()?, &[[200, 201]]); let t1 = tensor.reshape((190, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor .min_keepdim(0)? .min_keepdim(2)? .min_keepdim(1)? .to_vec3::<u32>()?, &[[[200]]] ); assert_eq!( tensor.min_keepdim(0)?.to_vec3::<u32>()?, &[[ [200, 201, 202, 203], [204, 205, 206, 207], [208, 209, 210, 211], [212, 213, 214, 215], [216, 217, 218, 219] ]] ); } Ok(()) } fn max(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.max_keepdim(2)?.to_vec3::<u32>()?, &[[[4], [9]], [[7], [8]]] ); assert_eq!( tensor.max_keepdim(0)?.to_vec3::<u32>()?, &[[[3, 1, 7], [8, 5, 9]]], ); let data: Vec<u32> = (200..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.max_keepdim(0)?.to_vec1::<u32>()?, &[3999]); let tensor = tensor.reshape((1900, 2))?; assert_eq!( tensor.max_keepdim(0)?.max_keepdim(1)?.to_vec2::<u32>()?, &[[3999]] ); assert_eq!( tensor.max_keepdim(1)?.max_keepdim(0)?.to_vec2::<u32>()?, &[[3999]] ); assert_eq!(tensor.max_keepdim(0)?.to_vec2::<u32>()?, &[[3998, 3999]]); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!( tensor.max_keepdim(0)?.max_keepdim(1)?.to_vec2::<u32>()?, &[[3999]] ); assert_eq!( tensor.max_keepdim(1)?.max_keepdim(0)?.to_vec2::<u32>()?, &[[3999]] ); assert_eq!(tensor.max_keepdim(0)?.to_vec2::<u32>()?, &[[3998, 3999]]); let t1 = tensor.reshape((190, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor .max_keepdim(0)? .max_keepdim(2)? .max_keepdim(1)? .to_vec3::<u32>()?, &[[[3999]]] ); assert_eq!( tensor.max_keepdim(0)?.to_vec3::<u32>()?, &[[ [3980, 3981, 3982, 3983], [3984, 3985, 3986, 3987], [3988, 3989, 3990, 3991], [3992, 3993, 3994, 3995], [3996, 3997, 3998, 3999] ]] ); } Ok(()) } fn argmin(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.argmin_keepdim(2)?.to_vec3::<u32>()?, &[[[1], [0]], [[1], [1]]] ); assert_eq!( tensor.argmin_keepdim(0)?.to_vec3::<u32>()?, &[[[1, 0, 0], [0, 1, 1]]], ); let data: Vec<u32> = (200..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.argmin_keepdim(0)?.to_vec1::<u32>()?, &[0]); let tensor = tensor.reshape((1900, 2))?; assert_eq!( tensor .argmin_keepdim(0)? .argmin_keepdim(1)? .to_vec2::<u32>()?, &[[0]] ); assert_eq!( tensor .argmin_keepdim(1)? .argmin_keepdim(0)? .to_vec2::<u32>()?, &[[0]] ); assert_eq!(tensor.argmin_keepdim(0)?.to_vec2::<u32>()?, &[[0, 0]]); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!( tensor .argmin_keepdim(0)? .argmin_keepdim(1)? .to_vec2::<u32>()?, &[[0]] ); assert_eq!( tensor .argmin_keepdim(1)? .argmin_keepdim(0)? .to_vec2::<u32>()?, &[[0]] ); assert_eq!(tensor.argmin_keepdim(0)?.to_vec2::<u32>()?, &[[0, 0]]); let t1 = tensor.reshape((190, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor .argmin_keepdim(0)? .argmin_keepdim(2)? .argmin_keepdim(1)? .to_vec3::<u32>()?, &[[[0]]] ); assert_eq!( tensor.argmin_keepdim(0)?.to_vec3::<u32>()?, &[[ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], ]] ); } Ok(()) } fn argmax(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.argmax_keepdim(2)?.to_vec3::<u32>()?, &[[[2], [2]], [[2], [0]]] ); assert_eq!( tensor.argmax_keepdim(0)?.to_vec3::<u32>()?, &[[[0, 0, 1], [1, 0, 0]]], ); let data: Vec<u32> = (200..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.argmax_keepdim(0)?.to_vec1::<u32>()?, &[3799]); let tensor = tensor.reshape((1900, 2))?; assert_eq!( tensor .argmax_keepdim(0)? .argmax_keepdim(1)? .to_vec2::<u32>()?, &[[0]] ); assert_eq!( tensor .argmax_keepdim(1)? .argmax_keepdim(0)? .to_vec2::<u32>()?, &[[0]] ); assert_eq!(tensor.argmax_keepdim(0)?.to_vec2::<u32>()?, &[[1899, 1899]]); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!( tensor .argmax_keepdim(0)? .argmax_keepdim(1)? .to_vec2::<u32>()?, &[[0]] ); assert_eq!( tensor .argmax_keepdim(1)? .argmax_keepdim(0)? .to_vec2::<u32>()?, &[[0]] ); assert_eq!(tensor.argmax_keepdim(0)?.to_vec2::<u32>()?, &[[1899, 1899]]); let t1 = tensor.reshape((190, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor .argmax_keepdim(0)? .argmax_keepdim(2)? .argmax_keepdim(1)? .to_vec3::<u32>()?, &[[[0]]] ); assert_eq!( tensor.argmax_keepdim(0)?.to_vec3::<u32>()?, &[[ [189, 189, 189, 189], [189, 189, 189, 189], [189, 189, 189, 189], [189, 189, 189, 189], [189, 189, 189, 189], ]] ); } Ok(()) } fn narrow(device: &Device) -> Result<()> { let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.narrow(2, 1, 2)?.to_vec3::<f32>()?, &[[[1.0, 4.0], [5.0, 9.0]], [[1.0, 7.0], [2.0, 8.0]]], ); assert_eq!( tensor.narrow(1, 1, 1)?.to_vec3::<f32>()?, &[[[1.0, 5.0, 9.0]], [[8.0, 2.0, 8.0]]], ); assert_eq!( tensor.narrow(0, 0, 1)?.to_vec3::<f32>()?, &[[[3.0, 1.0, 4.0], [1.0, 5.0, 9.0]]], ); assert_eq!( tensor.narrow(0, 1, 1)?.to_vec3::<f32>()?, &[[[2.0, 1.0, 7.0], [8.0, 2.0, 8.0]]], ); // The following has been checked against PyTorch via: // import torch // t = torch.tensor([[[3., 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]) // t.transpose(-1, -2).narrow(1, 1, 2) assert_eq!( tensor.t()?.narrow(1, 1, 2)?.to_vec3::<f32>()?, &[[[1.0, 5.0], [4.0, 9.0]], [[1.0, 2.0], [7.0, 8.0]]], ); Ok(()) } fn broadcast(device: &Device) -> Result<()> { let data = &[3f32, 1., 4.]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.broadcast_left((3, 1))?.to_vec3::<f32>()?, &[[[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]]] ); Ok(()) } fn cat(device: &Device) -> Result<()> { // 1D let t1 = Tensor::new(&[3f32, 1., 4.], device)?; let t2 = Tensor::new(&[1f32, 5., 9., 2.], device)?; let t3 = Tensor::new(&[6f32, 5., 3., 5., 8., 9.], device)?; assert_eq!(Tensor::cat(&[&t1], 0)?.to_vec1::<f32>()?, [3f32, 1., 4.],); assert_eq!( Tensor::cat(&[&t1, &t2], 0)?.to_vec1::<f32>()?, [3f32, 1., 4., 1., 5., 9., 2.], ); assert_eq!( Tensor::cat(&[&t1, &t2, &t3], 0)?.to_vec1::<f32>()?, [3f32, 1., 4., 1., 5., 9., 2., 6., 5., 3., 5., 8., 9.], ); // 2D let data = &[[3f32, 1., 4., 1., 5.], [2., 7., 1., 8., 2.]]; let t1 = Tensor::new(data, device)?; let data2 = &[[5f32, 5., 5., 5., 5.], [2., 7., 1., 8., 2.]]; let t2 = Tensor::new(data2, device)?; assert_eq!( Tensor::cat(&[&t1, &t2], 0)?.to_vec2::<f32>()?, [ [3.0, 1.0, 4.0, 1.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0], [5.0, 5.0, 5.0, 5.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0] ] ); // PyTorch equivalent: // import torch // t1 = torch.tensor([[3, 1, 4, 1, 5], [2, 7, 1, 8, 2]]) // t2 = torch.tensor([[5]*5, [2, 7, 1, 8, 2]]) // torch.cat([t1.t(), t2.t()], dim=1).t() assert_eq!( Tensor::cat(&[&t1.t()?, &t2.t()?], 1)? .t()? .to_vec2::<f32>()?, [ [3.0, 1.0, 4.0, 1.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0], [5.0, 5.0, 5.0, 5.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0] ] ); assert_eq!( Tensor::cat(&[&t1, &t2], 1)?.to_vec2::<f32>()?, [ [3.0, 1.0, 4.0, 1.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0, 2.0, 7.0, 1.0, 8.0, 2.0] ] ); // 3D let t1 = Tensor::arange(0, 48i64, device)?.reshape((2, 6, 4))?; let t2 = Tensor::arange(100, 124i64, device)?.reshape((2, 3, 4))?; let t3 = Tensor::arange(10000, 10032i64, device)?.reshape((2, 4, 4))?; let t_cat = Tensor::cat(&[&t1, &t2, &t3], 1)?; let t1 = t1.t()?.contiguous()?.t()?; let t2 = t2.t()?.contiguous()?.t()?; let t3 = t3.t()?.contiguous()?.t()?; let t_cat2 = Tensor::cat(&[&t1, &t2, &t3], 1)?; let diff = t_cat.eq(&t_cat2)?.to_dtype(DType::F32)?.sum_all()?; assert_eq!(diff.to_vec0::<f32>()?, 104.0); assert_eq!(t_cat.i((0, 0, 0))?.to_vec0::<i64>()?, 0); assert_eq!(t_cat.i((0, 4, 0))?.to_vec0::<i64>()?, 16); assert_eq!(t_cat.i((0, 5, 0))?.to_vec0::<i64>()?, 20); assert_eq!(t_cat.i((1, 5, 0))?.to_vec0::<i64>()?, 44); assert_eq!(t_cat.i((0, 6, 0))?.to_vec0::<i64>()?, 100); assert_eq!(t_cat.i((1, 6, 0))?.to_vec0::<i64>()?, 112); assert_eq!(t_cat.i((0, 6, 1))?.to_vec0::<i64>()?, 101); assert_eq!(t_cat.i((0, 7, 1))?.to_vec0::<i64>()?, 105); assert_eq!(t_cat.i((0, 12, 1))?.to_vec0::<i64>()?, 10013); assert_eq!