text
stringlengths
7
328k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
459
# ECA-ResNet An **ECA ResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that utilises an [Efficient Channel Attention module](https://paperswithcode.com/method/efficient-channel-attention). Efficient Channel Attention is an architectural unit based on [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) that reduces model complexity without dimensionality reduction. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('ecaresnet101d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ecaresnet101d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('ecaresnet101d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{wang2020ecanet, title={ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks}, author={Qilong Wang and Banggu Wu and Pengfei Zhu and Peihua Li and Wangmeng Zuo and Qinghua Hu}, year={2020}, eprint={1910.03151}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ECAResNet Paper: Title: 'ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks' URL: https://paperswithcode.com/paper/eca-net-efficient-channel-attention-for-deep Models: - Name: ecaresnet101d In Collection: ECAResNet Metadata: FLOPs: 10377193728 Parameters: 44570000 File Size: 178815067 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x RTX 2080Ti GPUs ID: ecaresnet101d LR: 0.1 Epochs: 100 Layers: 101 Crop Pct: '0.875' Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1087 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet101D_281c5844.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.18% Top 5 Accuracy: 96.06% - Name: ecaresnet101d_pruned In Collection: ECAResNet Metadata: FLOPs: 4463972081 Parameters: 24880000 File Size: 99852736 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: ecaresnet101d_pruned Layers: 101 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1097 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45610/outputs/ECAResNet101D_P_75a3370e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.82% Top 5 Accuracy: 95.64% - Name: ecaresnet50d In Collection: ECAResNet Metadata: FLOPs: 5591090432 Parameters: 25580000 File Size: 102579290 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x RTX 2080Ti GPUs ID: ecaresnet50d LR: 0.1 Epochs: 100 Layers: 50 Crop Pct: '0.875' Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1045 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet50D_833caf58.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.61% Top 5 Accuracy: 95.31% - Name: ecaresnet50d_pruned In Collection: ECAResNet Metadata: FLOPs: 3250730657 Parameters: 19940000 File Size: 79990436 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: ecaresnet50d_pruned Layers: 50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1055 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45899/outputs/ECAResNet50D_P_9c67f710.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.71% Top 5 Accuracy: 94.88% - Name: ecaresnetlight In Collection: ECAResNet Metadata: FLOPs: 5276118784 Parameters: 30160000 File Size: 120956612 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: ecaresnetlight Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1077 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNetLight_4f34b35b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.46% Top 5 Accuracy: 95.25% -->
pytorch-image-models/hfdocs/source/models/ecaresnet.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/ecaresnet.mdx", "repo_id": "pytorch-image-models", "token_count": 3641 }
200
# ResNet-D **ResNet-D** is a modification on the [ResNet](https://paperswithcode.com/method/resnet) architecture that utilises an [average pooling](https://paperswithcode.com/method/average-pooling) tweak for downsampling. The motivation is that in the unmodified ResNet, the [1×1 convolution](https://paperswithcode.com/method/1x1-convolution) for the downsampling block ignores 3/4 of input feature maps, so this is modified so no information will be ignored ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('resnet101d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnet101d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('resnet101d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{he2018bag, title={Bag of Tricks for Image Classification with Convolutional Neural Networks}, author={Tong He and Zhi Zhang and Hang Zhang and Zhongyue Zhang and Junyuan Xie and Mu Li}, year={2018}, eprint={1812.01187}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ResNet-D Paper: Title: Bag of Tricks for Image Classification with Convolutional Neural Networks URL: https://paperswithcode.com/paper/bag-of-tricks-for-image-classification-with Models: - Name: resnet101d In Collection: ResNet-D Metadata: FLOPs: 13805639680 Parameters: 44570000 File Size: 178791263 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet101d Crop Pct: '0.94' Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L716 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.31% Top 5 Accuracy: 96.06% - Name: resnet152d In Collection: ResNet-D Metadata: FLOPs: 20155275264 Parameters: 60210000 File Size: 241596837 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet152d Crop Pct: '0.94' Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L724 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.13% Top 5 Accuracy: 96.35% - Name: resnet18d In Collection: ResNet-D Metadata: FLOPs: 2645205760 Parameters: 11710000 File Size: 46893231 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet18d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L649 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet18d_ra2-48a79e06.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.27% Top 5 Accuracy: 90.69% - Name: resnet200d In Collection: ResNet-D Metadata: FLOPs: 26034378752 Parameters: 64690000 File Size: 259662933 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet200d Crop Pct: '0.94' Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L749 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.24% Top 5 Accuracy: 96.49% - Name: resnet26d In Collection: ResNet-D Metadata: FLOPs: 3335276032 Parameters: 16010000 File Size: 64209122 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet26d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L683 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.69% Top 5 Accuracy: 93.15% - Name: resnet34d In Collection: ResNet-D Metadata: FLOPs: 5026601728 Parameters: 21820000 File Size: 87369807 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet34d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L666 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34d_ra2-f8dcfcaf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.11% Top 5 Accuracy: 93.38% - Name: resnet50d In Collection: ResNet-D Metadata: FLOPs: 5591002624 Parameters: 25580000 File Size: 102567109 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet50d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L699 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.55% Top 5 Accuracy: 95.16% -->
pytorch-image-models/hfdocs/source/models/resnet-d.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/resnet-d.mdx", "repo_id": "pytorch-image-models", "token_count": 3932 }
201
Import: - ./docs/models/*.md Library: Name: PyTorch Image Models Headline: PyTorch image models, scripts, pretrained weights Website: https://rwightman.github.io/pytorch-image-models/ Repository: https://github.com/rwightman/pytorch-image-models Docs: https://rwightman.github.io/pytorch-image-models/ README: "# PyTorch Image Models\r\n\r\nPyTorch Image Models (TIMM) is a library\ \ for state-of-the-art image classification. With this library you can:\r\n\r\n\ - Choose from 300+ pre-trained state-of-the-art image classification models.\r\ \n- Train models afresh on research datasets such as ImageNet using provided scripts.\r\ \n- Finetune pre-trained models on your own datasets, including the latest cutting\ \ edge models."
pytorch-image-models/model-index.yml/0
{ "file_path": "pytorch-image-models/model-index.yml", "repo_id": "pytorch-image-models", "token_count": 253 }
202
import torch import torch.nn as nn from timm.layers import create_act_layer, set_layer_config import importlib import os torch_backend = os.environ.get('TORCH_BACKEND') if torch_backend is not None: importlib.import_module(torch_backend) torch_device = os.environ.get('TORCH_DEVICE', 'cpu') class MLP(nn.Module): def __init__(self, act_layer="relu", inplace=True): super(MLP, self).__init__() self.fc1 = nn.Linear(1000, 100) self.act = create_act_layer(act_layer, inplace=inplace) self.fc2 = nn.Linear(100, 10) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x def _run_act_layer_grad(act_type, inplace=True): x = torch.rand(10, 1000) * 10 m = MLP(act_layer=act_type, inplace=inplace) def _run(x, act_layer=''): if act_layer: # replace act layer if set m.act = create_act_layer(act_layer, inplace=inplace) out = m(x) l = (out - 0).pow(2).sum() return l x = x.to(device=torch_device) m.to(device=torch_device) out_me = _run(x) with set_layer_config(scriptable=True): out_jit = _run(x, act_type) assert torch.isclose(out_jit, out_me) with set_layer_config(no_jit=True): out_basic = _run(x, act_type) assert torch.isclose(out_basic, out_jit) def test_swish_grad(): for _ in range(100): _run_act_layer_grad('swish') def test_mish_grad(): for _ in range(100): _run_act_layer_grad('mish') def test_hard_sigmoid_grad(): for _ in range(100): _run_act_layer_grad('hard_sigmoid', inplace=None) def test_hard_swish_grad(): for _ in range(100): _run_act_layer_grad('hard_swish') def test_hard_mish_grad(): for _ in range(100): _run_act_layer_grad('hard_mish')
pytorch-image-models/tests/test_layers.py/0
{ "file_path": "pytorch-image-models/tests/test_layers.py", "repo_id": "pytorch-image-models", "token_count": 871 }
203
import csv import os import pkgutil import re from typing import Dict, List, Optional, Union from .dataset_info import DatasetInfo # NOTE no ambiguity wrt to mapping from # classes to ImageNet subset so far, but likely to change _NUM_CLASSES_TO_SUBSET = { 1000: 'imagenet-1k', 11221: 'imagenet-21k-miil', # miil subset of fall11 11821: 'imagenet-12k', # timm specific 12k subset of fall11 21841: 'imagenet-22k', # as in fall11.tar 21842: 'imagenet-22k-ms', # a Microsoft (for FocalNet) remapping of 22k w/ moves ImageNet-1k classes to first 1000 21843: 'imagenet-21k-goog', # Google's ImageNet full has two classes not in fall11 } _SUBSETS = { 'imagenet1k': 'imagenet_synsets.txt', 'imagenet12k': 'imagenet12k_synsets.txt', 'imagenet22k': 'imagenet22k_synsets.txt', 'imagenet21k': 'imagenet21k_goog_synsets.txt', 'imagenet21kgoog': 'imagenet21k_goog_synsets.txt', 'imagenet21kmiil': 'imagenet21k_miil_synsets.txt', 'imagenet22kms': 'imagenet22k_ms_synsets.txt', } _LEMMA_FILE = 'imagenet_synset_to_lemma.txt' _DEFINITION_FILE = 'imagenet_synset_to_definition.txt' def infer_imagenet_subset(model_or_cfg) -> Optional[str]: if isinstance(model_or_cfg, dict): num_classes = model_or_cfg.get('num_classes', None) else: num_classes = getattr(model_or_cfg, 'num_classes', None) if not num_classes: pretrained_cfg = getattr(model_or_cfg, 'pretrained_cfg', {}) # FIXME at some point pretrained_cfg should include dataset-tag, # which will be more robust than a guess based on num_classes num_classes = pretrained_cfg.get('num_classes', None) if not num_classes or num_classes not in _NUM_CLASSES_TO_SUBSET: return None return _NUM_CLASSES_TO_SUBSET[num_classes] class ImageNetInfo(DatasetInfo): def __init__(self, subset: str = 'imagenet-1k'): super().__init__() subset = re.sub(r'[-_\s]', '', subset.lower()) assert subset in _SUBSETS, f'Unknown imagenet subset {subset}.' # WordNet synsets (part-of-speach + offset) are the unique class label names for ImageNet classifiers synset_file = _SUBSETS[subset] synset_data = pkgutil.get_data(__name__, os.path.join('_info', synset_file)) self._synsets = synset_data.decode('utf-8').splitlines() # WordNet lemmas (canonical dictionary form of word) and definitions are used to build # the class descriptions. If detailed=True both are used, otherwise just the lemmas. lemma_data = pkgutil.get_data(__name__, os.path.join('_info', _LEMMA_FILE)) reader = csv.reader(lemma_data.decode('utf-8').splitlines(), delimiter='\t') self._lemmas = dict(reader) definition_data = pkgutil.get_data(__name__, os.path.join('_info', _DEFINITION_FILE)) reader = csv.reader(definition_data.decode('utf-8').splitlines(), delimiter='\t') self._definitions = dict(reader) def num_classes(self): return len(self._synsets) def label_names(self): return self._synsets def label_descriptions(self, detailed: bool = False, as_dict: bool = False) -> Union[List[str], Dict[str, str]]: if as_dict: return {label: self.label_name_to_description(label, detailed=detailed) for label in self._synsets} else: return [self.label_name_to_description(label, detailed=detailed) for label in self._synsets] def index_to_label_name(self, index) -> str: assert 0 <= index < len(self._synsets), \ f'Index ({index}) out of range for dataset with {len(self._synsets)} classes.' return self._synsets[index] def index_to_description(self, index: int, detailed: bool = False) -> str: label = self.index_to_label_name(index) return self.label_name_to_description(label, detailed=detailed) def label_name_to_description(self, label: str, detailed: bool = False) -> str: if detailed: description = f'{self._lemmas[label]}: {self._definitions[label]}' else: description = f'{self._lemmas[label]}' return description
pytorch-image-models/timm/data/imagenet_info.py/0
{ "file_path": "pytorch-image-models/timm/data/imagenet_info.py", "repo_id": "pytorch-image-models", "token_count": 1733 }
204
from multiprocessing import Value class SharedCount: def __init__(self, epoch: int = 0): self.shared_epoch = Value('i', epoch) @property def value(self): return self.shared_epoch.value @value.setter def value(self, epoch): self.shared_epoch.value = epoch
pytorch-image-models/timm/data/readers/shared_count.py/0
{ "file_path": "pytorch-image-models/timm/data/readers/shared_count.py", "repo_id": "pytorch-image-models", "token_count": 122 }
205
""" PyTorch Conditionally Parameterized Convolution (CondConv) Paper: CondConv: Conditionally Parameterized Convolutions for Efficient Inference (https://arxiv.org/abs/1904.04971) Hacked together by / Copyright 2020 Ross Wightman """ import math from functools import partial import numpy as np import torch from torch import nn as nn from torch.nn import functional as F from .helpers import to_2tuple from .conv2d_same import conv2d_same from .padding import get_padding_value def get_condconv_initializer(initializer, num_experts, expert_shape): def condconv_initializer(weight): """CondConv initializer function.""" num_params = np.prod(expert_shape) if (len(weight.shape) != 2 or weight.shape[0] != num_experts or weight.shape[1] != num_params): raise (ValueError( 'CondConv variables must have shape [num_experts, num_params]')) for i in range(num_experts): initializer(weight[i].view(expert_shape)) return condconv_initializer class CondConv2d(nn.Module): """ Conditionally Parameterized Convolution Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion: https://github.com/pytorch/pytorch/issues/17983 """ __constants__ = ['in_channels', 'out_channels', 'dynamic_padding'] def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4): super(CondConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = to_2tuple(kernel_size) self.stride = to_2tuple(stride) padding_val, is_padding_dynamic = get_padding_value( padding, kernel_size, stride=stride, dilation=dilation) self.dynamic_padding = is_padding_dynamic # if in forward to work with torchscript self.padding = to_2tuple(padding_val) self.dilation = to_2tuple(dilation) self.groups = groups self.num_experts = num_experts self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size weight_num_param = 1 for wd in self.weight_shape: weight_num_param *= wd self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param)) if bias: self.bias_shape = (self.out_channels,) self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): init_weight = get_condconv_initializer( partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape) init_weight(self.weight) if self.bias is not None: fan_in = np.prod(self.weight_shape[1:]) bound = 1 / math.sqrt(fan_in) init_bias = get_condconv_initializer( partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape) init_bias(self.bias) def forward(self, x, routing_weights): B, C, H, W = x.shape weight = torch.matmul(routing_weights, self.weight) new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size weight = weight.view(new_weight_shape) bias = None if self.bias is not None: bias = torch.matmul(routing_weights, self.bias) bias = bias.view(B * self.out_channels) # move batch elements with channels so each batch element can be efficiently convolved with separate kernel # reshape instead of view to work with channels_last input x = x.reshape(1, B * C, H, W) if self.dynamic_padding: out = conv2d_same( x, weight, bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * B) else: out = F.conv2d( x, weight, bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * B) out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1]) # Literal port (from TF definition) # x = torch.split(x, 1, 0) # weight = torch.split(weight, 1, 0) # if self.bias is not None: # bias = torch.matmul(routing_weights, self.bias) # bias = torch.split(bias, 1, 0) # else: # bias = [None] * B # out = [] # for xi, wi, bi in zip(x, weight, bias): # wi = wi.view(*self.weight_shape) # if bi is not None: # bi = bi.view(*self.bias_shape) # out.append(self.conv_fn( # xi, wi, bi, stride=self.stride, padding=self.padding, # dilation=self.dilation, groups=self.groups)) # out = torch.cat(out, 0) return out
pytorch-image-models/timm/layers/cond_conv2d.py/0
{ "file_path": "pytorch-image-models/timm/layers/cond_conv2d.py", "repo_id": "pytorch-image-models", "token_count": 2314 }
206
""" Global Context Attention Block Paper: `GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond` - https://arxiv.org/abs/1904.11492 Official code consulted as reference: https://github.com/xvjiarui/GCNet Hacked together by / Copyright 2021 Ross Wightman """ from torch import nn as nn import torch.nn.functional as F from .create_act import create_act_layer, get_act_layer from .helpers import make_divisible from .mlp import ConvMlp from .norm import LayerNorm2d class GlobalContext(nn.Module): def __init__(self, channels, use_attn=True, fuse_add=False, fuse_scale=True, init_last_zero=False, rd_ratio=1./8, rd_channels=None, rd_divisor=1, act_layer=nn.ReLU, gate_layer='sigmoid'): super(GlobalContext, self).__init__() act_layer = get_act_layer(act_layer) self.conv_attn = nn.Conv2d(channels, 1, kernel_size=1, bias=True) if use_attn else None if rd_channels is None: rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) if fuse_add: self.mlp_add = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) else: self.mlp_add = None if fuse_scale: self.mlp_scale = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) else: self.mlp_scale = None self.gate = create_act_layer(gate_layer) self.init_last_zero = init_last_zero self.reset_parameters() def reset_parameters(self): if self.conv_attn is not None: nn.init.kaiming_normal_(self.conv_attn.weight, mode='fan_in', nonlinearity='relu') if self.mlp_add is not None: nn.init.zeros_(self.mlp_add.fc2.weight) def forward(self, x): B, C, H, W = x.shape if self.conv_attn is not None: attn = self.conv_attn(x).reshape(B, 1, H * W) # (B, 1, H * W) attn = F.softmax(attn, dim=-1).unsqueeze(3) # (B, 1, H * W, 1) context = x.reshape(B, C, H * W).unsqueeze(1) @ attn context = context.view(B, C, 1, 1) else: context = x.mean(dim=(2, 3), keepdim=True) if self.mlp_scale is not None: mlp_x = self.mlp_scale(context) x = x * self.gate(mlp_x) if self.mlp_add is not None: mlp_x = self.mlp_add(context) x = x + mlp_x return x
pytorch-image-models/timm/layers/global_context.py/0
{ "file_path": "pytorch-image-models/timm/layers/global_context.py", "repo_id": "pytorch-image-models", "token_count": 1169 }
207
""" Padding Helpers Hacked together by / Copyright 2020 Ross Wightman """ import math from typing import List, Tuple import torch import torch.nn.functional as F # Calculate symmetric padding for a convolution def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> int: padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 return padding # Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution def get_same_padding(x: int, kernel_size: int, stride: int, dilation: int): if isinstance(x, torch.Tensor): return torch.clamp(((x / stride).ceil() - 1) * stride + (kernel_size - 1) * dilation + 1 - x, min=0) else: return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0) # Can SAME padding for given args be done statically? def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_): return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0 def pad_same_arg( input_size: List[int], kernel_size: List[int], stride: List[int], dilation: List[int] = (1, 1), ) -> List[int]: ih, iw = input_size kh, kw = kernel_size pad_h = get_same_padding(ih, kh, stride[0], dilation[0]) pad_w = get_same_padding(iw, kw, stride[1], dilation[1]) return [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] # Dynamically pad input x with 'SAME' padding for conv with specified args def pad_same( x, kernel_size: List[int], stride: List[int], dilation: List[int] = (1, 1), value: float = 0, ): ih, iw = x.size()[-2:] pad_h = get_same_padding(ih, kernel_size[0], stride[0], dilation[0]) pad_w = get_same_padding(iw, kernel_size[1], stride[1], dilation[1]) x = F.pad(x, (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2), value=value) return x def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]: dynamic = False if isinstance(padding, str): # for any string padding, the padding will be calculated for you, one of three ways padding = padding.lower() if padding == 'same': # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact if is_static_pad(kernel_size, **kwargs): # static case, no extra overhead padding = get_padding(kernel_size, **kwargs) else: # dynamic 'SAME' padding, has runtime/GPU memory overhead padding = 0 dynamic = True elif padding == 'valid': # 'VALID' padding, same as padding=0 padding = 0 else: # Default to PyTorch style 'same'-ish symmetric padding padding = get_padding(kernel_size, **kwargs) return padding, dynamic
pytorch-image-models/timm/layers/padding.py/0
{ "file_path": "pytorch-image-models/timm/layers/padding.py", "repo_id": "pytorch-image-models", "token_count": 1200 }
208
from typing import Callable, Tuple, Type, Union import torch LayerType = Union[str, Callable, Type[torch.nn.Module]] PadType = Union[str, int, Tuple[int, int]]
pytorch-image-models/timm/layers/typing.py/0
{ "file_path": "pytorch-image-models/timm/layers/typing.py", "repo_id": "pytorch-image-models", "token_count": 55 }
209
import collections.abc import math import re from collections import defaultdict from itertools import chain from typing import Any, Callable, Dict, Iterator, Tuple, Type, Union import torch from torch import nn as nn from torch.utils.checkpoint import checkpoint __all__ = ['model_parameters', 'named_apply', 'named_modules', 'named_modules_with_params', 'adapt_input_conv', 'group_with_matcher', 'group_modules', 'group_parameters', 'flatten_modules', 'checkpoint_seq'] def model_parameters(model: nn.Module, exclude_head: bool = False): if exclude_head: # FIXME this a bit of a quick and dirty hack to skip classifier head params based on ordering return [p for p in model.parameters()][:-2] else: return model.parameters() def named_apply( fn: Callable, module: nn.Module, name='', depth_first: bool = True, include_root: bool = False, ) -> nn.Module: if not depth_first and include_root: fn(module=module, name=name) for child_name, child_module in module.named_children(): child_name = '.'.join((name, child_name)) if name else child_name named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) if depth_first and include_root: fn(module=module, name=name) return module def named_modules( module: nn.Module, name: str = '', depth_first: bool = True, include_root: bool = False, ): if not depth_first and include_root: yield name, module for child_name, child_module in module.named_children(): child_name = '.'.join((name, child_name)) if name else child_name yield from named_modules( module=child_module, name=child_name, depth_first=depth_first, include_root=True) if depth_first and include_root: yield name, module def named_modules_with_params( module: nn.Module, name: str = '', depth_first: bool = True, include_root: bool = False, ): if module._parameters and not depth_first and include_root: yield name, module for child_name, child_module in module.named_children(): child_name = '.'.join((name, child_name)) if name else child_name yield from named_modules_with_params( module=child_module, name=child_name, depth_first=depth_first, include_root=True) if module._parameters and depth_first and include_root: yield name, module MATCH_PREV_GROUP = (99999,) def group_with_matcher( named_objects: Iterator[Tuple[str, Any]], group_matcher: Union[Dict, Callable], return_values: bool = False, reverse: bool = False ): if isinstance(group_matcher, dict): # dictionary matcher contains a dict of raw-string regex expr that must be compiled compiled = [] for group_ordinal, (group_name, mspec) in enumerate(group_matcher.items()): if mspec is None: continue # map all matching specifications into 3-tuple (compiled re, prefix, suffix) if isinstance(mspec, (tuple, list)): # multi-entry match specifications require each sub-spec to be a 2-tuple (re, suffix) for sspec in mspec: compiled += [(re.compile(sspec[0]), (group_ordinal,), sspec[1])] else: compiled += [(re.compile(mspec), (group_ordinal,), None)] group_matcher = compiled def _get_grouping(name): if isinstance(group_matcher, (list, tuple)): for match_fn, prefix, suffix in group_matcher: r = match_fn.match(name) if r: parts = (prefix, r.groups(), suffix) # map all tuple elem to int for numeric sort, filter out None entries return tuple(map(float, chain.from_iterable(filter(None, parts)))) return float('inf'), # un-matched layers (neck, head) mapped to largest ordinal else: ord = group_matcher(name) if not isinstance(ord, collections.abc.Iterable): return ord, return tuple(ord) # map layers into groups via ordinals (ints or tuples of ints) from matcher grouping = defaultdict(list) for k, v in named_objects: grouping[_get_grouping(k)].append(v if return_values else k) # remap to integers layer_id_to_param = defaultdict(list) lid = -1 for k in sorted(filter(lambda x: x is not None, grouping.keys())): if lid < 0 or k[-1] != MATCH_PREV_GROUP[0]: lid += 1 layer_id_to_param[lid].extend(grouping[k]) if reverse: assert not return_values, "reverse mapping only sensible for name output" # output reverse mapping param_to_layer_id = {} for lid, lm in layer_id_to_param.items(): for n in lm: param_to_layer_id[n] = lid return param_to_layer_id return layer_id_to_param def group_parameters( module: nn.Module, group_matcher, return_values: bool = False, reverse: bool = False, ): return group_with_matcher( module.named_parameters(), group_matcher, return_values=return_values, reverse=reverse) def group_modules( module: nn.Module, group_matcher, return_values: bool = False, reverse: bool = False, ): return group_with_matcher( named_modules_with_params(module), group_matcher, return_values=return_values, reverse=reverse) def flatten_modules( named_modules: Iterator[Tuple[str, nn.Module]], depth: int = 1, prefix: Union[str, Tuple[str, ...]] = '', module_types: Union[str, Tuple[Type[nn.Module]]] = 'sequential', ): prefix_is_tuple = isinstance(prefix, tuple) if isinstance(module_types, str): if module_types == 'container': module_types = (nn.Sequential, nn.ModuleList, nn.ModuleDict) else: module_types = (nn.Sequential,) for name, module in named_modules: if depth and isinstance(module, module_types): yield from flatten_modules( module.named_children(), depth - 1, prefix=(name,) if prefix_is_tuple else name, module_types=module_types, ) else: if prefix_is_tuple: name = prefix + (name,) yield name, module else: if prefix: name = '.'.join([prefix, name]) yield name, module def checkpoint_seq( functions, x, every=1, flatten=False, skip_last=False, preserve_rng_state=True ): r"""A helper function for checkpointing sequential models. Sequential models execute a list of modules/functions in order (sequentially). Therefore, we can divide such a sequence into segments and checkpoint each segment. All segments except run in :func:`torch.no_grad` manner, i.e., not storing the intermediate activations. The inputs of each checkpointed segment will be saved for re-running the segment in the backward pass. See :func:`~torch.utils.checkpoint.checkpoint` on how checkpointing works. .. warning:: Checkpointing currently only supports :func:`torch.autograd.backward` and only if its `inputs` argument is not passed. :func:`torch.autograd.grad` is not supported. .. warning: At least one of the inputs needs to have :code:`requires_grad=True` if grads are needed for model inputs, otherwise the checkpointed part of the model won't have gradients. Args: functions: A :class:`torch.nn.Sequential` or the list of modules or functions to run sequentially. x: A Tensor that is input to :attr:`functions` every: checkpoint every-n functions (default: 1) flatten (bool): flatten nn.Sequential of nn.Sequentials skip_last (bool): skip checkpointing the last function in the sequence if True preserve_rng_state (bool, optional, default=True): Omit stashing and restoring the RNG state during each checkpoint. Returns: Output of running :attr:`functions` sequentially on :attr:`*inputs` Example: >>> model = nn.Sequential(...) >>> input_var = checkpoint_seq(model, input_var, every=2) """ def run_function(start, end, functions): def forward(_x): for j in range(start, end + 1): _x = functions[j](_x) return _x return forward if isinstance(functions, torch.nn.Sequential): functions = functions.children() if flatten: functions = chain.from_iterable(functions) if not isinstance(functions, (tuple, list)): functions = tuple(functions) num_checkpointed = len(functions) if skip_last: num_checkpointed -= 1 end = -1 for start in range(0, num_checkpointed, every): end = min(start + every - 1, num_checkpointed - 1) x = checkpoint(run_function(start, end, functions), x, preserve_rng_state=preserve_rng_state) if skip_last: return run_function(end + 1, len(functions) - 1, functions)(x) return x def adapt_input_conv(in_chans, conv_weight): conv_type = conv_weight.dtype conv_weight = conv_weight.float() # Some weights are in torch.half, ensure it's float for sum on CPU O, I, J, K = conv_weight.shape if in_chans == 1: if I > 3: assert conv_weight.shape[1] % 3 == 0 # For models with space2depth stems conv_weight = conv_weight.reshape(O, I // 3, 3, J, K) conv_weight = conv_weight.sum(dim=2, keepdim=False) else: conv_weight = conv_weight.sum(dim=1, keepdim=True) elif in_chans != 3: if I != 3: raise NotImplementedError('Weight format not supported by conversion.') else: # NOTE this strategy should be better than random init, but there could be other combinations of # the original RGB input layer weights that'd work better for specific cases. repeat = int(math.ceil(in_chans / 3)) conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] conv_weight *= (3 / float(in_chans)) conv_weight = conv_weight.to(conv_type) return conv_weight
pytorch-image-models/timm/models/_manipulate.py/0
{ "file_path": "pytorch-image-models/timm/models/_manipulate.py", "repo_id": "pytorch-image-models", "token_count": 4393 }
210
""" ConvNeXt Papers: * `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf @Article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } * `ConvNeXt-V2 - Co-designing and Scaling ConvNets with Masked Autoencoders` - https://arxiv.org/abs/2301.00808 @article{Woo2023ConvNeXtV2, title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders}, author={Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon and Saining Xie}, year={2023}, journal={arXiv preprint arXiv:2301.00808}, } Original code and weights from: * https://github.com/facebookresearch/ConvNeXt, original copyright below * https://github.com/facebookresearch/ConvNeXt-V2, original copyright below Model defs atto, femto, pico, nano and _ols / _hnf variants are timm originals. Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman """ # ConvNeXt # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the MIT license # ConvNeXt-V2 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree (Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)) # No code was used directly from ConvNeXt-V2, however the weights are CC BY-NC 4.0 so beware if using commercially. from collections import OrderedDict from functools import partial from typing import Callable, Optional, Tuple, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD from timm.layers import trunc_normal_, AvgPool2dSame, DropPath, Mlp, GlobalResponseNormMlp, \ LayerNorm2d, LayerNorm, create_conv2d, get_act_layer, make_divisible, to_ntuple from timm.layers import NormMlpClassifierHead, ClassifierHead from ._builder import build_model_with_cfg from ._manipulate import named_apply, checkpoint_seq from ._registry import generate_default_cfgs, register_model, register_model_deprecations __all__ = ['ConvNeXt'] # model_registry will add each entrypoint fn to this class Downsample(nn.Module): def __init__(self, in_chs, out_chs, stride=1, dilation=1): super().__init__() avg_stride = stride if dilation == 1 else 1 if stride > 1 or dilation > 1: avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) else: self.pool = nn.Identity() if in_chs != out_chs: self.conv = create_conv2d(in_chs, out_chs, 1, stride=1) else: self.conv = nn.Identity() def forward(self, x): x = self.pool(x) x = self.conv(x) return x class ConvNeXtBlock(nn.Module): """ ConvNeXt Block There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. """ def __init__( self, in_chs: int, out_chs: Optional[int] = None, kernel_size: int = 7, stride: int = 1, dilation: Union[int, Tuple[int, int]] = (1, 1), mlp_ratio: float = 4, conv_mlp: bool = False, conv_bias: bool = True, use_grn: bool = False, ls_init_value: Optional[float] = 1e-6, act_layer: Union[str, Callable] = 'gelu', norm_layer: Optional[Callable] = None, drop_path: float = 0., ): """ Args: in_chs: Block input channels. out_chs: Block output channels (same as in_chs if None). kernel_size: Depthwise convolution kernel size. stride: Stride of depthwise convolution. dilation: Tuple specifying input and output dilation of block. mlp_ratio: MLP expansion ratio. conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True. conv_bias: Apply bias for all convolution (linear) layers. use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2) ls_init_value: Layer-scale init values, layer-scale applied if not None. act_layer: Activation layer. norm_layer: Normalization layer (defaults to LN if not specified). drop_path: Stochastic depth probability. """ super().__init__() out_chs = out_chs or in_chs dilation = to_ntuple(2)(dilation) act_layer = get_act_layer(act_layer) if not norm_layer: norm_layer = LayerNorm2d if conv_mlp else LayerNorm mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp) self.use_conv_mlp = conv_mlp self.conv_dw = create_conv2d( in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation[0], depthwise=True, bias=conv_bias, ) self.norm = norm_layer(out_chs) self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer) self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0]) else: self.shortcut = nn.Identity() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x x = self.conv_dw(x) if self.use_conv_mlp: x = self.norm(x) x = self.mlp(x) else: x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.mlp(x) x = x.permute(0, 3, 1, 2) if self.gamma is not None: x = x.mul(self.gamma.reshape(1, -1, 1, 1)) x = self.drop_path(x) + self.shortcut(shortcut) return x class ConvNeXtStage(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=7, stride=2, depth=2, dilation=(1, 1), drop_path_rates=None, ls_init_value=1.0, conv_mlp=False, conv_bias=True, use_grn=False, act_layer='gelu', norm_layer=None, norm_layer_cl=None ): super().__init__() self.grad_checkpointing = False if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]: ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1 pad = 'same' if dilation[1] > 1 else 0 # same padding needed if dilation used self.downsample = nn.Sequential( norm_layer(in_chs), create_conv2d( in_chs, out_chs, kernel_size=ds_ks, stride=stride, dilation=dilation[0], padding=pad, bias=conv_bias, ), ) in_chs = out_chs else: self.downsample = nn.Identity() drop_path_rates = drop_path_rates or [0.] * depth stage_blocks = [] for i in range(depth): stage_blocks.append(ConvNeXtBlock( in_chs=in_chs, out_chs=out_chs, kernel_size=kernel_size, dilation=dilation[1], drop_path=drop_path_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp, conv_bias=conv_bias, use_grn=use_grn, act_layer=act_layer, norm_layer=norm_layer if conv_mlp else norm_layer_cl, )) in_chs = out_chs self.blocks = nn.Sequential(*stage_blocks) def forward(self, x): x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x class ConvNeXt(nn.Module): r""" ConvNeXt A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf """ def __init__( self, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', output_stride: int = 32, depths: Tuple[int, ...] = (3, 3, 9, 3), dims: Tuple[int, ...] = (96, 192, 384, 768), kernel_sizes: Union[int, Tuple[int, ...]] = 7, ls_init_value: Optional[float] = 1e-6, stem_type: str = 'patch', patch_size: int = 4, head_init_scale: float = 1., head_norm_first: bool = False, head_hidden_size: Optional[int] = None, conv_mlp: bool = False, conv_bias: bool = True, use_grn: bool = False, act_layer: Union[str, Callable] = 'gelu', norm_layer: Optional[Union[str, Callable]] = None, norm_eps: Optional[float] = None, drop_rate: float = 0., drop_path_rate: float = 0., ): """ Args: in_chans: Number of input image channels. num_classes: Number of classes for classification head. global_pool: Global pooling type. output_stride: Output stride of network, one of (8, 16, 32). depths: Number of blocks at each stage. dims: Feature dimension at each stage. kernel_sizes: Depthwise convolution kernel-sizes for each stage. ls_init_value: Init value for Layer Scale, disabled if None. stem_type: Type of stem. patch_size: Stem patch size for patch stem. head_init_scale: Init scaling value for classifier weights and biases. head_norm_first: Apply normalization before global pool + head. head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False. conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last. conv_bias: Use bias layers w/ all convolutions. use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP. act_layer: Activation layer type. norm_layer: Normalization layer type. drop_rate: Head pre-classifier dropout rate. drop_path_rate: Stochastic depth drop rate. """ super().__init__() assert output_stride in (8, 16, 32) kernel_sizes = to_ntuple(4)(kernel_sizes) if norm_layer is None: norm_layer = LayerNorm2d norm_layer_cl = norm_layer if conv_mlp else LayerNorm if norm_eps is not None: norm_layer = partial(norm_layer, eps=norm_eps) norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) else: assert conv_mlp,\ 'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input' norm_layer_cl = norm_layer if norm_eps is not None: norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) self.num_classes = num_classes self.drop_rate = drop_rate self.feature_info = [] assert stem_type in ('patch', 'overlap', 'overlap_tiered') if stem_type == 'patch': # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4 self.stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias), norm_layer(dims[0]), ) stem_stride = patch_size else: mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0] self.stem = nn.Sequential( nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias), nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias), norm_layer(dims[0]), ) stem_stride = 4 self.stages = nn.Sequential() dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] stages = [] prev_chs = dims[0] curr_stride = stem_stride dilation = 1 # 4 feature resolution stages, each consisting of multiple residual blocks for i in range(4): stride = 2 if curr_stride == 2 or i > 0 else 1 if curr_stride >= output_stride and stride > 1: dilation *= stride stride = 1 curr_stride *= stride first_dilation = 1 if dilation in (1, 2) else 2 out_chs = dims[i] stages.append(ConvNeXtStage( prev_chs, out_chs, kernel_size=kernel_sizes[i], stride=stride, dilation=(first_dilation, dilation), depth=depths[i], drop_path_rates=dp_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp, conv_bias=conv_bias, use_grn=use_grn, act_layer=act_layer, norm_layer=norm_layer, norm_layer_cl=norm_layer_cl, )) prev_chs = out_chs # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) self.num_features = prev_chs # if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets # otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights) if head_norm_first: assert not head_hidden_size self.norm_pre = norm_layer(self.num_features) self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, ) else: self.norm_pre = nn.Identity() self.head = NormMlpClassifierHead( self.num_features, num_classes, hidden_size=head_hidden_size, pool_type=global_pool, drop_rate=self.drop_rate, norm_layer=norm_layer, act_layer='gelu', ) named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+)\.downsample', (0,)), # blocks (r'^stages\.(\d+)\.blocks\.(\d+)', None), (r'^norm_pre', (99999,)) ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes=0, global_pool=None): self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.stem(x) x = self.stages(x) x = self.norm_pre(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=True) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(module, name=None, head_init_scale=1.0): if isinstance(module, nn.Conv2d): trunc_normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Linear): trunc_normal_(module.weight, std=.02) nn.init.zeros_(module.bias) if name and 'head.' in name: module.weight.data.mul_(head_init_scale) module.bias.data.mul_(head_init_scale) def checkpoint_filter_fn(state_dict, model): """ Remap FB checkpoints -> timm """ if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: return state_dict # non-FB checkpoint if 'model' in state_dict: state_dict = state_dict['model'] out_dict = {} if 'visual.trunk.stem.0.weight' in state_dict: out_dict = {k.replace('visual.trunk.', ''): v for k, v in state_dict.items() if k.startswith('visual.trunk.')} if 'visual.head.proj.weight' in state_dict: out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight'] out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0]) elif 'visual.head.mlp.fc1.weight' in state_dict: out_dict['head.pre_logits.fc.weight'] = state_dict['visual.head.mlp.fc1.weight'] out_dict['head.pre_logits.fc.bias'] = state_dict['visual.head.mlp.fc1.bias'] out_dict['head.fc.weight'] = state_dict['visual.head.mlp.fc2.weight'] out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.mlp.fc2.weight'].shape[0]) return out_dict import re for k, v in state_dict.items(): k = k.replace('downsample_layers.0.', 'stem.') k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) k = k.replace('dwconv', 'conv_dw') k = k.replace('pwconv', 'mlp.fc') if 'grn' in k: k = k.replace('grn.beta', 'mlp.grn.bias') k = k.replace('grn.gamma', 'mlp.grn.weight') v = v.reshape(v.shape[-1]) k = k.replace('head.', 'head.fc.') if k.startswith('norm.'): k = k.replace('norm', 'head.norm') if v.ndim == 2 and 'head' not in k: model_shape = model.state_dict()[k].shape v = v.reshape(model_shape) out_dict[k] = v return out_dict def _create_convnext(variant, pretrained=False, **kwargs): if kwargs.get('pretrained_cfg', '') == 'fcmae': # NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`) # This is workaround loading with num_classes=0 w/o removing norm-layer. kwargs.setdefault('pretrained_strict', False) model = build_model_with_cfg( ConvNeXt, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', **kwargs } def _cfgv2(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', 'license': 'cc-by-nc-4.0', 'paper_ids': 'arXiv:2301.00808', 'paper_name': 'ConvNeXt-V2: Co-designing and Scaling ConvNets with Masked Autoencoders', 'origin_url': 'https://github.com/facebookresearch/ConvNeXt-V2', **kwargs } default_cfgs = generate_default_cfgs({ # timm specific variants 'convnext_tiny.in12k_ft_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_small.in12k_ft_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_atto.d2_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_d2-01bb0f51.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_atto_ols.a2_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_ols_a2-78d1c8f3.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_femto.d1_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_d1-d71d5b4c.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_femto_ols.d1_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_ols_d1-246bf2ed.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_pico.d1_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_d1-10ad7f0d.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnext_pico_ols.d1_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_ols_d1-611f0ca7.pth', hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_nano.in12k_ft_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_nano.d1h_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_d1h-7eb4bdea.pth', hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_nano_ols.d1h_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_ols_d1h-ae424a9a.pth', hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_tiny_hnf.a2h_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_tiny_hnf_a2h-ab7e9df2.pth', hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_tiny.in12k_ft_in1k_384': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_small.in12k_ft_in1k_384': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_nano.in12k': _cfg( hf_hub_id='timm/', crop_pct=0.95, num_classes=11821), 'convnext_tiny.in12k': _cfg( hf_hub_id='timm/', crop_pct=0.95, num_classes=11821), 'convnext_small.in12k': _cfg( hf_hub_id='timm/', crop_pct=0.95, num_classes=11821), 'convnext_tiny.fb_in22k_ft_in1k': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_224.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_small.fb_in22k_ft_in1k': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_224.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_base.fb_in22k_ft_in1k': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_large.fb_in22k_ft_in1k': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_xlarge.fb_in22k_ft_in1k': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_tiny.fb_in1k': _cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_small.fb_in1k': _cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_base.fb_in1k': _cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_large.fb_in1k': _cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnext_tiny.fb_in22k_ft_in1k_384': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_384.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_small.fb_in22k_ft_in1k_384': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_384.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_base.fb_in22k_ft_in1k_384': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_large.fb_in22k_ft_in1k_384': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_xlarge.fb_in22k_ft_in1k_384': _cfg( url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_tiny.fb_in22k': _cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth", hf_hub_id='timm/', num_classes=21841), 'convnext_small.fb_in22k': _cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth", hf_hub_id='timm/', num_classes=21841), 'convnext_base.fb_in22k': _cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", hf_hub_id='timm/', num_classes=21841), 'convnext_large.fb_in22k': _cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", hf_hub_id='timm/', num_classes=21841), 'convnext_xlarge.fb_in22k': _cfg( url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", hf_hub_id='timm/', num_classes=21841), 'convnextv2_nano.fcmae_ft_in22k_in1k': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_nano.fcmae_ft_in22k_in1k_384': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt', hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_tiny.fcmae_ft_in22k_in1k': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_tiny.fcmae_ft_in22k_in1k_384': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt", hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_base.fcmae_ft_in22k_in1k': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_base.fcmae_ft_in22k_in1k_384': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt", hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_large.fcmae_ft_in22k_in1k': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_large.fcmae_ft_in22k_in1k_384': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt", hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_huge.fcmae_ft_in22k_in1k_384': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt", hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnextv2_huge.fcmae_ft_in22k_in1k_512': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt", hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(15, 15), crop_pct=1.0, crop_mode='squash'), 'convnextv2_atto.fcmae_ft_in1k': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnextv2_femto.fcmae_ft_in1k': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnextv2_pico.fcmae_ft_in1k': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'convnextv2_nano.fcmae_ft_in1k': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt', hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_tiny.fcmae_ft_in1k': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_base.fcmae_ft_in1k': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_large.fcmae_ft_in1k': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_huge.fcmae_ft_in1k': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt", hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'convnextv2_atto.fcmae': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_atto_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_femto.fcmae': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_femto_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_pico.fcmae': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_pico_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_nano.fcmae': _cfgv2( url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_nano_1k_224_fcmae.pt', hf_hub_id='timm/', num_classes=0), 'convnextv2_tiny.fcmae': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_tiny_1k_224_fcmae.pt", hf_hub_id='timm/', num_classes=0), 'convnextv2_base.fcmae': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_base_1k_224_fcmae.pt", hf_hub_id='timm/', num_classes=0), 'convnextv2_large.fcmae': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt", hf_hub_id='timm/', num_classes=0), 'convnextv2_huge.fcmae': _cfgv2( url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt", hf_hub_id='timm/', num_classes=0), 'convnextv2_small.untrained': _cfg(), # CLIP weights, fine-tuned on in1k or in12k + in1k 'convnext_base.clip_laion2b_augreg_ft_in12k_in1k': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_base.clip_laion2b_augreg_ft_in1k': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_base.clip_laiona_augreg_ft_in1k_384': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), 'convnext_large_mlp.clip_laion2b_augreg_ft_in1k': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0 ), 'convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash' ), 'convnext_xxlarge.clip_laion2b_soup_ft_in1k': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_base.clip_laion2b_augreg_ft_in12k': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_320': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), 'convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_384': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'convnext_xxlarge.clip_laion2b_soup_ft_in12k': _cfg( hf_hub_id='timm/', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), # CLIP original image tower weights 'convnext_base.clip_laion2b': _cfg( hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), 'convnext_base.clip_laion2b_augreg': _cfg( hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), 'convnext_base.clip_laiona': _cfg( hf_hub_id='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), 'convnext_base.clip_laiona_320': _cfg( hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640), 'convnext_base.clip_laiona_augreg_320': _cfg( hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640), 'convnext_large_mlp.clip_laion2b_augreg': _cfg( hf_hub_id='laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=768), 'convnext_large_mlp.clip_laion2b_ft_320': _cfg( hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768), 'convnext_large_mlp.clip_laion2b_ft_soup_320': _cfg( hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768), 'convnext_xxlarge.clip_laion2b_soup': _cfg( hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024), 'convnext_xxlarge.clip_laion2b_rewind': _cfg( hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-rewind', hf_hub_filename='open_clip_pytorch_model.bin', mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024), }) @register_model def convnext_atto(pretrained=False, **kwargs) -> ConvNeXt: # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True) model = _create_convnext('convnext_atto', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_atto_ols(pretrained=False, **kwargs) -> ConvNeXt: # timm femto variant with overlapping 3x3 conv stem, wider than non-ols femto above, current param count 3.7M model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, stem_type='overlap_tiered') model = _create_convnext('convnext_atto_ols', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_femto(pretrained=False, **kwargs) -> ConvNeXt: # timm femto variant model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True) model = _create_convnext('convnext_femto', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_femto_ols(pretrained=False, **kwargs) -> ConvNeXt: # timm femto variant model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, stem_type='overlap_tiered') model = _create_convnext('convnext_femto_ols', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_pico(pretrained=False, **kwargs) -> ConvNeXt: # timm pico variant model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True) model = _create_convnext('convnext_pico', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_pico_ols(pretrained=False, **kwargs) -> ConvNeXt: # timm nano variant with overlapping 3x3 conv stem model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True, stem_type='overlap_tiered') model = _create_convnext('convnext_pico_ols', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_nano(pretrained=False, **kwargs) -> ConvNeXt: # timm nano variant with standard stem and head model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True) model = _create_convnext('convnext_nano', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_nano_ols(pretrained=False, **kwargs) -> ConvNeXt: # experimental nano variant with overlapping conv stem model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, stem_type='overlap') model = _create_convnext('convnext_nano_ols', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_tiny_hnf(pretrained=False, **kwargs) -> ConvNeXt: # experimental tiny variant with norm before pooling in head (head norm first) model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True) model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_tiny(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768)) model = _create_convnext('convnext_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_small(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768]) model = _create_convnext('convnext_small', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_base(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024]) model = _create_convnext('convnext_base', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_large(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536]) model = _create_convnext('convnext_large', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_large_mlp(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], head_hidden_size=1536) model = _create_convnext('convnext_large_mlp', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_xlarge(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048]) model = _create_convnext('convnext_xlarge', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnext_xxlarge(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 4, 30, 3], dims=[384, 768, 1536, 3072], norm_eps=kwargs.pop('norm_eps', 1e-5)) model = _create_convnext('convnext_xxlarge', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnextv2_atto(pretrained=False, **kwargs) -> ConvNeXt: # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M model_args = dict( depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), use_grn=True, ls_init_value=None, conv_mlp=True) model = _create_convnext('convnextv2_atto', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnextv2_femto(pretrained=False, **kwargs) -> ConvNeXt: # timm femto variant model_args = dict( depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), use_grn=True, ls_init_value=None, conv_mlp=True) model = _create_convnext('convnextv2_femto', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnextv2_pico(pretrained=False, **kwargs) -> ConvNeXt: # timm pico variant model_args = dict( depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), use_grn=True, ls_init_value=None, conv_mlp=True) model = _create_convnext('convnextv2_pico', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnextv2_nano(pretrained=False, **kwargs) -> ConvNeXt: # timm nano variant with standard stem and head model_args = dict( depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), use_grn=True, ls_init_value=None, conv_mlp=True) model = _create_convnext('convnextv2_nano', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnextv2_tiny(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), use_grn=True, ls_init_value=None) model = _create_convnext('convnextv2_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnextv2_small(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], use_grn=True, ls_init_value=None) model = _create_convnext('convnextv2_small', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnextv2_base(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], use_grn=True, ls_init_value=None) model = _create_convnext('convnextv2_base', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnextv2_large(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], use_grn=True, ls_init_value=None) model = _create_convnext('convnextv2_large', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def convnextv2_huge(pretrained=False, **kwargs) -> ConvNeXt: model_args = dict(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], use_grn=True, ls_init_value=None) model = _create_convnext('convnextv2_huge', pretrained=pretrained, **dict(model_args, **kwargs)) return model register_model_deprecations(__name__, { 'convnext_tiny_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k', 'convnext_small_in22ft1k': 'convnext_small.fb_in22k_ft_in1k', 'convnext_base_in22ft1k': 'convnext_base.fb_in22k_ft_in1k', 'convnext_large_in22ft1k': 'convnext_large.fb_in22k_ft_in1k', 'convnext_xlarge_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k', 'convnext_tiny_384_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k_384', 'convnext_small_384_in22ft1k': 'convnext_small.fb_in22k_ft_in1k_384', 'convnext_base_384_in22ft1k': 'convnext_base.fb_in22k_ft_in1k_384', 'convnext_large_384_in22ft1k': 'convnext_large.fb_in22k_ft_in1k_384', 'convnext_xlarge_384_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k_384', 'convnext_tiny_in22k': 'convnext_tiny.fb_in22k', 'convnext_small_in22k': 'convnext_small.fb_in22k', 'convnext_base_in22k': 'convnext_base.fb_in22k', 'convnext_large_in22k': 'convnext_large.fb_in22k', 'convnext_xlarge_in22k': 'convnext_xlarge.fb_in22k', })
pytorch-image-models/timm/models/convnext.py/0
{ "file_path": "pytorch-image-models/timm/models/convnext.py", "repo_id": "pytorch-image-models", "token_count": 24539 }
211
# FastViT for PyTorch # # Original implementation and weights from https://github.com/apple/ml-fastvit # # For licensing see accompanying LICENSE file at https://github.com/apple/ml-fastvit/tree/main # Original work is copyright (C) 2023 Apple Inc. All Rights Reserved. # import os from functools import partial from typing import Tuple, Optional, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, trunc_normal_, create_conv2d, ConvNormAct, SqueezeExcite, use_fused_attn, \ ClassifierHead from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs def num_groups(group_size, channels): if not group_size: # 0 or None return 1 # normal conv with 1 group else: # NOTE group_size == 1 -> depthwise conv assert channels % group_size == 0 return channels // group_size class MobileOneBlock(nn.Module): """MobileOne building block. This block has a multi-branched architecture at train-time and plain-CNN style architecture at inference time For more details, please refer to our paper: `An Improved One millisecond Mobile Backbone` - https://arxiv.org/pdf/2206.04040.pdf """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int, stride: int = 1, dilation: int = 1, group_size: int = 0, inference_mode: bool = False, use_se: bool = False, use_act: bool = True, use_scale_branch: bool = True, num_conv_branches: int = 1, act_layer: nn.Module = nn.GELU, ) -> None: """Construct a MobileOneBlock module. Args: in_chs: Number of channels in the input. out_chs: Number of channels produced by the block. kernel_size: Size of the convolution kernel. stride: Stride size. dilation: Kernel dilation factor. group_size: Convolution group size. inference_mode: If True, instantiates model in inference mode. use_se: Whether to use SE-ReLU activations. use_act: Whether to use activation. Default: ``True`` use_scale_branch: Whether to use scale branch. Default: ``True`` num_conv_branches: Number of linear conv branches. """ super(MobileOneBlock, self).__init__() self.inference_mode = inference_mode self.groups = num_groups(group_size, in_chs) self.stride = stride self.dilation = dilation self.kernel_size = kernel_size self.in_chs = in_chs self.out_chs = out_chs self.num_conv_branches = num_conv_branches # Check if SE-ReLU is requested self.se = SqueezeExcite(out_chs, rd_divisor=1) if use_se else nn.Identity() if inference_mode: self.reparam_conv = create_conv2d( in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation, groups=self.groups, bias=True, ) else: # Re-parameterizable skip connection self.reparam_conv = None self.identity = ( nn.BatchNorm2d(num_features=in_chs) if out_chs == in_chs and stride == 1 else None ) # Re-parameterizable conv branches if num_conv_branches > 0: self.conv_kxk = nn.ModuleList([ ConvNormAct( self.in_chs, self.out_chs, kernel_size=kernel_size, stride=self.stride, groups=self.groups, apply_act=False, ) for _ in range(self.num_conv_branches) ]) else: self.conv_kxk = None # Re-parameterizable scale branch self.conv_scale = None if kernel_size > 1 and use_scale_branch: self.conv_scale = ConvNormAct( self.in_chs, self.out_chs, kernel_size=1, stride=self.stride, groups=self.groups, apply_act=False ) self.act = act_layer() if use_act else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply forward pass.""" # Inference mode forward pass. if self.reparam_conv is not None: return self.act(self.se(self.reparam_conv(x))) # Multi-branched train-time forward pass. # Identity branch output identity_out = 0 if self.identity is not None: identity_out = self.identity(x) # Scale branch output scale_out = 0 if self.conv_scale is not None: scale_out = self.conv_scale(x) # Other kxk conv branches out = scale_out + identity_out if self.conv_kxk is not None: for rc in self.conv_kxk: out += rc(x) return self.act(self.se(out)) def reparameterize(self): """Following works like `RepVGG: Making VGG-style ConvNets Great Again` - https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched architecture used at training time to obtain a plain CNN-like structure for inference. """ if self.reparam_conv is not None: return kernel, bias = self._get_kernel_bias() self.reparam_conv = create_conv2d( in_channels=self.in_chs, out_channels=self.out_chs, kernel_size=self.kernel_size, stride=self.stride, dilation=self.dilation, groups=self.groups, bias=True, ) self.reparam_conv.weight.data = kernel self.reparam_conv.bias.data = bias # Delete un-used branches for name, para in self.named_parameters(): if 'reparam_conv' in name: continue para.detach_() self.__delattr__("conv_kxk") self.__delattr__("conv_scale") if hasattr(self, "identity"): self.__delattr__("identity") self.inference_mode = True def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: """Method to obtain re-parameterized kernel and bias. Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83 Returns: Tuple of (kernel, bias) after fusing branches. """ # get weights and bias of scale branch kernel_scale = 0 bias_scale = 0 if self.conv_scale is not None: kernel_scale, bias_scale = self._fuse_bn_tensor(self.conv_scale) # Pad scale branch kernel to match conv branch kernel size. pad = self.kernel_size // 2 kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad]) # get weights and bias of skip branch kernel_identity = 0 bias_identity = 0 if self.identity is not None: kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity) # get weights and bias of conv branches kernel_conv = 0 bias_conv = 0 if self.conv_kxk is not None: for ix in range(self.num_conv_branches): _kernel, _bias = self._fuse_bn_tensor(self.conv_kxk[ix]) kernel_conv += _kernel bias_conv += _bias kernel_final = kernel_conv + kernel_scale + kernel_identity bias_final = bias_conv + bias_scale + bias_identity return kernel_final, bias_final def _fuse_bn_tensor( self, branch: Union[nn.Sequential, nn.BatchNorm2d] ) -> Tuple[torch.Tensor, torch.Tensor]: """Method to fuse batchnorm layer with preceeding conv layer. Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95 Args: branch: Sequence of ops to be fused. Returns: Tuple of (kernel, bias) after fusing batchnorm. """ if isinstance(branch, ConvNormAct): kernel = branch.conv.weight running_mean = branch.bn.running_mean running_var = branch.bn.running_var gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn.eps else: assert isinstance(branch, nn.BatchNorm2d) if not hasattr(self, "id_tensor"): input_dim = self.in_chs // self.groups kernel_value = torch.zeros( (self.in_chs, input_dim, self.kernel_size, self.kernel_size), dtype=branch.weight.dtype, device=branch.weight.device, ) for i in range(self.in_chs): kernel_value[ i, i % input_dim, self.kernel_size // 2, self.kernel_size // 2 ] = 1 self.id_tensor = kernel_value kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std class ReparamLargeKernelConv(nn.Module): """Building Block of RepLKNet This class defines overparameterized large kernel conv block introduced in `RepLKNet <https://arxiv.org/abs/2203.06717>`_ Reference: https://github.com/DingXiaoH/RepLKNet-pytorch """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int, stride: int, group_size: int, small_kernel: Optional[int] = None, inference_mode: bool = False, act_layer: Optional[nn.Module] = None, ) -> None: """Construct a ReparamLargeKernelConv module. Args: in_chs: Number of input channels. out_chs: Number of output channels. kernel_size: Kernel size of the large kernel conv branch. stride: Stride size. Default: 1 group_size: Group size. Default: 1 small_kernel: Kernel size of small kernel conv branch. inference_mode: If True, instantiates model in inference mode. Default: ``False`` act_layer: Activation module. Default: ``nn.GELU`` """ super(ReparamLargeKernelConv, self).__init__() self.stride = stride self.groups = num_groups(group_size, in_chs) self.in_chs = in_chs self.out_chs = out_chs self.kernel_size = kernel_size self.small_kernel = small_kernel if inference_mode: self.reparam_conv = create_conv2d( in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=1, groups=self.groups, bias=True, ) else: self.reparam_conv = None self.large_conv = ConvNormAct( in_chs, out_chs, kernel_size=kernel_size, stride=self.stride, groups=self.groups, apply_act=False, ) if small_kernel is not None: assert ( small_kernel <= kernel_size ), "The kernel size for re-param cannot be larger than the large kernel!" self.small_conv = ConvNormAct( in_chs, out_chs, kernel_size=small_kernel, stride=self.stride, groups=self.groups, apply_act=False, ) # FIXME output of this act was not used in original impl, likely due to bug self.act = act_layer() if act_layer is not None else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: if self.reparam_conv is not None: out = self.reparam_conv(x) else: out = self.large_conv(x) if self.small_conv is not None: out = out + self.small_conv(x) out = self.act(out) return out def get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: """Method to obtain re-parameterized kernel and bias. Reference: https://github.com/DingXiaoH/RepLKNet-pytorch Returns: Tuple of (kernel, bias) after fusing branches. """ eq_k, eq_b = self._fuse_bn(self.large_conv.conv, self.large_conv.bn) if hasattr(self, "small_conv"): small_k, small_b = self._fuse_bn(self.small_conv.conv, self.small_conv.bn) eq_b += small_b eq_k += nn.functional.pad( small_k, [(self.kernel_size - self.small_kernel) // 2] * 4 ) return eq_k, eq_b def reparameterize(self) -> None: """ Following works like `RepVGG: Making VGG-style ConvNets Great Again` - https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched architecture used at training time to obtain a plain CNN-like structure for inference. """ eq_k, eq_b = self.get_kernel_bias() self.reparam_conv = create_conv2d( self.in_chs, self.out_chs, kernel_size=self.kernel_size, stride=self.stride, groups=self.groups, bias=True, ) self.reparam_conv.weight.data = eq_k self.reparam_conv.bias.data = eq_b self.__delattr__("large_conv") if hasattr(self, "small_conv"): self.__delattr__("small_conv") @staticmethod def _fuse_bn( conv: torch.Tensor, bn: nn.BatchNorm2d ) -> Tuple[torch.Tensor, torch.Tensor]: """Method to fuse batchnorm layer with conv layer. Args: conv: Convolutional kernel weights. bn: Batchnorm 2d layer. Returns: Tuple of (kernel, bias) after fusing batchnorm. """ kernel = conv.weight running_mean = bn.running_mean running_var = bn.running_var gamma = bn.weight beta = bn.bias eps = bn.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std def convolutional_stem( in_chs: int, out_chs: int, act_layer: nn.Module = nn.GELU, inference_mode: bool = False ) -> nn.Sequential: """Build convolutional stem with MobileOne blocks. Args: in_chs: Number of input channels. out_chs: Number of output channels. inference_mode: Flag to instantiate model in inference mode. Default: ``False`` Returns: nn.Sequential object with stem elements. """ return nn.Sequential( MobileOneBlock( in_chs=in_chs, out_chs=out_chs, kernel_size=3, stride=2, act_layer=act_layer, inference_mode=inference_mode, ), MobileOneBlock( in_chs=out_chs, out_chs=out_chs, kernel_size=3, stride=2, group_size=1, act_layer=act_layer, inference_mode=inference_mode, ), MobileOneBlock( in_chs=out_chs, out_chs=out_chs, kernel_size=1, stride=1, act_layer=act_layer, inference_mode=inference_mode, ), ) class Attention(nn.Module): """Multi-headed Self Attention module. Source modified from: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ fused_attn: torch.jit.Final[bool] def __init__( self, dim: int, head_dim: int = 32, qkv_bias: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: """Build MHSA module that can handle 3D or 4D input tensors. Args: dim: Number of embedding dimensions. head_dim: Number of hidden dimensions per head. Default: ``32`` qkv_bias: Use bias or not. Default: ``False`` attn_drop: Dropout rate for attention tensor. proj_drop: Dropout rate for projection tensor. """ super().__init__() assert dim % head_dim == 0, "dim should be divisible by head_dim" self.head_dim = head_dim self.num_heads = dim // head_dim self.scale = head_dim ** -0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: torch.Tensor) -> torch.Tensor: B, C, H, W = x.shape N = H * W x = x.flatten(2).transpose(-2, -1) # (B, N, C) qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, self.head_dim) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) if self.fused_attn: x = torch.nn.functional.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) x = x.transpose(-2, -1).reshape(B, C, H, W) return x class PatchEmbed(nn.Module): """Convolutional patch embedding layer.""" def __init__( self, patch_size: int, stride: int, in_chs: int, embed_dim: int, act_layer: nn.Module = nn.GELU, lkc_use_act: bool = False, inference_mode: bool = False, ) -> None: """Build patch embedding layer. Args: patch_size: Patch size for embedding computation. stride: Stride for convolutional embedding layer. in_chs: Number of channels of input tensor. embed_dim: Number of embedding dimensions. inference_mode: Flag to instantiate model in inference mode. Default: ``False`` """ super().__init__() self.proj = nn.Sequential( ReparamLargeKernelConv( in_chs=in_chs, out_chs=embed_dim, kernel_size=patch_size, stride=stride, group_size=1, small_kernel=3, inference_mode=inference_mode, act_layer=act_layer if lkc_use_act else None, # NOTE original weights didn't use this act ), MobileOneBlock( in_chs=embed_dim, out_chs=embed_dim, kernel_size=1, stride=1, act_layer=act_layer, inference_mode=inference_mode, ) ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) return x class LayerScale2d(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim, 1, 1)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class RepMixer(nn.Module): """Reparameterizable token mixer. For more details, please refer to our paper: `FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization <https://arxiv.org/pdf/2303.14189.pdf>`_ """ def __init__( self, dim, kernel_size=3, layer_scale_init_value=1e-5, inference_mode: bool = False, ): """Build RepMixer Module. Args: dim: Input feature map dimension. :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, H, W)`. kernel_size: Kernel size for spatial mixing. Default: 3 layer_scale_init_value: Initial value for layer scale. Default: 1e-5 inference_mode: If True, instantiates model in inference mode. Default: ``False`` """ super().__init__() self.dim = dim self.kernel_size = kernel_size self.inference_mode = inference_mode if inference_mode: self.reparam_conv = nn.Conv2d( self.dim, self.dim, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size // 2, groups=self.dim, bias=True, ) else: self.reparam_conv = None self.norm = MobileOneBlock( dim, dim, kernel_size, group_size=1, use_act=False, use_scale_branch=False, num_conv_branches=0, ) self.mixer = MobileOneBlock( dim, dim, kernel_size, group_size=1, use_act=False, ) if layer_scale_init_value is not None: self.layer_scale = LayerScale2d(dim, layer_scale_init_value) else: self.layer_scale = nn.Identity def forward(self, x: torch.Tensor) -> torch.Tensor: if self.reparam_conv is not None: x = self.reparam_conv(x) else: x = x + self.layer_scale(self.mixer(x) - self.norm(x)) return x def reparameterize(self) -> None: """Reparameterize mixer and norm into a single convolutional layer for efficient inference. """ if self.inference_mode: return self.mixer.reparameterize() self.norm.reparameterize() if isinstance(self.layer_scale, LayerScale2d): w = self.mixer.id_tensor + self.layer_scale.gamma.unsqueeze(-1) * ( self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight ) b = torch.squeeze(self.layer_scale.gamma) * ( self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias ) else: w = ( self.mixer.id_tensor + self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight ) b = self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias self.reparam_conv = create_conv2d( self.dim, self.dim, kernel_size=self.kernel_size, stride=1, groups=self.dim, bias=True, ) self.reparam_conv.weight.data = w self.reparam_conv.bias.data = b for name, para in self.named_parameters(): if 'reparam_conv' in name: continue para.detach_() self.__delattr__("mixer") self.__delattr__("norm") self.__delattr__("layer_scale") class ConvMlp(nn.Module): """Convolutional FFN Module.""" def __init__( self, in_chs: int, hidden_channels: Optional[int] = None, out_chs: Optional[int] = None, act_layer: nn.Module = nn.GELU, drop: float = 0.0, ) -> None: """Build convolutional FFN module. Args: in_chs: Number of input channels. hidden_channels: Number of channels after expansion. Default: None out_chs: Number of output channels. Default: None act_layer: Activation layer. Default: ``GELU`` drop: Dropout rate. Default: ``0.0``. """ super().__init__() out_chs = out_chs or in_chs hidden_channels = hidden_channels or in_chs self.conv = ConvNormAct( in_chs, out_chs, kernel_size=7, groups=in_chs, apply_act=False, ) self.fc1 = nn.Conv2d(in_chs, hidden_channels, kernel_size=1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_channels, out_chs, kernel_size=1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m: nn.Module) -> None: if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.conv(x) x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class RepConditionalPosEnc(nn.Module): """Implementation of conditional positional encoding. For more details refer to paper: `Conditional Positional Encodings for Vision Transformers <https://arxiv.org/pdf/2102.10882.pdf>`_ In our implementation, we can reparameterize this module to eliminate a skip connection. """ def __init__( self, dim: int, dim_out: Optional[int] = None, spatial_shape: Union[int, Tuple[int, int]] = (7, 7), inference_mode=False, ) -> None: """Build reparameterizable conditional positional encoding Args: dim: Number of input channels. dim_out: Number of embedding dimensions. Default: 768 spatial_shape: Spatial shape of kernel for positional encoding. Default: (7, 7) inference_mode: Flag to instantiate block in inference mode. Default: ``False`` """ super(RepConditionalPosEnc, self).__init__() if isinstance(spatial_shape, int): spatial_shape = tuple([spatial_shape] * 2) assert isinstance(spatial_shape, Tuple), ( f'"spatial_shape" must by a sequence or int, ' f"get {type(spatial_shape)} instead." ) assert len(spatial_shape) == 2, ( f'Length of "spatial_shape" should be 2, ' f"got {len(spatial_shape)} instead." ) self.spatial_shape = spatial_shape self.dim = dim self.dim_out = dim_out or dim self.groups = dim if inference_mode: self.reparam_conv = nn.Conv2d( self.dim, self.dim_out, kernel_size=self.spatial_shape, stride=1, padding=spatial_shape[0] // 2, groups=self.groups, bias=True, ) else: self.reparam_conv = None self.pos_enc = nn.Conv2d( self.dim, self.dim_out, spatial_shape, 1, int(spatial_shape[0] // 2), groups=self.groups, bias=True, ) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.reparam_conv is not None: x = self.reparam_conv(x) else: x = self.pos_enc(x) + x return x def reparameterize(self) -> None: # Build equivalent Id tensor input_dim = self.dim // self.groups kernel_value = torch.zeros( ( self.dim, input_dim, self.spatial_shape[0], self.spatial_shape[1], ), dtype=self.pos_enc.weight.dtype, device=self.pos_enc.weight.device, ) for i in range(self.dim): kernel_value[ i, i % input_dim, self.spatial_shape[0] // 2, self.spatial_shape[1] // 2, ] = 1 id_tensor = kernel_value # Reparameterize Id tensor and conv w_final = id_tensor + self.pos_enc.weight b_final = self.pos_enc.bias # Introduce reparam conv self.reparam_conv = nn.Conv2d( self.dim, self.dim_out, kernel_size=self.spatial_shape, stride=1, padding=int(self.spatial_shape[0] // 2), groups=self.groups, bias=True, ) self.reparam_conv.weight.data = w_final self.reparam_conv.bias.data = b_final for name, para in self.named_parameters(): if 'reparam_conv' in name: continue para.detach_() self.__delattr__("pos_enc") class RepMixerBlock(nn.Module): """Implementation of Metaformer block with RepMixer as token mixer. For more details on Metaformer structure, please refer to: `MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_ """ def __init__( self, dim: int, kernel_size: int = 3, mlp_ratio: float = 4.0, act_layer: nn.Module = nn.GELU, proj_drop: float = 0.0, drop_path: float = 0.0, layer_scale_init_value: float = 1e-5, inference_mode: bool = False, ): """Build RepMixer Block. Args: dim: Number of embedding dimensions. kernel_size: Kernel size for repmixer. Default: 3 mlp_ratio: MLP expansion ratio. Default: 4.0 act_layer: Activation layer. Default: ``nn.GELU`` proj_drop: Dropout rate. Default: 0.0 drop_path: Drop path rate. Default: 0.0 layer_scale_init_value: Layer scale value at initialization. Default: 1e-5 inference_mode: Flag to instantiate block in inference mode. Default: ``False`` """ super().__init__() self.token_mixer = RepMixer( dim, kernel_size=kernel_size, layer_scale_init_value=layer_scale_init_value, inference_mode=inference_mode, ) self.mlp = ConvMlp( in_chs=dim, hidden_channels=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) if layer_scale_init_value is not None: self.layer_scale = LayerScale2d(dim, layer_scale_init_value) else: self.layer_scale = nn.Identity() self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x): x = self.token_mixer(x) x = x + self.drop_path(self.layer_scale(self.mlp(x))) return x class AttentionBlock(nn.Module): """Implementation of metaformer block with MHSA as token mixer. For more details on Metaformer structure, please refer to: `MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_ """ def __init__( self, dim: int, mlp_ratio: float = 4.0, act_layer: nn.Module = nn.GELU, norm_layer: nn.Module = nn.BatchNorm2d, proj_drop: float = 0.0, drop_path: float = 0.0, layer_scale_init_value: float = 1e-5, ): """Build Attention Block. Args: dim: Number of embedding dimensions. mlp_ratio: MLP expansion ratio. Default: 4.0 act_layer: Activation layer. Default: ``nn.GELU`` norm_layer: Normalization layer. Default: ``nn.BatchNorm2d`` proj_drop: Dropout rate. Default: 0.0 drop_path: Drop path rate. Default: 0.0 layer_scale_init_value: Layer scale value at initialization. Default: 1e-5 """ super().__init__() self.norm = norm_layer(dim) self.token_mixer = Attention(dim=dim) if layer_scale_init_value is not None: self.layer_scale_1 = LayerScale2d(dim, layer_scale_init_value) else: self.layer_scale_1 = nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.mlp = ConvMlp( in_chs=dim, hidden_channels=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) if layer_scale_init_value is not None: self.layer_scale_2 = LayerScale2d(dim, layer_scale_init_value) else: self.layer_scale_2 = nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x): x = x + self.drop_path1(self.layer_scale_1(self.token_mixer(self.norm(x)))) x = x + self.drop_path2(self.layer_scale_2(self.mlp(x))) return x class FastVitStage(nn.Module): def __init__( self, dim: int, dim_out: int, depth: int, token_mixer_type: str, downsample: bool = True, down_patch_size: int = 7, down_stride: int = 2, pos_emb_layer: Optional[nn.Module] = None, kernel_size: int = 3, mlp_ratio: float = 4.0, act_layer: nn.Module = nn.GELU, norm_layer: nn.Module = nn.BatchNorm2d, proj_drop_rate: float = 0.0, drop_path_rate: float = 0.0, layer_scale_init_value: Optional[float] = 1e-5, lkc_use_act=False, inference_mode=False, ): """FastViT stage. Args: dim: Number of embedding dimensions. depth: Number of blocks in stage token_mixer_type: Token mixer type. kernel_size: Kernel size for repmixer. mlp_ratio: MLP expansion ratio. act_layer: Activation layer. norm_layer: Normalization layer. proj_drop_rate: Dropout rate. drop_path_rate: Drop path rate. layer_scale_init_value: Layer scale value at initialization. inference_mode: Flag to instantiate block in inference mode. """ super().__init__() self.grad_checkpointing = False if downsample: self.downsample = PatchEmbed( patch_size=down_patch_size, stride=down_stride, in_chs=dim, embed_dim=dim_out, act_layer=act_layer, lkc_use_act=lkc_use_act, inference_mode=inference_mode, ) else: assert dim == dim_out self.downsample = nn.Identity() if pos_emb_layer is not None: self.pos_emb = pos_emb_layer(dim_out, inference_mode=inference_mode) else: self.pos_emb = nn.Identity() blocks = [] for block_idx in range(depth): if token_mixer_type == "repmixer": blocks.append(RepMixerBlock( dim_out, kernel_size=kernel_size, mlp_ratio=mlp_ratio, act_layer=act_layer, proj_drop=proj_drop_rate, drop_path=drop_path_rate[block_idx], layer_scale_init_value=layer_scale_init_value, inference_mode=inference_mode, )) elif token_mixer_type == "attention": blocks.append(AttentionBlock( dim_out, mlp_ratio=mlp_ratio, act_layer=act_layer, norm_layer=norm_layer, proj_drop=proj_drop_rate, drop_path=drop_path_rate[block_idx], layer_scale_init_value=layer_scale_init_value, )) else: raise ValueError( "Token mixer type: {} not supported".format(token_mixer_type) ) self.blocks = nn.Sequential(*blocks) def forward(self, x): x = self.downsample(x) x = self.pos_emb(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x class FastVit(nn.Module): fork_feat: torch.jit.Final[bool] """ This class implements `FastViT architecture <https://arxiv.org/pdf/2303.14189.pdf>`_ """ def __init__( self, in_chans: int = 3, layers: Tuple[int, ...] = (2, 2, 6, 2), token_mixers: Tuple[str, ...] = ("repmixer", "repmixer", "repmixer", "repmixer"), embed_dims: Tuple[int, ...] = (64, 128, 256, 512), mlp_ratios: Tuple[float, ...] = (4,) * 4, downsamples: Tuple[bool, ...] = (False, True, True, True), repmixer_kernel_size: int = 3, num_classes: int = 1000, pos_embs: Tuple[Optional[nn.Module], ...] = (None,) * 4, down_patch_size: int = 7, down_stride: int = 2, drop_rate: float = 0.0, proj_drop_rate: float = 0.0, drop_path_rate: float = 0.0, layer_scale_init_value: float = 1e-5, fork_feat: bool = False, cls_ratio: float = 2.0, global_pool: str = 'avg', norm_layer: nn.Module = nn.BatchNorm2d, act_layer: nn.Module = nn.GELU, lkc_use_act: bool = False, inference_mode: bool = False, ) -> None: super().__init__() self.num_classes = 0 if fork_feat else num_classes self.fork_feat = fork_feat self.global_pool = global_pool self.feature_info = [] # Convolutional stem self.stem = convolutional_stem( in_chans, embed_dims[0], act_layer, inference_mode, ) # Build the main stages of the network architecture prev_dim = embed_dims[0] scale = 1 dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] stages = [] for i in range(len(layers)): downsample = downsamples[i] or prev_dim != embed_dims[i] stage = FastVitStage( dim=prev_dim, dim_out=embed_dims[i], depth=layers[i], downsample=downsample, down_patch_size=down_patch_size, down_stride=down_stride, pos_emb_layer=pos_embs[i], token_mixer_type=token_mixers[i], kernel_size=repmixer_kernel_size, mlp_ratio=mlp_ratios[i], act_layer=act_layer, norm_layer=norm_layer, proj_drop_rate=proj_drop_rate, drop_path_rate=dpr[i], layer_scale_init_value=layer_scale_init_value, lkc_use_act=lkc_use_act, inference_mode=inference_mode, ) stages.append(stage) prev_dim = embed_dims[i] if downsample: scale *= 2 self.feature_info += [dict(num_chs=prev_dim, reduction=4 * scale, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) self.num_features = prev_dim # For segmentation and detection, extract intermediate output if self.fork_feat: # Add a norm layer for each output. self.stages is slightly different than self.network # in the original code, the PatchEmbed layer is part of self.stages in this code where # it was part of self.network in the original code. So we do not need to skip out indices. self.out_indices = [0, 1, 2, 3] for i_emb, i_layer in enumerate(self.out_indices): if i_emb == 0 and os.environ.get("FORK_LAST3", None): """For RetinaNet, `start_level=1`. The first norm layer will not used. cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...` """ layer = nn.Identity() else: layer = norm_layer(embed_dims[i_emb]) layer_name = f"norm{i_layer}" self.add_module(layer_name, layer) else: # Classifier head self.num_features = final_features = int(embed_dims[-1] * cls_ratio) self.final_conv = MobileOneBlock( in_chs=embed_dims[-1], out_chs=final_features, kernel_size=3, stride=1, group_size=1, inference_mode=inference_mode, use_se=True, act_layer=act_layer, num_conv_branches=1, ) self.head = ClassifierHead( final_features, num_classes, pool_type=global_pool, drop_rate=drop_rate, ) self.apply(self._init_weights) def _init_weights(self, m: nn.Module) -> None: """Init. for classification""" if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): return set() @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', # stem and embed blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+).downsample', (0,)), (r'^stages\.(\d+).pos_emb', (0,)), (r'^stages\.(\d+)\.\w+\.(\d+)', None), ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes self.head.reset(num_classes, global_pool) def forward_features(self, x: torch.Tensor) -> torch.Tensor: # input embedding x = self.stem(x) outs = [] for idx, block in enumerate(self.stages): x = block(x) if self.fork_feat: if idx in self.out_indices: norm_layer = getattr(self, f"norm{idx}") x_out = norm_layer(x) outs.append(x_out) if self.fork_feat: # output the features of four stages for dense prediction return outs x = self.final_conv(x) return x def forward_head(self, x: torch.Tensor, pre_logits: bool = False): return self.head(x, pre_logits=True) if pre_logits else self.head(x) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.forward_features(x) if self.fork_feat: return x x = self.forward_head(x) return x def _cfg(url="", **kwargs): return { "url": url, "num_classes": 1000, "input_size": (3, 256, 256), "pool_size": (8, 8), "crop_pct": 0.9, "interpolation": "bicubic", "mean": IMAGENET_DEFAULT_MEAN, "std": IMAGENET_DEFAULT_STD, 'first_conv': ('stem.0.conv_kxk.0.conv', 'stem.0.conv_scale.conv'), "classifier": "head.fc", **kwargs, } default_cfgs = generate_default_cfgs({ "fastvit_t8.apple_in1k": _cfg( hf_hub_id='timm/'), "fastvit_t12.apple_in1k": _cfg( hf_hub_id='timm/'), "fastvit_s12.apple_in1k": _cfg( hf_hub_id='timm/'), "fastvit_sa12.apple_in1k": _cfg( hf_hub_id='timm/'), "fastvit_sa24.apple_in1k": _cfg( hf_hub_id='timm/'), "fastvit_sa36.apple_in1k": _cfg( hf_hub_id='timm/'), "fastvit_ma36.apple_in1k": _cfg( hf_hub_id='timm/', crop_pct=0.95 ), "fastvit_t8.apple_dist_in1k": _cfg( hf_hub_id='timm/'), "fastvit_t12.apple_dist_in1k": _cfg( hf_hub_id='timm/'), "fastvit_s12.apple_dist_in1k": _cfg( hf_hub_id='timm/',), "fastvit_sa12.apple_dist_in1k": _cfg( hf_hub_id='timm/',), "fastvit_sa24.apple_dist_in1k": _cfg( hf_hub_id='timm/',), "fastvit_sa36.apple_dist_in1k": _cfg( hf_hub_id='timm/',), "fastvit_ma36.apple_dist_in1k": _cfg( hf_hub_id='timm/', crop_pct=0.95 ), }) def _create_fastvit(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) model = build_model_with_cfg( FastVit, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs ) return model @register_model def fastvit_t8(pretrained=False, **kwargs): """Instantiate FastViT-T8 model variant.""" model_args = dict( layers=(2, 2, 4, 2), embed_dims=(48, 96, 192, 384), mlp_ratios=(3, 3, 3, 3), token_mixers=("repmixer", "repmixer", "repmixer", "repmixer") ) return _create_fastvit('fastvit_t8', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def fastvit_t12(pretrained=False, **kwargs): """Instantiate FastViT-T12 model variant.""" model_args = dict( layers=(2, 2, 6, 2), embed_dims=(64, 128, 256, 512), mlp_ratios=(3, 3, 3, 3), token_mixers=("repmixer", "repmixer", "repmixer", "repmixer"), ) return _create_fastvit('fastvit_t12', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def fastvit_s12(pretrained=False, **kwargs): """Instantiate FastViT-S12 model variant.""" model_args = dict( layers=(2, 2, 6, 2), embed_dims=(64, 128, 256, 512), mlp_ratios=(4, 4, 4, 4), token_mixers=("repmixer", "repmixer", "repmixer", "repmixer"), ) return _create_fastvit('fastvit_s12', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def fastvit_sa12(pretrained=False, **kwargs): """Instantiate FastViT-SA12 model variant.""" model_args = dict( layers=(2, 2, 6, 2), embed_dims=(64, 128, 256, 512), mlp_ratios=(4, 4, 4, 4), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=("repmixer", "repmixer", "repmixer", "attention"), ) return _create_fastvit('fastvit_sa12', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def fastvit_sa24(pretrained=False, **kwargs): """Instantiate FastViT-SA24 model variant.""" model_args = dict( layers=(4, 4, 12, 4), embed_dims=(64, 128, 256, 512), mlp_ratios=(4, 4, 4, 4), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=("repmixer", "repmixer", "repmixer", "attention"), ) return _create_fastvit('fastvit_sa24', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def fastvit_sa36(pretrained=False, **kwargs): """Instantiate FastViT-SA36 model variant.""" model_args = dict( layers=(6, 6, 18, 6), embed_dims=(64, 128, 256, 512), mlp_ratios=(4, 4, 4, 4), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=("repmixer", "repmixer", "repmixer", "attention"), ) return _create_fastvit('fastvit_sa36', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def fastvit_ma36(pretrained=False, **kwargs): """Instantiate FastViT-MA36 model variant.""" model_args = dict( layers=(6, 6, 18, 6), embed_dims=(76, 152, 304, 608), mlp_ratios=(4, 4, 4, 4), pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), token_mixers=("repmixer", "repmixer", "repmixer", "attention") ) return _create_fastvit('fastvit_ma36', pretrained=pretrained, **dict(model_args, **kwargs))
pytorch-image-models/timm/models/fastvit.py/0
{ "file_path": "pytorch-image-models/timm/models/fastvit.py", "repo_id": "pytorch-image-models", "token_count": 24916 }
212
""" LeViT Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference` - https://arxiv.org/abs/2104.01136 @article{graham2021levit, title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference}, author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze}, journal={arXiv preprint arXiv:22104.01136}, year={2021} } Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow. This version combines both conv/linear models and fixes torchscript compatibility. Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # Modified from # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # Copyright 2020 Ross Wightman, Apache-2.0 License from collections import OrderedDict from functools import partial from typing import Dict import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN from timm.layers import to_ntuple, to_2tuple, get_act_layer, DropPath, trunc_normal_, ndgrid from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import generate_default_cfgs, register_model __all__ = ['Levit'] class ConvNorm(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1): super().__init__() self.linear = nn.Conv2d(in_chs, out_chs, kernel_size, stride, padding, dilation, groups, bias=False) self.bn = nn.BatchNorm2d(out_chs) nn.init.constant_(self.bn.weight, bn_weight_init) @torch.no_grad() def fuse(self): c, bn = self.linear, self.bn w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = c.weight * w[:, None, None, None] b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 m = nn.Conv2d( w.size(1), w.size(0), w.shape[2:], stride=self.linear.stride, padding=self.linear.padding, dilation=self.linear.dilation, groups=self.linear.groups) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def forward(self, x): return self.bn(self.linear(x)) class LinearNorm(nn.Module): def __init__(self, in_features, out_features, bn_weight_init=1): super().__init__() self.linear = nn.Linear(in_features, out_features, bias=False) self.bn = nn.BatchNorm1d(out_features) nn.init.constant_(self.bn.weight, bn_weight_init) @torch.no_grad() def fuse(self): l, bn = self.linear, self.bn w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = l.weight * w[:, None] b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 m = nn.Linear(w.size(1), w.size(0)) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def forward(self, x): x = self.linear(x) return self.bn(x.flatten(0, 1)).reshape_as(x) class NormLinear(nn.Module): def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.): super().__init__() self.bn = nn.BatchNorm1d(in_features) self.drop = nn.Dropout(drop) self.linear = nn.Linear(in_features, out_features, bias=bias) trunc_normal_(self.linear.weight, std=std) if self.linear.bias is not None: nn.init.constant_(self.linear.bias, 0) @torch.no_grad() def fuse(self): bn, l = self.bn, self.linear w = bn.weight / (bn.running_var + bn.eps) ** 0.5 b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 w = l.weight * w[None, :] if l.bias is None: b = b @ self.linear.weight.T else: b = (l.weight @ b[:, None]).view(-1) + self.linear.bias m = nn.Linear(w.size(1), w.size(0)) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def forward(self, x): return self.linear(self.drop(self.bn(x))) class Stem8(nn.Sequential): def __init__(self, in_chs, out_chs, act_layer): super().__init__() self.stride = 8 self.add_module('conv1', ConvNorm(in_chs, out_chs // 4, 3, stride=2, padding=1)) self.add_module('act1', act_layer()) self.add_module('conv2', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1)) self.add_module('act2', act_layer()) self.add_module('conv3', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1)) class Stem16(nn.Sequential): def __init__(self, in_chs, out_chs, act_layer): super().__init__() self.stride = 16 self.add_module('conv1', ConvNorm(in_chs, out_chs // 8, 3, stride=2, padding=1)) self.add_module('act1', act_layer()) self.add_module('conv2', ConvNorm(out_chs // 8, out_chs // 4, 3, stride=2, padding=1)) self.add_module('act2', act_layer()) self.add_module('conv3', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1)) self.add_module('act3', act_layer()) self.add_module('conv4', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1)) class Downsample(nn.Module): def __init__(self, stride, resolution, use_pool=False): super().__init__() self.stride = stride self.resolution = to_2tuple(resolution) self.pool = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) if use_pool else None def forward(self, x): B, N, C = x.shape x = x.view(B, self.resolution[0], self.resolution[1], C) if self.pool is not None: x = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) else: x = x[:, ::self.stride, ::self.stride] return x.reshape(B, -1, C) class Attention(nn.Module): attention_bias_cache: Dict[str, torch.Tensor] def __init__( self, dim, key_dim, num_heads=8, attn_ratio=4., resolution=14, use_conv=False, act_layer=nn.SiLU, ): super().__init__() ln_layer = ConvNorm if use_conv else LinearNorm resolution = to_2tuple(resolution) self.use_conv = use_conv self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.key_attn_dim = key_dim * num_heads self.val_dim = int(attn_ratio * key_dim) self.val_attn_dim = int(attn_ratio * key_dim) * num_heads self.qkv = ln_layer(dim, self.val_attn_dim + self.key_attn_dim * 2) self.proj = nn.Sequential(OrderedDict([ ('act', act_layer()), ('ln', ln_layer(self.val_attn_dim, dim, bn_weight_init=0)) ])) self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1] self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) self.attention_bias_cache = {} @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.attention_bias_cache: self.attention_bias_cache = {} # clear ab cache def get_attention_biases(self, device: torch.device) -> torch.Tensor: if torch.jit.is_tracing() or self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.attention_bias_cache: self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.attention_bias_cache[device_key] def forward(self, x): # x (B,C,H,W) if self.use_conv: B, C, H, W = x.shape q, k, v = self.qkv(x).view( B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.val_dim], dim=2) attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) else: B, N, C = x.shape q, k, v = self.qkv(x).view( B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 3, 1) v = v.permute(0, 2, 1, 3) attn = q @ k * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) x = self.proj(x) return x class AttentionDownsample(nn.Module): attention_bias_cache: Dict[str, torch.Tensor] def __init__( self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=2.0, stride=2, resolution=14, use_conv=False, use_pool=False, act_layer=nn.SiLU, ): super().__init__() resolution = to_2tuple(resolution) self.stride = stride self.resolution = resolution self.num_heads = num_heads self.key_dim = key_dim self.key_attn_dim = key_dim * num_heads self.val_dim = int(attn_ratio * key_dim) self.val_attn_dim = self.val_dim * self.num_heads self.scale = key_dim ** -0.5 self.use_conv = use_conv if self.use_conv: ln_layer = ConvNorm sub_layer = partial( nn.AvgPool2d, kernel_size=3 if use_pool else 1, padding=1 if use_pool else 0, count_include_pad=False) else: ln_layer = LinearNorm sub_layer = partial(Downsample, resolution=resolution, use_pool=use_pool) self.kv = ln_layer(in_dim, self.val_attn_dim + self.key_attn_dim) self.q = nn.Sequential(OrderedDict([ ('down', sub_layer(stride=stride)), ('ln', ln_layer(in_dim, self.key_attn_dim)) ])) self.proj = nn.Sequential(OrderedDict([ ('act', act_layer()), ('ln', ln_layer(self.val_attn_dim, out_dim)) ])) self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) k_pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) q_pos = torch.stack(ndgrid( torch.arange(0, resolution[0], step=stride), torch.arange(0, resolution[1], step=stride) )).flatten(1) rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs() rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1] self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) self.attention_bias_cache = {} # per-device attention_biases cache @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.attention_bias_cache: self.attention_bias_cache = {} # clear ab cache def get_attention_biases(self, device: torch.device) -> torch.Tensor: if torch.jit.is_tracing() or self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.attention_bias_cache: self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.attention_bias_cache[device_key] def forward(self, x): if self.use_conv: B, C, H, W = x.shape HH, WW = (H - 1) // self.stride + 1, (W - 1) // self.stride + 1 k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.val_dim], dim=2) q = self.q(x).view(B, self.num_heads, self.key_dim, -1) attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (v @ attn.transpose(-2, -1)).reshape(B, self.val_attn_dim, HH, WW) else: B, N, C = x.shape k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.val_dim], dim=3) k = k.permute(0, 2, 3, 1) # BHCN v = v.permute(0, 2, 1, 3) # BHNC q = self.q(x).view(B, -1, self.num_heads, self.key_dim).permute(0, 2, 1, 3) attn = q @ k * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, -1, self.val_attn_dim) x = self.proj(x) return x class LevitMlp(nn.Module): """ MLP for Levit w/ normalization + ability to switch btw conv and linear """ def __init__( self, in_features, hidden_features=None, out_features=None, use_conv=False, act_layer=nn.SiLU, drop=0. ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features ln_layer = ConvNorm if use_conv else LinearNorm self.ln1 = ln_layer(in_features, hidden_features) self.act = act_layer() self.drop = nn.Dropout(drop) self.ln2 = ln_layer(hidden_features, out_features, bn_weight_init=0) def forward(self, x): x = self.ln1(x) x = self.act(x) x = self.drop(x) x = self.ln2(x) return x class LevitDownsample(nn.Module): def __init__( self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=4., mlp_ratio=2., act_layer=nn.SiLU, attn_act_layer=None, resolution=14, use_conv=False, use_pool=False, drop_path=0., ): super().__init__() attn_act_layer = attn_act_layer or act_layer self.attn_downsample = AttentionDownsample( in_dim=in_dim, out_dim=out_dim, key_dim=key_dim, num_heads=num_heads, attn_ratio=attn_ratio, act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, use_pool=use_pool, ) self.mlp = LevitMlp( out_dim, int(out_dim * mlp_ratio), use_conv=use_conv, act_layer=act_layer ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): x = self.attn_downsample(x) x = x + self.drop_path(self.mlp(x)) return x class LevitBlock(nn.Module): def __init__( self, dim, key_dim, num_heads=8, attn_ratio=4., mlp_ratio=2., resolution=14, use_conv=False, act_layer=nn.SiLU, attn_act_layer=None, drop_path=0., ): super().__init__() attn_act_layer = attn_act_layer or act_layer self.attn = Attention( dim=dim, key_dim=key_dim, num_heads=num_heads, attn_ratio=attn_ratio, resolution=resolution, use_conv=use_conv, act_layer=attn_act_layer, ) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp = LevitMlp( dim, int(dim * mlp_ratio), use_conv=use_conv, act_layer=act_layer ) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): x = x + self.drop_path1(self.attn(x)) x = x + self.drop_path2(self.mlp(x)) return x class LevitStage(nn.Module): def __init__( self, in_dim, out_dim, key_dim, depth=4, num_heads=8, attn_ratio=4.0, mlp_ratio=4.0, act_layer=nn.SiLU, attn_act_layer=None, resolution=14, downsample='', use_conv=False, drop_path=0., ): super().