(t_cat.i((1, 12, 3))?.to_vec0::<i64>()?, 10031); Ok(()) } fn embeddings(device: &Device) -> Result<()> { let ids = Tensor::new(&[0u32, 2u32, 1u32], device)?; let t = Tensor::new(&[[0f32, 1f32], [2f32, 3f32], [4f32, 5f32]], device)?; let hs = t.embedding(&ids)?; assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]); let hs = t.index_select(&ids, 0)?; assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]); Ok(()) } fn cmp(device: &Device) -> Result<()> { let t1 = Tensor::new(&[[0f32, 1f32], [2f32, 3f32], [4f32, 5f32]], device)?; let t2 = Tensor::new(&[[1f32, 0f32], [3f32, 3f32], [4f32, 7f32]], device)?; assert_eq!(t1.eq(&t2)?.to_vec2::<u8>()?, &[[0, 0], [0, 1], [1, 0]]); assert_eq!(t1.ne(&t2)?.to_vec2::<u8>()?, &[[1, 1], [1, 0], [0, 1]]); assert_eq!(t1.le(&t2)?.to_vec2::<u8>()?, &[[1, 0], [1, 1], [1, 1]]); assert_eq!(t1.lt(&t2)?.to_vec2::<u8>()?, &[[1, 0], [1, 0], [0, 1]]); assert_eq!(t1.gt(&t2)?.to_vec2::<u8>()?, &[[0, 1], [0, 0], [0, 0]]); assert_eq!(t1.ge(&t2)?.to_vec2::<u8>()?, &[[0, 1], [0, 1], [1, 0]]); Ok(()) } fn index_select(device: &Device) -> Result<()> { let ids = Tensor::new(&[0u32, 2u32, 1u32], device)?; let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::<f32>()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let hs = t.index_select(&ids, 1)?; assert_eq!( hs.to_vec2::<f32>()?, &[ [0.0, 2.0, 1.0], [3.0, 5.0, 4.0], [6.0, 8.0, 7.0], [9.0, 11.0, 10.0] ] ); let hs = t.index_select(&ids, 0)?; assert_eq!( hs.to_vec2::<f32>()?, &[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0]] ); // Prior to https://github.com/huggingface/candle/pull/1022 // There would be a bug where the last values in the result tensor would be set to 0. let ids = Tensor::new(&[0u32, 2u32, 1u32, 0u32, 2u32, 1u32], device)?; let hs = t.index_select(&ids, 0)?; assert_eq!( hs.to_vec2::<f32>()?, &[ [0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0], [0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0], ] ); // Test when selecting dim > 0 with ids size different from elem count of // target dim in source/input. let ids = Tensor::new(&[1u32, 0u32, 1u32], device)?; let t = Tensor::arange(1f32, 5f32, device)?.reshape((2, 2))?; assert_eq!(t.to_vec2::<f32>()?, &[[1.0, 2.0], [3.0, 4.0]]); let hs = t.index_select(&ids, 1)?; assert_eq!(hs.to_vec2::<f32>()?, &[[2.0, 1.0, 2.0], [4.0, 3.0, 4.0]]); Ok(()) } fn index_add(device: &Device) -> Result<()> { let ids = Tensor::new(&[0u32, 1u32, 1u32], device)?; let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::<f32>()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let init = Tensor::ones((4, 2), DType::F32, device)?; let hs = init.index_add(&ids, &t, 1)?; assert_eq!( hs.to_vec2::<f32>()?, &[[1.0, 4.0], [4.0, 10.0], [7.0, 16.0], [10.0, 22.0]], ); let init = Tensor::zeros((4, 2), DType::F32, device)?; let ids = Tensor::new(&[1u32, 0u32, 0u32], device)?; let hs = init.index_add(&ids, &t, 1)?; assert_eq!( hs.to_vec2::<f32>()?, &[[3.0, 0.0], [9.0, 3.0], [15.0, 6.0], [21.0, 9.0]], ); let init = Tensor::zeros((6, 3), DType::F32, device)?; let ids = Tensor::new(&[5u32, 0u32, 1u32, 0u32], device)?; let hs = init.index_add(&ids, &t, 0)?; assert_eq!( hs.to_vec2::<f32>()?, &[ [12.0, 14.0, 16.0], [6.0, 7.0, 8.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 2.0] ] ); Ok(()) } fn slice_scatter(device: &Device) -> Result<()> { let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::<f32>()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let src = Tensor::arange(100f32, 106f32, device)?.reshape((2, 3))?; assert_eq!( t.slice_scatter0(&src, 0)?.to_vec2::<f32>()?, &[ [100.0, 101.0, 102.0], [103.0, 104.0, 105.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); assert_eq!( t.slice_scatter0(&src, 1)?.to_vec2::<f32>()?, &[ [0.0, 1.0, 2.0], [100.0, 101.0, 102.0], [103.0, 104.0, 105.0], [9.0, 10.0, 11.0] ] ); assert_eq!( t.slice_scatter0(&src, 2)?.to_vec2::<f32>()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [100.0, 101.0, 102.0], [103.0, 104.0, 105.0], ] ); Ok(()) } fn scatter_add(device: &Device) -> Result<()> { let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::<f32>()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let ids = Tensor::new(&[[0u32, 1, 2], [3, 4, 0], [3, 3, 1], [2, 0, 4]], device)?; let init = Tensor::ones((4, 5), DType::F32, device)?; let hs = init.scatter_add(&ids, &t, 1)?; assert_eq!( hs.to_vec2::<f32>()?, &[ [1.0, 2.0, 3.0, 1.0, 1.0], [6.0, 1.0, 1.0, 4.0, 5.0], [1.0, 9.0, 1.0, 14.0, 1.0], [11.0, 1.0, 10.0, 1.0, 12.0] ] ); let init = Tensor::ones((6, 3), DType::F32, device)?; let hs = init.scatter_add(&ids, &t, 0)?; assert_eq!( hs.to_vec2::<f32>()?, &[ [1.0, 11.0, 6.0], [1.0, 2.0, 9.0], [10.0, 1.0, 3.0], [10.0, 8.0, 1.0], [1.0, 5.0, 12.0], [1.0, 1.0, 1.0] ] ); Ok(()) } fn gather(device: &Device) -> Result<()> { let ids = Tensor::new(&[[0u32], [2u32], [1u32], [0u32]], device)?; let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::<f32>()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let hs = t.gather(&ids, 1)?; assert_eq!(hs.to_vec2::<f32>()?, &[[0.0], [5.0], [7.0], [9.0]]); let ids = Tensor::new( &[[0u32, 0u32], [2u32, 0u32], [1u32, 1u32], [0u32, 2u32]], device, )?; let hs = t.gather(&ids, 1)?; assert_eq!( hs.to_vec2::<f32>()?, &[[0.0, 0.0], [5.0, 3.0], [7.0, 7.0], [9.0, 11.0]] ); let ids = Tensor::new(&[[0u32, 2u32, 0u32]], device)?; let hs = t.gather(&ids, 0)?; assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 7.0, 2.0]]); let ids = Tensor::new(&[[0u32, 2u32, 0u32], [0u32, 1u32, 1u32]], device)?; let hs = t.gather(&ids, 0)?; assert_eq!(hs.to_vec2::<f32>()?, &[[0.0, 7.0, 2.0], [0.0, 4.0, 5.0]]); Ok(()) } fn matmul(device: &Device) -> Result<()> { let data = vec![1.0f32, 2.0, 3.0, 4.0]; let a = Tensor::from_slice(&data, (2, 2), device)?; let data = vec![1.0f32, 2.0, 3.0, 4.0]; let b = Tensor::from_slice(&data, (2, 2), device)?; let c = a.matmul(&b)?; assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]); let data = vec![1.0f32, 2.0]; let a = Tensor::from_slice(&data, (2, 1), device)?; let data = vec![3.0f32, 4.0]; let b = Tensor::from_slice(&data, (1, 2), device)?; let c = a.matmul(&b)?; assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]); let data: Vec<_> = (0..6).map(|i| i as f32).collect(); let a = Tensor::from_slice(&data, (2, 3), device)?; let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect(); let b = Tensor::from_slice(&data, (3, 2), device)?; let c = a.matmul(&b)?; assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]); let data: Vec<_> = (0..12).map(|i| i as f32).collect(); let a = Tensor::from_slice(&data, (2, 2, 3), device)?; let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect(); let b = Tensor::from_slice(&data, (2, 3, 2), device)?; let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]]; let c = a.matmul(&b)?; assert_eq!(c.to_vec3::<f32>()?, &expected); // Also perform the matmul on contiguous transposed versions. let a_tt = a.t()?.contiguous()?.t()?; assert!(!a_tt.is_contiguous()); assert_eq!(a.dims(), a_tt.dims()); assert_eq!(a_tt.stride(), &[6, 1, 2]); let b_tt = b.t()?.contiguous()?.t()?; assert!(!b_tt.is_contiguous()); assert_eq!(b.dims(), b_tt.dims()); assert_eq!(b_tt.stride(), &[6, 1, 3]); assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected); assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected); assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected); Ok(()) } fn broadcast_matmul(device: &Device) -> Result<()> { let lhs = Tensor::randn(0f32, 1f32, (3, 1, 4, 5), device)?; let rhs = Tensor::randn(0f32, 1f32, (6, 5, 2), device)?; let out = lhs.broadcast_matmul(&rhs)?; assert_eq!(out.dims(), &[3, 6, 4, 2]); for idx1 in 0..3 { for idx2 in 0..6 { let out = out.i((idx1, idx2))?; let lhs = lhs.i((idx1, 0))?; let rhs = rhs.i(idx2)?; let out2 = lhs.matmul(&rhs); let sum_diff2 = (out - out2)?.sqr()?.sum_all()?; // With cuda, we see errors of up to ~1e-12. assert!