__init__() resolution = to_2tuple(resolution) if downsample: self.downsample = LevitDownsample( in_dim, out_dim, key_dim=key_dim, num_heads=in_dim // key_dim, attn_ratio=4., mlp_ratio=2., act_layer=act_layer, attn_act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, drop_path=drop_path, ) resolution = [(r - 1) // 2 + 1 for r in resolution] else: assert in_dim == out_dim self.downsample = nn.Identity() blocks = [] for _ in range(depth): blocks += [LevitBlock( out_dim, key_dim, num_heads=num_heads, attn_ratio=attn_ratio, mlp_ratio=mlp_ratio, act_layer=act_layer, attn_act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, drop_path=drop_path, )] self.blocks = nn.Sequential(*blocks) def forward(self, x): x = self.downsample(x) x = self.blocks(x) return x class Levit(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems w/ train scripts that don't take tuple outputs, """ def __init__( self, img_size=224, in_chans=3, num_classes=1000, embed_dim=(192,), key_dim=64, depth=(12,), num_heads=(3,), attn_ratio=2., mlp_ratio=2., stem_backbone=None, stem_stride=None, stem_type='s16', down_op='subsample', act_layer='hard_swish', attn_act_layer=None, use_conv=False, global_pool='avg', drop_rate=0., drop_path_rate=0.): super().__init__() act_layer = get_act_layer(act_layer) attn_act_layer = get_act_layer(attn_act_layer or act_layer) self.use_conv = use_conv self.num_classes = num_classes self.global_pool = global_pool self.num_features = embed_dim[-1] self.embed_dim = embed_dim self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] num_stages = len(embed_dim) assert len(depth) == num_stages num_heads = to_ntuple(num_stages)(num_heads) attn_ratio = to_ntuple(num_stages)(attn_ratio) mlp_ratio = to_ntuple(num_stages)(mlp_ratio) if stem_backbone is not None: assert stem_stride >= 2 self.stem = stem_backbone stride = stem_stride else: assert stem_type in ('s16', 's8') if stem_type == 's16': self.stem = Stem16(in_chans, embed_dim[0], act_layer=act_layer) else: self.stem = Stem8(in_chans, embed_dim[0], act_layer=act_layer) stride = self.stem.stride resolution = tuple([i // p for i, p in zip(to_2tuple(img_size), to_2tuple(stride))]) in_dim = embed_dim[0] stages = [] for i in range(num_stages): stage_stride = 2 if i > 0 else 1 stages += [LevitStage( in_dim, embed_dim[i], key_dim, depth=depth[i], num_heads=num_heads[i], attn_ratio=attn_ratio[i], mlp_ratio=mlp_ratio[i], act_layer=act_layer, attn_act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, downsample=down_op if stage_stride == 2 else '', drop_path=drop_path_rate )] stride *= stage_stride resolution = tuple([(r - 1) // stage_stride + 1 for r in resolution]) self.feature_info += [dict(num_chs=embed_dim[i], reduction=stride, module=f'stages.{i}')] in_dim = embed_dim[i] self.stages = nn.Sequential(*stages) # Classifier head self.head = NormLinear(embed_dim[-1], num_classes, drop=drop_rate) if num_classes > 0 else nn.Identity() @torch.jit.ignore def no_weight_decay(self): return {x for x in self.state_dict().keys() if 'attention_biases' in x} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^cls_token|pos_embed|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=None, distillation=None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = NormLinear( self.embed_dim[-1], num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.stem(x) if not self.use_conv: x = x.flatten(2).transpose(1, 2) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x) else: x = self.stages(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x class LevitDistilled(Levit): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.head_dist = NormLinear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity() self.distilled_training = False # must set this True to train w/ distillation token @torch.jit.ignore def get_classifier(self): return self.head, self.head_dist def reset_classifier(self, num_classes, global_pool=None, distillation=None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = NormLinear( self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity() self.head_dist = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def set_distilled_training(self, enable=True): self.distilled_training = enable def forward_head(self, x, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) if pre_logits: return x x, x_dist = self.head(x), self.head_dist(x) if self.distilled_training and self.training and not torch.jit.is_scripting(): # only return separate classification predictions when training in distilled mode return x, x_dist else: # during standard train/finetune, inference average the classifier predictions return (x + x_dist) / 2 def checkpoint_filter_fn(state_dict, model): if 'model' in state_dict: state_dict = state_dict['model'] # filter out attn biases, should not have been persistent state_dict = {k: v for k, v in state_dict.items() if 'attention_bias_idxs' not in k} D = model.state_dict() out_dict = {} for ka, kb, va, vb in zip(D.keys(), state_dict.keys(), D.values(), state_dict.values()): if va.ndim == 4 and vb.ndim == 2: vb = vb[:, :, None, None] if va.shape != vb.shape: # head or first-conv shapes may change for fine-tune assert 'head' in ka or 'stem.conv1.linear' in ka out_dict[ka] = vb return out_dict model_cfgs = dict( levit_128s=dict( embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)), levit_128=dict( embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)), levit_192=dict( embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)), levit_256=dict( embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)), levit_384=dict( embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)), # stride-8 stem experiments levit_384_s8=dict( embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4), act_layer='silu', stem_type='s8'), levit_512_s8=dict( embed_dim=(512, 640, 896), key_dim=64, num_heads=(8, 10, 14), depth=(4, 4, 4), act_layer='silu', stem_type='s8'), # wider experiments levit_512=dict( embed_dim=(512, 768, 1024), key_dim=64, num_heads=(8, 12, 16), depth=(4, 4, 4), act_layer='silu'), # deeper experiments levit_256d=dict( embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 8, 6), act_layer='silu'), levit_512d=dict( embed_dim=(512, 640, 768), key_dim=64, num_heads=(8, 10, 12), depth=(4, 8, 6), act_layer='silu'), ) def create_levit(variant, cfg_variant=None, pretrained=False, distilled=True, **kwargs): is_conv = '_conv' in variant out_indices = kwargs.pop('out_indices', (0, 1, 2)) if kwargs.get('features_only', None): if not is_conv: raise RuntimeError('features_only not implemented for LeVit in non-convolutional mode.') if cfg_variant is None: if variant in model_cfgs: cfg_variant = variant elif is_conv: cfg_variant = variant.replace('_conv', '') model_cfg = dict(model_cfgs[cfg_variant], **kwargs) model = build_model_with_cfg( LevitDistilled if distilled else Levit, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **model_cfg, ) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.linear', 'classifier': ('head.linear', 'head_dist.linear'), **kwargs } default_cfgs = generate_default_cfgs({ # weights in nn.Linear mode 'levit_128s.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), 'levit_128.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), 'levit_192.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), 'levit_256.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), 'levit_384.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), # weights in nn.Conv2d mode 'levit_conv_128s.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_conv_128.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_conv_192.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_conv_256.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_conv_384.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_384_s8.untrained': _cfg(classifier='head.linear'), 'levit_512_s8.untrained': _cfg(classifier='head.linear'), 'levit_512.untrained': _cfg(classifier='head.linear'), 'levit_256d.untrained': _cfg(classifier='head.linear'), 'levit_512d.untrained': _cfg(classifier='head.linear'), 'levit_conv_384_s8.untrained': _cfg(classifier='head.linear'), 'levit_conv_512_s8.untrained': _cfg(classifier='head.linear'), 'levit_conv_512.untrained': _cfg(classifier='head.linear'), 'levit_conv_256d.untrained': _cfg(classifier='head.linear'), 'levit_conv_512d.untrained': _cfg(classifier='head.linear'), }) @register_model def levit_128s(pretrained=False, **kwargs) -> Levit: return create_levit('levit_128s', pretrained=pretrained, **kwargs) @register_model def levit_128(pretrained=False, **kwargs) -> Levit: return create_levit('levit_128', pretrained=pretrained, **kwargs) @register_model def levit_192(pretrained=False, **kwargs) -> Levit: return create_levit('levit_192', pretrained=pretrained, **kwargs) @register_model def levit_256(pretrained=False, **kwargs) -> Levit: return create_levit('levit_256', pretrained=pretrained, **kwargs) @register_model def levit_384(pretrained=False, **kwargs) -> Levit: return create_levit('levit_384', pretrained=pretrained, **kwargs) @register_model def levit_384_s8(pretrained=False, **kwargs) -> Levit: return create_levit('levit_384_s8', pretrained=pretrained, **kwargs) @register_model def levit_512_s8(pretrained=False, **kwargs) -> Levit: return create_levit('levit_512_s8', pretrained=pretrained, distilled=False, **kwargs) @register_model def levit_512(pretrained=False, **kwargs) -> Levit: return create_levit('levit_512', pretrained=pretrained, distilled=False, **kwargs) @register_model def levit_256d(pretrained=False, **kwargs) -> Levit: return create_levit('levit_256d', pretrained=pretrained, distilled=False, **kwargs) @register_model def levit_512d(pretrained=False, **kwargs) -> Levit: return create_levit('levit_512d', pretrained=pretrained, distilled=False, **kwargs) @register_model def levit_conv_128s(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_128s', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_128(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_128', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_192(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_192', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_256(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_256', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_384(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_384', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_384_s8(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_384_s8', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_512_s8(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_512_s8', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) @register_model def levit_conv_512(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_512', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) @register_model def levit_conv_256d(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_256d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) @register_model def levit_conv_512d(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_512d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)
pytorch-image-models/timm/models/levit.py/0
{ "file_path": "pytorch-image-models/timm/models/levit.py", "repo_id": "pytorch-image-models", "token_count": 15973 }
213
""" An implementation of RepGhostNet Model as defined in: RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization. https://arxiv.org/abs/2211.06088 Original implementation: https://github.com/ChengpengChen/RepGhost """ import copy from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SelectAdaptivePool2d, Linear, make_divisible from ._builder import build_model_with_cfg from ._efficientnet_blocks import SqueezeExcite, ConvBnAct from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['RepGhostNet'] _SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) class RepGhostModule(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=1, dw_size=3, stride=1, relu=True, reparam=True, ): super(RepGhostModule, self).__init__() self.out_chs = out_chs init_chs = out_chs new_chs = out_chs self.primary_conv = nn.Sequential( nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), nn.ReLU(inplace=True) if relu else nn.Identity(), ) fusion_conv = [] fusion_bn = [] if reparam: fusion_conv.append(nn.Identity()) fusion_bn.append(nn.BatchNorm2d(init_chs)) self.fusion_conv = nn.Sequential(*fusion_conv) self.fusion_bn = nn.Sequential(*fusion_bn) self.cheap_operation = nn.Sequential( nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), # nn.ReLU(inplace=True) if relu else nn.Identity(), ) self.relu = nn.ReLU(inplace=False) if relu else nn.Identity() def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) for conv, bn in zip(self.fusion_conv, self.fusion_bn): x2 = x2 + bn(conv(x1)) return self.relu(x2) def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.cheap_operation[0], self.cheap_operation[1]) for conv, bn in zip(self.fusion_conv, self.fusion_bn): kernel, bias = self._fuse_bn_tensor(conv, bn, kernel3x3.shape[0], kernel3x3.device) kernel3x3 += self._pad_1x1_to_3x3_tensor(kernel) bias3x3 += bias return kernel3x3, bias3x3 @staticmethod def _pad_1x1_to_3x3_tensor(kernel1x1): if kernel1x1 is None: return 0 else: return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) @staticmethod def _fuse_bn_tensor(conv, bn, in_channels=None, device=None): in_channels = in_channels if in_channels else bn.running_mean.shape[0] device = device if device else bn.weight.device if isinstance(conv, nn.Conv2d): kernel = conv.weight assert conv.bias is None else: assert isinstance(conv, nn.Identity) kernel = torch.ones(in_channels, 1, 1, 1, device=device) if isinstance(bn, nn.BatchNorm2d): running_mean = bn.running_mean running_var = bn.running_var gamma = bn.weight beta = bn.bias eps = bn.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std assert isinstance(bn, nn.Identity) return kernel, torch.zeros(in_channels).to(kernel.device) def switch_to_deploy(self): if len(self.fusion_conv) == 0 and len(self.fusion_bn) == 0: return kernel, bias = self.get_equivalent_kernel_bias() self.cheap_operation = nn.Conv2d( in_channels=self.cheap_operation[0].in_channels, out_channels=self.cheap_operation[0].out_channels, kernel_size=self.cheap_operation[0].kernel_size, padding=self.cheap_operation[0].padding, dilation=self.cheap_operation[0].dilation, groups=self.cheap_operation[0].groups, bias=True) self.cheap_operation.weight.data = kernel self.cheap_operation.bias.data = bias self.__delattr__('fusion_conv') self.__delattr__('fusion_bn') self.fusion_conv = [] self.fusion_bn = [] def reparameterize(self): self.switch_to_deploy() class RepGhostBottleneck(nn.Module): """ RepGhost bottleneck w/ optional SE""" def __init__( self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0., reparam=True, ): super(RepGhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion self.ghost1 = RepGhostModule(in_chs, mid_chs, relu=True, reparam=reparam) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) else: self.conv_dw = None self.bn_dw = None # Squeeze-and-excitation self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None # Point-wise linear projection self.ghost2 = RepGhostModule(mid_chs, out_chs, relu=False, reparam=reparam) # shortcut if in_chs == out_chs and self.stride == 1: self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): shortcut = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.conv_dw is not None: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(shortcut) return x class RepGhostNet(nn.Module): def __init__( self, cfgs, num_classes=1000, width=1.0, in_chans=3, output_stride=32, global_pool='avg', drop_rate=0.2, reparam=True, ): super(RepGhostNet, self).__init__() # setting of inverted residual blocks assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' self.cfgs = cfgs self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] # building first layer stem_chs = make_divisible(16 * width, 4) self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) self.bn1 = nn.BatchNorm2d(stem_chs) self.act1 = nn.ReLU(inplace=True) prev_chs = stem_chs # building inverted residual blocks stages = nn.ModuleList([]) block = RepGhostBottleneck stage_idx = 0 net_stride = 2 for cfg in self.cfgs: layers = [] s = 1 for k, exp_size, c, se_ratio, s in cfg: out_chs = make_divisible(c * width, 4) mid_chs = make_divisible(exp_size * width, 4) layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, reparam=reparam)) prev_chs = out_chs if s > 1: net_stride *= 2 self.feature_info.append(dict( num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) stages.append(nn.Sequential(*layers)) stage_idx += 1 out_chs = make_divisible(exp_size * width * 2, 4) stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) self.pool_dim = prev_chs = out_chs self.blocks = nn.Sequential(*stages) # building last several layers self.num_features = out_chs = 1280 self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) self.act2 = nn.ReLU(inplace=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^conv_stem|bn1', blocks=[ (r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), (r'conv_head', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes # cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=True) else: x = self.blocks(x) return x def forward_head(self, x): x = self.global_pool(x) x = self.conv_head(x) x = self.act2(x) x = self.flatten(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) x = self.classifier(x) return x def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def convert_to_deploy(self): repghost_model_convert(self, do_copy=False) def repghost_model_convert(model: torch.nn.Module, save_path=None, do_copy=True): """ taken from from https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py """ if do_copy: model = copy.deepcopy(model) for module in model.modules(): if hasattr(module, 'switch_to_deploy'): module.switch_to_deploy() if save_path is not None: torch.save(model.state_dict(), save_path) return model def _create_repghostnet(variant, width=1.0, pretrained=False, **kwargs): """ Constructs a RepGhostNet model """ cfgs = [ # k, t, c, SE, s # stage1 [[3, 8, 16, 0, 1]], # stage2 [[3, 24, 24, 0, 2]], [[3, 36, 24, 0, 1]], # stage3 [[5, 36, 40, 0.25, 2]], [[5, 60, 40, 0.25, 1]], # stage4 [[3, 120, 80, 0, 2]], [[3, 100, 80, 0, 1], [3, 120, 80, 0, 1], [3, 120, 80, 0, 1], [3, 240, 112, 0.25, 1], [3, 336, 112, 0.25, 1] ], # stage5 [[5, 336, 160, 0.25, 2]], [[5, 480, 160, 0, 1], [5, 480, 160, 0.25, 1], [5, 480, 160, 0, 1], [5, 480, 160, 0.25, 1] ] ] model_kwargs = dict( cfgs=cfgs, width=width, **kwargs, ) return build_model_with_cfg( RepGhostNet, variant, pretrained, feature_cfg=dict(flatten_sequential=True), **model_kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = generate_default_cfgs({ 'repghostnet_050.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_5x_43M_66.95.pth.tar' ), 'repghostnet_058.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_58x_60M_68.94.pth.tar' ), 'repghostnet_080.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_8x_96M_72.24.pth.tar' ), 'repghostnet_100.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_0x_142M_74.22.pth.tar' ), 'repghostnet_111.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_11x_170M_75.07.pth.tar' ), 'repghostnet_130.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_3x_231M_76.37.pth.tar' ), 'repghostnet_150.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_5x_301M_77.45.pth.tar' ), 'repghostnet_200.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_2_0x_516M_78.81.pth.tar' ), }) @register_model def repghostnet_050(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-0.5x """ model = _create_repghostnet('repghostnet_050', width=0.5, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_058(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-0.58x """ model = _create_repghostnet('repghostnet_058', width=0.58, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_080(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-0.8x """ model = _create_repghostnet('repghostnet_080', width=0.8, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_100(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.0x """ model = _create_repghostnet('repghostnet_100', width=1.0, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_111(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.11x """ model = _create_repghostnet('repghostnet_111', width=1.11, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_130(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.3x """ model = _create_repghostnet('repghostnet_130', width=1.3, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_150(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.5x """ model = _create_repghostnet('repghostnet_150', width=1.5, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_200(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-2.0x """ model = _create_repghostnet('repghostnet_200', width=2.0, pretrained=pretrained, **kwargs) return model
pytorch-image-models/timm/models/repghost.py/0
{ "file_path": "pytorch-image-models/timm/models/repghost.py", "repo_id": "pytorch-image-models", "token_count": 8148 }
214
""" TResNet: High Performance GPU-Dedicated Architecture https://arxiv.org/pdf/2003.13630.pdf Original model: https://github.com/mrT23/TResNet """ from collections import OrderedDict from functools import partial import torch import torch.nn as nn from timm.layers import SpaceToDepth, BlurPool2d, ClassifierHead, SEModule,\ ConvNormActAa, ConvNormAct, DropPath from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs, register_model_deprecations __all__ = ['TResNet'] # model_registry will add each entrypoint fn to this class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, use_se=True, aa_layer=None, drop_path_rate=0. ): super(BasicBlock, self).__init__() self.downsample = downsample self.stride = stride act_layer = partial(nn.LeakyReLU, negative_slope=1e-3) if stride == 1: self.conv1 = ConvNormAct(inplanes, planes, kernel_size=3, stride=1, act_layer=act_layer) else: self.conv1 = ConvNormActAa( inplanes, planes, kernel_size=3, stride=2, act_layer=act_layer, aa_layer=aa_layer) self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=1, apply_act=False, act_layer=None) self.act = nn.ReLU(inplace=True) rd_chs = max(planes * self.expansion // 4, 64) self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() def forward(self, x): if self.downsample is not None: shortcut = self.downsample(x) else: shortcut = x out = self.conv1(x) out = self.conv2(out) if self.se is not None: out = self.se(out) out = self.drop_path(out) + shortcut out = self.act(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__( self, inplanes, planes, stride=1, downsample=None, use_se=True, act_layer=None, aa_layer=None, drop_path_rate=0., ): super(Bottleneck, self).__init__() self.downsample = downsample self.stride = stride act_layer = act_layer or partial(nn.LeakyReLU, negative_slope=1e-3) self.conv1 = ConvNormAct( inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer) if stride == 1: self.conv2 = ConvNormAct( planes, planes, kernel_size=3, stride=1, act_layer=act_layer) else: self.conv2 = ConvNormActAa( planes, planes, kernel_size=3, stride=2, act_layer=act_layer, aa_layer=aa_layer) reduction_chs = max(planes * self.expansion // 8, 64) self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None self.conv3 = ConvNormAct( planes, planes * self.expansion, kernel_size=1, stride=1, apply_act=False, act_layer=None) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() self.act = nn.ReLU(inplace=True) def forward(self, x): if self.downsample is not None: shortcut = self.downsample(x) else: shortcut = x out = self.conv1(x) out = self.conv2(out) if self.se is not None: out = self.se(out) out = self.conv3(out) out = self.drop_path(out) + shortcut out = self.act(out) return out class TResNet(nn.Module): def __init__( self, layers, in_chans=3, num_classes=1000, width_factor=1.0, v2=False, global_pool='fast', drop_rate=0., drop_path_rate=0., ): self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False super(TResNet, self).__init__() aa_layer = BlurPool2d act_layer = nn.LeakyReLU # TResnet stages self.inplanes = int(64 * width_factor) self.planes = int(64 * width_factor) if v2: self.inplanes = self.inplanes // 8 * 8 self.planes = self.planes // 8 * 8 dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] conv1 = ConvNormAct(in_chans * 16, self.planes, stride=1, kernel_size=3, act_layer=act_layer) layer1 = self._make_layer( Bottleneck if v2 else BasicBlock, self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[0]) layer2 = self._make_layer( Bottleneck if v2 else BasicBlock, self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[1]) layer3 = self._make_layer( Bottleneck, self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[2]) layer4 = self._make_layer( Bottleneck, self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer, drop_path_rate=dpr[3]) # body self.body = nn.Sequential(OrderedDict([ ('s2d', SpaceToDepth()), ('conv1', conv1), ('layer1', layer1), ('layer2', layer2), ('layer3', layer3), ('layer4', layer4), ])) self.feature_info = [ dict(num_chs=self.planes, reduction=2, module=''), # Not with S2D? dict(num_chs=self.planes * (Bottleneck.expansion if v2 else 1), reduction=4, module='body.layer1'), dict(num_chs=self.planes * 2 * (Bottleneck.expansion if v2 else 1), reduction=8, module='body.layer2'), dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'), dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'), ] # head self.num_features = (self.planes * 8) * Bottleneck.expansion self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) # model initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') if isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) # residual connections special initialization for m in self.modules(): if isinstance(m, BasicBlock): nn.init.zeros_(m.conv2.bn.weight) if isinstance(m, Bottleneck): nn.init.zeros_(m.conv3.bn.weight) def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None, drop_path_rate=0.): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: layers = [] if stride == 2: # avg pooling before 1x1 conv layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) layers += [ConvNormAct( self.inplanes, planes * block.expansion, kernel_size=1, stride=1, apply_act=False, act_layer=None)] downsample = nn.Sequential(*layers) layers = [] for i in range(blocks): layers.append(block( self.inplanes, planes, stride=stride if i == 0 else 1, downsample=downsample if i == 0 else None, use_se=use_se, aa_layer=aa_layer, drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate, )) self.inplanes = planes * block.expansion return nn.Sequential(*layers) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict(stem=r'^body\.conv1', blocks=r'^body\.layer(\d+)' if coarse else r'^body\.layer(\d+)\.(\d+)') return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool=None): self.head.reset(num_classes, pool_type=global_pool) def forward_features(self, x): if self.grad_checkpointing and not torch.jit.is_scripting(): x = self.body.s2d(x) x = self.body.conv1(x) x = checkpoint_seq([ self.body.layer1, self.body.layer2, self.body.layer3, self.body.layer4], x, flatten=True) else: x = self.body(x) return x def forward_head(self, x, pre_logits: bool = False): return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): if 'body.conv1.conv.weight' in state_dict: return state_dict import re state_dict = state_dict.get('model', state_dict) state_dict = state_dict.get('state_dict', state_dict) out_dict = {} for k, v in state_dict.items(): k = re.sub(r'conv(\d+)\.0.0', lambda x: f'conv{int(x.group(1))}.conv', k) k = re.sub(r'conv(\d+)\.0.1', lambda x: f'conv{int(x.group(1))}.bn', k) k = re.sub(r'conv(\d+)\.0', lambda x: f'conv{int(x.group(1))}.conv', k) k = re.sub(r'conv(\d+)\.1', lambda x: f'conv{int(x.group(1))}.bn', k) k = re.sub(r'downsample\.(\d+)\.0', lambda x: f'downsample.{int(x.group(1))}.conv', k) k = re.sub(r'downsample\.(\d+)\.1', lambda x: f'downsample.{int(x.group(1))}.bn', k) if k.endswith('bn.weight'): # convert weight from inplace_abn to batchnorm v = v.abs().add(1e-5) out_dict[k] = v return out_dict def _create_tresnet(variant, pretrained=False, **kwargs): return build_model_with_cfg( TResNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': (0., 0., 0.), 'std': (1., 1., 1.), 'first_conv': 'body.conv1.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ 'tresnet_m.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_m.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221), 'tresnet_m.miil_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_l.miil_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_xl.miil_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_m.miil_in1k_448': _cfg( input_size=(3, 448, 448), pool_size=(14, 14), hf_hub_id='timm/'), 'tresnet_l.miil_in1k_448': _cfg( input_size=(3, 448, 448), pool_size=(14, 14), hf_hub_id='timm/'), 'tresnet_xl.miil_in1k_448': _cfg( input_size=(3, 448, 448), pool_size=(14, 14), hf_hub_id='timm/'), 'tresnet_v2_l.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_v2_l.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221), }) @register_model def tresnet_m(pretrained=False, **kwargs) -> TResNet: model_args = dict(layers=[3, 4, 11, 3]) return _create_tresnet('tresnet_m', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def tresnet_l(pretrained=False, **kwargs) -> TResNet: model_args = dict(layers=[4, 5, 18, 3], width_factor=1.2) return _create_tresnet('tresnet_l', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def tresnet_xl(pretrained=False, **kwargs) -> TResNet: model_args = dict(layers=[4, 5, 24, 3], width_factor=1.3) return _create_tresnet('tresnet_xl', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def tresnet_v2_l(pretrained=False, **kwargs) -> TResNet: model_args = dict(layers=[3, 4, 23, 3], width_factor=1.0, v2=True) return _create_tresnet('tresnet_v2_l', pretrained=pretrained, **dict(model_args, **kwargs)) register_model_deprecations(__name__, { 'tresnet_m_miil_in21k': 'tresnet_m.miil_in21k', 'tresnet_m_448': 'tresnet_m.miil_in1k_448', 'tresnet_l_448': 'tresnet_l.miil_in1k_448', 'tresnet_xl_448': 'tresnet_xl.miil_in1k_448', })
pytorch-image-models/timm/models/tresnet.py/0
{ "file_path": "pytorch-image-models/timm/models/tresnet.py", "repo_id": "pytorch-image-models", "token_count": 6338 }
215
""" AdaHessian Optimizer Lifted from https://github.com/davda54/ada-hessian/blob/master/ada_hessian.py Originally licensed MIT, Copyright 2020, David Samuel """ import torch class Adahessian(torch.optim.Optimizer): """ Implements the AdaHessian algorithm from "ADAHESSIAN: An Adaptive Second OrderOptimizer for Machine Learning" Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 0.1) betas ((float, float), optional): coefficients used for computing running averages of gradient and the squared hessian trace (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0.0) hessian_power (float, optional): exponent of the hessian trace (default: 1.0) update_each (int, optional): compute the hessian trace approximation only after *this* number of steps (to save time) (default: 1) n_samples (int, optional): how many times to sample `z` for the approximation of the hessian trace (default: 1) """ def __init__(self, params, lr=0.1, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, hessian_power=1.0, update_each=1, n_samples=1, avg_conv_kernel=False): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not 0.0 <= hessian_power <= 1.0: raise ValueError(f"Invalid Hessian power value: {hessian_power}") self.n_samples = n_samples self.update_each = update_each self.avg_conv_kernel = avg_conv_kernel # use a separate generator that deterministically generates the same `z`s across all GPUs in case of distributed training self.seed = 2147483647 self.generator = torch.Generator().manual_seed(self.seed) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, hessian_power=hessian_power) super(Adahessian, self).__init__(params, defaults) for p in self.get_params(): p.hess = 0.0 self.state[p]["hessian step"] = 0 @property def is_second_order(self): return True def get_params(self): """ Gets all parameters in all param_groups with gradients """ return (p for group in self.param_groups for p in group['params'] if p.requires_grad) def zero_hessian(self): """ Zeros out the accumalated hessian traces. """ for p in self.get_params(): if not isinstance(p.hess, float) and self.state[p]["hessian step"] % self.update_each == 0: p.hess.zero_() @torch.no_grad() def set_hessian(self): """ Computes the Hutchinson approximation of the hessian trace and accumulates it for each trainable parameter. """ params = [] for p in filter(lambda p: p.grad is not None, self.get_params()): if self.state[p]["hessian step"] % self.update_each == 0: # compute the trace only each `update_each` step params.append(p) self.state[p]["hessian step"] += 1 if len(params) == 0: return if self.generator.device != params[0].device: # hackish way of casting the generator to the right device self.generator = torch.Generator(params[0].device).manual_seed(self.seed) grads = [p.grad for p in params] for i in range(self.n_samples): # Rademacher distribution {-1.0, 1.0} zs = [torch.randint(0, 2, p.size(), generator=self.generator, device=p.device) * 2.0 - 1.0 for p in params] h_zs = torch.autograd.grad( grads, params, grad_outputs=zs, only_inputs=True, retain_graph=i < self.n_samples - 1) for h_z, z, p in zip(h_zs, zs, params): p.hess += h_z * z / self.n_samples # approximate the expected values of z*(H@z) @torch.no_grad() def step(self, closure=None): """ Performs a single optimization step. Arguments: closure (callable, optional) -- a closure that reevaluates the model and returns the loss (default: None) """ loss = None if closure is not None: loss = closure() self.zero_hessian() self.set_hessian() for group in self.param_groups: for p in group['params']: if p.grad is None or p.hess is None: continue if self.avg_conv_kernel and p.dim() == 4: p.hess = torch.abs(p.hess).mean(dim=[2, 3], keepdim=True).expand_as(p.hess).clone() # Perform correct stepweight decay as in AdamW p.mul_(1 - group['lr'] * group['weight_decay']) state = self.state[p] # State initialization if len(state) == 1: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of Hessian diagonal square values state['exp_hessian_diag_sq'] = torch.zeros_like(p) exp_avg, exp_hessian_diag_sq = state['exp_avg'], state['exp_hessian_diag_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(p.grad, alpha=1 - beta1) exp_hessian_diag_sq.mul_(beta2).addcmul_(p.hess, p.hess, value=1 - beta2) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] k = group['hessian_power'] denom = (exp_hessian_diag_sq / bias_correction2).pow_(k / 2).add_(group['eps']) # make update step_size = group['lr'] / bias_correction1 p.addcdiv_(exp_avg, denom, value=-step_size) return loss
pytorch-image-models/timm/optim/adahessian.py/0
{ "file_path": "pytorch-image-models/timm/optim/adahessian.py", "repo_id": "pytorch-image-models", "token_count": 2955 }
216
from functools import update_wrapper, wraps import torch from torch import Tensor from torch.optim.optimizer import Optimizer try: from torch.optim.optimizer import _use_grad_for_differentiable, _default_to_fused_or_foreach has_recent_pt = True except ImportError: has_recent_pt = False from typing import List, Optional __all__ = ['SGDW', 'sgdw'] class SGDW(Optimizer): def __init__( self, params, lr=1e-3, momentum=0, dampening=0, weight_decay=0, nesterov=False, *, maximize: bool = False, foreach: Optional[bool] = None, differentiable: bool = False, ): if lr < 0.0: raise ValueError(f"Invalid learning rate: {lr}") if momentum < 0.0: raise ValueError(f"Invalid momentum value: {momentum}") if weight_decay < 0.0: raise ValueError(f"Invalid weight_decay value: {weight_decay}") defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, maximize=maximize, foreach=foreach, differentiable=differentiable) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError("Nesterov momentum requires a momentum and zero dampening") super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) group.setdefault('maximize', False) group.setdefault('foreach', None) group.setdefault('differentiable', False) def _init_group(self, group, params_with_grad, d_p_list, momentum_buffer_list): has_sparse_grad = False for p in group['params']: if p.grad is not None: params_with_grad.append(p) d_p_list.append(p.grad) if p.grad.is_sparse: has_sparse_grad = True state = self.state[p] if 'momentum_buffer' not in state: momentum_buffer_list.append(None) else: momentum_buffer_list.append(state['momentum_buffer']) return has_sparse_grad # FIXME figure out how to make _use_grad_for_differentiable interchangeable with no_grad decorator # without args, for backwards compatibility with old pytorch @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (Callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] d_p_list = [] momentum_buffer_list = [] has_sparse_grad = self._init_group(group, params_with_grad, d_p_list, momentum_buffer_list) sgdw( params_with_grad, d_p_list, momentum_buffer_list, weight_decay=group['weight_decay'], momentum=group['momentum'], lr=group['lr'], dampening=group['dampening'], nesterov=group['nesterov'], maximize=group['maximize'], has_sparse_grad=has_sparse_grad, foreach=group['foreach'], ) # update momentum_buffers in state for p, momentum_buffer in zip(params_with_grad, momentum_buffer_list): state = self.state[p] state['momentum_buffer'] = momentum_buffer return loss def sgdw( params: List[Tensor], d_p_list: List[Tensor], momentum_buffer_list: List[Optional[Tensor]], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim has_sparse_grad: bool = None, foreach: Optional[bool] = None, *, weight_decay: float, momentum: float, lr: float, dampening: float, nesterov: bool, maximize: bool ): r"""Functional API that performs SGD algorithm computation. See :class:`~torch.optim.SGD` for details. """ if has_recent_pt and hasattr(Optimizer, '_group_tensors_by_device_and_dtype'): if foreach is None: # why must we be explicit about an if statement for torch.jit.is_scripting here? # because JIT can't handle Optionals nor fancy conditionals when scripting if not torch.jit.is_scripting(): _, foreach = _default_to_fused_or_foreach(params, differentiable=False, use_fused=False) else: foreach = False if foreach and torch.jit.is_scripting(): raise RuntimeError('torch.jit.script not supported with foreach optimizers') else: foreach = False # disabling altogether for older pytorch, as using _group_tensors_by_device_and_dtype if foreach and not torch.jit.is_scripting(): func = _multi_tensor_sgdw else: func = _single_tensor_sgdw func( params, d_p_list, momentum_buffer_list, weight_decay=weight_decay, momentum=momentum, lr=lr, dampening=dampening, nesterov=nesterov, has_sparse_grad=has_sparse_grad, maximize=maximize, ) def _single_tensor_sgdw( params: List[Tensor], d_p_list: List[Tensor], momentum_buffer_list: List[Optional[Tensor]], *, weight_decay: float, momentum: float, lr: float, dampening: float, nesterov: bool, maximize: bool, has_sparse_grad: bool ): for i, param in enumerate(params): d_p = d_p_list[i] if not maximize else -d_p_list[i] param.mul_(1. - lr * weight_decay) if momentum != 0: buf = momentum_buffer_list[i] if buf is None: buf = torch.clone(d_p).detach() momentum_buffer_list[i] = buf else: buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(buf, alpha=momentum) else: d_p = buf param.add_(d_p, alpha=-lr) def _multi_tensor_sgdw( params: List[Tensor], grads: List[Tensor], momentum_buffer_list: List[Optional[Tensor]], *, weight_decay: float, momentum: float, lr: float, dampening: float, nesterov: bool, maximize: bool, has_sparse_grad: bool ): if len(params) == 0: return grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( [params, grads, momentum_buffer_list], with_indices=True) for ((device_params, device_grads, device_momentum_buffer_list), indices) in grouped_tensors.values(): device_has_sparse_grad = has_sparse_grad and any(grad.is_sparse for grad in device_grads) if maximize: device_grads = torch._foreach_neg(device_grads) torch._foreach_mul_(params, 1. - lr * weight_decay) if momentum != 0: bufs = [] all_states_with_momentum_buffer = True for i in range(len(device_momentum_buffer_list)): if device_momentum_buffer_list[i] is None: all_states_with_momentum_buffer = False break else: bufs.append(device_momentum_buffer_list[i]) if all_states_with_momentum_buffer: torch._foreach_mul_(bufs, momentum) torch._foreach_add_(bufs, device_grads, alpha=1 - dampening) else: bufs = [] for i in range(len(device_momentum_buffer_list)): if device_momentum_buffer_list[i] is None: buf = device_momentum_buffer_list[i] = momentum_buffer_list[indices[i]] = \ torch.clone(device_grads[i]).detach() else: buf = device_momentum_buffer_list[i] buf.mul_(momentum).add_(device_grads[i], alpha=1 - dampening) bufs.append(buf) if nesterov: torch._foreach_add_(device_grads, bufs, alpha=momentum) else: device_grads = bufs if not device_has_sparse_grad: torch._foreach_add_(device_params, device_grads, alpha=-lr) else: # foreach APIs don't support sparse for i in range(len(device_params)): device_params[i].add_(device_grads[i], alpha=-lr)
pytorch-image-models/timm/optim/sgdw.py/0
{ "file_path": "pytorch-image-models/timm/optim/sgdw.py", "repo_id": "pytorch-image-models", "token_count": 4501 }
217
""" Distributed training/validation utils Hacked together by / Copyright 2020 Ross Wightman """ import logging import os from typing import Optional import torch from torch import distributed as dist from .model import unwrap_model _logger = logging.getLogger(__name__) def reduce_tensor(tensor, n): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= n return rt def distribute_bn(model, world_size, reduce=False): # ensure every node has the same running bn stats for bn_name, bn_buf in unwrap_model(model).named_buffers(recurse=True): if ('running_mean' in bn_name) or ('running_var' in bn_name): if reduce: # average bn stats across whole group torch.distributed.all_reduce(bn_buf, op=dist.ReduceOp.SUM) bn_buf /= float(world_size) else: # broadcast bn stats from rank 0 to whole group torch.distributed.broadcast(bn_buf, 0) def is_global_primary(args): return args.rank == 0 def is_local_primary(args): return args.local_rank == 0 def is_primary(args, local=False): return is_local_primary(args) if local else is_global_primary(args) def is_distributed_env(): if 'WORLD_SIZE' in os.environ: return int(os.environ['WORLD_SIZE']) > 1 if 'SLURM_NTASKS' in os.environ: return int(os.environ['SLURM_NTASKS']) > 1 return False def world_info_from_env(): local_rank = 0 for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'): if v in os.environ: local_rank = int(os.environ[v]) break global_rank = 0 for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'): if v in os.environ: global_rank = int(os.environ[v]) break world_size = 1 for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'): if v in os.environ: world_size = int(os.environ[v]) break return local_rank, global_rank, world_size def init_distributed_device(args): # Distributed training = training on more than one GPU. # Works in both single and multi-node scenarios. args.distributed = False args.world_size = 1 args.rank = 0 # global rank args.local_rank = 0 result = init_distributed_device_so( device=getattr(args, 'device', 'cuda'), dist_backend=getattr(args, 'dist_backend', None), dist_url=getattr(args, 'dist_url', None), ) args.device = result['device'] args.world_size = result['world_size'] args.rank = result['global_rank'] args.local_rank = result['local_rank'] args.distributed = result['distributed'] device = torch.device(args.device) return device def init_distributed_device_so( device: str = 'cuda', dist_backend: Optional[str] = None, dist_url: Optional[str] = None, ): # Distributed training = training on more than one GPU. # Works in both single and multi-node scenarios. distributed = False world_size = 1 global_rank = 0 local_rank = 0 if dist_backend is None: # FIXME sane defaults for other device backends? dist_backend = 'nccl' if 'cuda' in device else 'gloo' dist_url = dist_url or 'env://' # TBD, support horovod? # if args.horovod: # import horovod.torch as hvd # assert hvd is not None, "Horovod is not installed" # hvd.init() # args.local_rank = int(hvd.local_rank()) # args.rank = hvd.rank() # args.world_size = hvd.size() # args.distributed = True # os.environ['LOCAL_RANK'] = str(args.local_rank) # os.environ['RANK'] = str(args.rank) # os.environ['WORLD_SIZE'] = str(args.world_size) if is_distributed_env(): if 'SLURM_PROCID' in os.environ: # DDP via SLURM local_rank, global_rank, world_size = world_info_from_env() # SLURM var -> torch.distributed vars in case needed os.environ['LOCAL_RANK'] = str(local_rank) os.environ['RANK'] = str(global_rank) os.environ['WORLD_SIZE'] = str(world_size) torch.distributed.init_process_group( backend=dist_backend, init_method=dist_url, world_size=world_size, rank=global_rank, ) else: # DDP via torchrun, torch.distributed.launch local_rank, _, _ = world_info_from_env() torch.distributed.init_process_group( backend=dist_backend, init_method=dist_url, ) world_size = torch.distributed.get_world_size() global_rank = torch.distributed.get_rank() distributed = True if 'cuda' in device: assert torch.cuda.is_available(), f'CUDA is not available but {device} was specified.' if distributed and device != 'cpu': device, *device_idx = device.split(':', maxsplit=1) # Ignore manually specified device index in distributed mode and # override with resolved local rank, fewer headaches in most setups. if device_idx: _logger.warning(f'device index {device_idx[0]} removed from specified ({device}).') device = f'{device}:{local_rank}' if device.startswith('cuda:'): torch.cuda.set_device(device) return dict( device=device, global_rank=global_rank, local_rank=local_rank, world_size=world_size, distributed=distributed, )
pytorch-image-models/timm/utils/distributed.py/0
{ "file_path": "pytorch-image-models/timm/utils/distributed.py", "repo_id": "pytorch-image-models", "token_count": 2521 }
218
import pytest from text_generation import Client, AsyncClient from text_generation.errors import NotFoundError, ValidationError from text_generation.types import FinishReason, InputToken def test_generate(flan_t5_xxl_url, hf_headers): client = Client(flan_t5_xxl_url, hf_headers) response = client.generate("test", max_new_tokens=1, decoder_input_details=True) assert response.generated_text == "" assert response.details.finish_reason == FinishReason.Length assert response.details.generated_tokens == 1 assert response.details.seed is None assert len(response.details.prefill) == 1 assert response.details.prefill[0] == InputToken(id=0, text="<pad>", logprob=None) assert len(response.details.tokens) == 1 assert response.details.tokens[0].id == 3 assert response.details.tokens[0].text == " " assert not response.details.tokens[0].special def test_generate_best_of(flan_t5_xxl_url, hf_headers): client = Client(flan_t5_xxl_url, hf_headers) response = client.generate( "test", max_new_tokens=1, best_of=2, do_sample=True, decoder_input_details=True ) assert response.details.seed is not None assert response.details.best_of_sequences is not None assert len(response.details.best_of_sequences) == 1 assert response.details.best_of_sequences[0].seed is not None def test_generate_not_found(fake_url, hf_headers): client = Client(fake_url, hf_headers) with pytest.raises(NotFoundError): client.generate("test") def test_generate_validation_error(flan_t5_xxl_url, hf_headers): client = Client(flan_t5_xxl_url, hf_headers) with pytest.raises(ValidationError): client.generate("test", max_new_tokens=10_000) def test_generate_stream(flan_t5_xxl_url, hf_headers): client = Client(flan_t5_xxl_url, hf_headers) responses = [ response for response in client.generate_stream("test", max_new_tokens=1) ] assert len(responses) == 1 response = responses[0] assert response.generated_text == "" assert response.details.finish_reason == FinishReason.Length assert response.details.generated_tokens == 1 assert response.details.seed is None def test_generate_stream_not_found(fake_url, hf_headers): client = Client(fake_url, hf_headers) with pytest.raises(NotFoundError): list(client.generate_stream("test")) def test_generate_stream_validation_error(flan_t5_xxl_url, hf_headers): client = Client(flan_t5_xxl_url, hf_headers) with pytest.raises(ValidationError): list(client.generate_stream("test", max_new_tokens=10_000)) @pytest.mark.asyncio async def test_generate_async(flan_t5_xxl_url, hf_headers): client = AsyncClient(flan_t5_xxl_url, hf_headers) response = await client.generate( "test", max_new_tokens=1, decoder_input_details=True ) assert response.generated_text == "" assert response.details.finish_reason == FinishReason.Length assert response.details.generated_tokens == 1 assert response.details.seed is None assert len(response.details.prefill) == 1 assert response.details.prefill[0] == InputToken(id=0, text="<pad>", logprob=None) assert len(response.details.tokens) == 1 assert response.details.tokens[0].id == 3 assert response.details.tokens[0].text == " " assert not response.details.tokens[0].special @pytest.mark.asyncio async def test_generate_async_best_of(flan_t5_xxl_url, hf_headers): client = AsyncClient(flan_t5_xxl_url, hf_headers) response = await client.generate( "test", max_new_tokens=1, best_of=2, do_sample=True, decoder_input_details=True ) assert response.details.seed is not None assert response.details.best_of_sequences is not None assert len(response.details.best_of_sequences) == 1 assert response.details.best_of_sequences[0].seed is not None @pytest.mark.asyncio async def test_generate_async_not_found(fake_url, hf_headers): client = AsyncClient(fake_url, hf_headers) with pytest.raises(NotFoundError): await client.generate("test") @pytest.mark.asyncio async def test_generate_async_validation_error(flan_t5_xxl_url, hf_headers): client = AsyncClient(flan_t5_xxl_url, hf_headers) with pytest.raises(ValidationError): await client.generate("test", max_new_tokens=10_000) @pytest.mark.asyncio async def test_generate_stream_async(flan_t5_xxl_url, hf_headers): client = AsyncClient(flan_t5_xxl_url, hf_headers) responses = [ response async for response in client.generate_stream("test", max_new_tokens=1) ] assert len(responses) == 1 response = responses[0] assert response.generated_text == "" assert response.details.finish_reason == FinishReason.Length assert response.details.generated_tokens == 1 assert response.details.seed is None @pytest.mark.asyncio async def test_generate_stream_async_not_found(fake_url, hf_headers): client = AsyncClient(fake_url, hf_headers) with pytest.raises(NotFoundError): async for _ in client.generate_stream("test"): pass @pytest.mark.asyncio async def test_generate_stream_async_validation_error(flan_t5_xxl_url, hf_headers): client = AsyncClient(flan_t5_xxl_url, hf_headers) with pytest.raises(ValidationError): async for _ in client.generate_stream("test", max_new_tokens=10_000): pass
text-generation-inference/clients/python/tests/test_client.py/0
{ "file_path": "text-generation-inference/clients/python/tests/test_client.py", "repo_id": "text-generation-inference", "token_count": 2116 }
219
# Preparing the Model Text Generation Inference improves the model in several aspects. ## Quantization TGI supports [bits-and-bytes](https://github.com/TimDettmers/bitsandbytes#bitsandbytes), [GPT-Q](https://arxiv.org/abs/2210.17323) and [AWQ](https://arxiv.org/abs/2306.00978) quantization. To speed up inference with quantization, simply set `quantize` flag to `bitsandbytes`, `gptq` or `awq` depending on the quantization technique you wish to use. When using GPT-Q quantization, you need to point to one of the models [here](https://huggingface.co/models?search=gptq) when using AWQ quantization, you need to point to one of the models [here](https://huggingface.co/models?search=awq). To get more information about quantization, please refer to [quantization guide](./../conceptual/quantization) ## RoPE Scaling RoPE scaling can be used to increase the sequence length of the model during the inference time without necessarily fine-tuning it. To enable RoPE scaling, simply pass `--rope-scaling`, `--max-input-length` and `--rope-factors` flags when running through CLI. `--rope-scaling` can take the values `linear` or `dynamic`. If your model is not fine-tuned to a longer sequence length, use `dynamic`. `--rope-factor` is the ratio between the intended max sequence length and the model's original max sequence length. Make sure to pass `--max-input-length` to provide maximum input length for extension. <Tip> We recommend using `dynamic` RoPE scaling. </Tip> ## Safetensors [Safetensors](https://github.com/huggingface/safetensors) is a fast and safe persistence format for deep learning models, and is required for tensor parallelism. TGI supports `safetensors` model loading under the hood. By default, given a repository with `safetensors` and `pytorch` weights, TGI will always load `safetensors`. If there's no `pytorch` weights, TGI will convert the weights to `safetensors` format.