(sum_diff2.to_vec0::<f32>()? < 1e-6) } } Ok(()) } fn broadcasting(device: &Device) -> Result<()> { let t1 = Tensor::arange(0f32, 24f32, device)?.reshape((4, 2, 3))?; let t2 = Tensor::new(&[100f32, 200f32], device)?; let s = t1.broadcast_add(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[100.0, 101.0, 102.0], [203.0, 204.0, 205.0]], [[106.0, 107.0, 108.0], [209.0, 210.0, 211.0]], [[112.0, 113.0, 114.0], [215.0, 216.0, 217.0]], [[118.0, 119.0, 120.0], [221.0, 222.0, 223.0]] ] ); let s = t1.t()?.broadcast_add(&t2)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[100.0, 203.0], [101.0, 204.0], [102.0, 205.0]], [[106.0, 209.0], [107.0, 210.0], [108.0, 211.0]], [[112.0, 215.0], [113.0, 216.0], [114.0, 217.0]], [[118.0, 221.0], [119.0, 222.0], [120.0, 223.0]] ] ); let s = t1.broadcast_sub(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[-100.0, -99.0, -98.0], [-197.0, -196.0, -195.0]], [[-94.0, -93.0, -92.0], [-191.0, -190.0, -189.0]], [[-88.0, -87.0, -86.0], [-185.0, -184.0, -183.0]], [[-82.0, -81.0, -80.0], [-179.0, -178.0, -177.0]] ] ); let s = t1.t()?.broadcast_sub(&t2)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[-100.0, -197.0], [-99.0, -196.0], [-98.0, -195.0]], [[-94.0, -191.0], [-93.0, -190.0], [-92.0, -189.0]], [[-88.0, -185.0], [-87.0, -184.0], [-86.0, -183.0]], [[-82.0, -179.0], [-81.0, -178.0], [-80.0, -177.0]] ] ); // Test a narrowed version as this uses a layout start_offset. let t1 = t1.i(2..)?; let s = t1.broadcast_add(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[112.0, 113.0, 114.0], [215.0, 216.0, 217.0]], [[118.0, 119.0, 120.0], [221.0, 222.0, 223.0]] ] ); let s = t1.t()?.broadcast_add(&t2)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[112.0, 215.0], [113.0, 216.0], [114.0, 217.0]], [[118.0, 221.0], [119.0, 222.0], [120.0, 223.0]] ] ); let s = t1.broadcast_sub(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[-88.0, -87.0, -86.0], [-185.0, -184.0, -183.0]], [[-82.0, -81.0, -80.0], [-179.0, -178.0, -177.0]] ] ); let s = t1.t()?.broadcast_sub(&t2)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[-88.0, -185.0], [-87.0, -184.0], [-86.0, -183.0]], [[-82.0, -179.0], [-81.0, -178.0], [-80.0, -177.0]] ] ); let t3 = Tensor::new(1f32, device)?.broadcast_div(&t2)?; let s = t1.broadcast_mul(&t2.reshape((2, 1))?)?; let s_div = t1.broadcast_div(&t3.reshape((2, 1))?)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[1200.0, 1300.0, 1400.0], [3000.0, 3200.0, 3400.0]], [[1800.0, 1900.0, 2000.0], [4200.0, 4400.0, 4600.0]] ] ); assert_eq!(s.to_vec3::<f32>()?, s_div.to_vec3::<f32>()?,); let s = t1.t()?.broadcast_mul(&t2)?; let s_div = t1.t()?.broadcast_div(&t3)?; assert_eq!( s.to_vec3::<f32>()?, &[ [[1200.0, 3000.0], [1300.0, 3200.0], [1400.0, 3400.0]], [[1800.0, 4200.0], [1900.0, 4400.0], [2000.0, 4600.0]] ] ); assert_eq!(s.to_vec3::<f32>()?, s_div.to_vec3::<f32>()?,); Ok(()) } fn randn(device: &Device) -> Result<()> { let tensor = Tensor::randn(0f32, 1f32, (5, 3), device)?; assert_eq!(tensor.dims(), [5, 3]); // Check that the seed gets updated by checking that // a new series of numbers is generated each time let tensor2 = Tensor::randn(0f32, 1f32, (5, 3), device)?; assert_ne!(tensor.to_vec2::<f32>()?, tensor2.to_vec2::<f32>()?); let tensor = Tensor::rand(0f32, 1f32, (5, 3), device)?; assert_eq!(tensor.dims(), [5, 3]); // Check that the seed gets updated by checking that // a new series of numbers is generated each time let tensor2 = Tensor::rand(0f32, 1f32, (5, 3), device)?; assert_ne!(tensor.to_vec2::<f32>()?, tensor2.to_vec2::<f32>()?); // We do not expect deterministic elements at any index. // There once was a bug that had a deterministic zero element in evenly sized tensors. const N: usize = 2; let v = (0..100) .map(|_| Tensor::randn(0f32, 1f32, N, device).and_then(|t| t.to_vec1::<f32>())) .collect::<Result<Vec<_>>>()?; assert!( (0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])), "There are deterministic values in the randn tensors" ); let v = (0..100) .map(|_| Tensor::rand(0f32, 1f32, N, device).and_then(|t| t.to_vec1::<f32>())) .collect::<Result<Vec<_>>>()?; assert!( (0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])), "There are deterministic values in the rand tensors" ); Ok(()) } test_device!(zeros, zeros_cpu, zeros_gpu, zeros_metal); test_device!(ones, ones_cpu, ones_gpu, ones_metal); test_device!(full, full_cpu, full_gpu, full_metal); test_device!(arange, arange_cpu, arange_gpu, arange_metal); test_device!(add_mul, add_mul_cpu, add_mul_gpu, add_mul_metal); test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu, tensor_2d_metal); test_device!(narrow, narrow_cpu, narrow_gpu, narrow_metal); test_device!(broadcast, broadcast_cpu, broadcast_gpu, broadcast_metal); test_device!(cat, cat_cpu, cat_gpu, cat_metal); test_device!(sum, sum_cpu, sum_gpu, sum_metal); test_device!(min, min_cpu, min_gpu, min_metal); test_device!(max, max_cpu, max_gpu, max_metal); test_device!(argmax, argmax_cpu, argmax_gpu, argmax_metal); test_device!(argmin, argmin_cpu, argmin_gpu, argmin_metal); test_device!(transpose, transpose_cpu, transpose_gpu, transpose_metal); test_device!(unary_op, unary_op_cpu, unary_op_gpu, unary_op_metal); test_device!(binary_op, binary_op_cpu, binary_op_gpu, binary_op_metal); test_device!(embeddings, embeddings_cpu, embeddings_gpu, embeddings_metal); test_device!(cmp, cmp_cpu, cmp_gpu, cmp_metal); test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal); test_device!( broadcast_matmul, broadcast_matmul_cpu, broadcast_matmul_gpu, broadcast_matmul_metal ); test_device!( broadcasting, broadcasting_cpu, broadcasting_gpu, broadcasting_metal ); test_device!( index_select, index_select_cpu, index_select_gpu, index_select_metal ); test_device!(index_add, index_add_cpu, index_add_gpu, index_add_metal); test_device!(gather, gather_cpu, gather_gpu, gather_metal); test_device!( scatter_add, scatter_add_cpu, scatter_add_gpu, scatter_add_metal ); test_device!( slice_scatter, slice_scatter_cpu, slice_scatter_gpu, slice_scatter_metal ); test_device!(randn, randn_cpu, randn_gpu, randn_metal); test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal); test_device!(var, var_cpu, var_gpu, var_metal); // There was originally a bug on the CPU implementation for randn // https://github.com/huggingface/candle/issues/381 #[test] fn randn_hasneg() -> Result<()> { let t = Tensor::randn(0f32, 1f32, 200, &Device::Cpu)?.to_vec1::<f32>()?; if t.iter().all(|&v| v >= 0.) { candle_core::bail!("all values in tensors are non-negative") } Ok(()) } #[test] fn pad_with_same() -> Result<()> { let t = Tensor::arange(1f32, 5f32, &Device::Cpu)?.reshape((2, 2))?; let t0 = t.pad_with_same(0, 1, 2)?; assert_eq!( t0.to_vec2::<f32>()?, [[1.0, 2.0], [1.0, 2.0], [3.0, 4.0], [3.0, 4.0], [3.0, 4.0]] ); let t1 = t.pad_with_same(1, 1, 2)?; assert_eq!( t1.to_vec2::<f32>()?, [[1.0, 1.0, 2.0, 2.0, 2.0], [3.0, 3.0, 4.0, 4.0, 4.0]] ); Ok(()) } #[test] fn i64_abs() -> Result<()> { let t = Tensor::new(&[-42i64, 1337], &Device::Cpu)?; let t = t.abs()?; assert_eq!(t.to_vec1::<i64>()?, [42, 1337]); Ok(()) } #[test] fn tril_triu_eye() -> Result<()> { let t = Tensor::tril2(4, DType::F32, &Device::Cpu)?; assert_eq!( t.to_vec2::<f32>()?, [ [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 1.0, 1.0] ], ); let t = Tensor::triu2(4, DType::F32, &Device::Cpu)?; assert_eq!( t.to_vec2::<f32>()?, [ [1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0] ] ); let t = Tensor::eye(4, DType::F32, &Device::Cpu)?; assert_eq!( t.to_vec2::<f32>()?, [ [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0] ] ); Ok(()) } #[test] fn cumsum() -> Result<()> { let t = &[3f32, 1., 4., 1., 5.]; let t = Tensor::new(t, &Device::Cpu)?; assert_eq!(t.cumsum(0)?.to_vec1::<f32>()?, [3., 4., 8., 9., 14.]); let t = t.unsqueeze(1)?; assert_eq!( t.cumsum(0)?.to_vec2::<f32>()?, [[3.0], [4.0], [8.0], [9.0], [14.0]] ); assert_eq!( t.cumsum(1)?.to_vec2::<f32>()?, [[3.0], [1.0], [4.0], [1.0], [5.0]] ); let t = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let t = Tensor::new(t, &Device::Cpu)?; assert_eq!( t.cumsum(1)?.to_vec2::<f32>()?, [[3.0, 4.0, 8.0, 9.0, 14.0], [2.0, 3.0, 10.0, 18.0, 20.0]], ); assert_eq!( t.cumsum(0)?.to_vec2::<f32>()?, [[3.0, 1.0, 4.0, 1.0, 5.0], [5.0, 2.0, 11.0, 9.0, 7.0]] ); Ok(()) } /// A helper function for floating point comparison. Both a and b must be 1D Tensor and contains the same amount of data. /// Assertion passes if the difference of all pairs of a and b is smaller than epsilon. fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) -> Result<()> { let a_vec: Vec<f64> = a.to_vec1()?; let b_vec: Vec<f64> = b.to_vec1()?; assert_eq!(a_vec.len(), b_vec.len()); for (a, b) in a_vec.iter().zip(b_vec.iter()) { assert!((a - b).abs() < epsilon); } Ok(()) } #[test] fn log_sum_exp() -> Result<()> { let input = Tensor::new(&[[1f64, 2., 3.], [4., 5., 6.]], &Device::Cpu)?; let output = input.log_sum_exp(D::Minus1)?; // The expectations obtained from pytorch. let expected = Tensor::new(&[3.4076, 6.4076], &Device::Cpu)?; assert_close(&output, &expected, 0.00001)?; Ok(()) } #[test] fn pow() -> Result<()> { let lhs = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?; let rhs = (&lhs - 2.)?; let res = lhs.pow(&rhs)?; assert_eq!( test_utils::to_vec2_round(&res, 4)?, [[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0001]] ); Ok(()) }
candle/candle-core/tests/tensor_tests.rs/0
{ "file_path": "candle/candle-core/tests/tensor_tests.rs", "repo_id": "candle", "token_count": 25154 }
22
# candle-examples
candle/candle-examples/README.md/0
{ "file_path": "candle/candle-examples/README.md", "repo_id": "candle", "token_count": 6 }
23
# candle-dinov2 [DINOv2](https://github.com/facebookresearch/dinov2) is a computer vision model. In this example, it is used as an ImageNet classifier: the model returns the probability for the image to belong to each of the 1000 ImageNet categories. ## Running some example ```bash cargo run --example dinov2 --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg > mountain bike, all-terrain bike, off-roader: 43.67% > bicycle-built-for-two, tandem bicycle, tandem: 33.20% > crash helmet : 13.23% > unicycle, monocycle : 2.44% > maillot : 2.42% ``` ![Leading group, Giro d'Italia 2021](../yolo-v8/assets/bike.jpg)
candle/candle-examples/examples/dinov2/README.md/0
{ "file_path": "candle/candle-examples/examples/dinov2/README.md", "repo_id": "candle", "token_count": 250 }
24
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle_transformers::models::jina_bert::{BertModel, Config}; use anyhow::Error as E; use candle::{DType, Module, Tensor}; use candle_nn::VarBuilder; use clap::Parser; #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, /// When set, compute embeddings for this prompt. #[arg(long)] prompt: Option<String>, /// The number of times to run the prompt. #[arg(long, default_value = "1")] n: usize, /// L2 normalization for embeddings. #[arg(long, default_value = "true")] normalize_embeddings: bool, #[arg(long)] tokenizer: Option<String>, #[arg(long)] model: Option<String>, } impl Args { fn build_model_and_tokenizer(&self) -> anyhow::Result<(BertModel, tokenizers::Tokenizer)> { use hf_hub::{api::sync::Api, Repo, RepoType}; let model = match &self.model { Some(model_file) => std::path::PathBuf::from(model_file), None => Api::new()? .repo(Repo::new( "jinaai/jina-embeddings-v2-base-en".to_string(), RepoType::Model, )) .get("model.safetensors")?, }; let tokenizer = match &self.tokenizer { Some(file) => std::path::PathBuf::from(file), None => Api::new()? .repo(Repo::new( "sentence-transformers/all-MiniLM-L6-v2".to_string(), RepoType::Model, )) .get("tokenizer.json")?, }; let device = candle_examples::device(self.cpu)?; let config = Config::v2_base(); let tokenizer = tokenizers::Tokenizer::from_file(tokenizer).map_err(E::msg)?; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? }; let model = BertModel::new(vb, &config)?; Ok((model, tokenizer)) } } fn main() -> anyhow::Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let args = Args::parse(); let _guard = if args.tracing { println!("tracing..."); let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; let start = std::time::Instant::now(); let (model, mut tokenizer) = args.build_model_and_tokenizer()?; let device = &model.device; if let Some(prompt) = args.prompt { let tokenizer = tokenizer .with_padding(None) .with_truncation(None) .map_err(E::msg)?; let tokens = tokenizer .encode(prompt, true) .map_err(E::msg)? .get_ids() .to_vec(); let token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?; println!("Loaded and encoded {:?}", start.elapsed()); for idx in 0..args.n { let start = std::time::Instant::now(); let ys = model.forward(&token_ids)?; if idx == 0 { println!("{ys}"); } println!("Took {:?}", start.elapsed()); } } else { let sentences = [ "The cat sits outside", "A man is playing guitar", "I love pasta", "The new movie is awesome", "The cat plays in the garden", "A woman watches TV", "The new movie is so great", "Do you like pizza?", ]; let n_sentences = sentences.len(); if let Some(pp) = tokenizer.get_padding_mut() { pp.strategy = tokenizers::PaddingStrategy::BatchLongest } else { let pp = tokenizers::PaddingParams { strategy: tokenizers::PaddingStrategy::BatchLongest, ..Default::default() }; tokenizer.with_padding(Some(pp)); } let tokens = tokenizer .encode_batch(sentences.to_vec(), true) .map_err(E::msg)?; let token_ids = tokens .iter() .map(|tokens| { let tokens = tokens.get_ids().to_vec(); Tensor::new(tokens.as_slice(), device) }) .collect::<candle::Result<Vec<_>>>()?; let token_ids = Tensor::stack(&token_ids, 0)?; println!("running inference on batch {:?}", token_ids.shape()); let embeddings = model.forward(&token_ids)?; println!("generated embeddings {:?}", embeddings.shape()); // Apply some avg-pooling by taking the mean embedding value for all tokens (including padding) let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?; let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?; let embeddings = if args.normalize_embeddings { normalize_l2(&embeddings)? } else { embeddings }; println!("pooled embeddings {:?}", embeddings.shape()); let mut similarities = vec![]; for i in 0..n_sentences { let e_i = embeddings.get(i)?; for j in (i + 1)..n_sentences { let e_j = embeddings.get(j)?; let sum_ij = (&e_i * &e_j)?.sum_all()?.to_scalar::<f32>()?; let sum_i2 = (&e_i * &e_i)?.sum_all()?.to_scalar::<f32>()?; let sum_j2 = (&e_j * &e_j)?.sum_all()?.to_scalar::<f32>()?; let cosine_similarity = sum_ij / (sum_i2 * sum_j2).sqrt(); similarities.push((cosine_similarity, i, j)) } } similarities.sort_by(|u, v| v.0.total_cmp(&u.0)); for &(score, i, j) in similarities[..5].iter() { println!("score: {score:.2} '{}' '{}'", sentences[i], sentences[j]) } } Ok(()) } pub fn normalize_l2(v: &Tensor) -> candle::Result<Tensor> { v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?) }
candle/candle-examples/examples/jina-bert/main.rs/0
{ "file_path": "candle/candle-examples/examples/jina-bert/main.rs", "repo_id": "candle", "token_count": 3088 }
25
# candle-mistral: 7b LLM with Apache 2.0 licensed weights Mistral-7B-v0.1 is a pretrained generative LLM with 7 billion parameters. It outperforms all the publicly available 13b models as of 2023-09-28. Weights (and the original Python model code) are released under the permissive Apache 2.0 license. - [Blog post](https://mistral.ai/news/announcing-mistral-7b/) from Mistral announcing the model release. - [Model card](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFace Hub. This example supports the initial model as well as a quantized variant. ## Running the example ```bash $ cargo run --example mistral --release --features cuda -- --prompt 'Write helloworld code in Rust' --sample-len 150 Generated text: Write helloworld code in Rust ============================= This is a simple example of how to write "Hello, world!" program in Rust. ## Compile and run ``bash $ cargo build --release Compiling hello-world v0.1.0 (/home/user/rust/hello-world) Finished release [optimized] target(s) in 0.26s $ ./target/release/hello-world Hello, world! `` ## Source code ``rust fn main() { println!("Hello, world!"); } `` ## License This example is released under the terms ``` ## Running the quantized version of the model ```bash $ cargo run --example mistral --features accelerate --release -- \ $ --prompt "Here is a sample quick sort implementation in rust " --quantized -n 400 avx: false, neon: true, simd128: false, f16c: false temp: 0.00 repeat-penalty: 1.10 repeat-last-n: 64 retrieved the files in 562.292µs loaded the model in 1.100323667s Here is a sample quick sort implementation in rust ``rust fn quick_sort(arr: &mut [i32]) { if arr.len() <= 1 { return; } let pivot = arr[0]; let mut left = vec![]; let mut right = vec![]; for i in 1..arr.len() { if arr[i] < pivot { left.push(arr[i]); } else { right.push(arr[i]); } } quick_sort(&mut left); quick_sort(&mut right); let mut i = 0; for _ in &left { arr[i] = left.pop().unwrap(); i += 1; } for _ in &right { arr[i] = right.pop().unwrap(); i += 1; } } `` 226 tokens generated (10.91 token/s) ```
candle/candle-examples/examples/mistral/README.md/0