text-generation-inference/docs/source/basic_tutorials/preparing_model.md/0
{ "file_path": "text-generation-inference/docs/source/basic_tutorials/preparing_model.md", "repo_id": "text-generation-inference", "token_count": 548 }
220
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 17934, "logprob": null, "text": "Pour" }, { "id": 49833, "logprob": -10.5625, "text": " dég" }, { "id": 21543, "logprob": -0.14770508, "text": "uster" }, { "id": 447, "logprob": -1.9287109, "text": " un" }, { "id": 46341, "logprob": -15.4609375, "text": " ort" }, { "id": 35567, "logprob": -7.5585938, "text": "olan" }, { "id": 15, "logprob": -1.4003906, "text": "," }, { "id": 1669, "logprob": -1.5673828, "text": " il" }, { "id": 11580, "logprob": -0.94628906, "text": " faut" }, { "id": 3913, "logprob": -3.703125, "text": " tout" }, { "id": 39261, "logprob": -1.5732422, "text": " d'abord" } ], "seed": 0, "tokens": [ { "id": 578, "logprob": -1.6591797, "special": false, "text": " le" }, { "id": 5608, "logprob": -2.4492188, "special": false, "text": " faire" }, { "id": 159570, "logprob": -6.6835938, "special": false, "text": " réch" }, { "id": 810, "logprob": 0.0, "special": false, "text": "au" }, { "id": 12736, "logprob": 0.0, "special": false, "text": "ffer" }, { "id": 1742, "logprob": -2.5175781, "special": false, "text": " au" }, { "id": 6105, "logprob": -2.0078125, "special": false, "text": " bain" }, { "id": 88254, "logprob": -0.12695312, "special": false, "text": "-mar" }, { "id": 641, "logprob": 0.0, "special": false, "text": "ie" }, { "id": 2940, "logprob": -3.5175781, "special": false, "text": " avec" } ] }, "generated_text": " le faire réchauffer au bain-marie avec" }
text-generation-inference/integration-tests/models/__snapshots__/test_bloom_560m/test_bloom_560m.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_bloom_560m/test_bloom_560m.json", "repo_id": "text-generation-inference", "token_count": 1544 }
221
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 4321, "logprob": -13.90625, "text": "Test" }, { "id": 2009, "logprob": -12.328125, "text": "request" } ], "seed": null, "tokens": [ { "id": 13, "logprob": -2.0566406, "special": false, "text": "\n" }, { "id": 13, "logprob": -1.5253906, "special": false, "text": "\n" }, { "id": 29902, "logprob": -2.7578125, "special": false, "text": "I" }, { "id": 4966, "logprob": -1.9033203, "special": false, "text": " hope" }, { "id": 445, "logprob": -0.5019531, "special": false, "text": " this" }, { "id": 6911, "logprob": -0.21264648, "special": false, "text": " helps" }, { "id": 29991, "logprob": -0.5991211, "special": false, "text": "!" }, { "id": 2803, "logprob": -0.37475586, "special": false, "text": " Let" }, { "id": 592, "logprob": -0.018463135, "special": false, "text": " me" }, { "id": 1073, "logprob": -0.0008597374, "special": false, "text": " know" } ], "top_tokens": null }, "generated_text": "\n\nI hope this helps! Let me know" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_grammar_llama/test_flash_llama_grammar.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_grammar_llama/test_flash_llama_grammar.json", "repo_id": "text-generation-inference", "token_count": 1048 }
222
[ { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 3735, "logprob": -12.9140625, "text": "Test" }, { "id": 2159, "logprob": -10.7578125, "text": "request" } ], "seed": null, "tokens": [ { "id": 28747, "logprob": -0.55078125, "special": false, "text": ":" }, { "id": 3169, "logprob": -1.4140625, "special": false, "text": " Let" }, { "id": 307, "logprob": -3.0273438, "special": false, "text": " n" }, { "id": 327, "logprob": -0.94140625, "special": false, "text": " =" }, { "id": 28705, "logprob": -0.8173828, "special": false, "text": " " }, { "id": 28740, "logprob": -1.2978516, "special": false, "text": "1" }, { "id": 28734, "logprob": -2.0664062, "special": false, "text": "0" }, { "id": 387, "logprob": -1.9560547, "special": false, "text": " -" }, { "id": 28705, "logprob": -0.5078125, "special": false, "text": " " }, { "id": 28740, "logprob": -1.1787109, "special": false, "text": "1" } ], "top_tokens": null }, "generated_text": ": Let n = 10 - 1" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 3735, "logprob": -12.9140625, "text": "Test" }, { "id": 2159, "logprob": -10.7578125, "text": "request" } ], "seed": null, "tokens": [ { "id": 28747, "logprob": -0.54785156, "special": false, "text": ":" }, { "id": 3169, "logprob": -1.4111328, "special": false, "text": " Let" }, { "id": 307, "logprob": -3.0292969, "special": false, "text": " n" }, { "id": 327, "logprob": -0.94433594, "special": false, "text": " =" }, { "id": 28705, "logprob": -0.8178711, "special": false, "text": " " }, { "id": 28740, "logprob": -1.2939453, "special": false, "text": "1" }, { "id": 28734, "logprob": -2.0644531, "special": false, "text": "0" }, { "id": 387, "logprob": -1.9550781, "special": false, "text": " -" }, { "id": 28705, "logprob": -0.5078125, "special": false, "text": " " }, { "id": 28740, "logprob": -1.1796875, "special": false, "text": "1" } ], "top_tokens": null }, "generated_text": ": Let n = 10 - 1" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 3735, "logprob": -12.9140625, "text": "Test" }, { "id": 2159, "logprob": -10.7578125, "text": "request" } ], "seed": null, "tokens": [ { "id": 28747, "logprob": -0.55078125, "special": false, "text": ":" }, { "id": 3169, "logprob": -1.4140625, "special": false, "text": " Let" }, { "id": 307, "logprob": -3.0273438, "special": false, "text": " n" }, { "id": 327, "logprob": -0.94140625, "special": false, "text": " =" }, { "id": 28705, "logprob": -0.8173828, "special": false, "text": " " }, { "id": 28740, "logprob": -1.2978516, "special": false, "text": "1" }, { "id": 28734, "logprob": -2.0664062, "special": false, "text": "0" }, { "id": 387, "logprob": -1.9560547, "special": false, "text": " -" }, { "id": 28705, "logprob": -0.5078125, "special": false, "text": " " }, { "id": 28740, "logprob": -1.1787109, "special": false, "text": "1" } ], "top_tokens": null }, "generated_text": ": Let n = 10 - 1" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 3735, "logprob": -12.9140625, "text": "Test" }, { "id": 2159, "logprob": -10.7578125, "text": "request" } ], "seed": null, "tokens": [ { "id": 28747, "logprob": -0.55078125, "special": false, "text": ":" }, { "id": 3169, "logprob": -1.4140625, "special": false, "text": " Let" }, { "id": 307, "logprob": -3.0273438, "special": false, "text": " n" }, { "id": 327, "logprob": -0.94140625, "special": false, "text": " =" }, { "id": 28705, "logprob": -0.8173828, "special": false, "text": " " }, { "id": 28740, "logprob": -1.2978516, "special": false, "text": "1" }, { "id": 28734, "logprob": -2.0664062, "special": false, "text": "0" }, { "id": 387, "logprob": -1.9560547, "special": false, "text": " -" }, { "id": 28705, "logprob": -0.5078125, "special": false, "text": " " }, { "id": 28740, "logprob": -1.1787109, "special": false, "text": "1" } ], "top_tokens": null }, "generated_text": ": Let n = 10 - 1" } ]
text-generation-inference/integration-tests/models/__snapshots__/test_flash_mistral/test_flash_mistral_load.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_mistral/test_flash_mistral_load.json", "repo_id": "text-generation-inference", "token_count": 4897 }
223
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 610, "logprob": null, "text": "def" }, { "id": 1489, "logprob": -5.2617188, "text": " print" }, { "id": 100, "logprob": -0.38476562, "text": "_" }, { "id": 7670, "logprob": -7.640625, "text": "hello" } ], "seed": null, "tokens": [ { "id": 2284, "logprob": -0.92626953, "special": false, "text": "():" }, { "id": 303, "logprob": -0.40844727, "special": false, "text": "\n " }, { "id": 1489, "logprob": -0.27905273, "special": false, "text": " print" }, { "id": 459, "logprob": -0.6118164, "special": false, "text": "(\"" }, { "id": 8302, "logprob": -0.68652344, "special": false, "text": "Hello" }, { "id": 10914, "logprob": -1.4619141, "special": false, "text": " World" }, { "id": 16013, "logprob": -0.7993164, "special": false, "text": "!\")" }, { "id": 222, "logprob": -0.63134766, "special": false, "text": "\n" }, { "id": 222, "logprob": -0.23278809, "special": false, "text": "\n" }, { "id": 610, "logprob": -1.2294922, "special": false, "text": "def" } ], "top_tokens": null }, "generated_text": "():\n print(\"Hello World!\")\n\ndef" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_starcoder2/test_flash_starcoder2.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_starcoder2/test_flash_starcoder2.json", "repo_id": "text-generation-inference", "token_count": 1124 }
224
[ { "details": { "best_of_sequences": null, "finish_reason": "eos_token", "generated_tokens": 6, "prefill": [ { "id": 0, "logprob": null, "text": "<pad>" } ], "seed": null, "tokens": [ { "id": 259, "logprob": -1.3798828, "special": false, "text": " " }, { "id": 39261, "logprob": -0.36328125, "special": false, "text": "Because" }, { "id": 609, "logprob": -1.0947266, "special": false, "text": " it" }, { "id": 339, "logprob": -0.8286133, "special": false, "text": " is" }, { "id": 16017, "logprob": -1.6826172, "special": false, "text": " blue" }, { "id": 1, "logprob": -0.7290039, "special": true, "text": "</s>" } ] }, "generated_text": "Because it is blue" }, { "details": { "best_of_sequences": null, "finish_reason": "eos_token", "generated_tokens": 6, "prefill": [ { "id": 0, "logprob": null, "text": "<pad>" } ], "seed": null, "tokens": [ { "id": 259, "logprob": -1.3789062, "special": false, "text": " " }, { "id": 39261, "logprob": -0.36279297, "special": false, "text": "Because" }, { "id": 609, "logprob": -1.0966797, "special": false, "text": " it" }, { "id": 339, "logprob": -0.8276367, "special": false, "text": " is" }, { "id": 16017, "logprob": -1.6845703, "special": false, "text": " blue" }, { "id": 1, "logprob": -0.72753906, "special": true, "text": "</s>" } ] }, "generated_text": "Because it is blue" }, { "details": { "best_of_sequences": null, "finish_reason": "eos_token", "generated_tokens": 6, "prefill": [ { "id": 0, "logprob": null, "text": "<pad>" } ], "seed": null, "tokens": [ { "id": 259, "logprob": -1.3789062, "special": false, "text": " " }, { "id": 39261, "logprob": -0.36279297, "special": false, "text": "Because" }, { "id": 609, "logprob": -1.0966797, "special": false, "text": " it" }, { "id": 339, "logprob": -0.8276367, "special": false, "text": " is" }, { "id": 16017, "logprob": -1.6845703, "special": false, "text": " blue" }, { "id": 1, "logprob": -0.72753906, "special": true, "text": "</s>" } ] }, "generated_text": "Because it is blue" }, { "details": { "best_of_sequences": null, "finish_reason": "eos_token", "generated_tokens": 6, "prefill": [ { "id": 0, "logprob": null, "text": "<pad>" } ], "seed": null, "tokens": [ { "id": 259, "logprob": -1.3789062, "special": false, "text": " " }, { "id": 39261, "logprob": -0.36279297, "special": false, "text": "Because" }, { "id": 609, "logprob": -1.0966797, "special": false, "text": " it" }, { "id": 339, "logprob": -0.8276367, "special": false, "text": " is" }, { "id": 16017, "logprob": -1.6845703, "special": false, "text": " blue" }, { "id": 1, "logprob": -0.72753906, "special": true, "text": "</s>" } ] }, "generated_text": "Because it is blue" } ]
text-generation-inference/integration-tests/models/__snapshots__/test_mt0_base/test_mt0_base_load.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_mt0_base/test_mt0_base_load.json", "repo_id": "text-generation-inference", "token_count": 2874 }
225
import pytest @pytest.fixture(scope="module") def flash_falcon_handle(launcher): with launcher("tiiuae/falcon-7b", trust_remote_code=True) as handle: yield handle @pytest.fixture(scope="module") async def flash_falcon(flash_falcon_handle): await flash_falcon_handle.health(300) return flash_falcon_handle.client @pytest.mark.asyncio @pytest.mark.private async def test_flash_falcon(flash_falcon, response_snapshot): response = await flash_falcon.generate( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_new_tokens=10, decoder_input_details=True, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.asyncio @pytest.mark.private async def test_flash_falcon_all_params(flash_falcon, response_snapshot): response = await flash_falcon.generate( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, stop_sequences=["test"], temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.asyncio @pytest.mark.private async def test_flash_falcon_load(flash_falcon, generate_load, response_snapshot): responses = await generate_load( flash_falcon, "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_new_tokens=10, n=4, ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_flash_falcon.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_falcon.py", "repo_id": "text-generation-inference", "token_count": 884 }
226
import pytest @pytest.fixture(scope="module") def idefics_handle(launcher): with launcher( "HuggingFaceM4/idefics-9b-instruct", num_shard=2, dtype="float16" ) as handle: yield handle @pytest.fixture(scope="module") async def idefics(idefics_handle): await idefics_handle.health(300) return idefics_handle.client @pytest.mark.asyncio async def test_idefics(idefics, response_snapshot): response = await idefics.generate( "User:![](https://temp-5681.s3.us-west-2.amazonaws.com/chicken_on_money.png)Can you tell me a very short story based on the image?", max_new_tokens=10, decoder_input_details=True, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.asyncio async def test_idefics_load(idefics, generate_load, response_snapshot): responses = await generate_load( idefics, "User:![](https://temp-5681.s3.us-west-2.amazonaws.com/chicken_on_money.png)Can you tell me a very short story based on the image?", max_new_tokens=10, n=4, ) generated_texts = [r.generated_text for r in responses] assert len(generated_texts) == 4 assert generated_texts, all( [text == generated_texts[0] for text in generated_texts] ) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_idefics.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_idefics.py", "repo_id": "text-generation-inference", "token_count": 552 }
227
import { check, randomSeed } from 'k6'; import http from 'k6/http'; import { Trend, Counter } from 'k6/metrics'; import { randomItem } from 'https://jslib.k6.io/k6-utils/1.2.0/index.js'; const seed = 0; const host = __ENV.HOST || '127.0.0.1:8000'; const timePerToken = new Trend('time_per_token', true); const tokens = new Counter('tokens'); const new_tokens = new Counter('new_tokens'); const input_tokens = new Counter('input_tokens'); randomSeed(seed); // const shareGPT = JSON.parse(open("ShareGPT_V3_unfiltered_cleaned_split.json")) const shareGPT = JSON.parse(open("small.json")) export function get_options(reference_latency_ms){ return { thresholds: { http_req_failed: ['rate==0'], time_per_token: [{ threshold: `p(50)<${5 * reference_latency_ms}`, abortOnFail: true, delayAbortEval: '10s' }], }, scenarios: { load_test: { executor: 'constant-arrival-rate', duration: '60s', preAllocatedVUs: 10, rate: 10, timeUnit: '1s', }, }, }; } export function run(host, generate_payload, max_new_tokens) { const headers = {'Content-Type': 'application/json'}; const query = randomItem(shareGPT); const payload = JSON.stringify(generate_payload(query)); const res = http.post(`http://${host}/generate`, payload, { headers, }); if(res.status >= 400 && res.status < 500){ return; } check(res, { 'Post status is 200': (r) => res.status === 200, }); const duration = res.timings.duration; if (res.status === 200) { const body = res.json(); const n_tokens = body.details.tokens.length; const latency_ms_per_token = duration / n_tokens; timePerToken.add(latency_ms_per_token); const latency_in_s = latency_ms_per_token / 1000; const individual_throughput = 1 / latency_in_s; const _input_tokens = body.details.prefill.length; tokens.add(n_tokens + _input_tokens); input_tokens.add(_input_tokens); new_tokens.add(n_tokens); } }
text-generation-inference/load_tests/common.js/0
{ "file_path": "text-generation-inference/load_tests/common.js", "repo_id": "text-generation-inference", "token_count": 1025 }
228
use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Arc; use text_generation_client::GrammarType as ProtoGrammarType; use text_generation_client::{ Batch, NextTokenChooserParameters, Request, ShardedClient, StoppingCriteriaParameters, }; // Note: Request ids and batch ids cannot collide. const LIVENESS_ID: u64 = u64::MAX; const BATCH_ID: u64 = u64::MAX; #[derive(Clone, Debug)] pub(crate) struct Health { client: ShardedClient, generation_health: Arc<AtomicBool>, } impl Health { pub(crate) fn new(client: ShardedClient, generation_health: Arc<AtomicBool>) -> Self { Self { client, generation_health, } } pub(crate) async fn check(&mut self) -> bool { if self.generation_health.load(Ordering::SeqCst) { // Generation is healthy, we only check that the shards are answering gRPC calls self.client.health().await.is_ok() } else { // Generation is unhealthy or have not sent any generation request yet // Dummy batch of 1 token and 1 generated token let liveness_request = Request { id: LIVENESS_ID, inputs: "liveness".to_string(), truncate: 10, prefill_logprobs: false, parameters: Some(NextTokenChooserParameters { temperature: 1.0, top_k: 0, top_p: 1.0, typical_p: 1.0, do_sample: false, seed: 0, repetition_penalty: 1.0, frequency_penalty: 0.0, watermark: false, grammar: String::new(), grammar_type: ProtoGrammarType::None as i32, }), stopping_parameters: Some(StoppingCriteriaParameters { max_new_tokens: 1, stop_sequences: vec![], ignore_eos_token: false, }), top_n_tokens: 0, }; let batch = Batch { id: BATCH_ID, requests: vec![liveness_request], size: 1, max_tokens: 2, }; // Skips the queue let value = self.client.prefill(batch).await.is_ok(); // Update generation health self.generation_health.store(value, Ordering::SeqCst); value } } }
text-generation-inference/router/src/health.rs/0
{ "file_path": "text-generation-inference/router/src/health.rs", "repo_id": "text-generation-inference", "token_count": 1307 }
229
vllm-cuda: # Clone vllm pip install -U ninja packaging --no-cache-dir git clone https://github.com/vllm-project/vllm.git vllm build-vllm-cuda: vllm-cuda cd vllm && git fetch && git checkout f8a1e39fae05ca610be8d5a78be9d40f5274e5fc cd vllm && python setup.py build install-vllm-cuda: build-vllm-cuda pip uninstall vllm -y || true cd vllm && python setup.py install vllm-rocm: # Clone vllm pip install -U ninja packaging --no-cache-dir git clone https://github.com/fxmarty/vllm-public.git vllm build-vllm-rocm: vllm-rocm cd vllm && git fetch && git checkout ad9b7c4095ef54419a0533d254f2ad84bd2dfcae cd vllm && python setup.py build install-vllm-rocm: build-vllm-rocm pip uninstall vllm -y || true cd vllm && python setup.py install
text-generation-inference/server/Makefile-vllm/0
{ "file_path": "text-generation-inference/server/Makefile-vllm", "repo_id": "text-generation-inference", "token_count": 332 }
230
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #ifndef _matrix_cuh #define _matrix_cuh #include <cuda_runtime.h> #include <cuda_fp16.h> class MatrixView_half { public: const half* data; const int height; const int width; __device__ __forceinline__ MatrixView_half(const half* data, const int height, const int width) : data(data), height(height), width(width) { } __device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; } __device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; } __device__ __forceinline__ half2 item_half2half2(int row, int column) const { return __half2half2(data[row * width + column]); } __device__ __forceinline__ const half* item_ptr(int row, int column) const { return &data[row * width + column]; } }; class MatrixView_half_rw { public: half* data; const int height; const int width; __device__ __forceinline__ MatrixView_half_rw(half* data, const int height, const int width) : data(data), height(height), width(width) { } __device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; } __device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; } __device__ __forceinline__ half* item_ptr(int row, int column) { return &data[row * width + column]; } __device__ __forceinline__ void set(int row, int column, half value) { data[row * width + column] = value; } __device__ __forceinline__ void set_half2(int row, int column, half2 value) { ((half2*)data)[(row * width + column) / 2] = value; } }; class MatrixView_q4_row { public: const uint32_t* data; const int height; const int width; __device__ __forceinline__ MatrixView_q4_row(const uint32_t* data, const int height, const int width) : data(data), height(height), width(width) { } __device__ __forceinline__ int item(int row, int column) const { int shift = (column & 0x07) * 4; return (data[row * width / 8 + column / 8] >> shift) & 0x0f; } }; class MatrixView_q4_column { public: const uint32_t* data; const int height; const int width; __device__ __forceinline__ MatrixView_q4_column(const uint32_t* data, const int height, const int width) : data(data), height(height), width(width) { } __device__ __forceinline__ int item(int row, int column) const { int shift = (row & 0x07) * 4; return (data[row / 8 * width + column] >> shift) & 0x0f; } __device__ __forceinline__ uint32_t item_uint32_t(int row, int column) { return data[row / 8 * width + column]; } __device__ __forceinline__ const uint32_t* item_uint32_ptr(int row, int column) { return &data[row / 8 * width + column]; } }; // TODO: Rewrite all these dot product functions using functors or something, move to q4_matmul.cu // Accumulated dot product of 8-element row vectors in h and quantized column vectors in v, constant zero/scale __device__ __forceinline__ half2 dot_product_8 ( const half2 acc, MatrixView_half& h_, const int h_row, const int h_column, // divisible by 8 MatrixView_q4_column& v_, const int v_row, // divisible by 8 const int v_column, const half2 v_scale_2, const uint32_t v_zero, // + 1 (!!) const int count ) { const half2* h_ptr = (const half2*) h_.item_ptr(h_row, h_column); const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column); half2 result = acc; for (int i = 0; i < count; i++) { uint32_t v_read = *v_ptr; v_ptr += v_.width; half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero); half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero); half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero); half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero); half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero); half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero); half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero); half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero); half2 v_01 = __halves2half2(v_0, v_1); half2 v_23 = __halves2half2(v_2, v_3); half2 v_45 = __halves2half2(v_4, v_5); half2 v_67 = __halves2half2(v_6, v_7); // half2 v_01 = q4_table[v_zero - 1][(v_read ) & 0xff]; // (constant memory is too slow apparently) // half2 v_23 = q4_table[v_zero - 1][(v_read >> 8) & 0xff]; // half2 v_45 = q4_table[v_zero - 1][(v_read >> 16) & 0xff]; // half2 v_67 = q4_table[v_zero - 1][(v_read >> 24) ]; half2 tmp = __hmul2(*h_ptr++, v_01); tmp = __hfma2(*h_ptr++, v_23, tmp); tmp = __hfma2(*h_ptr++, v_45, tmp); tmp = __hfma2(*h_ptr++, v_67, tmp); result = __hfma2(v_scale_2, tmp, result); } return result; } __device__ __forceinline__ half dot_product_8_h ( const half acc, MatrixView_half& h_, const int h_row, const int h_column, // divisible by 8 MatrixView_q4_column& v_, const int v_row, // divisible by 8 const int v_column, const half v_scale, const uint32_t v_zero, // + 1 (!!) const int count ) { const half* h_ptr = h_.item_ptr(h_row, h_column); const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column); half result = acc; for (int i = 0; i < count; i++) { uint32_t v_read = *v_ptr; v_ptr += v_.width; half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero); half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero); half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero); half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero); half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero); half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero); half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero); half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero); half tmp = __hmul(*h_ptr++, v_0); tmp = __hfma(*h_ptr++, v_1, tmp); tmp = __hfma(*h_ptr++, v_2, tmp); tmp = __hfma(*h_ptr++, v_3, tmp); tmp = __hfma(*h_ptr++, v_4, tmp); tmp = __hfma(*h_ptr++, v_5, tmp); tmp = __hfma(*h_ptr++, v_6, tmp); tmp = __hfma(*h_ptr++, v_7, tmp); result = __hfma(v_scale, tmp, result); } return result; } // Accumulated dot product of 8-element row vectors in h and quantized column vectors in v, constant zero/scale, with x_map __device__ __forceinline__ half2 dot_product_8_x_map ( const half2 acc, MatrixView_half& h_, const int h_row, const int h_column, // divisible by 8 MatrixView_q4_column& v_, const int v_row, // divisible by 8 const int v_column, const half2 v_scale_2, const uint32_t v_zero, // + 1 (!!) const int count, const uint32_t* x_map ) { const half* h_ptr = h_.item_ptr(h_row, 0); const uint32_t* x_map_ptr = x_map + h_column; const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column); half2 result = acc; for (int i = 0; i < count; i++) { uint32_t v_read = *v_ptr; v_ptr += v_.width; half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero); half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero); half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero); half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero); half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero); half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero); half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero); half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero); half2 v_01 = __halves2half2(v_0, v_1); half2 v_23 = __halves2half2(v_2, v_3); half2 v_45 = __halves2half2(v_4, v_5); half2 v_67 = __halves2half2(v_6, v_7); half h_0 = h_ptr[*x_map_ptr++]; half h_1 = h_ptr[*x_map_ptr++]; half h_2 = h_ptr[*x_map_ptr++]; half h_3 = h_ptr[*x_map_ptr++]; half h_4 = h_ptr[*x_map_ptr++]; half h_5 = h_ptr[*x_map_ptr++]; half h_6 = h_ptr[*x_map_ptr++]; half h_7 = h_ptr[*x_map_ptr++]; half2 h_01 = __halves2half2(h_0, h_1); half2 h_23 = __halves2half2(h_2, h_3); half2 h_45 = __halves2half2(h_4, h_5); half2 h_67 = __halves2half2(h_6, h_7); half2 tmp = __hmul2(h_01, v_01); tmp = __hfma2(h_23, v_23, tmp); tmp = __hfma2(h_45, v_45, tmp); tmp = __hfma2(h_67, v_67, tmp); result = __hfma2(v_scale_2, tmp, result); } return result; } __device__ __forceinline__ half dot_product_8_x_map_h ( const half acc, MatrixView_half& h_, const int h_row, const int h_column, // divisible by 8 MatrixView_q4_column& v_, const int v_row, // divisible by 8 const int v_column, const half v_scale, const uint32_t v_zero, // + 1 (!!) const int count, const uint32_t* x_map ) { const half* h_ptr = h_.item_ptr(h_row, 0); const uint32_t* x_map_ptr = x_map + h_column; const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column); half result = acc; for (int i = 0; i < count; i++) { uint32_t v_read = *v_ptr; v_ptr += v_.width; half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero); half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero); half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero); half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero); half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero); half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero); half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero); half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero); half tmp = __hmul(h_ptr[*x_map_ptr++], v_0); tmp = __hfma(h_ptr[*x_map_ptr++], v_1, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_2, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_3, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_4, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_5, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_6, tmp); tmp = __hfma(h_ptr[*x_map_ptr++], v_7, tmp); result = __hfma(v_scale, tmp, result); } return result; } #endif
text-generation-inference/server/exllama_kernels/exllama_kernels/matrix.cuh/0
{ "file_path": "text-generation-inference/server/exllama_kernels/exllama_kernels/matrix.cuh", "repo_id": "text-generation-inference", "token_count": 5380 }
231
#ifndef _qdq_4_cuh #define _qdq_4_cuh #include "qdq_util.cuh" #include "../../config.h" #if QMODE_4BIT == 1 // Permutation: // // 77775555 33331111 66664444 22220000 __forceinline__ __device__ void shuffle_4bit_8 ( uint32_t* q, int stride ) { uint32_t qa = q[0]; uint32_t qb = 0; #pragma unroll for (int i = 0; i < 4; i++) { uint32_t qa0 = qa & 0x0f; uint32_t qa1 = (qa & 0xf0) >> 4; qa >>= 8; qb |= (qa1 << (i * 4 + 16)); qb |= (qa0 << (i * 4)); } q[0] = qb; } __forceinline__ __device__ void dequant_4bit_8 ( const uint32_t q_0, half2 (&dq)[4], int stride ) { const uint32_t c0 = 0x64006400; const half y16_ = __float2half_rn(1.0f / 16.0f); const half2 y16 = __halves2half2(y16_, y16_); const half z1_ = __float2half_rn(-1024.0f - 8.0f); const half z16_ = __float2half_rn(-1024.0f / 16.0f - 8.0f); const half2 z1 = __halves2half2(z1_, z1_); const half2 z16 = __halves2half2(z16_, z16_); uint32_t qa = q_0; half2_uint32 q0((qa & 0x000f000f) | c0); // half2(q[ 0], q[ 1]) + 1024 half2_uint32 q1((qa & 0x00f000f0) | c0); // half2(q[ 2], q[ 3]) * 16 + 1024 qa >>= 8; half2_uint32 q2((qa & 0x000f000f) | c0); // half2(q[ 4], q[ 5]) + 1024 half2_uint32 q3((qa & 0x00f000f0) | c0); // half2(q[ 6], q[ 7]) * 16 + 1024 dq[0] = __hadd2(q0.as_half2, z1); dq[1] = __hfma2(q1.as_half2, y16, z16); dq[2] = __hadd2(q2.as_half2, z1); dq[3] = __hfma2(q3.as_half2, y16, z16); } __forceinline__ __device__ void dequant_4bit_8_prep_zero_scale ( const uint32_t zero, const half scale, half2 (&z1z16)[2], half2 (&y1y16)[2] ) { half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero); half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero)); half2 scale2 = __half2half2(scale); z1z16[0] = __hmul2(scale2, __half2half2(z1.as_half)); z1z16[1] = __hmul2(scale2, __half2half2(z16)); const half y1 = __float2half_rn(1.0f); const half y16 = __float2half_rn(1.0f / 16.0f); y1y16[0] = __hmul2(scale2, __half2half2(y1)); y1y16[1] = __hmul2(scale2, __half2half2(y16)); } __forceinline__ __device__ void dequant_4bit_8_prep_zero ( const uint32_t zero, half2(&z1z16)[2], half2(&y1y16)[2] ) { half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero); half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero)); z1z16[0] = __half2half2(z1.as_half); z1z16[1] = __half2half2(z16); const half y1 = __float2half_rn(1.0f); const half y16 = __float2half_rn(1.0f / 16.0f); y1y16[0] = __half2half2(y1); y1y16[1] = __half2half2(y16); } __forceinline__ __device__ void dequant_4bit_8_gptq ( const uint32_t q_0, half2 (&dq)[4], half2 (&z1z16)[2], half2 (&y1y16)[2], int stride, bool scaled ) { const uint32_t c0 = 0x64006400; uint32_t qa = q_0; half2_uint32 q0((qa & 0x000f000f) | c0); // half2( q[0] + 1024, q[1] + 1024 ) half2_uint32 q1((qa & 0x00f000f0) | c0); // half2( q[2] * 16 + 1024, q[3] * 16 + 1024 ) qa >>= 8; half2_uint32 q2((qa & 0x000f000f) | c0); // half2( q[4] + 1024, q[5] + 1024 ) half2_uint32 q3((qa & 0x00f000f0) | c0); // half2( q[6] * 16 + 1024, q[7] * 16 + 1024 ) if (scaled) { dq[0] = __hfma2(q0.as_half2, y1y16[0], z1z16[0]); // half2( q[0] * s - z * s, q[1] * s - z * s) dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] * s - z * s, q[3] * s - z * s) dq[2] = __hfma2(q2.as_half2, y1y16[0], z1z16[0]); dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]); } else { dq[0] = __hadd2(q0.as_half2, z1z16[0]); // half2( q[0] - z, q[1] - z ) dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] - z, q[3] - z ) dq[2] = __hadd2(q2.as_half2, z1z16[0]); // half2( q[4] - z, q[5] - z ) dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]); // half2( q[6] - z, q[7] - z ) } } #else __forceinline__ __device__ void shuffle_4bit_8 ( uint32_t* q, int stride ) { } __forceinline__ __device__ void dequant_4bit_8 ( const uint32_t q_0, half2 (&dq)[4], int stride ) { half dqh[8]; for (int i = 0; i < 8; i++) dqh[i] = dq_ns(exb(q_0, i * 4, 0x0f), 8); for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]); } __forceinline__ __device__ void dequant_4bit_8_prep_zero_scale ( const uint32_t zero, const half scale, half2 (&z1)[2], half2 (&y1)[2] ) { half z = __int2half_rn(-((int)zero)); z = __hmul(z, scale); z1[0] = __half2half2(z); y1[0] = __half2half2(scale); } __forceinline__ __device__ void dequant_4bit_8_prep_zero ( const uint32_t zero, half2(&z1)[2], half2(&y1)[2] ) { half z = __int2half_rn(-((int)zero)); z1[0] = __half2half2(z); } __forceinline__ __device__ void dequant_4bit_8_gptq ( const uint32_t q_0, half2 (&dq)[4], half2 (&z1)[2], half2 (&y1)[2], int stride, bool scaled ) { half2 dqh2[8]; uint32_t qa = q_0; for (int i = 0; i < 4; i++) { half d0 = __int2half_rn(qa & 0x0f); qa >>= 4; half d1 = __int2half_rn(qa & 0x0f); qa >>= 4; dqh2[i] = __halves2half2(d0, d1); } if (scaled) { dq[0] = __hfma2(dqh2[0], y1[0], z1[0]); dq[1] = __hfma2(dqh2[1], y1[0], z1[0]); dq[2] = __hfma2(dqh2[2], y1[0], z1[0]); dq[3] = __hfma2(dqh2[3], y1[0], z1[0]); } else { dq[0] = __hadd2(dqh2[0], z1[0]); dq[1] = __hadd2(dqh2[1], z1[0]); dq[2] = __hadd2(dqh2[2], z1[0]); dq[3] = __hadd2(dqh2[3], z1[0]); } } #endif #endif
text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/quant/qdq_4.cuh/0
{ "file_path": "text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/quant/qdq_4.cuh", "repo_id": "text-generation-inference", "token_count": 3279 }
232
import pytest import torch from transformers import AutoTokenizer from text_generation_server.models import Model def get_test_model(): class TestModel(Model): def batch_type(self): raise NotImplementedError def generate_token(self, batch): raise NotImplementedError tokenizer = AutoTokenizer.from_pretrained("huggingface/llama-7b") model = TestModel( torch.nn.Linear(1, 1), tokenizer, False, torch.float32, torch.device("cpu") ) return model @pytest.mark.private def test_decode_streaming_english_spaces(): model = get_test_model() truth = "Hello here, this is a simple test" all_input_ids = [15043, 1244, 29892, 445, 338, 263, 2560, 1243] assert ( all_input_ids == model.tokenizer(truth, add_special_tokens=False)["input_ids"] ) decoded_text = "" offset = 0 token_offset = 0 for i in range(len(all_input_ids)): text, offset, token_offset = model.decode_token( all_input_ids[: i + 1], offset, token_offset ) decoded_text += text assert decoded_text == truth @pytest.mark.private def test_decode_streaming_chinese_utf8(): model = get_test_model() truth = "我很感谢你的热情" all_input_ids = [ 30672, 232, 193, 139, 233, 135, 162, 235, 179, 165, 30919, 30210, 234, 134, 176, 30993, ] decoded_text = "" offset = 0 token_offset = 0 for i in range(len(all_input_ids)): text, offset, token_offset = model.decode_token( all_input_ids[: i + 1], offset, token_offset ) decoded_text += text assert decoded_text == truth
text-generation-inference/server/tests/models/test_model.py/0
{ "file_path": "text-generation-inference/server/tests/models/test_model.py", "repo_id": "text-generation-inference", "token_count": 829 }
233
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for IDEFICS. """ from typing import Callable, List, Optional, Union from urllib.parse import urlparse from transformers.feature_extraction_utils import BatchFeature from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import ( BatchEncoding, PaddingStrategy, TextInput, TruncationStrategy, ) from transformers.utils import TensorType, is_torch_available from text_generation_server.models.custom_modeling.idefics_image_processing import ( IdeficsImageProcessor, ) if is_torch_available(): import torch IMAGE_TOKEN = "<image>" # copied from m4.training.packing def incremental_to_binary_attention_mask(incremental_mask, num_classes=-1): # This function converts: [-1, 0, 1] => [[0, 0], [1, 0], [0, 1]] # If any of images index are more than num_classes, set them to -1. # Words after the max number of images allowed have been seen don't attend on anything if num_classes != -1: incremental_mask[incremental_mask >= num_classes] = -1 negatives = incremental_mask == -1 incremental_mask[negatives] = 0 attn_mask = torch.nn.functional.one_hot(incremental_mask, num_classes=num_classes) attn_mask[negatives, :] = 0 return attn_mask # copied from m4.training.packing def image_attention_mask_for_packed_input_ids(input_ids, tokenizer): image_attention_mask = torch.full_like(input_ids, fill_value=-1) next_image_attention_mask = torch.full_like(input_ids, fill_value=-1) image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) eod_token_id = tokenizer.eos_token_id for batch_idx in range(input_ids.size(0)): count = -1 seen_eod = False for idx, token_id in enumerate(input_ids[batch_idx]): if token_id == image_token_id: count += 1 image_attention_mask[batch_idx][idx] = count seen_eod = False else: image_attention_mask[batch_idx][idx] = count if seen_eod: image_attention_mask[batch_idx][idx] = -1 if token_id == eod_token_id: seen_eod = True for batch_idx in range(input_ids.size(0)): count = -1 seen_eod = False for idx in range(input_ids[batch_idx].size(0) - 1, -1, -1): token_id = input_ids[batch_idx][idx] if token_id == image_token_id: count += 1 next_image_attention_mask[batch_idx][idx] = count seen_eod = False else: next_image_attention_mask[batch_idx][idx] = count if token_id == eod_token_id: seen_eod = True if seen_eod: next_image_attention_mask[batch_idx][idx] = -1 non_negative_indices = next_image_attention_mask[batch_idx] != -1 next_image_attention_mask[batch_idx][non_negative_indices] -= count next_image_attention_mask[batch_idx][non_negative_indices] *= -1 return image_attention_mask, next_image_attention_mask def is_url(string): """Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately invalidated the url""" if " " in string: return False result = urlparse(string) return all([result.scheme, result.netloc]) def is_image(string): """Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately invalidated the url""" return is_url(string) or string.startswith("data:") class IdeficsProcessor(ProcessorMixin): r""" Constructs a IDEFICS processor which wraps a LLama tokenizer and IDEFICS image processor into a single processor. [`IdeficsProcessor`] offers all the functionalities of [`IdeficsImageProcessor`] and [`LlamaTokenizerFast`]. See the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information. Args: image_processor (`IdeficsImageProcessor`): An instance of [`IdeficsImageProcessor`]. The image processor is a required input. tokenizer (`LlamaTokenizerFast`): An instance of [`LlamaTokenizerFast`]. The tokenizer is a required input. image_size (`int`, *optional*, defaults to 224): Image size (assuming a square image) """ attributes = ["image_processor", "tokenizer"] image_processor_class = "IdeficsImageProcessor" tokenizer_class = "LlamaTokenizerFast" def __init__( self, image_processor, tokenizer=None, image_size=224, add_end_of_utterance_token=None, **kwargs, ): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) self.default_image_dims = ( self.image_processor.image_num_channels, self.image_processor.image_size, self.image_processor.image_size, ) self.tokenizer_was_trained_with_end_of_utterance_token = ( True if "<end_of_utterance>" in self.tokenizer.special_tokens_map.get("additional_special_tokens", []) else False ) def __call__( self, prompts: Union[List[TextInput], List[List[TextInput]]], padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, transform: Callable = None, add_eos_token=False, add_end_of_utterance_token=None, debug=False, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchEncoding: """This method takes batched or non-batched prompts made of text and images and converts them into prompts that the model was trained on and prepares the image pixel values for the model to process. Args: prompts (`Union[List[TextInput], [List[List[TextInput]]]]`): either a single prompt or a batched list of prompts - see the detailed description immediately after the end of the arguments doc section. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. transform (`Callable`, *optional*): A custom transform function that accepts a single image can be passed for training. For example, `torchvision.Compose` can be used to compose multiple functions. If `None` a preset inference-specific set of transforms will be applied to the images add_eos_token (`bool`, *optional*, defaults to `False`): Adds `eos_token` at the end of the final prompt if True` add_end_of_utterance_token (`bool`, *optional*) Whether to automatically add `<end_of_utterance>` after each prompt's text input (unless followed by an image). If `None` the tokenizer will be checked instead and if this token is found in `additional_special_tokens` then the value will be `True`. debug (`bool`, *optional*, defaults to `False`): `True` value will help debug prompt generation by dumping useful information return_tensors (`str` or `TensorType`, *optional*, defaults to `TensorType.PYTORCH`): The type of tensors to return. Can be one of: - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. Returns: a dict with entries: `input_ids`, `attention_mask`, `pixel_values`, `image_attention_mask` which can be directly passed to `model.generate` Detailed explanation: Each entry in `prompts` is either a text to be passed as is or an image that will be processed. An image can be either an image object (`PIL.Image`) or a url from which the image can be retrieved. When the processor encounters an image it'll inject `<fake_token_around_image><image><fake_token_around_image>` entry into the prompt. Example: ```python checkpoint = "HuggingFaceM4/idefics-9b" processor = AutoProcessor.from_pretrained(checkpoint) url = "https://hips.hearstapps.com/hmg-prod/images/cute-photos-of-cats-in-grass-1593184777.jpg" img = processor.image_processor.fetch_images([url])[0] prompts = [ "User:", img, "Describe this image.\nAssistant: An image of two kittens in grass.\n", "User:", "https://hips.hearstapps.com/hmg-prod/images/dog-puns-1581708208.jpg", "Describe this image.\nAssistant:", ] inputs = processor(prompts, return_tensors="pt") generated_ids = model.generate(**inputs, max_length=100) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` In this example the `prompts` will be converted into: ``` <s>User:<fake_token_around_image><image><fake_token_around_image>Describe this image. Assistant: An image of two kittens in grass. User:<fake_token_around_image><image><fake_token_around_image>Describe this image. Assistant:' ``` and the two images will be massaged using [`IdeficsImageProcessor.__call__`] method and placed inside the `pixel_values` dict entry of the return value. This example also examplifies that images can be passed as objects or as text urls. It can be seen that the first image is passed as object and the second one as a url. To do training do: ```python image_transform = transforms.Compose( [ transforms.RandomResizedCrop( (w, h), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize(mean=self.image_mean, std=self.image_std), ] ) inputs = processor(prompts, transform=image_transform, return_tensors="pt") ``` In order to help debug prompt generation enable `debug=True` which will show you what's happening. """ # if the value isn't overriden by the user, check if the tokenizer was trained with this token and then use it if add_end_of_utterance_token is None: add_end_of_utterance_token = ( self.tokenizer_was_trained_with_end_of_utterance_token ) # turn non-batched prompts into batched if not any(isinstance(i, list) for i in prompts): prompts = [prompts] fake_token = "<fake_token_around_image>" image_token = "<image>" end_of_utterance_token = "<end_of_utterance>" def image_tokens(last_was_image): if last_was_image: return image_token + fake_token else: return fake_token + image_token + fake_token all_texts = [] all_images = [] for sample in prompts: # the model was trained on samples starting with <s> full_text = f"{self.tokenizer.bos_token}" # an image can either be an image object in the item or the url, everything else is a verbatim prompt text image_objects = [] last_was_image = False last_was_text = False for i, item in enumerate(sample): if i > 0: last_was_text = True if not last_was_image else False if isinstance(item, str): item = item.strip(" ") if is_image(item): image = self.image_processor.fetch_images(item) full_text += image_tokens(last_was_image) image_objects.append(image) last_was_image = True else: # we add end_of_utterance_token between each subsequent text prompts (but not at the last one!) if add_end_of_utterance_token and last_was_text: full_text += end_of_utterance_token full_text += item last_was_image = False else: # must be an image obj full_text += image_tokens(last_was_image) image_objects.append(item) last_was_image = True if add_eos_token: full_text += self.tokenizer.eos_token if debug is True: print(f"{full_text=}") image_objects = self.image_processor(image_objects, transform=transform) text_encoding = self.tokenizer( text=full_text, add_special_tokens=False, padding=padding, truncation=truncation, max_length=max_length, ) all_texts.append(text_encoding["input_ids"]) all_images.append(image_objects) max_seq_len = max(len(x) for x in all_texts) # max_num_images has to be at least 1 even when there are no images max_num_images = max(len(x) for x in all_images) max_num_images = max(1, max_num_images) at_least_one_image = sum(len(x) for x in all_images) > 0 output_input_ids = [] output_images = [] output_attention_masks = [] for text, images in zip(all_texts, all_images): padded_input_ids = [self.tokenizer.pad_token_id] * max_seq_len unpadded_seq_len = len(text) start = max_seq_len - unpadded_seq_len padded_input_ids[start:] = text[:max_seq_len] attention_mask = torch.zeros((max_seq_len,), dtype=torch.long) attention_mask[start:] = 1 image_count = padded_input_ids.count(self.image_token_id) local_max_num_images = min(image_count, max_num_images) current_images = images[:local_max_num_images] if len(current_images) > 0: padded_image_tensor = torch.zeros( max_num_images, *current_images.size()[1:] ) padded_image_tensor[: current_images.size(0)] = current_images else: padded_image_tensor = torch.zeros( max_num_images, *self.default_image_dims ) output_images.append(padded_image_tensor) output_input_ids.append(torch.tensor(padded_input_ids)) output_attention_masks.append(attention_mask) output_input_ids = torch.stack(output_input_ids) output_images = torch.stack(output_images) output_attention_masks = torch.stack(output_attention_masks) if at_least_one_image: image_attention_mask, _ = image_attention_mask_for_packed_input_ids( output_input_ids, self.tokenizer ) image_attention_mask = incremental_to_binary_attention_mask( image_attention_mask, num_classes=max_num_images ) else: # in full language mode we set the image mask to all-0s image_attention_mask = torch.zeros( output_input_ids.shape[0], output_input_ids.shape[1], 1, dtype=torch.bool, ) return BatchFeature( data={ "input_ids": output_input_ids, "attention_mask": output_attention_masks, "pixel_values": output_images, "image_attention_mask": image_attention_mask, } ) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_processing.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_processing.py", "repo_id": "text-generation-inference", "token_count": 8157 }