{ "file_path": "candle/candle-examples/examples/mistral/README.md", "repo_id": "candle", "token_count": 829 }
26
# candle-quantized-llama: Fast Inference of quantized LLaMA models This example provides a quantized LLaMA model similar to [llama.cpp](https://github.com/ggerganov/llama.cpp). This is based on candle built-in quantization methods. Supported features include: - 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support. - SIMD optimizations on Apple Silicon and x86. - Support using the `gguf` and `ggml` file formats. The weights are automatically downloaded for you from the [HuggingFace Hub](https://huggingface.co/) on the first run. There are various command line flags to use local files instead, run with `--help` to learn about them. ![Axiom of Choice](./assets/aoc.gif) ## Running some example. ```bash cargo run --example quantized --release -- --prompt "The best thing about coding in rust is " > avx: true, neon: false, simd128: false, f16c: true > temp: 0.80 repeat-penalty: 1.10 repeat-last-n: 64 > loaded 291 tensors (3.79GB) in 2.17s > params: HParams { n_vocab: 32000, n_embd: 4096, n_mult: 256, n_head: 32, n_layer: 32, n_rot: 128, ftype: 2 } > The best thing about coding in rust is 1.) that I don’t need to worry about memory leaks, 2.) speed and 3.) my program will compile even on old machines. ``` Using the mixtral sparse mixture of expert model: ```bash $ cargo run --example quantized --release -- --which mixtral --prompt "Lebesgue's integral is superior to Riemann's because " > avx: true, neon: false, simd128: false, f16c: true > temp: 0.80 repeat-penalty: 1.10 repeat-last-n: 64 > loaded 995 tensors (26.44GB) in 0.03s Lebesgue's integral is superior to Riemann's because 1. it is defined for a wider class of functions, those which are absolutely integrable; 2. the definition does not involve limits in two variables---one being computed before the other (which makes some computations more difficult); and 3. interchange of order of integration is easier to establish than with Riemann's integral. On the other hand, Lebesgue's integral applies only for bounded functions defined on finite intervals; it does not provide numerical values for improper integrals. The latter are best evaluated using Cauchy's limit definition. The reason $f(x) = x^2$ is discontinuous at the ends of its interval of definition, and Riemann's integral requires continuity on the whole of an open interval containing it (see our earlier post), sine no such function exists with this property, is that the endpoints are infinite in measure for Lebesgue's integral. ``` ## Command-line flags Run with `--help` to see all options. - `--which`: specify the model to use, e.g. `7b`, `13-chat`, `7b-code`. - `--prompt interactive`: interactive mode where multiple prompts can be entered. - `--model mymodelfile.gguf`: use a local model file rather than getting one from the hub.
candle/candle-examples/examples/quantized/README.md/0
{ "file_path": "candle/candle-examples/examples/quantized/README.md", "repo_id": "candle", "token_count": 820 }
27
# candle-resnet A candle implementation of inference using a pre-trained [ResNet](https://arxiv.org/abs/1512.03385). This uses a classification head trained on the ImageNet dataset and returns the probabilities for the top-5 classes. ## Running an example ``` $ cargo run --example resnet --release -- --image tiger.jpg loaded image Tensor[dims 3, 224, 224; f32] model built tiger, Panthera tigris : 90.21% tiger cat : 8.93% lion, king of beasts, Panthera leo: 0.35% leopard, Panthera pardus: 0.16% jaguar, panther, Panthera onca, Felis onca: 0.09% ```
candle/candle-examples/examples/resnet/README.md/0
{ "file_path": "candle/candle-examples/examples/resnet/README.md", "repo_id": "candle", "token_count": 204 }
28
# candle-stable-lm StableLM-3B-4E1T is a 3 billion parameter decoder-only language model pre-trained on 1 trillion tokens of diverse English and code datasets for 4 epochs. See the [HuggingFace Hub Model Card](https://huggingface.co/stabilityai/stablelm-3b-4e1t). Note that this model is gated so you will have to request access on the Hub in order to be able to use it. Other available models are Stable-Code-3B, StableLM-2 and Zephyr variants. ## Running some example ```bash $ cargo run --example stable-lm --release --features cuda -- --prompt 'What is the most efficient programming language in use?' --sample-len 150 avx: true, neon: false, simd128: false, f16c: true temp: 0.00 repeat-penalty: 1.10 repeat-last-n: 64 retrieved the files in 126.593µs loaded the model in 3.474148965s What is the most efficient programming language in use? The answer to this question depends on what you mean by "efficient". If you're talking about speed, then C++ and Java are probably your best bets. But if you're talking about ease of development, then Python is probably the way to go. Python is a high-level, interpreted language that is easy to learn and use. It has a large community of developers who are always working on new features and improvements. C++ is a low-level, compiled language that can be used for both desktop applications and web development. It's more difficult to learn than Python but offers greater control over the code. Java is another high-level language that is popular with programmers because it runs on many different platforms (including Android phones 150 tokens generated (37.61 token/s) ```
candle/candle-examples/examples/stable-lm/README.md/0
{ "file_path": "candle/candle-examples/examples/stable-lm/README.md", "repo_id": "candle", "token_count": 432 }
29
# candle-whisper: speech recognition An implementation of [OpenAI Whisper](https://github.com/openai/whisper) using candle. Whisper is a general purpose speech recognition model, it can be used to convert audio files (in the `.wav` format) to text. Supported features include language detection as well as multilingual speech recognition. ## Running some example If no audio file is passed as input, a [sample file](https://huggingface.co/datasets/Narsil/candle-examples/resolve/main/samples_jfk.wav) is automatically downloaded from the hub. ```bash cargo run --example whisper --release > No audio file submitted: Downloading https://huggingface.co/datasets/Narsil/candle_demo/blob/main/samples_jfk.wav > loaded wav data: Header { audio_format: 1, channel_count: 1, sampling_rate: 16000, bytes_per_second: 32000, bytes_per_sample: 2, bits_per_sample: 16 } > pcm data loaded 176000 > loaded mel: [1, 80, 3000] > 0.0s -- 30.0s: And so my fellow Americans ask not what your country can do for you ask what you can do for your country ``` In order to use the multilingual mode, specify a multilingual model via the `--model` flag, see the details below. ## Command line flags - `--input`: the audio file to be converted to text, in wav format. - `--language`: force the language to some specific value rather than being detected, e.g. `en`. - `--task`: the task to be performed, can be `transcribe` (return the text data in the original language) or `translate` (translate the text to English). - `--timestamps`: enable the timestamp mode where some timestamps are reported for each recognized audio extracts. - `--model`: the model to be used. Models that do not end with `-en` are multilingual models, other ones are English only models. The supported models are `tiny`, `tiny.en`, `base`, `base.en`, `small`, `small.en`, `medium`, `medium.en`, `large`, and `large-v2`.
candle/candle-examples/examples/whisper/README.md/0
{ "file_path": "candle/candle-examples/examples/whisper/README.md", "repo_id": "candle", "token_count": 569 }
30
#include <cmath> #include <cute/tensor.hpp> #include <cutlass/cutlass.h> #include <cutlass/array.h> #include "utils.h" namespace flash { using namespace cute; //////////////////////////////////////////////////////////////////////////////////////////////////// template <bool Is_causal, typename Engine, typename Layout> inline __device__ void apply_alibi(Tensor<Engine, Layout> &tensor, const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset, const int max_seqlen_q, const int warp_row_stride, const float alibi_slope) { // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) static_assert(Layout::rank == 2, "Only support 2D Tensor"); const int lane_id = threadIdx.x % 32; const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2; if constexpr (Is_causal) { // Simpler, we add the same bias vector to all rows #pragma unroll for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { const int col_idx_base = col_idx_offset + nj * 8; #pragma unroll for (int j = 0; j < size<1, 0>(tensor); ++j) { const int col_idx = col_idx_base + j; #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { tensor(mi, make_coord(j, nj)) += alibi_slope * col_idx; } } } } else { // Bias depends on both row_idx and col_idx #pragma unroll for (int mi = 0; mi < size<0, 1>(tensor); ++mi) { const int row_idx_base = row_idx_offset + mi * warp_row_stride; #pragma unroll for (int i = 0; i < size<0, 0>(tensor); ++i) { const int row_idx = row_idx_base + i * 8; #pragma unroll for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { const int col_idx_base = col_idx_offset + nj * 8; #pragma unroll for (int j = 0; j < size<1, 0>(tensor); ++j) { const int col_idx = col_idx_base + j; tensor(make_coord(i, mi), make_coord(j, nj)) -= alibi_slope * abs(row_idx + max_seqlen_k - max_seqlen_q - col_idx); } } } } } } } // namespace flash
candle/candle-flash-attn/kernels/alibi.h/0
{ "file_path": "candle/candle-flash-attn/kernels/alibi.h", "repo_id": "candle", "token_count": 1367 }
31
# candle-kernels This crate contains CUDA kernels used from candle. Some of these implementations come from the [dfdx crate](https://github.com/coreylowman/dfdx).
candle/candle-kernels/README.md/0
{ "file_path": "candle/candle-kernels/README.md", "repo_id": "candle", "token_count": 45 }
32
[package] name = "candle-metal-kernels" version = "0.4.2" edition = "2021" description = "Metal kernels for Candle" repository = "https://github.com/huggingface/candle" keywords = ["blas", "tensor", "machine-learning"] categories = ["science"] license = "MIT OR Apache-2.0" [dependencies] metal = { version = "0.27.0", features = ["mps"] } once_cell = "1.18.0" thiserror = "1" tracing = "0.1.37" [dev-dependencies] half = { version = "2.3.1", features = [ "num-traits", "use-intrinsics", "rand_distr", ] } rand = "0.8.5"
candle/candle-metal-kernels/Cargo.toml/0
{ "file_path": "candle/candle-metal-kernels/Cargo.toml", "repo_id": "candle", "token_count": 218 }
33
use candle_metal_kernels::{binary, call_binary_contiguous, call_binary_strided, Kernels}; use half::{bf16, f16}; use metal::objc::rc::autoreleasepool; use metal::{Device, MTLResourceOptions}; use rand; use std::any::type_name; use std::time::Instant; fn main() { let device = Device::system_default().unwrap(); let kernels = Kernels::new(); let f32_1k = (0..1000).map(|_| rand::random::<f32>()).collect::<Vec<_>>(); let f32_10k = (0..10000) .map(|_| rand::random::<f32>()) .collect::<Vec<_>>(); let f32_100k = (0..100000) .map(|_| rand::random::<f32>()) .collect::<Vec<_>>(); let f16_map = |v: &[f32]| v.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>(); let f16_1k = f16_map(&f32_1k); let f16_10k = f16_map(&f32_10k); let f16_100k = f16_map(&f32_100k); let bf16_map = |v: &[f32]| v.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>(); let bf16_1k = bf16_map(&f32_1k); let bf16_10k = bf16_map(&f32_10k); let bf16_100k = bf16_map(&f32_100k); let f32_ckernels = [ binary::contiguous::add::FLOAT, binary::contiguous::sub::FLOAT, binary::contiguous::mul::FLOAT, binary::contiguous::div::FLOAT, ]; let f32_skernels = [ binary::strided::add::FLOAT, binary::strided::sub::FLOAT, binary::strided::mul::FLOAT, binary::strided::div::FLOAT, ]; let f16_ckernels = [ binary::contiguous::add::HALF, binary::contiguous::sub::HALF, binary::contiguous::mul::HALF, binary::contiguous::div::HALF, ]; let f16_skernels = [ binary::strided::add::HALF, binary::strided::sub::HALF, binary::strided::mul::HALF, binary::strided::div::HALF, ]; let bf16_ckernels = [ binary::contiguous::add::BFLOAT, binary::contiguous::sub::BFLOAT, binary::contiguous::mul::BFLOAT, binary::contiguous::div::BFLOAT, ]; let bf16_skernels = [ binary::strided::add::BFLOAT, binary::strided::sub::BFLOAT, binary::strided::mul::BFLOAT, binary::strided::div::BFLOAT, ]; println!( "{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11} | {5: <11}", "dtype", "kernel", "size", "runs", "total time", "avg time" ); // f32 run_binary_bench(&device, &kernels, &f32_1k, f32_ckernels, f32_skernels); run_binary_bench(&device, &kernels, &f32_10k, f32_ckernels, f32_skernels); run_binary_bench(&device, &kernels, &f32_100k, f32_ckernels, f32_skernels); // f16 run_binary_bench(&device, &kernels, &f16_1k, f16_ckernels, f16_skernels); run_binary_bench(&device, &kernels, &f16_10k, f16_ckernels, f16_skernels); run_binary_bench(&device, &kernels, &f16_100k, f16_ckernels, f16_skernels); // bf16 run_binary_bench(&device, &kernels, &bf16_1k, bf16_ckernels, bf16_skernels); run_binary_bench(&device, &kernels, &bf16_10k, bf16_ckernels, bf16_skernels); run_binary_bench(&device, &kernels, &bf16_100k, bf16_ckernels, bf16_skernels); } fn run_binary_bench<T: Clone>( device: &Device, kernels: &Kernels, v: &[T], contiguous: [binary::contiguous::Kernel; 4], strided: [binary::strided::Kernel; 4], ) { let command_queue = device.new_command_queue(); let options = MTLResourceOptions::StorageModeManaged; let iterations = 1000; let input = device.new_buffer_with_data( v.as_ptr() as *const core::ffi::c_void, core::mem::size_of_val(v) as u64, options, ); let mut output = device.new_buffer(core::mem::size_of_val(v) as u64, options); // Contiguous for kernel_name in contiguous { let total_time = autoreleasepool(|| { let command_buffer = command_queue.new_command_buffer(); let start = Instant::now(); for _ in 0..iterations { call_binary_contiguous( device, &command_buffer, kernels, kernel_name, v.len(), &input, &input, &mut output, ) .unwrap(); } command_buffer.commit(); command_buffer.wait_until_completed(); start.elapsed() }); println!( "{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}", type_name::<T>().split("::").last().unwrap(), kernel_name.to_string(), v.len(), iterations, total_time, total_time / iterations ); } // Strided let shape = vec![2, 5_000]; let strides = vec![2, 1]; let offset = 0; for kernel_name in strided { let total_time = autoreleasepool(|| { let command_buffer = command_queue.new_command_buffer(); let start = Instant::now(); for _ in 0..iterations { call_binary_strided( device, command_buffer, &kernels, kernel_name, &shape, &input, &strides, offset, &input, &strides, offset, &mut output, ) .unwrap(); } command_buffer.commit(); command_buffer.wait_until_completed(); start.elapsed() }); println!( "{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}", type_name::<T>().split("::").last().unwrap(), kernel_name.to_string(), v.len(), iterations, total_time, total_time / iterations ); } }
candle/candle-metal-kernels/tmp/binary.rs/0
{ "file_path": "candle/candle-metal-kernels/tmp/binary.rs", "repo_id": "candle", "token_count": 3149 }
34
pub mod activation; pub mod batch_norm; pub mod conv; pub mod embedding; pub mod encoding; pub mod func; pub mod group_norm; pub mod init; pub mod layer_norm; pub mod linear; pub mod loss; pub mod ops; pub mod optim; pub mod rnn; pub mod sequential; pub mod var_builder; pub mod var_map; pub use activation::{prelu, Activation, PReLU}; pub use batch_norm::{batch_norm, BatchNorm, BatchNormConfig}; pub use conv::{ conv1d, conv1d_no_bias, conv2d, conv2d_no_bias, conv_transpose1d, conv_transpose1d_no_bias, conv_transpose2d, conv_transpose2d_no_bias, Conv1d, Conv1dConfig, Conv2d, Conv2dConfig, ConvTranspose1d, ConvTranspose1dConfig, ConvTranspose2d, ConvTranspose2dConfig, }; pub use embedding::{embedding, Embedding}; pub use func::{func, func_t, Func, FuncT}; pub use group_norm::{group_norm, GroupNorm}; pub use init::Init; pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm}; pub use linear::{linear, linear_b, linear_no_bias, Linear}; pub use ops::Dropout; pub use optim::{AdamW, Optimizer, ParamsAdamW, SGD}; pub use rnn::{gru, lstm, GRUConfig, LSTMConfig, GRU, LSTM, RNN}; pub use sequential::{seq, Sequential}; pub use var_builder::VarBuilder; pub use var_map::VarMap; pub use candle::{Module, ModuleT};