234
import torch import torch.distributed from opentelemetry import trace from transformers import AutoTokenizer from typing import Optional from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_rw_modeling import ( RWConfig, FlashRWForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class FlashRWSharded(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, use_medusa: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashRW is only available on GPU") tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = RWConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device, dtype, process_group=self.process_group, aliases={ "lm_head.weight": ["transformer.word_embeddings.weight"], "transformer.word_embeddings.weight": ["lm_head.weight"], }, ) config.quantize = quantize config.use_medusa = use_medusa if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = FlashRWForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(FlashRWSharded, self).__init__( model=model.to(device), tokenizer=tokenizer, num_layers=len(model.transformer.h), num_kv_heads=model.transformer.cache_size, head_size=model.transformer.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, )
text-generation-inference/server/text_generation_server/models/flash_rw.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/flash_rw.py", "repo_id": "text-generation-inference", "token_count": 1197 }
235
import torch import torch.distributed from typing import List, Optional, Tuple from transformers import ( AutoTokenizer, AutoConfig, ) from text_generation_server.models import Seq2SeqLM from text_generation_server.models.custom_modeling.t5_modeling import ( T5ForConditionalGeneration, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class T5Sharded(Seq2SeqLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, use_medusa: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, ) config.quantize = quantize config.use_medusa = use_medusa tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.bos_token_id = config.decoder_start_token_id torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, aliases={ "shared.weight": [ "encoder.embed_tokens.weight", "decoder.embed_tokens.weight", ] }, ) model = T5ForConditionalGeneration(config, weights) torch.distributed.barrier(group=self.process_group) super(Seq2SeqLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) def forward( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask: Optional, encoder_last_hidden_state: Optional, past_key_values: Optional = None, ) -> Tuple[ torch.Tensor, torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], ]: # Model Forward outputs, speculative_logits = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_last_hidden_state, past_key_values=past_key_values, use_cache=True, ) return ( outputs.logits, speculative_logits, outputs.encoder_last_hidden_state, outputs.past_key_values, )
text-generation-inference/server/text_generation_server/models/t5.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/t5.py", "repo_id": "text-generation-inference", "token_count": 1678 }
236
import time import os from datetime import timedelta from loguru import logger from pathlib import Path from typing import Optional, List from huggingface_hub import file_download, hf_api, HfApi, hf_hub_download from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE from huggingface_hub.utils import ( LocalEntryNotFoundError, EntryNotFoundError, RevisionNotFoundError, # noqa # Import here to ease try/except in other part of the lib ) WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None) HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"] def _cached_weight_files( model_id: str, revision: Optional[str], extension: str ) -> List[str]: """Guess weight files from the cached revision snapshot directory""" d = _get_cached_revision_directory(model_id, revision) if not d: return [] filenames = _weight_files_from_dir(d, extension) return filenames def _weight_hub_files_from_model_info( info: hf_api.ModelInfo, extension: str ) -> List[str]: return [ s.rfilename for s in info.siblings if s.rfilename.endswith(extension) and len(s.rfilename.split("/")) == 1 and "arguments" not in s.rfilename and "args" not in s.rfilename and "training" not in s.rfilename and "medusa_lm_head" not in s.rfilename ] def _weight_files_from_dir(d: Path, extension: str) -> List[str]: # os.walk: do not iterate, just scan for depth 1, not recursively # see _weight_hub_files_from_model_info, that's also what is # done there with the len(s.rfilename.split("/")) == 1 condition root, _, files = next(os.walk(str(d))) filenames = [ os.path.join(root, f) for f in files if f.endswith(extension) and "arguments" not in f and "args" not in f and "adapter" not in f and "training" not in f and "medusa_lm_head" not in f ] return filenames def _get_cached_revision_directory( model_id: str, revision: Optional[str] ) -> Optional[Path]: if revision is None: revision = "main" repo_cache = Path(HUGGINGFACE_HUB_CACHE) / Path( file_download.repo_folder_name(repo_id=model_id, repo_type="model") ) if not repo_cache.is_dir(): # No cache for this model return None refs_dir = repo_cache / "refs" snapshots_dir = repo_cache / "snapshots" # Resolve refs (for instance to convert main to the associated commit sha) if refs_dir.is_dir(): revision_file = refs_dir / revision if revision_file.exists(): with revision_file.open() as f: revision = f.read() # Check if revision folder exists if not snapshots_dir.exists(): return None cached_shas = os.listdir(snapshots_dir) if revision not in cached_shas: # No cache for this revision and we won't try to return a random revision return None return snapshots_dir / revision def weight_hub_files( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors" ) -> List[str]: """Get the weights filenames on the hub""" api = HfApi() if HF_HUB_OFFLINE: filenames = _cached_weight_files(model_id, revision, extension) else: # Online case, fetch model info from the Hub info = api.model_info(model_id, revision=revision) filenames = _weight_hub_files_from_model_info(info, extension) if not filenames: raise EntryNotFoundError( f"No {extension} weights found for model {model_id} and revision {revision}.", None, ) return filenames def try_to_load_from_cache( model_id: str, revision: Optional[str], filename: str ) -> Optional[Path]: """Try to load a file from the Hugging Face cache""" d = _get_cached_revision_directory(model_id, revision) if not d: return None # Check if file exists in cache cached_file = d / filename return cached_file if cached_file.is_file() else None def weight_files( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors" ) -> List[Path]: """Get the local files""" # Local model d = Path(model_id) if d.exists() and d.is_dir(): local_files = _weight_files_from_dir(d, extension) if not local_files: raise FileNotFoundError( f"No local weights found in {model_id} with extension {extension}" ) return [Path(f) for f in local_files] try: filenames = weight_hub_files(model_id, revision, extension) except EntryNotFoundError as e: if extension != ".safetensors": raise e # Try to see if there are pytorch weights pt_filenames = weight_hub_files(model_id, revision, extension=".bin") # Change pytorch extension to safetensors extension # It is possible that we have safetensors weights locally even though they are not on the # hub if we converted weights locally without pushing them filenames = [ f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames ] if WEIGHTS_CACHE_OVERRIDE is not None: files = [] for filename in filenames: p = Path(WEIGHTS_CACHE_OVERRIDE) / filename if not p.exists(): raise FileNotFoundError( f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}." ) files.append(p) return files files = [] for filename in filenames: cache_file = try_to_load_from_cache( model_id, revision=revision, filename=filename ) if cache_file is None: raise LocalEntryNotFoundError( f"File {filename} of model {model_id} not found in " f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. " f"Please run `text-generation-server download-weights {model_id}` first." ) files.append(cache_file) return files def download_weights( filenames: List[str], model_id: str, revision: Optional[str] = None ) -> List[Path]: """Download the safetensors files from the hub""" def download_file(fname, tries=5, backoff: int = 5): local_file = try_to_load_from_cache(model_id, revision, fname) if local_file is not None: logger.info(f"File {fname} already present in cache.") return Path(local_file) for idx in range(tries): try: logger.info(f"Download file: {fname}") stime = time.time() local_file = hf_hub_download( filename=fname, repo_id=model_id, revision=revision, local_files_only=HF_HUB_OFFLINE, ) logger.info( f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - stime))}." ) return Path(local_file) except Exception as e: if idx + 1 == tries: raise e logger.error(e) logger.info(f"Retrying in {backoff} seconds") time.sleep(backoff) logger.info(f"Retry {idx + 1}/{tries - 1}") # We do this instead of using tqdm because we want to parse the logs with the launcher start_time = time.time() files = [] for i, filename in enumerate(filenames): file = download_file(filename) elapsed = timedelta(seconds=int(time.time() - start_time)) remaining = len(filenames) - (i + 1) eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0 logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}") files.append(file) return files
text-generation-inference/server/text_generation_server/utils/hub.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/utils/hub.py", "repo_id": "text-generation-inference", "token_count": 3480 }
237
{ "name": "tokenizers-darwin-arm64", "version": "0.13.4-rc1", "os": [ "darwin" ], "cpu": [ "arm64" ], "main": "tokenizers.darwin-arm64.node", "files": [ "tokenizers.darwin-arm64.node" ], "description": "Tokenizers platform specific bindings", "keywords": [ "napi-rs", "NAPI", "N-API", "Rust", "node-addon", "node-addon-api" ], "license": "MIT", "engines": { "node": ">= 10" }, "publishConfig": { "registry": "https://registry.npmjs.org/", "access": "public" }, "repository": "tokenizers" }
tokenizers/bindings/node/npm/darwin-arm64/package.json/0
{ "file_path": "tokenizers/bindings/node/npm/darwin-arm64/package.json", "repo_id": "tokenizers", "token_count": 268 }
238
{ "name": "tokenizers-win32-arm64-msvc", "version": "0.13.4-rc1", "os": [ "win32" ], "cpu": [ "arm64" ], "main": "tokenizers.win32-arm64-msvc.node", "files": [ "tokenizers.win32-arm64-msvc.node" ], "description": "Tokenizers platform specific bindings", "keywords": [ "napi-rs", "NAPI", "N-API", "Rust", "node-addon", "node-addon-api" ], "license": "MIT", "engines": { "node": ">= 10" }, "publishConfig": { "registry": "https://registry.npmjs.org/", "access": "public" }, "repository": "tokenizers" }
tokenizers/bindings/node/npm/win32-arm64-msvc/package.json/0
{ "file_path": "tokenizers/bindings/node/npm/win32-arm64-msvc/package.json", "repo_id": "tokenizers", "token_count": 277 }
239
extern crate tokenizers as tk; use crate::models::Model; use napi::bindgen_prelude::*; use std::sync::{Arc, RwLock}; use tokenizers::models::bpe::{BpeBuilder, BPE}; use tokenizers::models::wordlevel::{WordLevel, WordLevelBuilder}; use tokenizers::models::wordpiece::{WordPiece, WordPieceBuilder}; pub struct BPEFromFilesTask { pub(crate) builder: Option<BpeBuilder>, } impl Task for BPEFromFilesTask { type Output = BPE; type JsValue = Model; fn compute(&mut self) -> Result<Self::Output> { self .builder .take() .ok_or(Error::from_reason("Empty builder".to_string()))? .build() .map_err(|e| Error::from_reason(format!("{}", e))) } fn resolve(&mut self, _env: Env, output: Self::Output) -> Result<Self::JsValue> { Ok(Model { model: Some(Arc::new(RwLock::new(output.into()))), }) } } pub struct WordPieceFromFilesTask { pub(crate) builder: Option<WordPieceBuilder>, } impl Task for WordPieceFromFilesTask { type Output = WordPiece; type JsValue = Model; fn compute(&mut self) -> Result<Self::Output> { self .builder .take() .ok_or(Error::from_reason("Empty builder".to_string()))? .build() .map_err(|e| Error::from_reason(format!("{}", e))) } fn resolve(&mut self, _env: Env, output: Self::Output) -> Result<Self::JsValue> { Ok(Model { model: Some(Arc::new(RwLock::new(output.into()))), }) } } pub struct WordLevelFromFilesTask { pub(crate) builder: Option<WordLevelBuilder>, } impl Task for WordLevelFromFilesTask { type Output = WordLevel; type JsValue = Model; fn compute(&mut self) -> Result<Self::Output> { self .builder .take() .ok_or(Error::from_reason("Empty builder".to_string()))? .build() .map_err(|e| Error::from_reason(format!("{}", e))) } fn resolve(&mut self, _env: Env, output: Self::Output) -> Result<Self::JsValue> { Ok(Model { model: Some(Arc::new(RwLock::new(output.into()))), }) } }
tokenizers/bindings/node/src/tasks/models.rs/0
{ "file_path": "tokenizers/bindings/node/src/tasks/models.rs", "repo_id": "tokenizers", "token_count": 800 }
240
from typing import List import jieba from tokenizers import NormalizedString, PreTokenizedString, Regex, Tokenizer from tokenizers.decoders import Decoder from tokenizers.models import BPE from tokenizers.normalizers import Normalizer from tokenizers.pre_tokenizers import PreTokenizer class JiebaPreTokenizer: def jieba_split(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]: splits = [] # we need to call `str(normalized_string)` because jieba expects a str, # not a NormalizedString for token, start, stop in jieba.tokenize(str(normalized_string)): splits.append(normalized_string[start:stop]) return splits # We can also easily do it in one line: # return [normalized_string[w[1] : w[2]] for w in jieba.tokenize(str(normalized_string))] def odd_number_split(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]: # Just an odd example... splits = [] last = 0 for i, char in enumerate(str(normalized_string)): if char.isnumeric() and int(char) % 2 == 1: splits.append(normalized_string[last:i]) last = i # Don't forget the last one splits.append(normalized_string[last:]) return splits def pre_tokenize(self, pretok: PreTokenizedString): # Let's call split on the PreTokenizedString to split using `self.jieba_split` pretok.split(self.jieba_split) # Here we can call `pretok.split` multiple times if we want to apply # different algorithm, but we generally just need to call it once. pretok.split(self.odd_number_split) class CustomDecoder: def decode(self, tokens: List[str]) -> str: return "".join(tokens) class CustomNormalizer: def normalize(self, normalized: NormalizedString): # Most of these can be replaced by a `Sequence` combining some provided Normalizer, # (ie Sequence([ NFKC(), Replace(Regex("\s+"), " "), Lowercase() ]) # and it should be the prefered way. That being said, here is an example of the kind # of things that can be done here: normalized.nfkc() normalized.filter(lambda char: not char.isnumeric()) normalized.replace(Regex("\s+"), " ") normalized.lowercase() # This section shows how to attach these custom components to the Tokenizer tok = Tokenizer(BPE()) tok.normalizer = Normalizer.custom(CustomNormalizer()) tok.pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer()) tok.decoder = Decoder.custom(CustomDecoder()) input = "永和服装饰品有限公司" print("PreTokenize:", input) print(tok.pre_tokenizer.pre_tokenize_str(input)) # [('永和', (0, 2)), ('服装', (2, 4)), ('饰品', (4, 6)), ('有限公司', (6, 10))] input = "112233" print("PreTokenize:", input) print(tok.pre_tokenizer.pre_tokenize_str(input)) # [('1', (0, 1)), ('122', (1, 4)), ('3', (4, 5)), ('3', (5, 6))] input = "1234 ℌ𝔢𝔩𝔩𝔬 𝔱𝔥𝔢𝔯𝔢 𝓂𝓎 𝒹ℯ𝒶𝓇 𝕕𝕖𝕒𝕣 𝕗𝕣𝕚𝕖𝕟𝕕!" print("Normalize:", input) print(tok.normalizer.normalize_str(input)) # " hello there my dear dear friend!"
tokenizers/bindings/python/examples/custom_components.py/0
{ "file_path": "tokenizers/bindings/python/examples/custom_components.py", "repo_id": "tokenizers", "token_count": 1293 }
241
import json import os from typing import Iterator, List, Optional, Union, Tuple from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.models import Unigram from .base_tokenizer import BaseTokenizer class SentencePieceUnigramTokenizer(BaseTokenizer): """SentencePiece Unigram Tokenizer Represents the Unigram algorithm, with the pretokenization used by SentencePiece """ def __init__( self, vocab: Optional[List[Tuple[str, float]]] = None, replacement: str = "▁", add_prefix_space: bool = True, ): if vocab is not None: # Let Unigram(..) fail if only one of them is None tokenizer = Tokenizer(Unigram(vocab)) else: tokenizer = Tokenizer(Unigram()) tokenizer.normalizer = normalizers.Sequence( [normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " ")] ) tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) parameters = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(tokenizer, parameters) def train( self, files: Union[str, List[str]], vocab_size: int = 8000, show_progress: bool = True, special_tokens: Optional[List[Union[str, AddedToken]]] = None, initial_alphabet: Optional[List[str]] = None, unk_token: Optional[str] = None, ): """ Train the model using the given files Args: files (:obj:`List[str]`): A list of path to the files that we should use for training vocab_size (:obj:`int`): The size of the final vocabulary, including all tokens and alphabet. show_progress (:obj:`bool`): Whether to show progress bars while training. special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): A list of special tokens the model should know of. initial_alphabet (:obj:`List[str]`, `optional`): A list of characters to include in the initial alphabet, even if not seen in the training dataset. If the strings contain more than one character, only the first one is kept. unk_token (:obj:`str`, `optional`): The unknown token to be used by the model. """ if special_tokens is None: special_tokens = [] if initial_alphabet is None: initial_alphabet = [] trainer = trainers.UnigramTrainer( vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token, ) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator( self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int = 8000, show_progress: bool = True, special_tokens: Optional[List[Union[str, AddedToken]]] = None, initial_alphabet: Optional[List[str]] = None, unk_token: Optional[str] = None, length: Optional[int] = None, ): """ Train the model using the given iterator Args: iterator (:obj:`Union[Iterator[str], Iterator[Iterator[str]]]`): Any iterator over strings or list of strings vocab_size (:obj:`int`): The size of the final vocabulary, including all tokens and alphabet. show_progress (:obj:`bool`): Whether to show progress bars while training. special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): A list of special tokens the model should know of. initial_alphabet (:obj:`List[str]`, `optional`): A list of characters to include in the initial alphabet, even if not seen in the training dataset. If the strings contain more than one character, only the first one is kept. unk_token (:obj:`str`, `optional`): The unknown token to be used by the model. length (:obj:`int`, `optional`): The total number of sequences in the iterator. This is used to provide meaningful progress tracking """ if special_tokens is None: special_tokens = [] if initial_alphabet is None: initial_alphabet = [] trainer = trainers.UnigramTrainer( vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token, ) self._tokenizer.train_from_iterator( iterator, trainer=trainer, length=length, ) @staticmethod def from_spm(filename: str): try: import sys sys.path.append(".") import sentencepiece_model_pb2 as model except Exception: raise Exception( "You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required." ) m = model.ModelProto() m.ParseFromString(open(filename, "rb").read()) precompiled_charsmap = m.normalizer_spec.precompiled_charsmap vocab = [(piece.piece, piece.score) for piece in m.pieces] unk_id = m.trainer_spec.unk_id model_type = m.trainer_spec.model_type byte_fallback = m.trainer_spec.byte_fallback if model_type != 1: raise Exception( "You're trying to run a `Unigram` model but you're file was trained with a different algorithm" ) replacement = "▁" add_prefix_space = True tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback)) if precompiled_charsmap: tokenizer.normalizer = normalizers.Sequence( [ normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(" {2,}"), " "), ] ) else: tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")]) tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) parameters = { "model": "SentencePieceUnigram", } obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters) BaseTokenizer.__init__(obj, tokenizer, parameters) return obj
tokenizers/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py/0
{ "file_path": "tokenizers/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py", "repo_id": "tokenizers", "token_count": 3351 }
242
import transformers from tokenizers.implementations import SentencePieceUnigramTokenizer, BaseTokenizer from tokenizers.processors import TemplateProcessing from tokenizers.models import Unigram, BPE from tokenizers import decoders from tokenizers import Tokenizer, Regex from tokenizers.normalizers import ( StripAccents, NFKD, Lowercase, Sequence, BertNormalizer, Precompiled, Replace, ) from tokenizers.pre_tokenizers import ( Digits, WhitespaceSplit, Metaspace, Sequence as PSequence, ) import json import unicodedata import sys import os import datetime import argparse sys.path.append(".") from spm_parity_check import check_details from sentencepiece_extractor import SentencePieceExtractor def check_number_comma(piece: str) -> bool: return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit() def get_proto(filename: str): try: import sys sys.path.append(".") import sentencepiece_model_pb2 as model except Exception: raise Exception( "You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required." ) m = model.ModelProto() m.ParseFromString(open(filename, "rb").read()) return m class Converter: def __init__(self, original_tokenizer): self.original_tokenizer = original_tokenizer def converted(self) -> Tokenizer: raise NotImplementedError() class SpmConverter(Converter): def __init__(self, *args): super().__init__(*args) self.proto = get_proto(self.original_tokenizer.vocab_file) def vocab(self, proto): return [(piece.piece, piece.score) for piece in proto.pieces] def unk_id(self, proto): return proto.trainer_spec.unk_id def tokenizer(self, proto): model_type = proto.trainer_spec.model_type vocab = self.vocab(proto) unk_id = self.unk_id(proto) if model_type == 1: tokenizer = Tokenizer(Unigram(vocab, unk_id)) elif model_type == 2: vocab, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract() tokenizer = Tokenizer(BPE(vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True)) else: raise Exception( "You're trying to run a `Unigram` model but you're file was trained with a different algorithm" ) return tokenizer def normalizer(self, proto): precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap return Sequence([Precompiled(precompiled_charsmap), Replace(Regex(" {2,}"), " ")]) def post_processor(self, tokenizer): return None def converted(self): tokenizer = self.tokenizer(self.proto) # Tokenizer assemble tokenizer.normalizer = self.normalizer(self.proto) replacement = "▁" add_prefix_space = True tokenizer.pre_tokenizer = Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) post_processor = self.post_processor(tokenizer) if post_processor: tokenizer.post_processor = post_processor # TODO what parameters should we give ? parameters = {} return BaseTokenizer(tokenizer, parameters) class AlbertConverter(SpmConverter): def vocab(self, proto): return [ (piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100) for piece in proto.pieces ] def normalizer(self, proto): normalizers = [Replace("``", '"'), Replace("''", '"')] if not self.original_tokenizer.keep_accents: normalizers.append(NFKD()) normalizers.append(StripAccents()) if self.original_tokenizer.do_lower_case: normalizers.append(Lowercase()) precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap normalizers.append(Precompiled(precompiled_charsmap)) normalizers.append(Replace(Regex(" {2,}"), " ")) return Sequence(normalizers) def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["[CLS]", "$0", "[SEP]"], seq_b=["$1", "[SEP]"], special_tokens=[ ("[CLS]", tokenizer.get_vocab()["[CLS]"]), ("[SEP]", tokenizer.get_vocab()["[SEP]"]), ], ) class CamembertConverter(SpmConverter): def vocab(self, proto): vocab = [ ("<s>NOTUSED", 0.0), ("<pad>", 0.0), ("</s>NOTUSED", 0.0), ("<unk>", 0.0), ] vocab += [(piece.piece, piece.score) for piece in proto.pieces] return vocab def unk_id(self, proto): # See vocab unk position return 3 def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["<s>", "$0", "</s>"], seq_b=["$1", "</s>"], special_tokens=[ ("<s>", tokenizer.get_vocab()["<s>"]), ("</s>", tokenizer.get_vocab()["</s>"]), ], ) class MBartConverter(SpmConverter): def vocab(self, proto): vocab = [ ("<s>", 0.0), ("<pad>", 0.0), ("</s>", 0.0), ("<unk>", 0.0), ] vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] vocab += [ ("ar_AR", 0.0), ("cs_CZ", 0.0), ("de_DE", 0.0), ("en_XX", 0.0), ("es_XX", 0.0), ("et_EE", 0.0), ("fi_FI", 0.0), ("fr_XX", 0.0), ("gu_IN", 0.0), ("hi_IN", 0.0), ("it_IT", 0.0), ("ja_XX", 0.0), ("kk_KZ", 0.0), ("ko_KR", 0.0), ("lt_LT", 0.0), ("lv_LV", 0.0), ("my_MM", 0.0), ("ne_NP", 0.0), ("nl_XX", 0.0), ("ro_RO", 0.0), ("ru_RU", 0.0), ("si_LK", 0.0), ("tr_TR", 0.0), ("vi_VN", 0.0), ("zh_CN", 0.0), ] return vocab def unk_id(self, proto): return 3 def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["$0", "</s>", "en_XX"], seq_b=["$1", "</s>"], special_tokens=[ ("en_XX", tokenizer.get_vocab()["en_XX"]), ("</s>", tokenizer.get_vocab()["</s>"]), ], ) class XLMRobertaConverter(SpmConverter): def vocab(self, proto): vocab = [ ("<s>", 0.0), ("<pad>", 0.0), ("</s>", 0.0), ("<unk>", 0.0), ] vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] return vocab def unk_id(self, proto): unk_id = 3 return unk_id def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["<s>", "$0", "</s>"], seq_b=["$1", "</s>"], special_tokens=[ ("<s>", tokenizer.get_vocab()["<s>"]), ("</s>", tokenizer.get_vocab()["</s>"]), ], ) class XLNetConverter(SpmConverter): def vocab(self, proto): return [ (piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100) for piece in proto.pieces ] def normalizer(self, proto): normalizers = [Replace("``", '"'), Replace("''", '"')] if not self.original_tokenizer.keep_accents: normalizers.append(NFKD()) normalizers.append(StripAccents()) if self.original_tokenizer.do_lower_case: normalizers.append(Lowercase()) precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap normalizers.append(Precompiled(precompiled_charsmap)) normalizers.append(Replace(Regex(" {2,}"), " ")) return Sequence(normalizers) def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["$0", "<sep>", "<cls>"], seq_b=["$1", "<sep>"], special_tokens=[ ("<sep>", tokenizer.get_vocab()["<sep>"]), ("<cls>", tokenizer.get_vocab()["<cls>"]), ], ) class ReformerConverter(SpmConverter): pass class PegasusConverter(SpmConverter): offset = 103 def vocab(self, proto): vocab = [ (self.original_tokenizer.pad_token, 0), (self.original_tokenizer.eos_token, 0), ] vocab += [(f"unk_{i}", -100) for i in range(2, 2 + self.offset)] vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]] return vocab def unk_id(self, proto): return proto.trainer_spec.unk_id + self.offset def post_processor(self, tokenizer): eos = self.original_tokenizer.eos_token return TemplateProcessing( seq_a=["$0", eos], seq_b=["$1", eos], special_tokens=[(eos, tokenizer.get_vocab()[eos])], ) class T5Converter(SpmConverter): def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["$0", "</s>"], seq_b=["$1", "</s>"], special_tokens=[("</s>", tokenizer.get_vocab()["</s>"])], ) CONVERTERS = { "AlbertTokenizer": AlbertConverter, "CamembertTokenizer": CamembertConverter, "XLMRobertaTokenizer": XLMRobertaConverter, "MBartTokenizer": MBartConverter, "XLNetTokenizer": XLNetConverter, "ReformerTokenizer": ReformerConverter, "PegasusTokenizer": PegasusConverter, "T5Tokenizer": T5Converter, } def check(pretrained, filename): transformer_tokenizer = transformers.AutoTokenizer.from_pretrained(pretrained) converter_class = CONVERTERS[transformer_tokenizer.__class__.__name__] tokenizer = converter_class(transformer_tokenizer).converted() now = datetime.datetime.now trans_total_time = datetime.timedelta(seconds=0) tok_total_time = datetime.timedelta(seconds=0) with open(filename, "r") as f: for i, line in enumerate(f): line = line.strip() start = now() ids = transformer_tokenizer.encode(line) trans = now() tok_ids = tokenizer.encode(line).ids tok = now() trans_total_time += trans - start tok_total_time += tok - trans if ids != tok_ids: if check_details(line, ids, tok_ids, transformer_tokenizer, tokenizer): continue assert ids == tok_ids, f"Error in line {i}: {line} {ids} != {tok_ids}" tokenizer.save(f"{pretrained.replace('/', '-')}.json") return ("OK", trans_total_time / tok_total_time) def main(): pretraineds = [ "albert-base-v1", "albert-large-v1", "albert-xlarge-v1", "albert-xxlarge-v1", "albert-base-v2", "albert-large-v2", "albert-xlarge-v2", "albert-xxlarge-v2", "camembert-base", "xlm-roberta-base", "xlm-roberta-large", "xlm-roberta-large-finetuned-conll02-dutch", "xlm-roberta-large-finetuned-conll02-spanish", "xlm-roberta-large-finetuned-conll03-english", "xlm-roberta-large-finetuned-conll03-german", "facebook/mbart-large-en-ro", "facebook/mbart-large-cc25", "xlnet-base-cased", "xlnet-large-cased", "google/reformer-crime-and-punishment", "t5-small", "google/pegasus-large", ] parser = argparse.ArgumentParser() parser.add_argument( "--filename", required=True, type=str, help="The filename that we are going to encode in both versions to check that conversion worked", ) parser.add_argument( "--models", type=lambda s: s.split(","), default=pretraineds, help=f"The pretrained tokenizers you want to test agains, (default: {pretraineds})", ) args = parser.parse_args() print(args.filename) model_len = 50 status_len = 6 speedup_len = 8 print(f"|{'Model':^{model_len}}|{'Status':^{status_len}}|{'Speedup':^{speedup_len}}|") print(f"|{'-'*model_len}|{'-'*status_len}|{'-'*speedup_len}|") for pretrained in args.models: status, speedup = check(pretrained, args.filename) print(f"|{pretrained:<{model_len}}|{status:^{status_len}}|{speedup:^{speedup_len - 1}.2f}x|") if __name__ == "__main__": main()
tokenizers/bindings/python/scripts/convert.py/0
{ "file_path": "tokenizers/bindings/python/scripts/convert.py", "repo_id": "tokenizers", "token_count": 6302 }
243
use pyo3::exceptions; use pyo3::prelude::*; use pyo3::types::*; use std::marker::PhantomData; use std::sync::{Arc, Mutex}; mod iterators; mod normalization; mod pretokenization; mod regex; pub use iterators::*; pub use normalization::*; pub use pretokenization::*; pub use regex::*; // PyChar // This type is a temporary hack to accept `char` as argument // To be removed once https://github.com/PyO3/pyo3/pull/1282 has been released pub struct PyChar(pub char); impl FromPyObject<'_> for PyChar { fn extract(obj: &PyAny) -> PyResult<Self> { let s = <PyString as PyTryFrom<'_>>::try_from(obj)?.to_str()?; let mut iter = s.chars(); if let (Some(ch), None) = (iter.next(), iter.next()) { Ok(Self(ch)) } else { Err(exceptions::PyValueError::new_err( "expected a string of length 1", )) } } } // RefMut utils pub trait DestroyPtr { fn destroy(&mut self); } pub struct RefMutGuard<'r, T: DestroyPtr + Clone> { content: T, r: PhantomData<&'r mut T>, } impl<T: DestroyPtr + Clone> RefMutGuard<'_, T> { pub fn new(content: T) -> Self { Self { content, r: PhantomData, } } pub fn get(&self) -> T { self.content.clone() } } impl<T: DestroyPtr + Clone> Drop for RefMutGuard<'_, T> { fn drop(&mut self) { self.content.destroy() } } #[derive(Clone)] pub struct RefMutContainer<T> { inner: Arc<Mutex<Option<*mut T>>>, } impl<T> RefMutContainer<T> { pub fn new(content: &mut T) -> Self { Self { inner: Arc::new(Mutex::new(Some(content))), } } pub fn map<F: FnOnce(&T) -> U, U>(&self, f: F) -> Option<U> { let lock = self.inner.lock().unwrap(); let ptr = lock.as_ref()?; Some(f(unsafe { ptr.as_ref().unwrap() })) } pub fn map_mut<F: FnOnce(&mut T) -> U, U>(&mut self, f: F) -> Option<U> { let lock = self.inner.lock().unwrap(); let ptr = lock.as_ref()?; Some(f(unsafe { ptr.as_mut().unwrap() })) } } impl<T> DestroyPtr for RefMutContainer<T> { fn destroy(&mut self) { self.inner.lock().unwrap().take(); } } unsafe impl<T: Send> Send for RefMutContainer<T> {} unsafe impl<T: Sync> Sync for RefMutContainer<T> {}
tokenizers/bindings/python/src/utils/mod.rs/0
{ "file_path": "tokenizers/bindings/python/src/utils/mod.rs", "repo_id": "tokenizers", "token_count": 1057 }
244
# Decoders <tokenizerslangcontent> <python> ## BPEDecoder [[autodoc]] tokenizers.decoders.BPEDecoder ## ByteLevel [[autodoc]] tokenizers.decoders.ByteLevel ## CTC [[autodoc]] tokenizers.decoders.CTC ## Metaspace [[autodoc]] tokenizers.decoders.Metaspace ## WordPiece [[autodoc]] tokenizers.decoders.WordPiece </python> <rust> The Rust API Reference is available directly on the [Docs.rs](https://docs.rs/tokenizers/latest/tokenizers/) website. </rust> <node> The node API has not been documented yet. </node> </tokenizerslangcontent>
tokenizers/docs/source-doc-builder/api/decoders.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/api/decoders.mdx", "repo_id": "tokenizers", "token_count": 197 }
245
# Training from memory In the [Quicktour](quicktour), we saw how to build and train a tokenizer using text files, but we can actually use any Python Iterator. In this section we'll see a few different ways of training our tokenizer. For all the examples listed below, we'll use the same [`~tokenizers.Tokenizer`] and [`~tokenizers.trainers.Trainer`], built as following: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START init_tokenizer_trainer", "end-before": "END init_tokenizer_trainer", "dedent": 8} </literalinclude> This tokenizer is based on the [`~tokenizers.models.Unigram`] model. It takes care of normalizing the input using the NFKC Unicode normalization method, and uses a [`~tokenizers.pre_tokenizers.ByteLevel`] pre-tokenizer with the corresponding decoder. For more information on the components used here, you can check [here](components). ## The most basic way As you probably guessed already, the easiest way to train our tokenizer is by using a `List`{.interpreted-text role="obj"}: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START train_basic", "end-before": "END train_basic", "dedent": 8} </literalinclude> Easy, right? You can use anything working as an iterator here, be it a `List`{.interpreted-text role="obj"}, `Tuple`{.interpreted-text role="obj"}, or a `np.Array`{.interpreted-text role="obj"}. Anything works as long as it provides strings. ## Using the 🤗 Datasets library An awesome way to access one of the many datasets that exist out there is by using the 🤗 Datasets library. For more information about it, you should check [the official documentation here](https://huggingface.co/docs/datasets/). Let's start by loading our dataset: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START load_dataset", "end-before": "END load_dataset", "dedent": 8} </literalinclude> The next step is to build an iterator over this dataset. The easiest way to do this is probably by using a generator: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START def_batch_iterator", "end-before": "END def_batch_iterator", "dedent": 8} </literalinclude> As you can see here, for improved efficiency we can actually provide a batch of examples used to train, instead of iterating over them one by one. By doing so, we can expect performances very similar to those we got while training directly from files. With our iterator ready, we just need to launch the training. In order to improve the look of our progress bars, we can specify the total length of the dataset: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START train_datasets", "end-before": "END train_datasets", "dedent": 8} </literalinclude> And that's it! ## Using gzip files Since gzip files in Python can be used as iterators, it is extremely simple to train on such files: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START single_gzip", "end-before": "END single_gzip", "dedent": 8} </literalinclude> Now if we wanted to train from multiple gzip files, it wouldn't be much harder: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START multi_gzip", "end-before": "END multi_gzip", "dedent": 8} </literalinclude> And voilà!