candle/candle-nn/src/lib.rs/0
{ "file_path": "candle/candle-nn/src/lib.rs", "repo_id": "candle", "token_count": 470 }
35
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle::{test_utils::to_vec2_round, DType, Device, Result, Tensor}; use candle_nn::RNN; /* The following test can be verified against PyTorch using the following snippet. import torch from torch import nn lstm = nn.LSTM(2, 3, 1) lstm.weight_ih_l0 = torch.nn.Parameter(torch.arange(0., 24.).reshape(12, 2).cos()) lstm.weight_hh_l0 = torch.nn.Parameter(torch.arange(0., 36.).reshape(12, 3).sin()) lstm.bias_ih_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1, 1, -0.5, 2])) lstm.bias_hh_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1, 1, -0.5, 2]).cos()) state = torch.zeros((1, 3)), torch.zeros((1, 3)) for inp in [3., 1., 4., 1., 5., 9., 2.]: inp = torch.tensor([[inp, inp * 0.5]]) _out, state = lstm(inp, state) print(state) # (tensor([[ 0.9919, 0.1738, -0.1451]], grad_fn=...), tensor([[ 5.7250, 0.4458, -0.2908]], grad_fn=...)) */ #[test] fn lstm() -> Result<()> { let cpu = &Device::Cpu; let w_ih = Tensor::arange(0f32, 24f32, cpu)?.reshape((12, 2))?; let w_ih = w_ih.cos()?; let w_hh = Tensor::arange(0f32, 36f32, cpu)?.reshape((12, 3))?; let w_hh = w_hh.sin()?; let b_ih = Tensor::new( &[-1f32, 1., -0.5, 2., -1., 1., -0.5, 2., -1., 1., -0.5, 2.], cpu, )?; let b_hh = b_ih.cos()?; let tensors: std::collections::HashMap<_, _> = [ ("weight_ih_l0".to_string(), w_ih), ("weight_hh_l0".to_string(), w_hh), ("bias_ih_l0".to_string(), b_ih), ("bias_hh_l0".to_string(), b_hh), ] .into_iter() .collect(); let vb = candle_nn::VarBuilder::from_tensors(tensors, DType::F32, cpu); let lstm = candle_nn::lstm(2, 3, Default::default(), vb)?; let mut state = lstm.zero_state(1)?; for inp in [3f32, 1., 4., 1., 5., 9., 2.] { let inp = Tensor::new(&[[inp, inp * 0.5]], cpu)?; state = lstm.step(&inp, &state)? } let h = state.h(); let c = state.c(); assert_eq!(to_vec2_round(h, 4)?, &[[0.9919, 0.1738, -0.1451]]); assert_eq!(to_vec2_round(c, 4)?, &[[5.725, 0.4458, -0.2908]]); Ok(()) } /* The following test can be verified against PyTorch using the following snippet. import torch from torch import nn gru = nn.GRU(2, 3, 1) gru.weight_ih_l0 = torch.nn.Parameter(torch.arange(0., 18.).reshape(9, 2).cos()) gru.weight_hh_l0 = torch.nn.Parameter(torch.arange(0., 27.).reshape(9, 3).sin()) gru.bias_ih_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1])) gru.bias_hh_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1]).cos()) state = torch.zeros((1, 3)) for inp in [3., 1., 4., 1., 5., 9., 2.]: inp = torch.tensor([[inp, inp * 0.5]]) _out, state = gru(inp, state) print(state) # tensor([[ 0.0579, 0.8836, -0.9991]], grad_fn=<SqueezeBackward1>) */ #[test] fn gru() -> Result<()> { let cpu = &Device::Cpu; let w_ih = Tensor::arange(0f32, 18f32, cpu)?.reshape((9, 2))?; let w_ih = w_ih.cos()?; let w_hh = Tensor::arange(0f32, 27f32, cpu)?.reshape((9, 3))?; let w_hh = w_hh.sin()?; let b_ih = Tensor::new(&[-1f32, 1., -0.5, 2., -1., 1., -0.5, 2., -1.], cpu)?; let b_hh = b_ih.cos()?; let tensors: std::collections::HashMap<_, _> = [ ("weight_ih_l0".to_string(), w_ih), ("weight_hh_l0".to_string(), w_hh), ("bias_ih_l0".to_string(), b_ih), ("bias_hh_l0".to_string(), b_hh), ] .into_iter() .collect(); let vb = candle_nn::VarBuilder::from_tensors(tensors, DType::F32, cpu); let gru = candle_nn::gru(2, 3, Default::default(), vb)?; let mut state = gru.zero_state(1)?; for inp in [3f32, 1., 4., 1., 5., 9., 2.] { let inp = Tensor::new(&[[inp, inp * 0.5]], cpu)?; state = gru.step(&inp, &state)? } let h = state.h(); assert_eq!(to_vec2_round(h, 4)?, &[[0.0579, 0.8836, -0.9991]]); Ok(()) }
candle/candle-nn/tests/rnn.rs/0
{ "file_path": "candle/candle-nn/tests/rnn.rs", "repo_id": "candle", "token_count": 2010 }
36
# Generated content DO NOT EDIT from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Sequence from os import PathLike from candle.typing import _ArrayLike, Device, Scalar, Index, Shape class bf16(DType): pass @staticmethod def cat(tensors: List[Tensor], dim: int) -> Tensor: """ Concatenate the tensors across one axis. """ pass class f16(DType): pass class f32(DType): pass class f64(DType): pass class i64(DType): pass @staticmethod def ones(*shape: Shape, dtype: Optional[DType] = None, device: Optional[Device] = None) -> Tensor: """ Creates a new tensor filled with ones. """ pass @staticmethod def rand(*shape: Shape, device: Optional[Device] = None) -> Tensor: """ Creates a new tensor with random values. """ pass @staticmethod def randn(*shape: Shape, device: Optional[Device] = None) -> Tensor: """ Creates a new tensor with random values from a normal distribution. """ pass @staticmethod def stack(tensors: List[Tensor], dim: int) -> Tensor: """ Stack the tensors along a new axis. """ pass @staticmethod def tensor(data: _ArrayLike) -> Tensor: """ Creates a new tensor from a Python value. The value can be a scalar or array-like object. """ pass class u32(DType): pass class u8(DType): pass @staticmethod def zeros(*shape: Shape, dtype: Optional[DType] = None, device: Optional[Device] = None) -> Tensor: """ Creates a new tensor filled with zeros. """ pass class DType: """ A `candle` dtype. """ class QTensor: """ A quantized tensor. """ def dequantize(self) -> Tensor: """ Dequantizes the tensor. """ pass @property def ggml_dtype(self) -> str: """ Gets the tensors quantized dtype. """ pass def matmul_t(self, lhs: Tensor) -> Tensor: """ Performs a quantized matrix multiplication, with the quantized tensor as the right hand side. """ pass @property def rank(self) -> int: """ Gets the rank of the tensor. """ pass @property def shape(self) -> Tuple[int]: """ Gets the shape of the tensor. """ pass class Tensor: """ A `candle` tensor. """ def __init__(self, data: _ArrayLike): pass def __add__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Add a scalar to a tensor or two tensors together. """ pass def __eq__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Compare a tensor with a scalar or one tensor with another. """ pass def __ge__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Compare a tensor with a scalar or one tensor with another. """ pass def __getitem__(self, index: Union[Index, Tensor, Sequence[Index]]) -> "Tensor": """ Return a slice of a tensor. """ pass def __gt__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Compare a tensor with a scalar or one tensor with another. """ pass def __le__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Compare a tensor with a scalar or one tensor with another. """ pass def __lt__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Compare a tensor with a scalar or one tensor with another. """ pass def __mul__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Multiply a tensor by a scalar or one tensor by another. """ pass def __ne__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Compare a tensor with a scalar or one tensor with another. """ pass def __radd__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Add a scalar to a tensor or two tensors together. """ pass def __richcmp__(self, rhs: Union[Tensor, Scalar], op) -> "Tensor": """ Compare a tensor with a scalar or one tensor with another. """ pass def __rmul__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Multiply a tensor by a scalar or one tensor by another. """ pass def __sub__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Subtract a scalar from a tensor or one tensor from another. """ pass def __truediv__(self, rhs: Union[Tensor, Scalar]) -> "Tensor": """ Divide a tensor by a scalar or one tensor by another. """ pass def abs(self) -> Tensor: """ Performs the `abs` operation on the tensor. """ pass def argmax_keepdim(self, dim: int) -> Tensor: """ Returns the indices of the maximum value(s) across the selected dimension. """ pass def argmin_keepdim(self, dim: int) -> Tensor: """ Returns the indices of the minimum value(s) across the selected dimension. """ pass def broadcast_add(self, rhs: Tensor) -> Tensor: """ Adds the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor. """ pass def broadcast_as(self, *shape: Shape) -> Tensor: """ Broadcasts the tensor to the given shape. """ pass def broadcast_div(self, rhs: Tensor) -> Tensor: """ Divides the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor. """ pass def broadcast_left(self, *shape: Shape) -> Tensor: """ Broadcasts the tensor to the given shape, adding new dimensions on the left. """ pass def broadcast_mul(self, rhs: Tensor) -> Tensor: """ Multiplies the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor. """ pass def broadcast_sub(self, rhs: Tensor) -> Tensor: """ Subtracts the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor. """ pass def contiguous(self) -> Tensor: """ Makes the tensor contiguous in memory. """ pass def copy(self) -> Tensor: """ Returns a copy of the tensor. """ pass def cos(self) -> Tensor: """ Performs the `cos` operation on the tensor. """ pass def detach(self) -> Tensor: """ Detach the tensor from the computation graph. """ pass @property def device(self) -> Device: """ Gets the tensor's device. """ pass @property def dtype(self) -> DType: """ Gets the tensor's dtype. """ pass def exp(self) -> Tensor: """ Performs the `exp` operation on the tensor. """ pass def flatten_all(self) -> Tensor: """ Flattens the tensor into a 1D tensor. """ pass def flatten_from(self, dim: int) -> Tensor: """ Flattens the tensor on the dimension indexes from `dim` (inclusive) to the last dimension. """ pass def flatten_to(self, dim: int) -> Tensor: """ Flattens the tensor on the dimension indexes from `0` to `dim` (inclusive). """ pass def gather(self, index, dim): """ Gathers values along an axis specified by dim. """ pass def get(self, index: int) -> Tensor: """ Gets the value at the specified index. """ pass def index_select(self, rhs: Tensor, dim: int) -> Tensor: """ Select values for the input tensor at the target indexes across the specified dimension. The `indexes` is argument is an int tensor with a single dimension. The output has the same number of dimension as the `self` input. The target dimension of the output has length the length of `indexes` and the values are taken from `self` using the index from `indexes`. Other dimensions have the same number of elements as the input tensor. """ pass def is_contiguous(self) -> bool: """ Returns true if the tensor is contiguous in C order. """ pass def is_fortran_contiguous(self) -> bool: """ Returns true if the tensor is contiguous in Fortran order. """ pass def log(self) -> Tensor: """ Performs the `log` operation on the tensor. """ pass def matmul(self, rhs: Tensor) -> Tensor: """ Performs a matrix multiplication between the two tensors. """ pass def max_keepdim(self, dim: int) -> Tensor: """ Gathers the maximum value across the selected dimension. """ pass def mean_all(self) -> Tensor: """ Returns the mean of the tensor. """ pass def min_keepdim(self, dim: int) -> Tensor: """ Gathers the minimum value across the selected dimension. """ pass def narrow(self, dim: int, start: int, len: int) -> Tensor: """ Returns a new tensor that is a narrowed version of the input, the dimension `dim` ranges from `start` to `start + len`. """ pass @property def nelement(self) -> int: """ Gets the tensor's element count. """ pass def powf(self, p: float) -> Tensor: """ Performs the `pow` operation on the tensor with the given exponent. """ pass def quantize(self, quantized_dtype: str) -> QTensor: """ Quantize the tensor. """ pass @property def rank(self) -> int: """ Gets the tensor's rank. """ pass def recip(self) -> Tensor: """ Get the `recip` of the tensor. """ pass def reshape(self, *shape: Shape) -> Tensor: """ Reshapes the tensor to the given shape. """ pass @property def shape(self) -> Tuple[int]: """ Gets the tensor's shape. """ pass def sin(self) -> Tensor: """ Performs the `sin` operation on the tensor. """ pass def sqr(self) -> Tensor: """ Squares the tensor. """ pass def sqrt(self) -> Tensor: """ Calculates the square root of the tensor. """ pass def squeeze(self, dim: int) -> Tensor: """ Creates a new tensor with the specified dimension removed if its size was one. """ pass @property def stride(self) -> Tuple[int]: """ Gets the tensor's strides. """ pass def sum_all(self) -> Tensor: """ Returns the sum of the tensor. """ pass def sum_keepdim(self, dim: Union[int, List[int]]) -> Tensor: """ Returns the sum of all elements in the input tensor. The sum is performed over all the input dimensions. """ pass def t(self) -> Tensor: """ Transposes the tensor. """ pass def to(self, *args, **kwargs) -> Tensor: """ Performs Tensor dtype and/or device conversion. """ pass def to_device(self, device: Union[str, Device]) -> Tensor: """ Move the tensor to a new device. """ pass def to_dtype(self, dtype: Union[str, DType]) -> Tensor: """ Convert the tensor to a new dtype. """ pass def to_torch(self) -> torch.Tensor: """ Converts candle's tensor to pytorch's tensor """ pass def transpose(self, dim1: int, dim2: int) -> Tensor: """ Returns a tensor that is a transposed version of the input, the given dimensions are swapped. """ pass def unsqueeze(self, dim: int) -> Tensor: """ Creates a new tensor with a dimension of size one inserted at the specified position. """ pass def values(self) -> _ArrayLike: """ Gets the tensor's data as a Python scalar or array-like object. """ pass def where_cond(self, on_true: Tensor, on_false: Tensor) -> Tensor: """ Returns a tensor with the same shape as the input tensor, the values are taken from `on_true` if the input tensor value is not zero, and `on_false` at the positions where the input tensor is equal to zero. """ pass
candle/candle-pyo3/py_src/candle/__init__.pyi/0
{ "file_path": "candle/candle-pyo3/py_src/candle/__init__.pyi", "repo_id": "candle", "token_count": 5844 }
37
# Generated content DO NOT EDIT from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Sequence from os import PathLike from candle.typing import _ArrayLike, Device, Scalar, Index, Shape from candle import Tensor, DType, QTensor @staticmethod def cuda_is_available() -> bool: """ Returns true if the 'cuda' backend is available. """ pass @staticmethod def get_num_threads() -> int: """ Returns the number of threads used by the candle. """ pass @staticmethod def has_accelerate() -> bool: """ Returns true if candle was compiled with 'accelerate' support. """ pass @staticmethod def has_mkl() -> bool: """ Returns true if candle was compiled with MKL support. """ pass @staticmethod def load_ggml( path: Union[str, PathLike], device: Optional[Device] = None ) -> Tuple[Dict[str, QTensor], Dict[str, Any], List[str]]: """ Load a GGML file. Returns a tuple of three objects: a dictionary mapping tensor names to tensors, a dictionary mapping hyperparameter names to hyperparameter values, and a vocabulary. """ pass @staticmethod def load_gguf( path: Union[str, PathLike], device: Optional[Device] = None ) -> Tuple[Dict[str, QTensor], Dict[str, Any]]: """ Loads a GGUF file. Returns a tuple of two dictionaries: the first maps tensor names to tensors, and the second maps metadata keys to metadata values. """ pass @staticmethod def load_safetensors(path: Union[str, PathLike]) -> Dict[str, Tensor]: """ Loads a safetensors file. Returns a dictionary mapping tensor names to tensors. """ pass @staticmethod def save_gguf(path: Union[str, PathLike], tensors: Dict[str, QTensor], metadata: Dict[str, Any]): """ Save quanitzed tensors and metadata to a GGUF file. """ pass @staticmethod def save_safetensors(path: Union[str, PathLike], tensors: Dict[str, Tensor]) -> None: """ Saves a dictionary of tensors to a safetensors file. """ pass
candle/candle-pyo3/py_src/candle/utils/__init__.pyi/0
{ "file_path": "candle/candle-pyo3/py_src/candle/utils/__init__.pyi", "repo_id": "candle", "token_count": 712 }
38
import candle from candle import Tensor, QTensor from candle.utils import load_safetensors, save_gguf, load_gguf, save_safetensors from pathlib import Path TEST_DIR = Path(__file__).parent.parent / "_workdir" TEST_DIR.mkdir(exist_ok=True) def test_can_roundtrip_safetensors(): tensors = { "a": candle.randn((16, 256)), "b": candle.randn((16, 16)), } file = str(TEST_DIR / "test.safetensors") save_safetensors(file, tensors) loaded_tensors = load_safetensors(file) assert set(tensors.keys()) == set(loaded_tensors.keys()) for key in tensors.keys(): assert tensors[key].values() == loaded_tensors[key].values(), "Values are not equal" assert tensors[key].shape == loaded_tensors[key].shape, "Shapes are not equal" assert str(tensors[key].dtype) == str(loaded_tensors[key].dtype), "Dtypes are not equal" def test_can_roundtrip_gguf(): metadata = { "a": 1, "b": "foo", "c": [1, 2, 3], "d": [[1, 2], [3, 4]], } tensors = { "a": candle.randn((16, 256)).quantize("q4_0"), "b": candle.randn((16, 16)).quantize("f32"), } file = str(TEST_DIR / "test.gguf") save_gguf(file, tensors, metadata) loaded_tensors, loaded_metadata = load_gguf(file) assert set(metadata.keys()) == set(loaded_metadata.keys()) for key in metadata.keys(): assert metadata[key] == loaded_metadata[key] assert set(tensors.keys()) == set(loaded_tensors.keys()) for key in tensors.keys(): assert tensors[key].dequantize().values() == loaded_tensors[key].dequantize().values(), "Values are not equal" assert tensors[key].shape == loaded_tensors[key].shape, "Shapes are not equal" assert str(tensors[key].ggml_dtype) == str(loaded_tensors[key].ggml_dtype), "Dtypes are not equal"
candle/candle-pyo3/tests/native/test_utils.py/0
{ "file_path": "candle/candle-pyo3/tests/native/test_utils.py", "repo_id": "candle", "token_count": 774 }
39