tokenizers/docs/source-doc-builder/training_from_memory.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/training_from_memory.mdx", "repo_id": "tokenizers", "token_count": 1199 }
246
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("./_ext")) sys.path.insert(0, os.path.abspath(".")) # -- Project information ----------------------------------------------------- project = "tokenizers" copyright = "2020, huggingface" author = "huggingface" # The full version, including alpha/beta/rc tags release = "" # -- Custom information ------------------------------------------------------ # The possible values for languages (used by `_ext/entities`) languages = ["node", "rust", "python"] # This defines the version used to generate links to docs.rs rust_version = "latest" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.napoleon", "entities", "rust_doc", "toctree_tags"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {"analytics_id": "UA-83738774-2"} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] def setup(app): for language in languages: if not tags.has(language): exclude_patterns.append(f"tutorials/{language}/*") app.add_css_file("css/huggingface.css") app.add_css_file("css/code-snippets.css") app.add_js_file("js/custom.js")
tokenizers/docs/source/conf.py/0
{ "file_path": "tokenizers/docs/source/conf.py", "repo_id": "tokenizers", "token_count": 781 }
247
#[macro_use] extern crate criterion; mod common; use std::fs::File; use std::io::{BufRead, BufReader}; use std::path::Path; use criterion::Criterion; use tokenizers::models::wordpiece::{WordPiece, WordPieceTrainerBuilder}; use tokenizers::normalizers::{BertNormalizer, NormalizerWrapper}; use tokenizers::pre_tokenizers::bert::BertPreTokenizer; use tokenizers::processors::bert::BertProcessing; use tokenizers::{decoders, EncodeInput, Model, TokenizerImpl}; use common::{iter_bench_encode, iter_bench_encode_batch, iter_bench_train}; use tokenizers::decoders::DecoderWrapper; use tokenizers::pre_tokenizers::whitespace::Whitespace; use tokenizers::processors::PostProcessorWrapper; static BATCH_SIZE: usize = 1_000; type BertTokenizer = TokenizerImpl< WordPiece, BertNormalizer, BertPreTokenizer, BertProcessing, decoders::wordpiece::WordPiece, >; /// Resembling the BertTokenizer implementation from the Python bindings. fn create_bert_tokenizer(wp: WordPiece) -> BertTokenizer { let sep_id = *wp.get_vocab().get("[SEP]").unwrap(); let cls_id = *wp.get_vocab().get("[CLS]").unwrap(); let mut tokenizer = TokenizerImpl::new(wp); tokenizer.with_pre_tokenizer(BertPreTokenizer); tokenizer.with_normalizer(BertNormalizer::default()); tokenizer.with_decoder(decoders::wordpiece::WordPiece::default()); tokenizer.with_post_processor(BertProcessing::new( ("[SEP]".to_string(), sep_id), ("[CLS]".to_string(), cls_id), )); tokenizer } pub fn bench_bert(c: &mut Criterion) { let wp = WordPiece::from_file("data/bert-base-uncased-vocab.txt") .build() .unwrap(); let tokenizer = create_bert_tokenizer(wp); let mut lines: Vec<EncodeInput> = vec![]; let mut batches: Vec<Vec<EncodeInput>> = vec![vec![]]; for line in BufReader::new(File::open(Path::new("data/big.txt")).unwrap()).lines() { let line: EncodeInput = line.unwrap().into(); lines.push(line.clone()); if batches.last().unwrap().len() >= BATCH_SIZE { batches.push(vec![]); } batches.last_mut().unwrap().push(line); } c.bench_function("WordPiece BERT encode", |b| { b.iter_custom(|iters| iter_bench_encode(iters, &tokenizer, &lines)) }); c.bench_function("WordPiece BERT encode batch", |b| { b.iter_custom(|iters| iter_bench_encode_batch(iters, &tokenizer, &batches)) }); } fn bench_train(c: &mut Criterion) { let mut trainer = WordPieceTrainerBuilder::default() .show_progress(false) .build(); type Tok = TokenizerImpl< WordPiece, NormalizerWrapper, Whitespace, PostProcessorWrapper, DecoderWrapper, >; let mut tokenizer = Tok::new(WordPiece::default()); tokenizer.with_pre_tokenizer(Whitespace {}); c.bench_function("WordPiece Train vocabulary (small)", |b| { b.iter_custom(|iters| { iter_bench_train( iters, &mut tokenizer, &mut trainer, vec!["data/small.txt".to_string()], ) }) }); let mut tokenizer = Tok::new(WordPiece::default()); tokenizer.with_pre_tokenizer(Whitespace {}); c.bench_function("WordPiece Train vocabulary (big)", |b| { b.iter_custom(|iters| { iter_bench_train( iters, &mut tokenizer, &mut trainer, vec!["data/big.txt".to_string()], ) }) }); } criterion_group! { name = bert_benches; config = Criterion::default().sample_size(20); targets = bench_bert } criterion_group! { name = benches_train; config = Criterion::default().sample_size(10); targets = bench_train } criterion_main!(bert_benches, benches_train);
tokenizers/tokenizers/benches/bert_benchmark.rs/0
{ "file_path": "tokenizers/tokenizers/benches/bert_benchmark.rs", "repo_id": "tokenizers", "token_count": 1642 }
248
Copyright (c) [year] [name] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
tokenizers/tokenizers/examples/unstable_wasm/www/LICENSE-MIT/0
{ "file_path": "tokenizers/tokenizers/examples/unstable_wasm/www/LICENSE-MIT", "repo_id": "tokenizers", "token_count": 275 }
249
use crate::tokenizer::{Decoder, Result}; use serde::{Deserialize, Serialize}; #[derive(Deserialize, Clone, Debug, Serialize)] /// The WordPiece decoder takes care of decoding a list of wordpiece tokens /// back into a readable string. #[serde(tag = "type")] #[non_exhaustive] pub struct WordPiece { /// The prefix to be used for continuing subwords pub prefix: String, /// Whether to cleanup some tokenization artifacts (spaces before punctuation, ...) pub cleanup: bool, } impl WordPiece { pub fn new(prefix: String, cleanup: bool) -> Self { Self { prefix, cleanup } } } impl Default for WordPiece { fn default() -> Self { Self { prefix: "##".to_owned(), cleanup: true, } } } pub fn cleanup(dirty_input: &str) -> String { dirty_input .replace(" .", ".") .replace(" ?", "?") .replace(" !", "!") .replace(" ,", ",") .replace(" ' ", "'") .replace(" n't", "n't") .replace(" 'm", "'m") .replace(" do not", " don't") .replace(" 's", "'s") .replace(" 've", "'ve") .replace(" 're", "'re") } impl Decoder for WordPiece { fn decode_chain(&self, mut tokens: Vec<String>) -> Result<Vec<String>> { tokens .iter_mut() .enumerate() .map(|(i, token)| { if i != 0 { if token.starts_with(&self.prefix) { *token = token.replacen(&self.prefix, "", 1); } else { *token = format!(" {}", token); } } if self.cleanup { *token = cleanup(token); } Ok(token.to_string()) }) .collect::<Result<_>>() } } #[cfg(test)] mod tests { use super::*; #[test] fn wordpiece_decoder() { let decoder = WordPiece::new("##".to_string(), false); assert_eq!( decoder .decode(vec![ "##uelo".to_string(), "Ara".to_string(), "##új".to_string(), "##o".to_string(), "No".to_string(), "##guera".to_string() ]) .unwrap(), "##uelo Araújo Noguera" ); } }
tokenizers/tokenizers/src/decoders/wordpiece.rs/0
{ "file_path": "tokenizers/tokenizers/src/decoders/wordpiece.rs", "repo_id": "tokenizers", "token_count": 1275 }
250
use super::WordLevel; use crate::utils::parallelism::*; use crate::{AddedToken, Result, Trainer}; use serde::{Deserialize, Serialize}; use std::cmp::Ordering; use std::collections::HashMap; #[non_exhaustive] #[derive(Debug, Clone, Builder, Serialize, Deserialize)] pub struct WordLevelTrainer { /// The minimum frequency a word must have to be part of the vocabulary #[builder(default = "0")] pub min_frequency: u64, /// The target vocabulary size #[builder(default = "30_000")] pub vocab_size: usize, /// Whether to show progress while training #[builder(default = "true")] pub show_progress: bool, /// A list of special tokens that the model should know of #[builder(default)] pub special_tokens: Vec<AddedToken>, #[builder(default, private)] words: HashMap<String, u64>, } impl Default for WordLevelTrainer { fn default() -> Self { Self::builder().build().unwrap() } } impl WordLevelTrainer { pub fn builder() -> WordLevelTrainerBuilder { WordLevelTrainerBuilder::default() } fn do_train( &self, word_counts: &HashMap<String, u64>, model: &mut WordLevel, ) -> Result<Vec<AddedToken>> { let mut ordered_counts = word_counts.iter().collect::<Vec<_>>(); //sort the word counts first by inverse counts and then by word, in order //to keep the sorting deterministic in case of equal counts let cmp = |l: &(&String, &u64), r: &(&String, &u64)| -> Ordering { let count_comp: Ordering = l.1.cmp(r.1); if count_comp != Ordering::Equal { return count_comp.reverse(); } l.0.cmp(r.0) }; ordered_counts.sort_by(cmp); let word_level = WordLevel::builder() .vocab( self.special_tokens .iter() .map(|token| token.content.clone()) .chain( ordered_counts .into_iter() .filter(|(_, n)| **n >= self.min_frequency) .map(|(w, _)| w.to_owned()), ) .take(self.vocab_size) .enumerate() .map(|(i, w)| (w, i as u32)) .collect(), ) .build()?; // Transfer the vocab model.vocab = word_level.vocab; model.vocab_r = word_level.vocab_r; Ok(self.special_tokens.clone()) } } impl Trainer for WordLevelTrainer { type Model = WordLevel; /// Train a WordLevel model fn train(&self, model: &mut WordLevel) -> Result<Vec<AddedToken>> { self.do_train(&self.words, model) } /// Whether we should show progress fn should_show_progress(&self) -> bool { self.show_progress } fn feed<I, S, F>(&mut self, iterator: I, process: F) -> Result<()> where I: Iterator<Item = S> + Send, S: AsRef<str> + Send, F: Fn(&str) -> Result<Vec<String>> + Sync, { let words: Result<HashMap<String, u64>> = iterator .maybe_par_bridge() .map(|sequence| { let words = process(sequence.as_ref())?; let mut map = HashMap::new(); for word in words { map.entry(word).and_modify(|c| *c += 1).or_insert(1); } Ok(map) }) .reduce( || Ok(HashMap::new()), |acc, ws| { let mut acc = acc?; for (k, v) in ws? { acc.entry(k).and_modify(|c| *c += v).or_insert(v); } Ok(acc) }, ); self.words = words?; Ok(()) } } #[cfg(test)] mod tests { use super::*; #[test] fn test_train() { let word_counts: HashMap<String, u64> = [ ("the".into(), 25), ("roses".into(), 22), ("are".into(), 24), ("red".into(), 12), ("voilets".into(), 10), ("blue".into(), 16), ] .iter() .cloned() .collect(); let mut trainer = WordLevelTrainer { vocab_size: 5, ..Default::default() }; let mut model = WordLevel::default(); trainer.do_train(&word_counts, &mut model).unwrap(); let expected_vocab: HashMap<String, u32> = [ ("the".into(), 0), ("are".into(), 1), ("roses".into(), 2), ("blue".into(), 3), ("red".into(), 4), ] .iter() .cloned() .collect(); assert_eq!(model.vocab, expected_vocab); // If we specify a min_frequency trainer.min_frequency = 15; let mut model = WordLevel::default(); trainer.do_train(&word_counts, &mut model).unwrap(); let expected_vocab: HashMap<String, u32> = [ ("the".into(), 0), ("are".into(), 1), ("roses".into(), 2), ("blue".into(), 3), ] .iter() .cloned() .collect(); assert_eq!(model.vocab, expected_vocab); } }
tokenizers/tokenizers/src/models/wordlevel/trainer.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/wordlevel/trainer.rs", "repo_id": "tokenizers", "token_count": 2735 }
251
use crate::tokenizer::{Decoder, PreTokenizedString, PreTokenizer, Result, SplitDelimiterBehavior}; use serde::{Deserialize, Deserializer, Serialize}; /// Enum representing options for the metaspace prepending scheme. #[derive(Debug, Clone, PartialEq, Serialize, Eq, Deserialize, Copy)] #[serde(rename_all = "snake_case")] pub enum PrependScheme { /// Specifies that the scheme should be prepended only once, on the first split. First, /// Specifies that the space should not be prepended. Never, /// Specifies that the scheme should always be prepended. Always, } #[derive(Debug, Clone, PartialEq, Serialize, Eq)] /// Replaces all the whitespaces by the provided meta character and then /// splits on this character #[serde(tag = "type")] pub struct Metaspace { replacement: char, pub add_prefix_space: bool, pub prepend_scheme: PrependScheme, #[serde(skip)] str_rep: String, } impl<'de> Deserialize<'de> for Metaspace { fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error> where D: Deserializer<'de>, { #[derive(Deserialize)] enum Type { Metaspace, } fn default_prepend_scheme_value() -> PrependScheme { PrependScheme::Always } #[derive(Deserialize)] pub struct MetaspaceHelper { #[serde(rename = "type")] _type: Type, replacement: char, pub add_prefix_space: bool, #[serde(default = "default_prepend_scheme_value")] pub prepend_scheme: PrependScheme, #[serde(skip, rename = "str_rep")] _str_rep: String, } let helper = MetaspaceHelper::deserialize(deserializer)?; let instance = Self::new_with_prepend_scheme( helper.replacement, helper.add_prefix_space, helper.prepend_scheme, ); Ok(instance) } } impl Metaspace { pub fn new(replacement: char, add_prefix_space: bool) -> Self { Self::new_with_prepend_scheme( replacement, add_prefix_space, PrependScheme::Always, // always prepend for legacy purpose ) } pub fn new_with_prepend_scheme( replacement: char, add_prefix_space: bool, prepend_scheme: PrependScheme, ) -> Self { Self { replacement, str_rep: replacement.to_string(), add_prefix_space, prepend_scheme, } } pub fn get_replacement(&self) -> char { self.replacement } pub fn set_replacement(&mut self, replacement: char) { self.replacement = replacement; self.str_rep = replacement.to_string(); } pub fn get_prepend_scheme(&self) -> PrependScheme { self.prepend_scheme } pub fn set_prepend_scheme(&mut self, scheme: PrependScheme) { self.prepend_scheme = scheme; } } impl Default for Metaspace { fn default() -> Self { Self::new('▁', true) } } impl PreTokenizer for Metaspace { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> { let mut first_split = true; pretokenized.split(|_, mut normalized| { normalized.replace(' ', &self.str_rep)?; if self.add_prefix_space && !normalized.get().starts_with(self.replacement) { if self.prepend_scheme == PrependScheme::Always { normalized.prepend(&self.str_rep); } else if self.prepend_scheme == PrependScheme::First && first_split { normalized.prepend(&self.str_rep); first_split = false; } } else { first_split = false; } normalized.split(self.replacement, SplitDelimiterBehavior::MergedWithNext) }) } } impl Decoder for Metaspace { fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> { Ok(tokens .iter() .enumerate() .map(|(i, token)| { token .chars() .flat_map(|c| { if c == self.replacement { if i == 0 && self.add_prefix_space { None } else { Some(' ') } } else { Some(c) } }) .collect::<String>() }) .collect()) } } #[cfg(test)] mod tests { use regex::Regex; use super::*; use crate::{OffsetReferential, OffsetType}; #[test] fn serialization() { let metaspace = Metaspace::new('_', true); let metaspace_s = r#"{"type":"Metaspace","replacement":"_","add_prefix_space":true,"prepend_scheme":"always"}"#; assert_eq!(serde_json::to_string(&metaspace).unwrap(), metaspace_s); assert_eq!( serde_json::from_str::<Metaspace>(metaspace_s).unwrap(), metaspace ); // Also check it can deserialize previous versions let metaspace = Metaspace::new('_', true); let metaspace_s = r#"{"type":"Metaspace","str_rep":"_","replacement":"_","add_prefix_space":true,"prepend_scheme":"always"}"#; assert_eq!( serde_json::from_str::<Metaspace>(metaspace_s).unwrap(), metaspace ); let metaspace_parsed: Metaspace = serde_json::from_str( r#"{"type":"Metaspace","replacement":"_","add_prefix_space":true}"#, ) .unwrap(); assert_eq!(metaspace_parsed, metaspace); } #[test] fn basic() { let pretok = Metaspace::new('▁', true); let mut pretokenized = PreTokenizedString::from("Hey friend!"); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("▁Hey", (0, 6)), ("▁friend!", (6, 16))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("▁Hey", (0, 3)), ("▁friend!", (3, 11))] ); } #[test] fn multiple_spaces() { let pretok = Metaspace::new('▁', true); let mut pretokenized = PreTokenizedString::from("Hey friend!"); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("▁Hey", (0, 6)), ("▁", (6, 9)), ("▁", (9, 12)), ("▁friend!", (12, 22)), ] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("▁Hey", (0, 3)), ("▁", (3, 4)), ("▁", (4, 5)), ("▁friend!", (5, 13)), ] ); } #[test] fn non_legacy_meta_space() { assert_eq!( Metaspace::new('▁', true), Metaspace::new_with_prepend_scheme('▁', true, PrependScheme::Always) ); let mut pretok = Metaspace::new('▁', true); pretok.set_prepend_scheme(PrependScheme::Always); assert_eq!( pretok, Metaspace::new_with_prepend_scheme('▁', true, PrependScheme::Always) ); pretok.set_prepend_scheme(PrependScheme::Never); assert_eq!( pretok, Metaspace::new_with_prepend_scheme('▁', true, PrependScheme::Never) ); pretok.set_prepend_scheme(PrependScheme::First); assert_eq!( pretok, Metaspace::new_with_prepend_scheme('▁', true, PrependScheme::First) ); let mut pretokenized = PreTokenizedString::from("Hey my friend <s>how▁are you"); let re_ref = Regex::new(r"(<s>)").unwrap(); pretokenized .split(|_, sequence| sequence.split(&re_ref, SplitDelimiterBehavior::Isolated)) .expect("Bad split"); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("▁Hey", (0, 6)), ("▁my", (6, 11)), ("▁friend", (11, 20)), ("▁", (20, 23)), ("<s>", (23, 26)), ("how", (26, 29)), ("▁are", (29, 35)), ("▁you", (35, 41)) ] ); pretok.set_prepend_scheme(PrependScheme::Always); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("▁Hey", (0, 6)), ("▁my", (6, 11)), ("▁friend", (11, 20)), ("▁", (20, 23)), ("▁<s>", (23, 29)), ("▁how", (29, 35)), ("▁are", (35, 41)), ("▁you", (41, 47)) ] ); pretok.set_prepend_scheme(PrependScheme::First); let mut pretokenized = PreTokenizedString::from(" Hey <s>how"); // test with prefix pretokenized .split(|_, sequence| sequence.split(&re_ref, SplitDelimiterBehavior::Isolated)) .expect("Bad split"); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("▁Hey", (0, 6)), ("▁", (6, 9)), ("<s>", (9, 12)), ("how", (12, 15)) ] ); let mut pretokenized = PreTokenizedString::from(" Hey <s>how <s>are <s> you"); // test with many splits pretokenized .split(|_, sequence| sequence.split(&re_ref, SplitDelimiterBehavior::Isolated)) .expect("Bad split"); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("▁Hey", (0, 6)), ("▁", (6, 9)), ("<s>", (9, 12)), ("how", (12, 15)), ("▁", (15, 18)), ("<s>", (18, 21)), ("are", (21, 24)), ("▁", (24, 27)), ("<s>", (27, 30)), ("▁you", (30, 36)) ] ); } #[test] fn decode() { let decoder = Metaspace::new('▁', true); let res = decoder .decode_chain(vec!["▁Hey".into(), "▁friend!".into()]) .unwrap(); assert_eq!(res, vec!["Hey", " friend!"]) } }
tokenizers/tokenizers/src/pre_tokenizers/metaspace.rs/0
{ "file_path": "tokenizers/tokenizers/src/pre_tokenizers/metaspace.rs", "repo_id": "tokenizers", "token_count": 6508 }
252
//! Represents a tokenization pipeline. //! //! A [`Tokenizer`](struct.Tokenizer.html) is composed of some of the following parts. //! - [`Normalizer`](trait.Normalizer.html): Takes care of the text normalization (like unicode normalization). //! - [`PreTokenizer`](trait.PreTokenizer.html): Takes care of the pre tokenization (ie. How to split tokens and pre-process //! them. //! - [`Model`](trait.Model.html): A model encapsulates the tokenization algorithm (like BPE, Word base, character //! based, ...). //! - [`PostProcessor`](trait.PostProcessor.html): Takes care of the processing after tokenization (like truncating, padding, //! ...). use std::{ collections::HashMap, fs::{read_to_string, File}, io::prelude::*, io::BufReader, ops::{Deref, DerefMut}, path::{Path, PathBuf}, }; use serde::de::DeserializeOwned; use serde::{Deserialize, Serialize}; use crate::utils::iter::ResultShunt; use crate::utils::parallelism::*; use crate::utils::progress::{ProgressBar, ProgressStyle}; mod added_vocabulary; mod encoding; pub mod normalizer; pub mod pattern; pub mod pre_tokenizer; mod serialization; // Re-export wrappers pub use crate::decoders::DecoderWrapper; pub use crate::models::ModelWrapper; pub use crate::normalizers::NormalizerWrapper; pub use crate::pre_tokenizers::PreTokenizerWrapper; pub use crate::processors::PostProcessorWrapper; // And some other types pub use crate::utils::iter::LinesWithEnding; pub use crate::utils::padding::{pad_encodings, PaddingDirection, PaddingParams, PaddingStrategy}; pub use crate::utils::truncation::{ truncate_encodings, TruncationDirection, TruncationParams, TruncationStrategy, }; pub use added_vocabulary::*; pub use encoding::*; pub use normalizer::{NormalizedString, OffsetReferential, SplitDelimiterBehavior}; pub use pre_tokenizer::*; pub type Error = Box<dyn std::error::Error + Send + Sync>; pub type Result<T> = std::result::Result<T, Error>; pub type Offsets = (usize, usize); /// Takes care of pre-processing strings. pub trait Normalizer { fn normalize(&self, normalized: &mut NormalizedString) -> Result<()>; } /// The `PreTokenizer` is in charge of doing the pre-segmentation step. It splits the given string /// in multiple substrings, keeping track of the offsets of said substrings from the /// `NormalizedString`. In some occasions, the `PreTokenizer` might need to modify the given /// `NormalizedString` to ensure we can entirely keep track of the offsets and the mapping with /// the original string. pub trait PreTokenizer { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()>; } /// Represents a model used during Tokenization (like BPE or Word or Unigram). pub trait Model { type Trainer: Trainer + Sync; /// Tokenize the given sequence into multiple underlying `Token`. The `offsets` on the `Token` /// are expected to be relative to the given sequence. fn tokenize(&self, sequence: &str) -> Result<Vec<Token>>; /// Find the ID associated to a string token fn token_to_id(&self, token: &str) -> Option<u32>; /// Find the string token associated to an ID fn id_to_token(&self, id: u32) -> Option<String>; /// Retrieve the entire vocabulary mapping (token -> ID) fn get_vocab(&self) -> HashMap<String, u32>; /// Retrieve the size of the vocabulary fn get_vocab_size(&self) -> usize; /// Save the current `Model` in the given folder, using the given `prefix` for the various /// files that need to be saved. fn save(&self, folder: &Path, prefix: Option<&str>) -> Result<Vec<PathBuf>>; /// Get an instance of a Trainer capable of training this Model fn get_trainer(&self) -> <Self as Model>::Trainer; } /// A `PostProcessor` has the responsibility to post process an encoded output of the `Tokenizer`. /// It adds any special tokens that a language model would require. pub trait PostProcessor { /// Returns the number of tokens that will be added during the processing step fn added_tokens(&self, is_pair: bool) -> usize; /// Process both encodings and returns a new merged one fn process( &self, encoding: Encoding, pair_encoding: Option<Encoding>, add_special_tokens: bool, ) -> Result<Encoding> { let mut encodings = if let Some(pair_encoding) = pair_encoding { vec![encoding, pair_encoding] } else { vec![encoding] }; encodings.iter_mut().enumerate().for_each(|(i, encoding)| { encoding.set_sequence_id(i); encoding .get_overflowing_mut() .iter_mut() .for_each(|encoding| encoding.set_sequence_id(i)); encoding.set_type_ids(vec![i as u32; encoding.len()]); }); let encodings = self.process_encodings(encodings, add_special_tokens)?; Ok(Encoding::merge(encodings, false)) } /// Process any amount of encodings and returns a series of encoding (might merge them) fn process_encodings( &self, encodings: Vec<Encoding>, add_special_tokens: bool, ) -> Result<Vec<Encoding>>; } impl dyn PostProcessor { pub fn default_process( encodings: Vec<Encoding>, _add_special_tokens: bool, ) -> Result<Vec<Encoding>> { match encodings.len() { 1 => Ok(encodings), _ => { let mut final_encoding = Encoding::default(); for (i, mut encoding) in encodings.into_iter().enumerate() { encoding.set_sequence_id(i); final_encoding.merge_with(encoding, false); } Ok(vec![final_encoding]) } } } } #[derive(thiserror::Error, Debug)] pub enum ProcessorError { #[error("encodings vector length must be either 1 or 2")] InvalidEncodingsVecLength, } /// A `Decoder` changes the raw tokens into its more readable form. pub trait Decoder { fn decode(&self, tokens: Vec<String>) -> Result<String> { let results = self.decode_chain(tokens)?; Ok(results.join("")) } fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>>; } /// A `Trainer` has the responsibility to train a model. We feed it with lines/sentences /// and then it can train the given `Model`. pub trait Trainer { type Model: Model + Sized; /// Whether we should show progress during the training. fn should_show_progress(&self) -> bool; /// The actual training method. This will return a new trained Model as well as a list /// of `special_tokens` to be added directly to the tokenizer along with the model. fn train(&self, model: &mut Self::Model) -> Result<Vec<AddedToken>>; /// Process an iterator of sequences, calling `process` for each of them in order to /// pre-process the said sequence as relevant. fn feed<I, S, F>(&mut self, iterator: I, process: F) -> Result<()> where I: Iterator<Item = S> + Send, S: AsRef<str> + Send, F: Fn(&str) -> Result<Vec<String>> + Sync; } #[derive(Debug, Clone, PartialEq, Eq)] pub struct Token { pub id: u32, pub value: String, pub offsets: (usize, usize), } impl Token { pub fn new(id: u32, value: String, offsets: (usize, usize)) -> Self { Self { id, value, offsets } } } use std::borrow::Cow; #[derive(Debug, Clone)] pub enum InputSequence<'s> { Raw(Cow<'s, str>), PreTokenized(Cow<'s, [&'s str]>), PreTokenizedOwned(Cow<'s, [String]>), PreTokenizedCow(Cow<'s, [Cow<'s, str>]>), } impl<'s> From<Cow<'s, str>> for InputSequence<'s> { fn from(input: Cow<'s, str>) -> Self { Self::Raw(input) } } impl<'s> From<&'s str> for InputSequence<'s> { fn from(input: &'s str) -> Self { Self::Raw(Cow::Borrowed(input)) } } impl From<String> for InputSequence<'_> { fn from(input: String) -> Self { Self::Raw(Cow::Owned(input)) } } impl<'s> From<&'s [&'s str]> for InputSequence<'s> { fn from(input: &'s [&'s str]) -> Self { Self::PreTokenized(Cow::Borrowed(input)) } } impl<'s> From<Vec<&'s str>> for InputSequence<'s> { fn from(input: Vec<&'s str>) -> Self { Self::PreTokenized(Cow::Owned(input)) } } impl<'s> From<&'s [String]> for InputSequence<'s> { fn from(input: &'s [String]) -> Self { Self::PreTokenizedOwned(Cow::Borrowed(input)) } } impl<'s> From<Vec<String>> for InputSequence<'s> { fn from(input: Vec<String>) -> Self { Self::PreTokenizedOwned(Cow::Owned(input)) } } impl<'s> From<Vec<Cow<'s, str>>> for InputSequence<'s> { fn from(input: Vec<Cow<'s, str>>) -> Self { Self::PreTokenizedCow(Cow::Owned(input)) } } impl<'s> From<&'s [Cow<'s, str>]> for InputSequence<'s> { fn from(input: &'s [Cow<'s, str>]) -> Self { Self::PreTokenizedCow(Cow::Borrowed(input)) } } #[derive(Debug, Clone)] pub enum EncodeInput<'s> { Single(InputSequence<'s>), Dual(InputSequence<'s>, InputSequence<'s>), } impl<'s, I: Into<InputSequence<'s>>> From<I> for EncodeInput<'s> { fn from(input: I) -> Self { Self::Single(input.into()) } } impl<'s, I1, I2> From<(I1, I2)> for EncodeInput<'s> where I1: Into<InputSequence<'s>>, I2: Into<InputSequence<'s>>, { fn from(input: (I1, I2)) -> Self { Self::Dual(input.0.into(), input.1.into()) } } #[derive(thiserror::Error, Debug)] #[error("{0}")] pub struct BuilderError(String); /// Builder for Tokenizer structs. /// /// `build()` fails if the `model` is missing. pub struct TokenizerBuilder<M, N, PT, PP, D> { model: Option<M>, normalizer: Option<N>, pre_tokenizer: Option<PT>, post_processor: Option<PP>, decoder: Option<D>, added_vocabulary: AddedVocabulary, truncation: Option<TruncationParams>, padding: Option<PaddingParams>, } impl<M, N, PT, PP, D> Default for TokenizerBuilder<M, N, PT, PP, D> where M: Model, N: Normalizer, PT: PreTokenizer, PP: PostProcessor, D: Decoder, { fn default() -> Self { Self::new() } } impl<M, N, PT, PP, D> TokenizerBuilder<M, N, PT, PP, D> where M: Model, N: Normalizer, PT: PreTokenizer, PP: PostProcessor, D: Decoder, { /// Get an empty TokenizerBuilder. pub fn new() -> Self { Self { model: None, normalizer: None, pre_tokenizer: None, post_processor: None, decoder: None, added_vocabulary: AddedVocabulary::new(), truncation: None, padding: None, } } /// Convert the TokenizerBuilder to a Tokenizer. /// /// Conversion fails if the `model` is missing. pub fn build(self) -> Result<TokenizerImpl<M, N, PT, PP, D>> { let model = self .model .ok_or_else(|| Box::new(BuilderError("Model missing.".into())))?; Ok(TokenizerImpl { normalizer: self.normalizer, pre_tokenizer: self.pre_tokenizer, model, post_processor: self.post_processor, decoder: self.decoder, added_vocabulary: self.added_vocabulary, truncation: self.truncation, padding: self.padding, }) } /// Set the model. #[must_use] pub fn with_model(mut self, model: M) -> Self { self.model = Some(model); self } /// Set the normalizer. #[must_use] pub fn with_normalizer(mut self, normalizer: Option<N>) -> Self { self.normalizer = normalizer; self } /// Set the pre-tokenizer. #[must_use] pub fn with_pre_tokenizer(mut self, pretokenizer: Option<PT>) -> Self { self.pre_tokenizer = pretokenizer; self } /// Set the post-processor. #[must_use] pub fn with_post_processor(mut self, post_processor: Option<PP>) -> Self { self.post_processor = post_processor; self } /// Set the decoder. #[must_use] pub fn with_decoder(mut self, decoder: Option<D>) -> Self { self.decoder = decoder; self } /// Set the trunaction parameters. #[must_use] pub fn with_truncation(mut self, trunc: Option<TruncationParams>) -> Self { self.truncation = trunc; self } /// Set the padding parameters. #[must_use] pub fn with_padding(mut self, padding: Option<PaddingParams>) -> Self { self.padding = padding; self } } #[derive(Serialize, Deserialize, Debug, Clone)] pub struct Tokenizer( TokenizerImpl< ModelWrapper, NormalizerWrapper, PreTokenizerWrapper, PostProcessorWrapper, DecoderWrapper, >, ); impl Tokenizer { /// Construct a new Tokenizer based on the model. pub fn new(model: impl Into<ModelWrapper>) -> Self { Self(TokenizerImpl::new(model.into())) } /// Unwrap the TokenizerImpl. pub fn into_inner( self, ) -> TokenizerImpl< ModelWrapper, NormalizerWrapper, PreTokenizerWrapper, PostProcessorWrapper, DecoderWrapper, > { self.0 } pub fn from_file<P: AsRef<Path>>(file: P) -> Result<Self> { let content = read_to_string(file)?; let tokenizer = serde_json::from_str(&content)?; Ok(tokenizer) } pub fn from_bytes<P: AsRef<[u8]>>(bytes: P) -> Result<Self> { let tokenizer = serde_json::from_slice(bytes.as_ref())?; Ok(tokenizer) } #[cfg(feature = "http")] pub fn from_pretrained<S: AsRef<str>>( identifier: S, params: Option<crate::utils::from_pretrained::FromPretrainedParameters>, ) -> Result<Self> { let tokenizer_file = crate::utils::from_pretrained::from_pretrained(identifier, params)?; Tokenizer::from_file(tokenizer_file) } } impl std::str::FromStr for Tokenizer { type Err = Box<dyn std::error::Error + Send + Sync>; fn from_str(s: &str) -> Result<Self> { Ok(serde_json::from_str(s)?) } } impl<M, N, PT, PP, D> From<TokenizerImpl<M, N, PT, PP, D>> for Tokenizer where M: Into<ModelWrapper>, N: Into<NormalizerWrapper>, PT: Into<PreTokenizerWrapper>, PP: Into<PostProcessorWrapper>, D: Into<DecoderWrapper>, { fn from(t: TokenizerImpl<M, N, PT, PP, D>) -> Self { Self(TokenizerImpl { model: t.model.into(), normalizer: t.normalizer.map(Into::into), pre_tokenizer: t.pre_tokenizer.map(Into::into), post_processor: t.post_processor.map(Into::into), decoder: t.decoder.map(Into::into), added_vocabulary: t.added_vocabulary, padding: t.padding, truncation: t.truncation, }) } } impl Deref for Tokenizer { type Target = TokenizerImpl< ModelWrapper, NormalizerWrapper, PreTokenizerWrapper, PostProcessorWrapper, DecoderWrapper, >; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for Tokenizer { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } #[derive(thiserror::Error, Debug)] #[error("{0}")] pub struct TruncationParamError(String); /// A `Tokenizer` is capable of encoding/decoding any text. #[derive(Clone, Debug)] pub struct TokenizerImpl<M, N, PT, PP, D> { // Tokenizer parts normalizer: Option<N>, pre_tokenizer: Option<PT>, model: M, post_processor: Option<PP>, decoder: Option<D>, // Added Vocabulary capabilities added_vocabulary: AddedVocabulary, // General processing parameters truncation: Option<TruncationParams>, padding: Option<PaddingParams>, } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where M: Model, N: Normalizer, PT: PreTokenizer, PP: PostProcessor, D: Decoder, { /// Instantiate a new Tokenizer, with the given Model pub fn new(model: M) -> Self { Self { normalizer: None, pre_tokenizer: None, model, post_processor: None, decoder: None, added_vocabulary: AddedVocabulary::new(), truncation: None, padding: None, } } /// Set the normalizer pub fn with_normalizer(&mut self, normalizer: impl Into<N>) -> &mut Self { self.normalizer = Some(normalizer.into()); self } /// Get the normalizer pub fn get_normalizer(&self) -> Option<&N> { self.normalizer.as_ref() } /// Set the pre tokenizer pub fn with_pre_tokenizer(&mut self, pre_tokenizer: impl Into<PT>) -> &mut Self { self.pre_tokenizer = Some(pre_tokenizer.into()); self } /// Get the pre tokenizer pub fn get_pre_tokenizer(&self) -> Option<&PT> { self.pre_tokenizer.as_ref() } /// Set the post processor pub fn with_post_processor(&mut self, post_processor: impl Into<PP>) -> &mut Self { self.post_processor = Some(post_processor.into()); self } /// Get the post processor pub fn get_post_processor(&self) -> Option<&PP> { self.post_processor.as_ref() } /// Set the decoder pub fn with_decoder(&mut self, decoder: impl Into<D>) -> &mut Self { self.decoder = Some(decoder.into()); self } /// Get the decoder pub fn get_decoder(&self) -> Option<&D> { self.decoder.as_ref() } /// Set the model pub fn with_model(&mut self, model: impl Into<M>) -> &mut Self { self.model = model.into(); self } /// Get the model pub fn get_model(&self) -> &M { &self.model } /// Set the truncation parameters /// /// Fails if `stride` is too high relative to `max_length` and `post_processor.added_tokens()` pub fn with_truncation(&mut self, trunc: Option<TruncationParams>) -> Result<&mut Self> { if let Some(trunc_params) = &trunc { let n_added_tokens = self.get_n_added_tokens(false); let effective_max_length = trunc_params.max_length - n_added_tokens; if effective_max_length < trunc_params.stride { return Err(Box::new(TruncationParamError(format!( "tokenizer stride set to {}, which is greater than or equal to its effective max length of {} (= {} original max length - {} added special tokens), ", trunc_params.stride, effective_max_length, trunc_params.max_length, n_added_tokens )))); } } self.truncation = trunc; Ok(self) } /// Get the currently set truncation parameters pub fn get_truncation(&self) -> Option<&TruncationParams> { self.truncation.as_ref() } /// Get a mutable reference to the currently set truncation parameters pub fn get_truncation_mut(&mut self) -> Option<&mut TruncationParams> { self.truncation.as_mut() } /// Set the padding parameters pub fn with_padding(&mut self, padding: Option<PaddingParams>) -> &mut Self { self.padding = padding; self } /// Get the currently set padding parameters pub fn get_padding(&self) -> Option<&PaddingParams> { self.padding.as_ref() } /// Get a mutable reference to the currently set padding parameters pub fn get_padding_mut(&mut self) -> Option<&mut PaddingParams> { self.padding.as_mut() } /// Get the vocabulary pub fn get_vocab(&self, with_added_tokens: bool) -> HashMap<String, u32> { let mut final_vocab = self.model.get_vocab(); if with_added_tokens { let added_vocab = self.added_vocabulary.get_vocab(); if !added_vocab.is_empty() { final_vocab.reserve(added_vocab.len()); for (token, id) in added_vocab { final_vocab.insert(token.clone(), *id); } } } final_vocab } /// Get the added tokens decoder pub fn get_added_tokens_decoder(&self) -> HashMap<u32, AddedToken> { self.added_vocabulary.get_added_tokens_decoder().clone() } /// Get the size of the vocabulary pub fn get_vocab_size(&self, with_added_tokens: bool) -> usize { // TODO ArthurZ THIS IS WRONG! We need to measure the length of the `set` because // now some tokens can be both in the added_tokens_encoder and in the vocab if with_added_tokens { self.get_vocab(true).len() } else { self.model.get_vocab_size() } } /// Converts a token in the corresponding id. pub fn token_to_id(&self, token: &str) -> Option<u32> { self.added_vocabulary.token_to_id(token, &self.model) } /// Converts an id to the corresponding token. pub fn id_to_token(&self, id: u32) -> Option<String> { self.added_vocabulary.id_to_token(id, &self.model) } /// set the added bocab's splitting scheme pub fn set_encode_special_tokens(&mut self, value: bool) { self.added_vocabulary.set_encode_special_tokens(value); } /// Get added token value pub fn get_encode_special_tokens(&self) -> bool { self.added_vocabulary.get_encode_special_tokens() } /// Encode a single sequence fn encode_single_sequence( &self, sequence: InputSequence, type_id: u32, offsets_type: OffsetType, ) -> Result<Encoding> { let encode = |is_pre_tokenized, subseq_idx, subseq| -> Result<Encoding> { let normalized = self .added_vocabulary .extract_and_normalize(self.normalizer.as_ref(), subseq); let pre_tokenized = self.do_pre_tokenize(normalized)?; let subseq_encoding = self.do_tokenize( pre_tokenized, type_id, if is_pre_tokenized { Some(subseq_idx as u32) } else { None }, offsets_type, )?; Ok(subseq_encoding) }; match sequence { InputSequence::PreTokenized(seq) => seq .iter() .enumerate() .map(|(i, sequence)| encode(true, i, sequence)) .collect(), InputSequence::PreTokenizedOwned(seq) => seq .iter() .enumerate() .map(|(i, sequence)| encode(true, i, sequence)) .collect(), InputSequence::PreTokenizedCow(seq) => seq .iter() .enumerate() .map(|(i, sequence)| encode(true, i, sequence)) .collect(), InputSequence::Raw(seq) => encode(false, 0, seq.as_ref()), } } /// Encode the given input. This method accepts both single sequences, as well as pair /// sequences. Also, a sequence can be a string, or already pre-tokenized input directly: /// /// ``` /// # use tokenizers::Tokenizer; /// # use tokenizers::models::bpe::BPE; /// # let mut tokenizer = Tokenizer::new(BPE::default()); /// # /// // Sequences: /// tokenizer.encode("Single sequence", false); /// tokenizer.encode(("Sequence A", "Sequence B"), false); /// /// // Pre-tokenized sequences: /// tokenizer.encode(&["Single", "sequence"][..], false); /// tokenizer.encode(( /// &["Sequence", "A"][..], /// &["Sequence", "B"][..] /// ), false); /// /// // or even both types together: /// tokenizer.encode(("A complete sequence", &["And", "a", "tokenized"][..]), false); /// ``` pub fn encode<'s, E>(&self, input: E, add_special_tokens: bool) -> Result<Encoding> where E: Into<EncodeInput<'s>>, { // Extract sequences from the EncodeInput let (sequence, pair) = match input.into() { EncodeInput::Single(s1) => (s1, None), EncodeInput::Dual(s1, s2) => (s1, Some(s2)), }; // Encode each sequence let encoding = self.encode_single_sequence(sequence, 0, OffsetType::Byte)?; let pair_encoding = pair .map(|sequence| self.encode_single_sequence(sequence, 1, OffsetType::Byte)) .transpose()?; // And finally post process self.post_process(encoding, pair_encoding, add_special_tokens) } /// Encode the given input, using offsets relative to chars instead of bytes. /// This method accepts both single sequences, as well as pair sequences. Also, /// a sequence can be a string, or already pre-tokenized input directly: /// /// ``` /// # use tokenizers::Tokenizer; /// # use tokenizers::models::bpe::BPE; /// # let mut tokenizer = Tokenizer::new(BPE::default()); /// # /// // Sequences: /// tokenizer.encode("Single sequence", false); /// tokenizer.encode(("Sequence A", "Sequence B"), false); /// /// // Pre-tokenized sequences: /// tokenizer.encode(&["Single", "sequence"][..], false); /// tokenizer.encode(( /// &["Sequence", "A"][..], /// &["Sequence", "B"][..] /// ), false); /// /// // or even both types together: /// tokenizer.encode(("A complete sequence", &["And", "a", "tokenized"][..]), false); /// ``` pub fn encode_char_offsets<'s, E>(&self, input: E, add_special_tokens: bool) -> Result<Encoding> where E: Into<EncodeInput<'s>>, { // Extract sequences from the EncodeInput let (sequence, pair) = match input.into() { EncodeInput::Single(s1) => (s1, None), EncodeInput::Dual(s1, s2) => (s1, Some(s2)), }; // Encode each sequence let encoding = self.encode_single_sequence(sequence, 0, OffsetType::Char)?; let pair_encoding = pair .map(|sequence| self.encode_single_sequence(sequence, 1, OffsetType::Char)) .transpose()?; // And finally post process self.post_process(encoding, pair_encoding, add_special_tokens) } /// Decode the given ids, back to a String pub fn decode(&self, ids: &[u32], skip_special_tokens: bool) -> Result<String> { let tokens = ids .iter() .filter_map(|id| { self.added_vocabulary .id_to_token(*id, &self.model) .filter(|token| { !skip_special_tokens || !self.added_vocabulary.is_special_token(token) }) }) .collect::<Vec<_>>(); if let Some(decoder) = &self.decoder { decoder.decode(tokens) } else { Ok(tokens.join(" ")) } } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where M: Model, { /// Tokenization logic, makes the bridge between the pre-tokenization phase and the real /// tokenization phase, and converting offsets back to the original referential. fn do_tokenize<P: Into<PreTokenizedString>>( &self, pretokenized: P, type_id: u32, word_idx: Option<u32>, offsets_type: OffsetType, ) -> Result<Encoding> { let mut pretokenized: PreTokenizedString = pretokenized.into(); pretokenized.tokenize(|normalized| self.model.tokenize(normalized.get()))?; pretokenized.into_encoding(word_idx, type_id, offsets_type) } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where N: Normalizer, { /// Normalization logic, go through all normalizers fn do_normalize<V: Into<NormalizedString>>(&self, normalized: V) -> Result<NormalizedString> { let mut normalized: NormalizedString = normalized.into(); if let Some(ref normalizer) = self.normalizer { normalizer.normalize(&mut normalized)?; } Ok(normalized) } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where N: Normalizer, M: Model, { /// Register the given tokens as special tokens. This is especially useful for removing /// these special tokens while decoding pub fn add_special_tokens(&mut self, tokens: &[AddedToken]) -> usize { self.added_vocabulary .add_special_tokens(tokens, &self.model, self.normalizer.as_ref()) } /// Add the given tokens to the added vocabulary pub fn add_tokens(&mut self, tokens: &[AddedToken]) -> usize { self.added_vocabulary .add_tokens(tokens, &self.model, self.normalizer.as_ref()) } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where PT: PreTokenizer, { /// PreTokenization logic, handling the case where there is no PreTokenizer set fn do_pre_tokenize<P: Into<PreTokenizedString>>( &self, pretokenized: P, ) -> Result<PreTokenizedString> { let mut pretokenized: PreTokenizedString = pretokenized.into(); if let Some(ref pretok) = self.pre_tokenizer { pretok.pre_tokenize(&mut pretokenized)?; } Ok(pretokenized) } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where PP: PostProcessor, { /// Post processing logic, handling the case where there is no PostProcessor set pub fn post_process( &self, encoding: Encoding, pair_encoding: Option<Encoding>, add_special_tokens: bool, ) -> Result<Encoding> { // 1. First we truncate if needed let (encoding, pair_encoding) = { if let Some(trunc) = &self.truncation { let n_added_tokens = self.get_n_added_tokens(pair_encoding.is_some()); if add_special_tokens && n_added_tokens > 0 { let params = TruncationParams { max_length: trunc.max_length - n_added_tokens, ..*trunc }; truncate_encodings(encoding, pair_encoding, &params)? } else { truncate_encodings(encoding, pair_encoding, trunc)? } } else { (encoding, pair_encoding) } }; // 2. Then We post process let final_encoding = if let Some(processor) = &self.post_processor { processor.process(encoding, pair_encoding, add_special_tokens)? } else { let encodings = if let Some(pair_encoding) = pair_encoding { vec![encoding, pair_encoding] } else { vec![encoding] }; let mut encodings = <dyn PostProcessor>::default_process(encodings, add_special_tokens)?; if encodings.len() != 1 { panic!("We haven't reduced the encodings like we should have"); } encodings.pop().unwrap() }; // 3. Then we pad if needed let [final_encoding] = if let Some(params) = &self.padding { let mut arr = [final_encoding]; pad_encodings(&mut arr, params)?; arr } else { [final_encoding] }; Ok(final_encoding) } fn get_n_added_tokens(&self, is_pair: bool) -> usize { if let Some(processor) = &self.post_processor { processor.added_tokens(is_pair) } else { 0 } } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where M: Model + Send + Sync, N: Normalizer + Send + Sync, PT: PreTokenizer + Send + Sync, PP: PostProcessor + Send + Sync, D: Decoder + Send + Sync, { /// Encode all the sentences in parallel, using multiple threads pub fn encode_batch<'s, E>( &self, inputs: Vec<E>, add_special_tokens: bool, ) -> Result<Vec<Encoding>> where E: Into<EncodeInput<'s>> + Send, { let mut encodings = inputs .into_maybe_par_iter() .map(|input| self.encode(input, add_special_tokens)) .collect::<Result<Vec<Encoding>>>()?; if let Some(params) = &self.padding { // We do the padding here to make sure we handle the batch padding pad_encodings(&mut encodings, params)?; } Ok(encodings) } /// Encode all the sentences in parallel, using multiple threads. /// The offsets on each `Encoding` will be relative to chars instead of bytes. pub fn encode_batch_char_offsets<'s, E>( &self, inputs: Vec<E>, add_special_tokens: bool, ) -> Result<Vec<Encoding>> where E: Into<EncodeInput<'s>> + Send, { let mut encodings = inputs .into_maybe_par_iter() .map(|input| self.encode_char_offsets(input, add_special_tokens)) .collect::<Result<Vec<Encoding>>>()?; if let Some(params) = &self.padding { // We do the padding here to make sure we handle the batch padding pad_encodings(&mut encodings, params)?; } Ok(encodings) } /// Decode all sentences in parallel pub fn decode_batch( &self, sentences: &[&[u32]], skip_special_tokens: bool, ) -> Result<Vec<String>> where M: Send + Sync, { sentences .into_maybe_par_iter() .map(|sentence| self.decode(sentence, skip_special_tokens)) .collect() } /// Train our Model from files pub fn train_from_files<T>(&mut self, trainer: &mut T, files: Vec<String>) -> Result<&mut Self> where T: Trainer<Model = M> + Sync, { let mut len = 0; for file in files.iter() { len += File::open(file) .and_then(|f| f.metadata()) .map(|m| m.len())?; } let max_read = 1_000_000; ResultShunt::process( files.into_iter().flat_map(|filename| { match File::open(filename) { Ok(file) => { let file = BufReader::with_capacity(max_read, file); // We read new lines using this API instead of the Lines Iterator // on purpose. We want to keep the `\n` and potential `\r` between each lines // We use an iterator to be able to chain with par_bridge. itertools::Either::Left(file.lines_with_ending()) } Err(e) => itertools::Either::Right(std::iter::once(Err(e))), } }), |sequences| -> Result<()> { let progress = if trainer.should_show_progress() { let progress = ProgressBar::new(len); progress.set_style( ProgressStyle::default_bar() .template("[{elapsed_precise}] {msg:<30!} {wide_bar} {percent:>18!}%") .expect("Invalid progress template"), ); progress .set_message(format!("Pre-processing files ({:.2} Mo)", len / 1_000_000)); Some(progress) } else { None }; trainer.feed( sequences.map(|s| { if let Some(progress) = &progress { progress.inc(s.len() as u64) } s }), |seq| { let normalized = self.do_normalize(seq.as_ref())?; let pre_tokenized = self.do_pre_tokenize(normalized)?; Ok(pre_tokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, _, _)| s.to_owned()) .collect()) }, )?; if let Some(pbar) = progress { pbar.finish(); } let special_tokens = trainer.train(&mut self.model)?; self.add_special_tokens(&special_tokens); Ok(()) }, )??; Ok(self) } /// Train our Model, using the given Trainer and iterator pub fn train<T, I, S>(&mut self, trainer: &mut T, sequences: I) -> Result<&mut Self> where T: Trainer<Model = M> + Sync, I: Iterator<Item = S> + Send, S: AsRef<str> + Send, { let (lower, upper) = sequences.size_hint(); let len = upper.unwrap_or(lower) as u64; let progress = if trainer.should_show_progress() { let progress = ProgressBar::new(len); progress.set_style( ProgressStyle::default_bar() .template("[{elapsed_precise}] {msg:<30!} {wide_bar} {pos:<9!}/{len:>9!}") .expect("Invalid progress template"), ); progress.set_message("Pre-processing sequences"); Some(progress) } else { None }; trainer.feed( sequences.map(|s| { if let Some(progress) = &progress { progress.inc(1) } s }), |seq| { let normalized = self.do_normalize(seq.as_ref())?; let pre_tokenized = self.do_pre_tokenize(normalized)?; Ok(pre_tokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, _, _)| s.to_owned()) .collect()) }, )?; if let Some(pbar) = progress { pbar.finish(); } let special_tokens = trainer.train(&mut self.model)?; self.add_special_tokens(&special_tokens); Ok(self) } } impl<M, N, PT, PP, D> std::str::FromStr for TokenizerImpl<M, N, PT, PP, D> where M: for<'de> Deserialize<'de> + Model, N: for<'de> Deserialize<'de> + Normalizer, PT: for<'de> Deserialize<'de> + PreTokenizer, PP: for<'de> Deserialize<'de> + PostProcessor, D: for<'de> Deserialize<'de> + Decoder, { type Err = Error; fn from_str(s: &str) -> Result<Self> { Ok(serde_json::from_str(s)?) } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where M: DeserializeOwned + Model, N: DeserializeOwned + Normalizer, PT: DeserializeOwned + PreTokenizer, PP: DeserializeOwned + PostProcessor, D: DeserializeOwned + Decoder, { /// Instantiate a new Tokenizer from the given file pub fn from_file<P: AsRef<Path>>(file: P) -> Result<Self> { let content = read_to_string(file)?; let tokenizer = serde_json::from_str(&content)?; Ok(tokenizer) } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where M: DeserializeOwned + Model, N: DeserializeOwned + Normalizer, PT: DeserializeOwned + PreTokenizer, PP: DeserializeOwned + PostProcessor, D: DeserializeOwned + Decoder, { /// Instantiate a new Tokenizer from bytes pub fn from_bytes<P: AsRef<[u8]>>(bytes: P) -> Result<Self> { let tokenizer = serde_json::from_slice(bytes.as_ref())?; Ok(tokenizer) } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where M: DeserializeOwned + Model, N: DeserializeOwned + Normalizer, PT: DeserializeOwned + PreTokenizer, PP: DeserializeOwned + PostProcessor, D: DeserializeOwned + Decoder, { #[deprecated( since = "0.14.0", note = "Users should download the file separately using https://github.com/huggingface/hf-hub instead, which splits concerns of accessing the web, and should use the new cache layout" )] #[cfg(feature = "http")] /// Instantiate a new Tokenizer from a file hosted on the Hugging Face Hub. /// It expects the `identifier` of a model that includes a `tokenizer.json` file. pub fn from_pretrained<S: AsRef<str>>( identifier: S, params: Option<crate::utils::from_pretrained::FromPretrainedParameters>, ) -> Result<Self> { let tokenizer_file = crate::utils::from_pretrained::from_pretrained(identifier, params)?; TokenizerImpl::from_file(tokenizer_file) } } impl<M, N, PT, PP, D> TokenizerImpl<M, N, PT, PP, D> where M: Serialize, N: Serialize, PT: Serialize, PP: Serialize, D: Serialize, { /// Serialize the current tokenizer as a String pub fn to_string(&self, pretty: bool) -> Result<String> { Ok(if pretty { serde_json::to_string_pretty(self)? } else { serde_json::to_string(self)? }) } /// Save the current tokenizer at the given path pub fn save<P: AsRef<Path>>(&self, path: P, pretty: bool) -> Result<()> { let serialized = self.to_string(pretty)?; let mut file = File::create(path)?; file.write_all(serialized.as_bytes())?; Ok(()) } }
tokenizers/tokenizers/src/tokenizer/mod.rs/0
{ "file_path": "tokenizers/tokenizers/src/tokenizer/mod.rs", "repo_id": "tokenizers", "token_count": 18666 }
253
use tokenizers::decoders::wordpiece::WordPiece as WordPieceDecoder; use tokenizers::models::bpe::BPE; use tokenizers::models::wordpiece::WordPiece; use tokenizers::normalizers::bert::BertNormalizer; use tokenizers::pre_tokenizers::bert::BertPreTokenizer; use tokenizers::pre_tokenizers::byte_level::ByteLevel; use tokenizers::processors::bert::BertProcessing; use tokenizers::tokenizer::{Model, Tokenizer}; #[allow(dead_code)] pub fn get_empty() -> Tokenizer { Tokenizer::new(BPE::default()) } #[allow(dead_code)] pub fn get_byte_level_bpe() -> BPE { BPE::from_file("data/gpt2-vocab.json", "data/gpt2-merges.txt") .build() .expect("Files not found, run `make test` to download these files") } #[allow(dead_code)] pub fn get_byte_level(add_prefix_space: bool, trim_offsets: bool) -> Tokenizer { let mut tokenizer = Tokenizer::new(get_byte_level_bpe()); tokenizer .with_pre_tokenizer(ByteLevel::default().add_prefix_space(add_prefix_space)) .with_decoder(ByteLevel::default()) .with_post_processor(ByteLevel::default().trim_offsets(trim_offsets)); tokenizer } #[allow(dead_code)] pub fn get_bert_wordpiece() -> WordPiece { WordPiece::from_file("data/bert-base-uncased-vocab.txt") .build() .expect("Files not found, run `make test` to download these files") } #[allow(dead_code)] pub fn get_bert() -> Tokenizer { let mut tokenizer = Tokenizer::new(get_bert_wordpiece()); let sep = tokenizer.get_model().token_to_id("[SEP]").unwrap(); let cls = tokenizer.get_model().token_to_id("[CLS]").unwrap(); tokenizer .with_normalizer(BertNormalizer::default()) .with_pre_tokenizer(BertPreTokenizer) .with_decoder(WordPieceDecoder::default()) .with_post_processor(BertProcessing::new( (String::from("[SEP]"), sep), (String::from("[CLS]"), cls), )); tokenizer }
tokenizers/tokenizers/tests/common/mod.rs/0
{ "file_path": "tokenizers/tokenizers/tests/common/mod.rs", "repo_id": "tokenizers", "token_count": 771 }
254
# Awesome projects built with Transformers This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone else to build their dream projects. In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate 100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR to add it. ## [gpt4all](https://github.com/nomic-ai/gpt4all) [gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style. Keywords: Open-source, LLaMa, GPT-J, instruction, assistant ## [recommenders](https://github.com/microsoft/recommenders) This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization Keywords: Recommender systems, AzureML ## [IOPaint](https://github.com/Sanster/IOPaint) Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures. Keywords: inpainting, SD, Stable Diffusion ## [flair](https://github.com/flairNLP/flair) FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things. Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis ## [mindsdb](https://github.com/mindsdb/mindsdb) MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels. Keywords: Database, low-code, AI table ## [langchain](https://github.com/hwchase17/langchain) [langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools. Keywords: LLMs, Large Language Models, Agents, Chains ## [LlamaIndex](https://github.com/jerryjliu/llama_index) [LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results. Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation ## [ParlAI](https://github.com/facebookresearch/ParlAI) [ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations. Keywords: Dialogue, Chatbots, VQA, Datasets, Agents ## [sentence-transformers](https://github.com/UKPLab/sentence-transformers) This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity. Keywords: Dense vector representations, Text embeddings, Sentence embeddings ## [ludwig](https://github.com/ludwig-ai/ludwig) Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API. Keywords: Declarative, Data-driven, ML Framework ## [InvokeAI](https://github.com/invoke-ai/InvokeAI) [InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI. Keywords: Stable-Diffusion, WebUI, CLI ## [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications. Keywords: NLP, Chinese, Research, Industry ## [stanza](https://github.com/stanfordnlp/stanza) The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python. Keywords: NLP, Multilingual, CoreNLP ## [DeepPavlov](https://github.com/deeppavlov/DeepPavlov) [DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems. Keywords: Conversational, Chatbot, Dialog ## [alpaca-lora](https://github.com/tloen/alpaca-lora) Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts. Keywords: LoRA, Parameter-efficient fine-tuning ## [imagen-pytorch](https://github.com/lucidrains/imagen-pytorch) An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis. Keywords: Imagen, Text-to-image ## [adapters](https://github.com/adapter-hub/adapters) [adapters](https://github.com/adapter-hub/adapters) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers. Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub ## [NeMo](https://github.com/NVIDIA/NeMo) NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started. Keywords: Conversational, ASR, TTS, LLMs, NLP ## [Runhouse](https://github.com/run-house/runhouse) [Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention: > Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data. Keywords: MLOps, Infrastructure, Data storage, Modeling ## [MONAI](https://github.com/Project-MONAI/MONAI) [MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are: - developing a community of academic, industrial and clinical researchers collaborating on a common foundation; - creating state-of-the-art, end-to-end training workflows for healthcare imaging; - providing researchers with the optimized and standardized way to create and evaluate deep learning models. Keywords: Healthcare imaging, Training, Evaluation ## [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers) Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks. Keywords: Framework, simplicity, NLP ## [JARVIS](https://github.com/microsoft/JARVIS) [JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM. Keywords: LLM, Agents, HF Hub ## [transformers.js](https://xenova.github.io/transformers.js/) [transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser. Keywords: Transformers, JavaScript, browser ## [bumblebee](https://github.com/elixir-nx/bumblebee) Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code. Keywords: Elixir, Axon ## [argilla](https://github.com/argilla-io/argilla) Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others. Keywords: NLP, Labeling, Monitoring, Workspaces ## [haystack](https://github.com/deepset-ai/haystack) Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more. Keywords: NLP, Framework, LLM ## [spaCy](https://github.com/explosion/spaCy) [spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers. Keywords: NLP, Framework ## [speechbrain](https://github.com/speechbrain/speechbrain) SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch. The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others. Keywords: Conversational, Speech ## [skorch](https://github.com/skorch-dev/skorch) Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers. Keywords: Scikit-Learn, PyTorch ## [bertviz](https://github.com/jessevig/bertviz) BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. Keywords: Visualization, Transformers ## [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model. Keywords: Haiku, Model parallelism, LLM, TPU ## [deepchem](https://github.com/deepchem/deepchem) DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology. Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology ## [OpenNRE](https://github.com/thunlp/OpenNRE) An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students. Keywords: Neural Relation Extraction, Framework ## [pycorrector](https://github.com/shibing624/pycorrector) PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method. Keywords: Chinese, Error correction tool, Language model, Pinyin ## [nlpaug](https://github.com/makcedward/nlpaug) This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow). Keywords: Data augmentation, Synthetic data generation, Audio, NLP ## [dream-textures](https://github.com/carson-katri/dream-textures) [dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling. Keywords: Stable-Diffusion, Blender ## [seldon-core](https://github.com/SeldonIO/seldon-core) Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices. Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more. Keywords: Microservices, Modeling, Language wrappers ## [open_model_zoo](https://github.com/openvinotoolkit/open_model_zoo) This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process. Keywords: Optimized models, Demos ## [ml-stable-diffusion](https://github.com/apple/ml-stable-diffusion) ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub. Keywords: Stable Diffusion, Apple Silicon, Core ML ## [stable-dreamfusion](https://github.com/ashawkey/stable-dreamfusion) Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model. Keywords: Text-to-3D, Stable Diffusion ## [txtai](https://github.com/neuml/txtai) [txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications. Keywords: Semantic search, LLM ## [djl](https://github.com/deepjavalibrary/djl) Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java. Keywords: Java, Framework ## [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/) This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API. Keywords: LLM, Evaluation, Few-shot ## [gpt-neox](https://github.com/EleutherAI/gpt-neox) This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models. Keywords: Training, LLM, Megatron, DeepSpeed ## [muzic](https://github.com/microsoft/muzic) Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia. Keywords: Music understanding, Music generation ## [dalle-flow](https://github.com/jina-ai/dalle-flow) DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt. The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR. Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR ## [lightseq](https://github.com/bytedance/lightseq) LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks. Keywords: Training, Inference, Sequence Processing, Sequence Generation ## [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code. Keywords: OCR, LaTeX, Math formula ## [open_clip](https://github.com/mlfoundations/open_clip) OpenCLIP is an open source implementation of OpenAI's CLIP. The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift. The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. Keywords: CLIP, Open-source, Contrastive, Image-text ## [dalle-playground](https://github.com/saharmor/dalle-playground) A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini. Keywords: WebUI, Stable Diffusion, Dall-E mini ## [FedML](https://github.com/FedML-AI/FedML) [FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale. It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation. Keywords: Federated Learning, Analytics, Collaborative ML, Decentralized ## [gpt-code-clippy](https://github.com/CodedotAl/gpt-code-clippy) GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub. Keywords: LLM, Code ## [TextAttack](https://github.com/QData/TextAttack) [TextAttack](https://github.com/QData/TextAttack) 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP. Keywords: Adversarial attacks, Data augmentation, NLP ## [OpenPrompt](https://github.com/thunlp/OpenPrompt) Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers. ## [text-generation-webui](https://github.com/oobabooga/text-generation-webui/) [text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA. Keywords: LLM, WebUI ## [libra](https://github.com/Palashio/libra) An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be. Keywords: Ergonomic, Non-technical ## [alibi](https://github.com/SeldonIO/alibi) Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models. Keywords: Model inspection, Model interpretation, Black-box, White-box ## [tortoise-tts](https://github.com/neonbjb/tortoise-tts) Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation. Keywords: Text-to-speech ## [flower](https://github.com/adap/flower) Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use. Keywords: Federated learning systems, Customizable, Extendable, Framework-agnostic, Simplicity ## [fast-bert](https://github.com/utterworks/fast-bert) Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity. Keywords: Deployment, BERT, XLNet ## [towhee](https://github.com/towhee-io/towhee) Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments. Keywords: Data processing pipeline, Optimization ## [alibi-detect](https://github.com/SeldonIO/alibi-detect) Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection. Keywords: Adversarial, Outlier, Drift detection ## [FARM](https://github.com/deepset-ai/FARM) [FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker. Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking ## [aitextgen](https://github.com/minimaxir/aitextgen) A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture. [aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features. Keywords: Training, Generation ## [diffgram](https://github.com/diffgram/diffgram) Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster. Keywords: Human supervision, Platform ## [ecco](https://github.com/jalammar/ecco) Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0). Keywords: Model explainability ## [s3prl](https://github.com/s3prl/s3prl) [s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks. Keywords: Speech, Training ## [ru-dalle](https://github.com/ai-forever/ru-dalle) RuDALL-E aims to be similar to DALL-E, targeted to Russian. Keywords: DALL-E, Russian ## [DeepKE](https://github.com/zjunlp/DeepKE) [DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchema,low-resource, document-level and multimodal scenarios for entity, relation and attribute extraction. Keywords: Knowledge Extraction, Knowledge Graphs ## [Nebuly](https://github.com/nebuly-ai/nebuly) Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances. Keywords: Optimization, Performance, Monitoring ## [imaginAIry](https://github.com/brycedrennan/imaginAIry) Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others. Keywords: Stable Diffusion, CLI, Python API ## [sparseml](https://github.com/neuralmagic/sparseml) SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware. Keywords: Model optimization, Pruning, Quantization, Distillation ## [opacus](https://github.com/pytorch/opacus) Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Keywords: Differential privacy ## [LAVIS](https://github.com/salesforce/LAVIS) [LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access Keywords: Multimodal, NLP, Vision ## [buzz](https://github.com/chidiwilliams/buzz) Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper. Keywords: Audio transcription, Translation ## [rust-bert](https://github.com/guillaume-be/rust-bert) Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines. Keywords: Rust, BERT, Inference ## [EasyNLP](https://github.com/alibaba/EasyNLP) [EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications. Keywords: NLP, Knowledge distillation, Few-shot learning, Multi-modality, Training, Inference, Deployment ## [TurboTransformers](https://github.com/Tencent/TurboTransformers) A fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU. Keywords: Optimization, Performance ## [hivemind](https://github.com/learning-at-home/hivemind) Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Keywords: Decentralized training ## [docquery](https://github.com/impira/docquery) DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira. Keywords: Semi-structured documents, Unstructured documents, LLM, Document Question Answering ## [CodeGeeX](https://github.com/THUDM/CodeGeeX) [CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features: - Multilingual code generation - Crosslingual code translation - Is a customizable programming assistant Keywords: Code Generation Model ## [ktrain](https://github.com/amaiya/ktrain) [ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. Keywords: Keras wrapper, Model building, Training, Deployment ## [FastDeploy](https://github.com/PaddlePaddle/FastDeploy) [FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform. Keywords: Model deployment, CLoud, Mobile, Edge ## [underthesea](https://github.com/undertheseanlp/underthesea) [underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing. Keywords: Vietnamese, NLP ## [hasktorch](https://github.com/hasktorch/hasktorch) Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch. Keywords: Haskell, Neural Networks ## [donut](https://github.com/clovaai/donut) Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model. Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing). Keywords: Document Understanding ## [transformers-interpret](https://github.com/cdpierse/transformers-interpret) Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package. In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files Keywords: Model interpretation, Visualization ## [mlrun](https://github.com/mlrun/mlrun) MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements. Keywords: MLOps ## [FederatedScope](https://github.com/alibaba/FederatedScope) [FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively. Keywords: Federated learning, Event-driven ## [pythainlp](https://github.com/PyThaiNLP/pythainlp) PyThaiNLP is a Python package for text processing and linguistic analysis, similar to NLTK with focus on Thai language. Keywords: Thai, NLP, NLTK ## [FlagAI](https://github.com/FlagAI-Open/FlagAI) [FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality. Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal ## [pyserini](https://github.com/castorini/pyserini) [pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library. Keywords: IR, Information Retrieval, Dense, Sparse ## [baal](https://github.com/baal-org/baal) [baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning. Keywords: Active Learning, Research, Labeling ## [cleanlab](https://github.com/cleanlab/cleanlab) [cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning). Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning ## [BentoML](https://github.com/bentoml/BentoML) [BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models. All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage. Keywords: BentoML, Framework, Deployment, AI Applications ## [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen
transformers/awesome-transformers.md/0
{ "file_path": "transformers/awesome-transformers.md", "repo_id": "transformers", "token_count": 10233 }
255
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04 LABEL maintainer="Hugging Face" ARG DEBIAN_FRONTEND=noninteractive RUN apt update RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg RUN python3 -m pip install --no-cache-dir --upgrade pip ARG REF=main RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing] # If set to nothing, will install the latest version ARG TENSORFLOW='2.13' RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION RUN python3 -m pip uninstall -y torch flax RUN python3 -m pip install -U "itsdangerous<2.1.0" RUN python3 -m pip install --no-cache-dir -U tensorflow_probability # When installing in editable mode, `transformers` is not recognized as a package. # this line must be added in order for python to be aware of transformers. RUN cd transformers && python3 setup.py develop
transformers/docker/transformers-tensorflow-gpu/Dockerfile/0
{ "file_path": "transformers/docker/transformers-tensorflow-gpu/Dockerfile", "repo_id": "transformers", "token_count": 374 }
256
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Adapter mit 🤗 PEFT laden [[open-in-colab]] Die [Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) Methoden frieren die vorab trainierten Modellparameter während der Feinabstimmung ein und fügen eine kleine Anzahl trainierbarer Parameter (die Adapter) hinzu. Die Adapter werden trainiert, um aufgabenspezifische Informationen zu lernen. Es hat sich gezeigt, dass dieser Ansatz sehr speichereffizient ist und weniger Rechenleistung beansprucht, während die Ergebnisse mit denen eines vollständig feinabgestimmten Modells vergleichbar sind. Adapter, die mit PEFT trainiert wurden, sind in der Regel um eine Größenordnung kleiner als das vollständige Modell, so dass sie bequem gemeinsam genutzt, gespeichert und geladen werden können. <div class="flex flex-col justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/> <figcaption class="text-center">Die Adaptergewichte für ein OPTForCausalLM-Modell, die auf dem Hub gespeichert sind, sind nur ~6MB groß, verglichen mit der vollen Größe der Modellgewichte, die ~700MB betragen können.</figcaption> </div> Wenn Sie mehr über die 🤗 PEFT-Bibliothek erfahren möchten, sehen Sie sich die [Dokumentation](https://huggingface.co/docs/peft/index) an. ## Setup Starten Sie mit der Installation von 🤗 PEFT: ```bash pip install peft ``` Wenn Sie die brandneuen Funktionen ausprobieren möchten, sollten Sie die Bibliothek aus dem Quellcode installieren: ```bash pip install git+https://github.com/huggingface/peft.git ``` ## Unterstützte PEFT-Modelle Transformers unterstützt nativ einige PEFT-Methoden, d.h. Sie können lokal oder auf dem Hub gespeicherte Adaptergewichte laden und sie mit wenigen Zeilen Code einfach ausführen oder trainieren. Die folgenden Methoden werden unterstützt: - [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora) - [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3) - [AdaLoRA](https://arxiv.org/abs/2303.10512) Wenn Sie andere PEFT-Methoden, wie z.B. Prompt Learning oder Prompt Tuning, verwenden möchten, oder über die 🤗 PEFT-Bibliothek im Allgemeinen, lesen Sie bitte die [Dokumentation](https://huggingface.co/docs/peft/index). ## Laden Sie einen PEFT-Adapter Um ein PEFT-Adaptermodell von 🤗 Transformers zu laden und zu verwenden, stellen Sie sicher, dass das Hub-Repository oder das lokale Verzeichnis eine `adapter_config.json`-Datei und die Adaptergewichte enthält, wie im obigen Beispielbild gezeigt. Dann können Sie das PEFT-Adaptermodell mit der Klasse `AutoModelFor` laden. Um zum Beispiel ein PEFT-Adaptermodell für die kausale Sprachmodellierung zu laden: 1. Geben Sie die PEFT-Modell-ID an. 2. übergeben Sie es an die Klasse [`AutoModelForCausalLM`]. ```py from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(peft_model_id) ``` <Tip> Sie können einen PEFT-Adapter entweder mit einer `AutoModelFor`-Klasse oder der Basismodellklasse wie `OPTForCausalLM` oder `LlamaForCausalLM` laden. </Tip> Sie können einen PEFT-Adapter auch laden, indem Sie die Methode `load_adapter` aufrufen: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "facebook/opt-350m" peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) ``` ## Laden in 8bit oder 4bit Die `bitsandbytes`-Integration unterstützt Datentypen mit 8bit und 4bit Genauigkeit, was für das Laden großer Modelle nützlich ist, weil es Speicher spart (lesen Sie den `bitsandbytes`-Integrations [guide](./quantization#bitsandbytes-integration), um mehr zu erfahren). Fügen Sie die Parameter `load_in_8bit` oder `load_in_4bit` zu [`~PreTrainedModel.from_pretrained`] hinzu und setzen Sie `device_map="auto"`, um das Modell effektiv auf Ihre Hardware zu verteilen: ```py from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True) ``` ## Einen neuen Adapter hinzufügen Sie können [`~peft.PeftModel.add_adapter`] verwenden, um einen neuen Adapter zu einem Modell mit einem bestehenden Adapter hinzuzufügen, solange der neue Adapter vom gleichen Typ ist wie der aktuelle Adapter. Wenn Sie zum Beispiel einen bestehenden LoRA-Adapter an ein Modell angehängt haben: ```py from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import PeftConfig model_id = "facebook/opt-350m" model = AutoModelForCausalLM.from_pretrained(model_id) lora_config = LoraConfig( target_modules=["q_proj", "k_proj"], init_lora_weights=False ) model.add_adapter(lora_config, adapter_name="adapter_1") ``` Um einen neuen Adapter hinzuzufügen: ```py # attach new adapter with same config model.add_adapter(lora_config, adapter_name="adapter_2") ``` Jetzt können Sie mit [`~peft.PeftModel.set_adapter`] festlegen, welcher Adapter verwendet werden soll: ```py # use adapter_1 model.set_adapter("adapter_1") output = model.generate(**inputs) print(tokenizer.decode(output_disabled[0], skip_special_tokens=True)) # use adapter_2 model.set_adapter("adapter_2") output_enabled = model.generate(**inputs) print(tokenizer.decode(output_enabled[0], skip_special_tokens=True)) ``` ## Aktivieren und Deaktivieren von Adaptern Sobald Sie einen Adapter zu einem Modell hinzugefügt haben, können Sie das Adaptermodul aktivieren oder deaktivieren. So aktivieren Sie das Adaptermodul: ```py from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import PeftConfig model_id = "facebook/opt-350m" adapter_model_id = "ybelkada/opt-350m-lora" tokenizer = AutoTokenizer.from_pretrained(model_id) text = "Hello" inputs = tokenizer(text, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained(model_id) peft_config = PeftConfig.from_pretrained(adapter_model_id) # to initiate with random weights peft_config.init_lora_weights = False model.add_adapter(peft_config) model.enable_adapters() output = model.generate(**inputs) ``` So deaktivieren Sie das Adaptermodul: ```py model.disable_adapters() output = model.generate(**inputs) ``` ## PEFT-Adapter trainieren PEFT-Adapter werden von der Klasse [`Trainer`] unterstützt, so dass Sie einen Adapter für Ihren speziellen Anwendungsfall trainieren können. Dazu müssen Sie nur ein paar weitere Codezeilen hinzufügen. Zum Beispiel, um einen LoRA-Adapter zu trainieren: <Tip> Wenn Sie mit der Feinabstimmung eines Modells mit [`Trainer`] noch nicht vertraut sind, werfen Sie einen Blick auf das Tutorial [Feinabstimmung eines vortrainierten Modells](Training). </Tip> 1. Definieren Sie Ihre Adapterkonfiguration mit dem Aufgabentyp und den Hyperparametern (siehe [`~peft.LoraConfig`] für weitere Details darüber, was die Hyperparameter tun). ```py from peft import LoraConfig peft_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", task_type="CAUSAL_LM", ) ``` 2. Fügen Sie dem Modell einen Adapter hinzu. ```py model.add_adapter(peft_config) ``` 3. Jetzt können Sie das Modell an [`Trainer`] übergeben! ```py trainer = Trainer(model=model, ...) trainer.train() ``` So speichern Sie Ihren trainierten Adapter und laden ihn wieder: ```py model.save_pretrained(save_dir) model = AutoModelForCausalLM.from_pretrained(save_dir) ``` <!-- TODO: (@younesbelkada @stevhliu) - Link to PEFT docs for further details - Trainer - 8-bit / 4-bit examples ? -->
transformers/docs/source/de/peft.md/0
{ "file_path": "transformers/docs/source/de/peft.md", "repo_id": "transformers", "token_count": 3175 }
257
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Attention mechanisms Most transformer models use full attention in the sense that the attention matrix is square. It can be a big computational bottleneck when you have long texts. Longformer and reformer are models that try to be more efficient and use a sparse version of the attention matrix to speed up training. ## LSH attention [Reformer](model_doc/reformer) uses LSH attention. In the softmax(QK^t), only the biggest elements (in the softmax dimension) of the matrix QK^t are going to give useful contributions. So for each query q in Q, we can consider only the keys k in K that are close to q. A hash function is used to determine if q and k are close. The attention mask is modified to mask the current token (except at the first position), because it will give a query and a key equal (so very similar to each other). Since the hash can be a bit random, several hash functions are used in practice (determined by a n_rounds parameter) and then are averaged together. ## Local attention [Longformer](model_doc/longformer) uses local attention: often, the local context (e.g., what are the two tokens to the left and right?) is enough to take action for a given token. Also, by stacking attention layers that have a small window, the last layer will have a receptive field of more than just the tokens in the window, allowing them to build a representation of the whole sentence. Some preselected input tokens are also given global attention: for those few tokens, the attention matrix can access all tokens and this process is symmetric: all other tokens have access to those specific tokens (on top of the ones in their local window). This is shown in Figure 2d of the paper, see below for a sample attention mask: <div class="flex justify-center"> <img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/> </div> Using those attention matrices with less parameters then allows the model to have inputs having a bigger sequence length. ## Other tricks ### Axial positional encodings [Reformer](model_doc/reformer) uses axial positional encodings: in traditional transformer models, the positional encoding E is a matrix of size \\(l\\) by \\(d\\), \\(l\\) being the sequence length and \\(d\\) the dimension of the hidden state. If you have very long texts, this matrix can be huge and take way too much space on the GPU. To alleviate that, axial positional encodings consist of factorizing that big matrix E in two smaller matrices E1 and E2, with dimensions \\(l_{1} \times d_{1}\\) and \\(l_{2} \times d_{2}\\), such that \\(l_{1} \times l_{2} = l\\) and \\(d_{1} + d_{2} = d\\) (with the product for the lengths, this ends up being way smaller). The embedding for time step \\(j\\) in E is obtained by concatenating the embeddings for timestep \\(j \% l1\\) in E1 and \\(j // l1\\) in E2.
transformers/docs/source/en/attention.md/0
{ "file_path": "transformers/docs/source/en/attention.md", "repo_id": "transformers", "token_count": 958 }
258
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Glossary This glossary defines general machine learning and 🤗 Transformers terms to help you better understand the documentation. ## A ### attention mask The attention mask is an optional argument used when batching sequences together. <Youtube id="M6adb1j2jPI"/> This argument indicates to the model which tokens should be attended to, and which should not. For example, consider these two sequences: ```python >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") >>> sequence_a = "This is a short sequence." >>> sequence_b = "This is a rather long sequence. It is at least longer than the sequence A." >>> encoded_sequence_a = tokenizer(sequence_a)["input_ids"] >>> encoded_sequence_b = tokenizer(sequence_b)["input_ids"] ``` The encoded versions have different lengths: ```python >>> len(encoded_sequence_a), len(encoded_sequence_b) (8, 19) ``` Therefore, we can't put them together in the same tensor as-is. The first sequence needs to be padded up to the length of the second one, or the second one needs to be truncated down to the length of the first one. In the first case, the list of IDs will be extended by the padding indices. We can pass a list to the tokenizer and ask it to pad like this: ```python >>> padded_sequences = tokenizer([sequence_a, sequence_b], padding=True) ``` We can see that 0s have been added on the right of the first sentence to make it the same length as the second one: ```python >>> padded_sequences["input_ids"] [[101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]] ``` This can then be converted into a tensor in PyTorch or TensorFlow. The attention mask is a binary tensor indicating the position of the padded indices so that the model does not attend to them. For the [`BertTokenizer`], `1` indicates a value that should be attended to, while `0` indicates a padded value. This attention mask is in the dictionary returned by the tokenizer under the key "attention_mask": ```python >>> padded_sequences["attention_mask"] [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ``` ### autoencoding models See [encoder models](#encoder-models) and [masked language modeling](#masked-language-modeling-mlm) ### autoregressive models See [causal language modeling](#causal-language-modeling) and [decoder models](#decoder-models) ## B ### backbone The backbone is the network (embeddings and layers) that outputs the raw hidden states or features. It is usually connected to a [head](#head) which accepts the features as its input to make a prediction. For example, [`ViTModel`] is a backbone without a specific head on top. Other models can also use [`VitModel`] as a backbone such as [DPT](model_doc/dpt). ## C ### causal language modeling A pretraining task where the model reads the texts in order and has to predict the next word. It's usually done by reading the whole sentence but using a mask inside the model to hide the future tokens at a certain timestep. ### channel Color images are made up of some combination of values in three channels: red, green, and blue (RGB) and grayscale images only have one channel. In 🤗 Transformers, the channel can be the first or last dimension of an image's tensor: [`n_channels`, `height`, `width`] or [`height`, `width`, `n_channels`]. ### connectionist temporal classification (CTC) An algorithm which allows a model to learn without knowing exactly how the input and output are aligned; CTC calculates the distribution of all possible outputs for a given input and chooses the most likely output from it. CTC is commonly used in speech recognition tasks because speech doesn't always cleanly align with the transcript for a variety of reasons such as a speaker's different speech rates. ### convolution A type of layer in a neural network where the input matrix is multiplied element-wise by a smaller matrix (kernel or filter) and the values are summed up in a new matrix. This is known as a convolutional operation which is repeated over the entire input matrix. Each operation is applied to a different segment of the input matrix. Convolutional neural networks (CNNs) are commonly used in computer vision. ## D ### DataParallel (DP) Parallelism technique for training on multiple GPUs where the same setup is replicated multiple times, with each instance receiving a distinct data slice. The processing is done in parallel and all setups are synchronized at the end of each training step. Learn more about how DataParallel works [here](perf_train_gpu_many#dataparallel-vs-distributeddataparallel). ### decoder input IDs This input is specific to encoder-decoder models, and contains the input IDs that will be fed to the decoder. These inputs should be used for sequence to sequence tasks, such as translation or summarization, and are usually built in a way specific to each model. Most encoder-decoder models (BART, T5) create their `decoder_input_ids` on their own from the `labels`. In such models, passing the `labels` is the preferred way to handle training. Please check each model's docs to see how they handle these input IDs for sequence to sequence training. ### decoder models Also referred to as autoregressive models, decoder models involve a pretraining task (called causal language modeling) where the model reads the texts in order and has to predict the next word. It's usually done by reading the whole sentence with a mask to hide future tokens at a certain timestep. <Youtube id="d_ixlCubqQw"/> ### deep learning (DL) Machine learning algorithms which uses neural networks with several layers. ## E ### encoder models Also known as autoencoding models, encoder models take an input (such as text or images) and transform them into a condensed numerical representation called an embedding. Oftentimes, encoder models are pretrained using techniques like [masked language modeling](#masked-language-modeling-mlm), which masks parts of the input sequence and forces the model to create more meaningful representations. <Youtube id="H39Z_720T5s"/> ## F ### feature extraction The process of selecting and transforming raw data into a set of features that are more informative and useful for machine learning algorithms. Some examples of feature extraction include transforming raw text into word embeddings and extracting important features such as edges or shapes from image/video data. ### feed forward chunking In each residual attention block in transformers the self-attention layer is usually followed by 2 feed forward layers. The intermediate embedding size of the feed forward layers is often bigger than the hidden size of the model (e.g., for `google-bert/bert-base-uncased`). For an input of size `[batch_size, sequence_length]`, the memory required to store the intermediate feed forward embeddings `[batch_size, sequence_length, config.intermediate_size]` can account for a large fraction of the memory use. The authors of [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) noticed that since the computation is independent of the `sequence_length` dimension, it is mathematically equivalent to compute the output embeddings of both feed forward layers `[batch_size, config.hidden_size]_0, ..., [batch_size, config.hidden_size]_n` individually and concat them afterward to `[batch_size, sequence_length, config.hidden_size]` with `n = sequence_length`, which trades increased computation time against reduced memory use, but yields a mathematically **equivalent** result. For models employing the function [`apply_chunking_to_forward`], the `chunk_size` defines the number of output embeddings that are computed in parallel and thus defines the trade-off between memory and time complexity. If `chunk_size` is set to 0, no feed forward chunking is done. ### finetuned models Finetuning is a form of transfer learning which involves taking a pretrained model, freezing its weights, and replacing the output layer with a newly added [model head](#head). The model head is trained on your target dataset. See the [Fine-tune a pretrained model](https://huggingface.co/docs/transformers/training) tutorial for more details, and learn how to fine-tune models with 🤗 Transformers. ## H ### head The model head refers to the last layer of a neural network that accepts the raw hidden states and projects them onto a different dimension. There is a different model head for each task. For example: * [`GPT2ForSequenceClassification`] is a sequence classification head - a linear layer - on top of the base [`GPT2Model`]. * [`ViTForImageClassification`] is an image classification head - a linear layer on top of the final hidden state of the `CLS` token - on top of the base [`ViTModel`]. * [`Wav2Vec2ForCTC`] is a language modeling head with [CTC](#connectionist-temporal-classification-ctc) on top of the base [`Wav2Vec2Model`]. ## I ### image patch Vision-based Transformers models split an image into smaller patches which are linearly embedded, and then passed as a sequence to the model. You can find the `patch_size` - or resolution - of the model in its configuration. ### inference Inference is the process of evaluating a model on new data after training is complete. See the [Pipeline for inference](https://huggingface.co/docs/transformers/pipeline_tutorial) tutorial to learn how to perform inference with 🤗 Transformers. ### input IDs The input ids are often the only required parameters to be passed to the model as input. They are token indices, numerical representations of tokens building the sequences that will be used as input by the model. <Youtube id="VFp38yj8h3A"/> Each tokenizer works differently but the underlying mechanism remains the same. Here's an example using the BERT tokenizer, which is a [WordPiece](https://arxiv.org/pdf/1609.08144.pdf) tokenizer: ```python >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") >>> sequence = "A Titan RTX has 24GB of VRAM" ``` The tokenizer takes care of splitting the sequence into tokens available in the tokenizer vocabulary. ```python >>> tokenized_sequence = tokenizer.tokenize(sequence) ``` The tokens are either words or subwords. Here for instance, "VRAM" wasn't in the model vocabulary, so it's been split in "V", "RA" and "M". To indicate those tokens are not separate words but parts of the same word, a double-hash prefix is added for "RA" and "M": ```python >>> print(tokenized_sequence) ['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M'] ``` These tokens can then be converted into IDs which are understandable by the model. This can be done by directly feeding the sentence to the tokenizer, which leverages the Rust implementation of [🤗 Tokenizers](https://github.com/huggingface/tokenizers) for peak performance. ```python >>> inputs = tokenizer(sequence) ``` The tokenizer returns a dictionary with all the arguments necessary for its corresponding model to work properly. The token indices are under the key `input_ids`: ```python >>> encoded_sequence = inputs["input_ids"] >>> print(encoded_sequence) [101, 138, 18696, 155, 1942, 3190, 1144, 1572, 13745, 1104, 159, 9664, 2107, 102] ``` Note that the tokenizer automatically adds "special tokens" (if the associated model relies on them) which are special IDs the model sometimes uses. If we decode the previous sequence of ids, ```python >>> decoded_sequence = tokenizer.decode(encoded_sequence) ``` we will see ```python >>> print(decoded_sequence) [CLS] A Titan RTX has 24GB of VRAM [SEP] ``` because this is the way a [`BertModel`] is going to expect its inputs. ## L ### labels The labels are an optional argument which can be passed in order for the model to compute the loss itself. These labels should be the expected prediction of the model: it will use the standard loss in order to compute the loss between its predictions and the expected value (the label). These labels are different according to the model head, for example: - For sequence classification models, ([`BertForSequenceClassification`]), the model expects a tensor of dimension `(batch_size)` with each value of the batch corresponding to the expected label of the entire sequence. - For token classification models, ([`BertForTokenClassification`]), the model expects a tensor of dimension `(batch_size, seq_length)` with each value corresponding to the expected label of each individual token. - For masked language modeling, ([`BertForMaskedLM`]), the model expects a tensor of dimension `(batch_size, seq_length)` with each value corresponding to the expected label of each individual token: the labels being the token ID for the masked token, and values to be ignored for the rest (usually -100). - For sequence to sequence tasks, ([`BartForConditionalGeneration`], [`MBartForConditionalGeneration`]), the model expects a tensor of dimension `(batch_size, tgt_seq_length)` with each value corresponding to the target sequences associated with each input sequence. During training, both BART and T5 will make the appropriate `decoder_input_ids` and decoder attention masks internally. They usually do not need to be supplied. This does not apply to models leveraging the Encoder-Decoder framework. - For image classification models, ([`ViTForImageClassification`]), the model expects a tensor of dimension `(batch_size)` with each value of the batch corresponding to the expected label of each individual image. - For semantic segmentation models, ([`SegformerForSemanticSegmentation`]), the model expects a tensor of dimension `(batch_size, height, width)` with each value of the batch corresponding to the expected label of each individual pixel. - For object detection models, ([`DetrForObjectDetection`]), the model expects a list of dictionaries with a `class_labels` and `boxes` key where each value of the batch corresponds to the expected label and number of bounding boxes of each individual image. - For automatic speech recognition models, ([`Wav2Vec2ForCTC`]), the model expects a tensor of dimension `(batch_size, target_length)` with each value corresponding to the expected label of each individual token. <Tip> Each model's labels may be different, so be sure to always check the documentation of each model for more information about their specific labels! </Tip> The base models ([`BertModel`]) do not accept labels, as these are the base transformer models, simply outputting features. ### large language models (LLM) A generic term that refers to transformer language models (GPT-3, BLOOM, OPT) that were trained on a large quantity of data. These models also tend to have a large number of learnable parameters (e.g. 175 billion for GPT-3). ## M ### masked language modeling (MLM) A pretraining task where the model sees a corrupted version of the texts, usually done by masking some tokens randomly, and has to predict the original text. ### multimodal A task that combines texts with another kind of inputs (for instance images). ## N ### Natural language generation (NLG) All tasks related to generating text (for instance, [Write With Transformers](https://transformer.huggingface.co/), translation). ### Natural language processing (NLP) A generic way to say "deal with texts". ### Natural language understanding (NLU) All tasks related to understanding what is in a text (for instance classifying the whole text, individual words). ## P ### pipeline A pipeline in 🤗 Transformers is an abstraction referring to a series of steps that are executed in a specific order to preprocess and transform data and return a prediction from a model. Some example stages found in a pipeline might be data preprocessing, feature extraction, and normalization. For more details, see [Pipelines for inference](https://huggingface.co/docs/transformers/pipeline_tutorial). ### PipelineParallel (PP) Parallelism technique in which the model is split up vertically (layer-level) across multiple GPUs, so that only one or several layers of the model are placed on a single GPU. Each GPU processes in parallel different stages of the pipeline and working on a small chunk of the batch. Learn more about how PipelineParallel works [here](perf_train_gpu_many#from-naive-model-parallelism-to-pipeline-parallelism). ### pixel values A tensor of the numerical representations of an image that is passed to a model. The pixel values have a shape of [`batch_size`, `num_channels`, `height`, `width`], and are generated from an image processor. ### pooling An operation that reduces a matrix into a smaller matrix, either by taking the maximum or average of the pooled dimension(s). Pooling layers are commonly found between convolutional layers to downsample the feature representation. ### position IDs Contrary to RNNs that have the position of each token embedded within them, transformers are unaware of the position of each token. Therefore, the position IDs (`position_ids`) are used by the model to identify each token's position in the list of tokens. They are an optional parameter. If no `position_ids` are passed to the model, the IDs are automatically created as absolute positional embeddings. Absolute positional embeddings are selected in the range `[0, config.max_position_embeddings - 1]`. Some models use other types of positional embeddings, such as sinusoidal position embeddings or relative position embeddings. ### preprocessing The task of preparing raw data into a format that can be easily consumed by machine learning models. For example, text is typically preprocessed by tokenization. To gain a better idea of what preprocessing looks like for other input types, check out the [Preprocess](https://huggingface.co/docs/transformers/preprocessing) tutorial. ### pretrained model A model that has been pretrained on some data (for instance all of Wikipedia). Pretraining methods involve a self-supervised objective, which can be reading the text and trying to predict the next word (see [causal language modeling](#causal-language-modeling)) or masking some words and trying to predict them (see [masked language modeling](#masked-language-modeling-mlm)). Speech and vision models have their own pretraining objectives. For example, Wav2Vec2 is a speech model pretrained on a contrastive task which requires the model to identify the "true" speech representation from a set of "false" speech representations. On the other hand, BEiT is a vision model pretrained on a masked image modeling task which masks some of the image patches and requires the model to predict the masked patches (similar to the masked language modeling objective). ## R ### recurrent neural network (RNN) A type of model that uses a loop over a layer to process texts. ### representation learning A subfield of machine learning which focuses on learning meaningful representations of raw data. Some examples of representation learning techniques include word embeddings, autoencoders, and Generative Adversarial Networks (GANs). ## S ### sampling rate A measurement in hertz of the number of samples (the audio signal) taken per second. The sampling rate is a result of discretizing a continuous signal such as speech. ### self-attention Each element of the input finds out which other elements of the input they should attend to. ### self-supervised learning A category of machine learning techniques in which a model creates its own learning objective from unlabeled data. It differs from [unsupervised learning](#unsupervised-learning) and [supervised learning](#supervised-learning) in that the learning process is supervised, but not explicitly from the user. One example of self-supervised learning is [masked language modeling](#masked-language-modeling-mlm), where a model is passed sentences with a proportion of its tokens removed and learns to predict the missing tokens. ### semi-supervised learning A broad category of machine learning training techniques that leverages a small amount of labeled data with a larger quantity of unlabeled data to improve the accuracy of a model, unlike [supervised learning](#supervised-learning) and [unsupervised learning](#unsupervised-learning). An example of a semi-supervised learning approach is "self-training", in which a model is trained on labeled data, and then used to make predictions on the unlabeled data. The portion of the unlabeled data that the model predicts with the most confidence gets added to the labeled dataset and used to retrain the model. ### sequence-to-sequence (seq2seq) Models that generate a new sequence from an input, like translation models, or summarization models (such as [Bart](model_doc/bart) or [T5](model_doc/t5)). ### Sharded DDP Another name for the foundational [ZeRO](#zero-redundancy-optimizer-zero) concept as used by various other implementations of ZeRO. ### stride In [convolution](#convolution) or [pooling](#pooling), the stride refers to the distance the kernel is moved over a matrix. A stride of 1 means the kernel is moved one pixel over at a time, and a stride of 2 means the kernel is moved two pixels over at a time. ### supervised learning A form of model training that directly uses labeled data to correct and instruct model performance. Data is fed into the model being trained, and its predictions are compared to the known labels. The model updates its weights based on how incorrect its predictions were, and the process is repeated to optimize model performance. ## T ### Tensor Parallelism (TP) Parallelism technique for training on multiple GPUs in which each tensor is split up into multiple chunks, so instead of having the whole tensor reside on a single GPU, each shard of the tensor resides on its designated GPU. Shards gets processed separately and in parallel on different GPUs and the results are synced at the end of the processing step. This is what is sometimes called horizontal parallelism, as the splitting happens on horizontal level. Learn more about Tensor Parallelism [here](perf_train_gpu_many#tensor-parallelism). ### token A part of a sentence, usually a word, but can also be a subword (non-common words are often split in subwords) or a punctuation symbol. ### token Type IDs Some models' purpose is to do classification on pairs of sentences or question answering. <Youtube id="0u3ioSwev3s"/> These require two different sequences to be joined in a single "input_ids" entry, which usually is performed with the help of special tokens, such as the classifier (`[CLS]`) and separator (`[SEP]`) tokens. For example, the BERT model builds its two sequence input as such: ```python >>> # [CLS] SEQUENCE_A [SEP] SEQUENCE_B [SEP] ``` We can use our tokenizer to automatically generate such a sentence by passing the two sequences to `tokenizer` as two arguments (and not a list, like before) like this: ```python >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") >>> sequence_a = "HuggingFace is based in NYC" >>> sequence_b = "Where is HuggingFace based?" >>> encoded_dict = tokenizer(sequence_a, sequence_b) >>> decoded = tokenizer.decode(encoded_dict["input_ids"]) ``` which will return: ```python >>> print(decoded) [CLS] HuggingFace is based in NYC [SEP] Where is HuggingFace based? [SEP] ``` This is enough for some models to understand where one sequence ends and where another begins. However, other models, such as BERT, also deploy token type IDs (also called segment IDs). They are represented as a binary mask identifying the two types of sequence in the model. The tokenizer returns this mask as the "token_type_ids" entry: ```python >>> encoded_dict["token_type_ids"] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1] ``` The first sequence, the "context" used for the question, has all its tokens represented by a `0`, whereas the second sequence, corresponding to the "question", has all its tokens represented by a `1`. Some models, like [`XLNetModel`] use an additional token represented by a `2`. ### transfer learning A technique that involves taking a pretrained model and adapting it to a dataset specific to your task. Instead of training a model from scratch, you can leverage knowledge obtained from an existing model as a starting point. This speeds up the learning process and reduces the amount of training data needed. ### transformer Self-attention based deep learning model architecture. ## U ### unsupervised learning A form of model training in which data provided to the model is not labeled. Unsupervised learning techniques leverage statistical information of the data distribution to find patterns useful for the task at hand. ## Z ### Zero Redundancy Optimizer (ZeRO) Parallelism technique which performs sharding of the tensors somewhat similar to [TensorParallel](#tensor-parallelism-tp), except the whole tensor gets reconstructed in time for a forward or backward computation, therefore the model doesn't need to be modified. This method also supports various offloading techniques to compensate for limited GPU memory. Learn more about ZeRO [here](perf_train_gpu_many#zero-data-parallelism).
transformers/docs/source/en/glossary.md/0
{ "file_path": "transformers/docs/source/en/glossary.md", "repo_id": "transformers", "token_count": 6760 }
259
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Agents & Tools <Tip warning={true}> Transformers Agents is an experimental API which is subject to change at any time. Results returned by the agents can vary as the APIs or underlying models are prone to change. </Tip> To learn more about agents and tools make sure to read the [introductory guide](../transformers_agents). This page contains the API docs for the underlying classes. ## Agents We provide three types of agents: [`HfAgent`] uses inference endpoints for opensource models, [`LocalAgent`] uses a model of your choice locally and [`OpenAiAgent`] uses OpenAI closed models. ### HfAgent [[autodoc]] HfAgent ### LocalAgent [[autodoc]] LocalAgent ### OpenAiAgent [[autodoc]] OpenAiAgent ### AzureOpenAiAgent [[autodoc]] AzureOpenAiAgent ### Agent [[autodoc]] Agent - chat - run - prepare_for_new_chat ## Tools ### load_tool [[autodoc]] load_tool ### Tool [[autodoc]] Tool ### PipelineTool [[autodoc]] PipelineTool ### RemoteTool [[autodoc]] RemoteTool ### launch_gradio_demo [[autodoc]] launch_gradio_demo ## Agent Types Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return text, image, audio, video, among other types. In order to increase compatibility between tools, as well as to correctly render these returns in ipython (jupyter, colab, ipython notebooks, ...), we implement wrapper classes around these types. The wrapped objects should continue behaving as initially; a text object should still behave as a string, an image object should still behave as a `PIL.Image`. These types have three specific purposes: - Calling `to_raw` on the type should return the underlying object - Calling `to_string` on the type should return the object as a string: that can be the string in case of an `AgentText` but will be the path of the serialized version of the object in other instances - Displaying it in an ipython kernel should display the object correctly ### AgentText [[autodoc]] transformers.tools.agent_types.AgentText ### AgentImage [[autodoc]] transformers.tools.agent_types.AgentImage ### AgentAudio [[autodoc]] transformers.tools.agent_types.AgentAudio
transformers/docs/source/en/main_classes/agent.md/0
{ "file_path": "transformers/docs/source/en/main_classes/agent.md", "repo_id": "transformers", "token_count": 812 }
260
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Quantization Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Transformers supports the AWQ and GPTQ quantization algorithms and it supports 8-bit and 4-bit quantization with bitsandbytes. Quantization techniques that aren't supported in Transformers can be added with the [`HfQuantizer`] class. <Tip> Learn how to quantize models in the [Quantization](../quantization) guide. </Tip> ## QuantoConfig [[autodoc]] QuantoConfig ## AqlmConfig [[autodoc]] AqlmConfig ## AwqConfig [[autodoc]] AwqConfig ## GPTQConfig [[autodoc]] GPTQConfig ## BitsAndBytesConfig [[autodoc]] BitsAndBytesConfig ## HfQuantizer [[autodoc]] quantizers.base.HfQuantizer
transformers/docs/source/en/main_classes/quantization.md/0
{ "file_path": "transformers/docs/source/en/main_classes/quantization.md", "repo_id": "transformers", "token_count": 437 }
261
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CamemBERT ## Overview The CamemBERT model was proposed in [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by [Louis Martin](https://huggingface.co/louismartin), [Benjamin Muller](https://huggingface.co/benjamin-mlr), [Pedro Javier Ortiz Suárez](https://huggingface.co/pjox), Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, [Djamé Seddah](https://huggingface.co/Djame), and [Benoît Sagot](https://huggingface.co/sagot). It is based on Facebook's RoBERTa model released in 2019. It is a model trained on 138GB of French text. The abstract from the paper is the following: *Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models --in all languages except English-- very limited. Aiming to address this issue for French, we release CamemBERT, a French version of the Bi-directional Encoders for Transformers (BERT). We measure the performance of CamemBERT compared to multilingual models in multiple downstream tasks, namely part-of-speech tagging, dependency parsing, named-entity recognition, and natural language inference. CamemBERT improves the state of the art for most of the tasks considered. We release the pretrained model for CamemBERT hoping to foster research and downstream applications for French NLP.* This model was contributed by [the ALMAnaCH team (Inria)](https://huggingface.co/almanach). The original code can be found [here](https://camembert-model.fr/). <Tip> This implementation is the same as RoBERTa. Refer to the [documentation of RoBERTa](roberta) for usage examples as well as the information relative to the inputs and outputs. </Tip> ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## CamembertConfig [[autodoc]] CamembertConfig ## CamembertTokenizer [[autodoc]] CamembertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## CamembertTokenizerFast [[autodoc]] CamembertTokenizerFast <frameworkcontent> <pt> ## CamembertModel [[autodoc]] CamembertModel ## CamembertForCausalLM [[autodoc]] CamembertForCausalLM ## CamembertForMaskedLM [[autodoc]] CamembertForMaskedLM ## CamembertForSequenceClassification [[autodoc]] CamembertForSequenceClassification ## CamembertForMultipleChoice [[autodoc]] CamembertForMultipleChoice ## CamembertForTokenClassification [[autodoc]] CamembertForTokenClassification ## CamembertForQuestionAnswering [[autodoc]] CamembertForQuestionAnswering </pt> <tf> ## TFCamembertModel [[autodoc]] TFCamembertModel ## TFCamembertForCasualLM [[autodoc]] TFCamembertForCausalLM ## TFCamembertForMaskedLM [[autodoc]] TFCamembertForMaskedLM ## TFCamembertForSequenceClassification [[autodoc]] TFCamembertForSequenceClassification ## TFCamembertForMultipleChoice [[autodoc]] TFCamembertForMultipleChoice ## TFCamembertForTokenClassification [[autodoc]] TFCamembertForTokenClassification ## TFCamembertForQuestionAnswering [[autodoc]] TFCamembertForQuestionAnswering </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/camembert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/camembert.md", "repo_id": "transformers", "token_count": 1309 }
262
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CTRL <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=ctrl"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-ctrl-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/tiny-ctrl"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview CTRL model was proposed in [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. It's a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.). The abstract from the paper is the following: *Large-scale language models show promising text generation capabilities, but users cannot easily control particular aspects of the generated text. We release CTRL, a 1.63 billion-parameter conditional transformer language model, trained to condition on control codes that govern style, content, and task-specific behavior. Control codes were derived from structure that naturally co-occurs with raw text, preserving the advantages of unsupervised learning while providing more explicit control over text generation. These codes also allow CTRL to predict which parts of the training data are most likely given a sequence. This provides a potential method for analyzing large amounts of data via model-based source attribution.* This model was contributed by [keskarnitishr](https://huggingface.co/keskarnitishr). The original code can be found [here](https://github.com/salesforce/ctrl). ## Usage tips - CTRL makes use of control codes to generate text: it requires generations to be started by certain words, sentences or links to generate coherent text. Refer to the [original implementation](https://github.com/salesforce/ctrl) for more information. - CTRL is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - CTRL was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows CTRL to generate syntactically coherent text as it can be observed in the *run_generation.py* example script. - The PyTorch models can take the `past_key_values` as input, which is the previously computed key/value attention pairs. TensorFlow models accepts `past` as input. Using the `past_key_values` value prevents the model from re-computing pre-computed values in the context of text generation. See the [`forward`](model_doc/ctrl#transformers.CTRLModel.forward) method for more information on the usage of this argument. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Causal language modeling task guide](../tasks/language_modeling) ## CTRLConfig [[autodoc]] CTRLConfig ## CTRLTokenizer [[autodoc]] CTRLTokenizer - save_vocabulary <frameworkcontent> <pt> ## CTRLModel [[autodoc]] CTRLModel - forward ## CTRLLMHeadModel [[autodoc]] CTRLLMHeadModel - forward ## CTRLForSequenceClassification [[autodoc]] CTRLForSequenceClassification - forward </pt> <tf> ## TFCTRLModel [[autodoc]] TFCTRLModel - call ## TFCTRLLMHeadModel [[autodoc]] TFCTRLLMHeadModel - call ## TFCTRLForSequenceClassification [[autodoc]] TFCTRLForSequenceClassification - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/ctrl.md/0
{ "file_path": "transformers/docs/source/en/model_doc/ctrl.md", "repo_id": "transformers", "token_count": 1209 }
263
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DiT ## Overview DiT was proposed in [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei. DiT applies the self-supervised objective of [BEiT](beit) (BERT pre-training of Image Transformers) to 42 million document images, allowing for state-of-the-art results on tasks including: - document image classification: the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset (a collection of 400,000 images belonging to one of 16 classes). - document layout analysis: the [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) dataset (a collection of more than 360,000 document images constructed by automatically parsing PubMed XML files). - table detection: the [ICDAR 2019 cTDaR](https://github.com/cndplab-founder/ICDAR2019_cTDaR) dataset (a collection of 600 training images and 240 testing images). The abstract from the paper is the following: *Image Transformer has recently achieved significant progress for natural image understanding, either using supervised (ViT, DeiT, etc.) or self-supervised (BEiT, MAE, etc.) pre-training techniques. In this paper, we propose DiT, a self-supervised pre-trained Document Image Transformer model using large-scale unlabeled text images for Document AI tasks, which is essential since no supervised counterparts ever exist due to the lack of human labeled document images. We leverage DiT as the backbone network in a variety of vision-based Document AI tasks, including document image classification, document layout analysis, as well as table detection. Experiment results have illustrated that the self-supervised pre-trained DiT model achieves new state-of-the-art results on these downstream tasks, e.g. document image classification (91.11 → 92.69), document layout analysis (91.0 → 94.9) and table detection (94.23 → 96.55). * <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dit_architecture.jpg" alt="drawing" width="600"/> <small> Summary of the approach. Taken from the [original paper](https://arxiv.org/abs/2203.02378). </small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/unilm/tree/master/dit). ## Usage tips One can directly use the weights of DiT with the AutoModel API: ```python from transformers import AutoModel model = AutoModel.from_pretrained("microsoft/dit-base") ``` This will load the model pre-trained on masked image modeling. Note that this won't include the language modeling head on top, used to predict visual tokens. To include the head, you can load the weights into a `BeitForMaskedImageModeling` model, like so: ```python from transformers import BeitForMaskedImageModeling model = BeitForMaskedImageModeling.from_pretrained("microsoft/dit-base") ``` You can also load a fine-tuned model from the [hub](https://huggingface.co/models?other=dit), like so: ```python from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") ``` This particular checkpoint was fine-tuned on [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/), an important benchmark for document image classification. A notebook that illustrates inference for document image classification can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DiT/Inference_with_DiT_(Document_Image_Transformer)_for_document_image_classification.ipynb). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DiT. <PipelineTag pipeline="image-classification"/> - [`BeitForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <Tip> As DiT's architecture is equivalent to that of BEiT, one can refer to [BEiT's documentation page](beit) for all tips, code examples and notebooks. </Tip>
transformers/docs/source/en/model_doc/dit.md/0
{ "file_path": "transformers/docs/source/en/model_doc/dit.md", "repo_id": "transformers", "token_count": 1429 }
264
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # FlauBERT <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=flaubert"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-flaubert-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/flaubert_small_cased"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The FlauBERT model was proposed in the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le et al. It's a transformer model pretrained using a masked language modeling (MLM) objective (like BERT). The abstract from the paper is the following: *Language models have become a key step to achieve state-of-the art results in many different Natural Language Processing (NLP) tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient way to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their contextualization at the sentence level. This has been widely demonstrated for English using contextualized representations (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019b). In this paper, we introduce and share FlauBERT, a model learned on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We apply our French language models to diverse NLP tasks (text classification, paraphrasing, natural language inference, parsing, word sense disambiguation) and show that most of the time they outperform other pretraining approaches. Different versions of FlauBERT as well as a unified evaluation protocol for the downstream tasks, called FLUE (French Language Understanding Evaluation), are shared to the research community for further reproducible experiments in French NLP.* This model was contributed by [formiel](https://huggingface.co/formiel). The original code can be found [here](https://github.com/getalp/Flaubert). Tips: - Like RoBERTa, without the sentence ordering prediction (so just trained on the MLM objective). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## FlaubertConfig [[autodoc]] FlaubertConfig ## FlaubertTokenizer [[autodoc]] FlaubertTokenizer <frameworkcontent> <pt> ## FlaubertModel [[autodoc]] FlaubertModel - forward ## FlaubertWithLMHeadModel [[autodoc]] FlaubertWithLMHeadModel - forward ## FlaubertForSequenceClassification [[autodoc]] FlaubertForSequenceClassification - forward ## FlaubertForMultipleChoice [[autodoc]] FlaubertForMultipleChoice - forward ## FlaubertForTokenClassification [[autodoc]] FlaubertForTokenClassification - forward ## FlaubertForQuestionAnsweringSimple [[autodoc]] FlaubertForQuestionAnsweringSimple - forward ## FlaubertForQuestionAnswering [[autodoc]] FlaubertForQuestionAnswering - forward </pt> <tf> ## TFFlaubertModel [[autodoc]] TFFlaubertModel - call ## TFFlaubertWithLMHeadModel [[autodoc]] TFFlaubertWithLMHeadModel - call ## TFFlaubertForSequenceClassification [[autodoc]] TFFlaubertForSequenceClassification - call ## TFFlaubertForMultipleChoice [[autodoc]] TFFlaubertForMultipleChoice - call ## TFFlaubertForTokenClassification [[autodoc]] TFFlaubertForTokenClassification - call ## TFFlaubertForQuestionAnsweringSimple [[autodoc]] TFFlaubertForQuestionAnsweringSimple - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/flaubert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/flaubert.md", "repo_id": "transformers", "token_count": 1382 }
265
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GPT-J ## Overview The GPT-J model was released in the [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) repository by Ben Wang and Aran Komatsuzaki. It is a GPT-2-like causal language model trained on [the Pile](https://pile.eleuther.ai/) dataset. This model was contributed by [Stella Biderman](https://huggingface.co/stellaathena). ## Usage tips - To load [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) in float32 one would need at least 2x model size RAM: 1x for initial weights and another 1x to load the checkpoint. So for GPT-J it would take at least 48GB RAM to just load the model. To reduce the RAM usage there are a few options. The `torch_dtype` argument can be used to initialize the model in half-precision on a CUDA device only. There is also a fp16 branch which stores the fp16 weights, which could be used to further minimize the RAM usage: ```python >>> from transformers import GPTJForCausalLM >>> import torch >>> device = "cuda" >>> model = GPTJForCausalLM.from_pretrained( ... "EleutherAI/gpt-j-6B", ... revision="float16", ... torch_dtype=torch.float16, ... ).to(device) ``` - The model should fit on 16GB GPU for inference. For training/fine-tuning it would take much more GPU RAM. Adam optimizer for example makes four copies of the model: model, gradients, average and squared average of the gradients. So it would need at least 4x model size GPU memory, even with mixed precision as gradient updates are in fp32. This is not including the activations and data batches, which would again require some more GPU RAM. So one should explore solutions such as DeepSpeed, to train/fine-tune the model. Another option is to use the original codebase to train/fine-tune the model on TPU and then convert the model to Transformers format for inference. Instructions for that could be found [here](https://github.com/kingoflolz/mesh-transformer-jax/blob/master/howto_finetune.md) - Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer. These extra tokens are added for the sake of efficiency on TPUs. To avoid the mismatch between embedding matrix size and vocab size, the tokenizer for [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) contains 143 extra tokens `<|extratoken_1|>... <|extratoken_143|>`, so the `vocab_size` of tokenizer also becomes 50400. ## Usage examples The [`~generation.GenerationMixin.generate`] method can be used to generate text using GPT-J model. ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") >>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") >>> prompt = ( ... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, " ... "previously unexplored valley, in the Andes Mountains. Even more surprising to the " ... "researchers was the fact that the unicorns spoke perfect English." ... ) >>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids >>> gen_tokens = model.generate( ... input_ids, ... do_sample=True, ... temperature=0.9, ... max_length=100, ... ) >>> gen_text = tokenizer.batch_decode(gen_tokens)[0] ``` ...or in float16 precision: ```python >>> from transformers import GPTJForCausalLM, AutoTokenizer >>> import torch >>> device = "cuda" >>> model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", torch_dtype=torch.float16).to(device) >>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") >>> prompt = ( ... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, " ... "previously unexplored valley, in the Andes Mountains. Even more surprising to the " ... "researchers was the fact that the unicorns spoke perfect English." ... ) >>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) >>> gen_tokens = model.generate( ... input_ids, ... do_sample=True, ... temperature=0.9, ... max_length=100, ... ) >>> gen_text = tokenizer.batch_decode(gen_tokens)[0] ``` ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with GPT-J. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-generation"/> - Description of [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B). - A blog on how to [Deploy GPT-J 6B for inference using Hugging Face Transformers and Amazon SageMaker](https://huggingface.co/blog/gptj-sagemaker). - A blog on how to [Accelerate GPT-J inference with DeepSpeed-Inference on GPUs](https://www.philschmid.de/gptj-deepspeed-inference). - A blog post introducing [GPT-J-6B: 6B JAX-Based Transformer](https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/). 🌎 - A notebook for [GPT-J-6B Inference Demo](https://colab.research.google.com/github/kingoflolz/mesh-transformer-jax/blob/master/colab_demo.ipynb). 🌎 - Another notebook demonstrating [Inference with GPT-J-6B](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/GPT-J-6B/Inference_with_GPT_J_6B.ipynb). - [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course. - [`GPTJForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation), and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb). - [`TFGPTJForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). - [`FlaxGPTJForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#causal-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb). **Documentation resources** - [Text classification task guide](../tasks/sequence_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) ## GPTJConfig [[autodoc]] GPTJConfig - all <frameworkcontent> <pt> ## GPTJModel [[autodoc]] GPTJModel - forward ## GPTJForCausalLM [[autodoc]] GPTJForCausalLM - forward ## GPTJForSequenceClassification [[autodoc]] GPTJForSequenceClassification - forward ## GPTJForQuestionAnswering [[autodoc]] GPTJForQuestionAnswering - forward </pt> <tf> ## TFGPTJModel [[autodoc]] TFGPTJModel - call ## TFGPTJForCausalLM [[autodoc]] TFGPTJForCausalLM - call ## TFGPTJForSequenceClassification [[autodoc]] TFGPTJForSequenceClassification - call ## TFGPTJForQuestionAnswering [[autodoc]] TFGPTJForQuestionAnswering - call </tf> <jax> ## FlaxGPTJModel [[autodoc]] FlaxGPTJModel - __call__ ## FlaxGPTJForCausalLM [[autodoc]] FlaxGPTJForCausalLM - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/gptj.md/0
{ "file_path": "transformers/docs/source/en/model_doc/gptj.md", "repo_id": "transformers", "token_count": 2807 }
266
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LayoutXLM ## Overview LayoutXLM was proposed in [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. It's a multilingual extension of the [LayoutLMv2 model](https://arxiv.org/abs/2012.14740) trained on 53 languages. The abstract from the paper is the following: *Multimodal pre-training with text, layout, and image has achieved SOTA performance for visually-rich document understanding tasks recently, which demonstrates the great potential for joint learning across different modalities. In this paper, we present LayoutXLM, a multimodal pre-trained model for multilingual document understanding, which aims to bridge the language barriers for visually-rich document understanding. To accurately evaluate LayoutXLM, we also introduce a multilingual form understanding benchmark dataset named XFUN, which includes form understanding samples in 7 languages (Chinese, Japanese, Spanish, French, Italian, German, Portuguese), and key-value pairs are manually labeled for each language. Experiment results show that the LayoutXLM model has significantly outperformed the existing SOTA cross-lingual pre-trained models on the XFUN dataset.* This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/unilm). ## Usage tips and examples One can directly plug in the weights of LayoutXLM into a LayoutLMv2 model, like so: ```python from transformers import LayoutLMv2Model model = LayoutLMv2Model.from_pretrained("microsoft/layoutxlm-base") ``` Note that LayoutXLM has its own tokenizer, based on [`LayoutXLMTokenizer`]/[`LayoutXLMTokenizerFast`]. You can initialize it as follows: ```python from transformers import LayoutXLMTokenizer tokenizer = LayoutXLMTokenizer.from_pretrained("microsoft/layoutxlm-base") ``` Similar to LayoutLMv2, you can use [`LayoutXLMProcessor`] (which internally applies [`LayoutLMv2ImageProcessor`] and [`LayoutXLMTokenizer`]/[`LayoutXLMTokenizerFast`] in sequence) to prepare all data for the model. <Tip> As LayoutXLM's architecture is equivalent to that of LayoutLMv2, one can refer to [LayoutLMv2's documentation page](layoutlmv2) for all tips, code examples and notebooks. </Tip> ## LayoutXLMTokenizer [[autodoc]] LayoutXLMTokenizer - __call__ - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## LayoutXLMTokenizerFast [[autodoc]] LayoutXLMTokenizerFast - __call__ ## LayoutXLMProcessor [[autodoc]] LayoutXLMProcessor - __call__
transformers/docs/source/en/model_doc/layoutxlm.md/0
{ "file_path": "transformers/docs/source/en/model_doc/layoutxlm.md", "repo_id": "transformers", "token_count": 981 }
267
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MarkupLM ## Overview The MarkupLM model was proposed in [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei. MarkupLM is BERT, but applied to HTML pages instead of raw text documents. The model incorporates additional embedding layers to improve performance, similar to [LayoutLM](layoutlm). The model can be used for tasks like question answering on web pages or information extraction from web pages. It obtains state-of-the-art results on 2 important benchmarks: - [WebSRC](https://x-lance.github.io/WebSRC/), a dataset for Web-Based Structural Reading Comprehension (a bit like SQuAD but for web pages) - [SWDE](https://www.researchgate.net/publication/221299838_From_one_tree_to_a_forest_a_unified_solution_for_structured_web_data_extraction), a dataset for information extraction from web pages (basically named-entity recognition on web pages) The abstract from the paper is the following: *Multimodal pre-training with text, layout, and image has made significant progress for Visually-rich Document Understanding (VrDU), especially the fixed-layout documents such as scanned document images. While, there are still a large number of digital documents where the layout information is not fixed and needs to be interactively and dynamically rendered for visualization, making existing layout-based pre-training approaches not easy to apply. In this paper, we propose MarkupLM for document understanding tasks with markup languages as the backbone such as HTML/XML-based documents, where text and markup information is jointly pre-trained. Experiment results show that the pre-trained MarkupLM significantly outperforms the existing strong baseline models on several document understanding tasks. The pre-trained model and code will be publicly available.* This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/unilm/tree/master/markuplm). ## Usage tips - In addition to `input_ids`, [`~MarkupLMModel.forward`] expects 2 additional inputs, namely `xpath_tags_seq` and `xpath_subs_seq`. These are the XPATH tags and subscripts respectively for each token in the input sequence. - One can use [`MarkupLMProcessor`] to prepare all data for the model. Refer to the [usage guide](#usage-markuplmprocessor) for more info. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/markuplm_architecture.jpg" alt="drawing" width="600"/> <small> MarkupLM architecture. Taken from the <a href="https://arxiv.org/abs/2110.08518">original paper.</a> </small> ## Usage: MarkupLMProcessor The easiest way to prepare data for the model is to use [`MarkupLMProcessor`], which internally combines a feature extractor ([`MarkupLMFeatureExtractor`]) and a tokenizer ([`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]). The feature extractor is used to extract all nodes and xpaths from the HTML strings, which are then provided to the tokenizer, which turns them into the token-level inputs of the model (`input_ids` etc.). Note that you can still use the feature extractor and tokenizer separately, if you only want to handle one of the two tasks. ```python from transformers import MarkupLMFeatureExtractor, MarkupLMTokenizerFast, MarkupLMProcessor feature_extractor = MarkupLMFeatureExtractor() tokenizer = MarkupLMTokenizerFast.from_pretrained("microsoft/markuplm-base") processor = MarkupLMProcessor(feature_extractor, tokenizer) ``` In short, one can provide HTML strings (and possibly additional data) to [`MarkupLMProcessor`], and it will create the inputs expected by the model. Internally, the processor first uses [`MarkupLMFeatureExtractor`] to get a list of nodes and corresponding xpaths. The nodes and xpaths are then provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which converts them to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_subs_seq`, `xpath_tags_seq`. Optionally, one can provide node labels to the processor, which are turned into token-level `labels`. [`MarkupLMFeatureExtractor`] uses [Beautiful Soup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/), a Python library for pulling data out of HTML and XML files, under the hood. Note that you can still use your own parsing solution of choice, and provide the nodes and xpaths yourself to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. In total, there are 5 use cases that are supported by the processor. Below, we list them all. Note that each of these use cases work for both batched and non-batched inputs (we illustrate them for non-batched inputs). **Use case 1: web page classification (training, inference) + token classification (inference), parse_html = True** This is the simplest case, in which the processor will use the feature extractor to get all nodes and xpaths from the HTML. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> html_string = """ ... <!DOCTYPE html> ... <html> ... <head> ... <title>Hello world</title> ... </head> ... <body> ... <h1>Welcome</h1> ... <p>Here is my website.</p> ... </body> ... </html>""" >>> # note that you can also add provide all tokenizer parameters here such as padding, truncation >>> encoding = processor(html_string, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq']) ``` **Use case 2: web page classification (training, inference) + token classification (inference), parse_html=False** In case one already has obtained all nodes and xpaths, one doesn't need the feature extractor. In that case, one should provide the nodes and corresponding xpaths themselves to the processor, and make sure to set `parse_html` to `False`. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> processor.parse_html = False >>> nodes = ["hello", "world", "how", "are"] >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"] >>> encoding = processor(nodes=nodes, xpaths=xpaths, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq']) ``` **Use case 3: token classification (training), parse_html=False** For token classification tasks (such as [SWDE](https://paperswithcode.com/dataset/swde)), one can also provide the corresponding node labels in order to train a model. The processor will then convert these into token-level `labels`. By default, it will only label the first wordpiece of a word, and label the remaining wordpieces with -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. In case you want all wordpieces of a word to be labeled, you can initialize the tokenizer with `only_label_first_subword` set to `False`. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> processor.parse_html = False >>> nodes = ["hello", "world", "how", "are"] >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"] >>> node_labels = [1, 2, 2, 1] >>> encoding = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq', 'labels']) ``` **Use case 4: web page question answering (inference), parse_html=True** For question answering tasks on web pages, you can provide a question to the processor. By default, the processor will use the feature extractor to get all nodes and xpaths, and create [CLS] question tokens [SEP] word tokens [SEP]. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> html_string = """ ... <!DOCTYPE html> ... <html> ... <head> ... <title>Hello world</title> ... </head> ... <body> ... <h1>Welcome</h1> ... <p>My name is Niels.</p> ... </body> ... </html>""" >>> question = "What's his name?" >>> encoding = processor(html_string, questions=question, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq']) ``` **Use case 5: web page question answering (inference), parse_html=False** For question answering tasks (such as WebSRC), you can provide a question to the processor. If you have extracted all nodes and xpaths yourself, you can provide them directly to the processor. Make sure to set `parse_html` to `False`. ```python >>> from transformers import MarkupLMProcessor >>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base") >>> processor.parse_html = False >>> nodes = ["hello", "world", "how", "are"] >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"] >>> question = "What's his name?" >>> encoding = processor(nodes=nodes, xpaths=xpaths, questions=question, return_tensors="pt") >>> print(encoding.keys()) dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq']) ``` ## Resources - [Demo notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/MarkupLM) - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) ## MarkupLMConfig [[autodoc]] MarkupLMConfig - all ## MarkupLMFeatureExtractor [[autodoc]] MarkupLMFeatureExtractor - __call__ ## MarkupLMTokenizer [[autodoc]] MarkupLMTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## MarkupLMTokenizerFast [[autodoc]] MarkupLMTokenizerFast - all ## MarkupLMProcessor [[autodoc]] MarkupLMProcessor - __call__ ## MarkupLMModel [[autodoc]] MarkupLMModel - forward ## MarkupLMForSequenceClassification [[autodoc]] MarkupLMForSequenceClassification - forward ## MarkupLMForTokenClassification [[autodoc]] MarkupLMForTokenClassification - forward ## MarkupLMForQuestionAnswering [[autodoc]] MarkupLMForQuestionAnswering - forward
transformers/docs/source/en/model_doc/markuplm.md/0
{ "file_path": "transformers/docs/source/en/model_doc/markuplm.md", "repo_id": "transformers", "token_count": 3443 }
268
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MobileNet V2 ## Overview The MobileNet model was proposed in [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. The abstract from the paper is the following: *In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3.* *The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters.* This model was contributed by [matthijs](https://huggingface.co/Matthijs). The original code and weights can be found [here for the main model](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet) and [here for DeepLabV3+](https://github.com/tensorflow/models/tree/master/research/deeplab). ## Usage tips - The checkpoints are named **mobilenet\_v2\_*depth*\_*size***, for example **mobilenet\_v2\_1.0\_224**, where **1.0** is the depth multiplier (sometimes also referred to as "alpha" or the width multiplier) and **224** is the resolution of the input images the model was trained on. - Even though the checkpoint is trained on images of specific size, the model will work on images of any size. The smallest supported image size is 32x32. - One can use [`MobileNetV2ImageProcessor`] to prepare images for the model. - The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). However, the model predicts 1001 classes: the 1000 classes from ImageNet plus an extra “background” class (index 0). - The segmentation model uses a [DeepLabV3+](https://arxiv.org/abs/1802.02611) head. The available semantic segmentation checkpoints are pre-trained on [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/). - The original TensorFlow checkpoints use different padding rules than PyTorch, requiring the model to determine the padding amount at inference time, since this depends on the input image size. To use native PyTorch padding behavior, create a [`MobileNetV2Config`] with `tf_padding = False`. Unsupported features: - The [`MobileNetV2Model`] outputs a globally pooled version of the last hidden state. In the original model it is possible to use an average pooling layer with a fixed 7x7 window and stride 1 instead of global pooling. For inputs that are larger than the recommended image size, this gives a pooled output that is larger than 1x1. The Hugging Face implementation does not support this. - The original TensorFlow checkpoints include quantized models. We do not support these models as they include additional "FakeQuantization" operations to unquantize the weights. - It's common to extract the output from the expansion layers at indices 10 and 13, as well as the output from the final 1x1 convolution layer, for downstream purposes. Using `output_hidden_states=True` returns the output from all intermediate layers. There is currently no way to limit this to specific layers. - The DeepLabV3+ segmentation head does not use the final convolution layer from the backbone, but this layer gets computed anyway. There is currently no way to tell [`MobileNetV2Model`] up to which layer it should run. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with MobileNetV2. <PipelineTag pipeline="image-classification"/> - [`MobileNetV2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) **Semantic segmentation** - [Semantic segmentation task guide](../tasks/semantic_segmentation) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## MobileNetV2Config [[autodoc]] MobileNetV2Config ## MobileNetV2FeatureExtractor [[autodoc]] MobileNetV2FeatureExtractor - preprocess - post_process_semantic_segmentation ## MobileNetV2ImageProcessor [[autodoc]] MobileNetV2ImageProcessor - preprocess - post_process_semantic_segmentation ## MobileNetV2Model [[autodoc]] MobileNetV2Model - forward ## MobileNetV2ForImageClassification [[autodoc]] MobileNetV2ForImageClassification - forward ## MobileNetV2ForSemanticSegmentation [[autodoc]] MobileNetV2ForSemanticSegmentation - forward
transformers/docs/source/en/model_doc/mobilenet_v2.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mobilenet_v2.md", "repo_id": "transformers", "token_count": 1747 }
269
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # RoCBert ## Overview The RoCBert model was proposed in [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. It's a pretrained Chinese language model that is robust under various forms of adversarial attacks. The abstract from the paper is the following: *Large-scale pretrained language models have achieved SOTA results on NLP tasks. However, they have been shown vulnerable to adversarial attacks especially for logographic languages like Chinese. In this work, we propose ROCBERT: a pretrained Chinese Bert that is robust to various forms of adversarial attacks like word perturbation, synonyms, typos, etc. It is pretrained with the contrastive learning objective which maximizes the label consistency under different synthesized adversarial examples. The model takes as input multimodal information including the semantic, phonetic and visual features. We show all these features are important to the model robustness since the attack can be performed in all the three forms. Across 5 Chinese NLU tasks, ROCBERT outperforms strong baselines under three blackbox adversarial algorithms without sacrificing the performance on clean testset. It also performs the best in the toxic content detection task under human-made attacks.* This model was contributed by [weiweishi](https://huggingface.co/weiweishi). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## RoCBertConfig [[autodoc]] RoCBertConfig - all ## RoCBertTokenizer [[autodoc]] RoCBertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## RoCBertModel [[autodoc]] RoCBertModel - forward ## RoCBertForPreTraining [[autodoc]] RoCBertForPreTraining - forward ## RoCBertForCausalLM [[autodoc]] RoCBertForCausalLM - forward ## RoCBertForMaskedLM [[autodoc]] RoCBertForMaskedLM - forward ## RoCBertForSequenceClassification [[autodoc]] transformers.RoCBertForSequenceClassification - forward ## RoCBertForMultipleChoice [[autodoc]] transformers.RoCBertForMultipleChoice - forward ## RoCBertForTokenClassification [[autodoc]] transformers.RoCBertForTokenClassification - forward ## RoCBertForQuestionAnswering [[autodoc]] RoCBertForQuestionAnswering - forward
transformers/docs/source/en/model_doc/roc_bert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/roc_bert.md", "repo_id": "transformers", "token_count": 999 }
270
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # SqueezeBERT ## Overview The SqueezeBERT model was proposed in [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, Kurt W. Keutzer. It's a bidirectional transformer similar to the BERT model. The key difference between the BERT architecture and the SqueezeBERT architecture is that SqueezeBERT uses [grouped convolutions](https://blog.yani.io/filter-group-tutorial) instead of fully-connected layers for the Q, K, V and FFN layers. The abstract from the paper is the following: *Humans read and write hundreds of billions of messages every day. Further, due to the availability of large datasets, large computing systems, and better neural network models, natural language processing (NLP) technology has made significant strides in understanding, proofreading, and organizing these messages. Thus, there is a significant opportunity to deploy NLP in myriad applications to help web users, social networks, and businesses. In particular, we consider smartphones and other mobile devices as crucial platforms for deploying NLP models at scale. However, today's highly-accurate NLP neural network models such as BERT and RoBERTa are extremely computationally expensive, with BERT-base taking 1.7 seconds to classify a text snippet on a Pixel 3 smartphone. In this work, we observe that methods such as grouped convolutions have yielded significant speedups for computer vision networks, but many of these techniques have not been adopted by NLP neural network designers. We demonstrate how to replace several operations in self-attention layers with grouped convolutions, and we use this technique in a novel network architecture called SqueezeBERT, which runs 4.3x faster than BERT-base on the Pixel 3 while achieving competitive accuracy on the GLUE test set. The SqueezeBERT code will be released.* This model was contributed by [forresti](https://huggingface.co/forresti). ## Usage tips - SqueezeBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - SqueezeBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained with a causal language modeling (CLM) objective are better in that regard. - For best results when finetuning on sequence classification tasks, it is recommended to start with the *squeezebert/squeezebert-mnli-headless* checkpoint. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## SqueezeBertConfig [[autodoc]] SqueezeBertConfig ## SqueezeBertTokenizer [[autodoc]] SqueezeBertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## SqueezeBertTokenizerFast [[autodoc]] SqueezeBertTokenizerFast ## SqueezeBertModel [[autodoc]] SqueezeBertModel ## SqueezeBertForMaskedLM [[autodoc]] SqueezeBertForMaskedLM ## SqueezeBertForSequenceClassification [[autodoc]] SqueezeBertForSequenceClassification ## SqueezeBertForMultipleChoice [[autodoc]] SqueezeBertForMultipleChoice ## SqueezeBertForTokenClassification [[autodoc]] SqueezeBertForTokenClassification ## SqueezeBertForQuestionAnswering [[autodoc]] SqueezeBertForQuestionAnswering
transformers/docs/source/en/model_doc/squeezebert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/squeezebert.md", "repo_id": "transformers", "token_count": 1205 }
271
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Trajectory Transformer <Tip warning={true}> This model is in maintenance mode only, so we won't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0. You can do so by running the following command: `pip install -U transformers==4.30.0`. </Tip> ## Overview The Trajectory Transformer model was proposed in [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine. The abstract from the paper is the following: *Reinforcement learning (RL) is typically concerned with estimating stationary policies or single-step models, leveraging the Markov property to factorize problems in time. However, we can also view RL as a generic sequence modeling problem, with the goal being to produce a sequence of actions that leads to a sequence of high rewards. Viewed in this way, it is tempting to consider whether high-capacity sequence prediction models that work well in other domains, such as natural-language processing, can also provide effective solutions to the RL problem. To this end, we explore how RL can be tackled with the tools of sequence modeling, using a Transformer architecture to model distributions over trajectories and repurposing beam search as a planning algorithm. Framing RL as sequence modeling problem simplifies a range of design decisions, allowing us to dispense with many of the components common in offline RL algorithms. We demonstrate the flexibility of this approach across long-horizon dynamics prediction, imitation learning, goal-conditioned RL, and offline RL. Further, we show that this approach can be combined with existing model-free algorithms to yield a state-of-the-art planner in sparse-reward, long-horizon tasks.* This model was contributed by [CarlCochet](https://huggingface.co/CarlCochet). The original code can be found [here](https://github.com/jannerm/trajectory-transformer). ## Usage tips This Transformer is used for deep reinforcement learning. To use it, you need to create sequences from actions, states and rewards from all previous timesteps. This model will treat all these elements together as one big sequence (a trajectory). ## TrajectoryTransformerConfig [[autodoc]] TrajectoryTransformerConfig ## TrajectoryTransformerModel [[autodoc]] TrajectoryTransformerModel - forward
transformers/docs/source/en/model_doc/trajectory_transformer.md/0
{ "file_path": "transformers/docs/source/en/model_doc/trajectory_transformer.md", "repo_id": "transformers", "token_count": 776 }
272
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Vision Encoder Decoder Models ## Overview The [`VisionEncoderDecoderModel`] can be used to initialize an image-to-text model with any pretrained Transformer-based vision model as the encoder (*e.g.* [ViT](vit), [BEiT](beit), [DeiT](deit), [Swin](swin)) and any pretrained language model as the decoder (*e.g.* [RoBERTa](roberta), [GPT2](gpt2), [BERT](bert), [DistilBERT](distilbert)). The effectiveness of initializing image-to-text-sequence models with pretrained checkpoints has been shown in (for example) [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. After such a [`VisionEncoderDecoderModel`] has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples below for more information). An example application is image captioning, in which the encoder is used to encode the image, after which an autoregressive language model generates the caption. Another example is optical character recognition. Refer to [TrOCR](trocr), which is an instance of [`VisionEncoderDecoderModel`]. ## Randomly initializing `VisionEncoderDecoderModel` from model configurations. [`VisionEncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`ViTModel`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder. ```python >>> from transformers import BertConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel >>> config_encoder = ViTConfig() >>> config_decoder = BertConfig() >>> config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> model = VisionEncoderDecoderModel(config=config) ``` ## Initialising `VisionEncoderDecoderModel` from a pretrained encoder and a pretrained decoder. [`VisionEncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained Transformer-based vision model, *e.g.* [Swin](swin), can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder. Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized. Initializing [`VisionEncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder). To do so, the `VisionEncoderDecoderModel` class provides a [`VisionEncoderDecoderModel.from_encoder_decoder_pretrained`] method. ```python >>> from transformers import VisionEncoderDecoderModel >>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "microsoft/swin-base-patch4-window7-224-in22k", "google-bert/bert-base-uncased" ... ) ``` ## Loading an existing `VisionEncoderDecoderModel` checkpoint and perform inference. To load fine-tuned checkpoints of the `VisionEncoderDecoderModel` class, [`VisionEncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers. To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling. ```python >>> import requests >>> from PIL import Image >>> from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel >>> # load a fine-tuned image captioning model and corresponding tokenizer and image processor >>> model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") >>> tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning") >>> image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") >>> # let's perform inference on an image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> pixel_values = image_processor(image, return_tensors="pt").pixel_values >>> # autoregressively generate caption (uses greedy decoding by default) >>> generated_ids = model.generate(pixel_values) >>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print(generated_text) a cat laying on a blanket next to a cat laying on a bed ``` ## Loading a PyTorch checkpoint into `TFVisionEncoderDecoderModel`. [`TFVisionEncoderDecoderModel.from_pretrained`] currently doesn't support initializing the model from a PyTorch checkpoint. Passing `from_pt=True` to this method will throw an exception. If there are only PyTorch checkpoints for a particular vision encoder-decoder model, a workaround is: ```python >>> from transformers import VisionEncoderDecoderModel, TFVisionEncoderDecoderModel >>> _model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") >>> _model.encoder.save_pretrained("./encoder") >>> _model.decoder.save_pretrained("./decoder") >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True ... ) >>> # This is only for copying some specific attributes of this particular model. >>> model.config = _model.config ``` ## Training Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model on a dataset of (image, text) pairs. As you can see, only 2 inputs are required for the model in order to compute a loss: `pixel_values` (which are the images) and `labels` (which are the `input_ids` of the encoded target sequence). ```python >>> from transformers import ViTImageProcessor, BertTokenizer, VisionEncoderDecoderModel >>> from datasets import load_dataset >>> image_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased" ... ) >>> model.config.decoder_start_token_id = tokenizer.cls_token_id >>> model.config.pad_token_id = tokenizer.pad_token_id >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> pixel_values = image_processor(image, return_tensors="pt").pixel_values >>> labels = tokenizer( ... "an image of two cats chilling on a couch", ... return_tensors="pt", ... ).input_ids >>> # the forward function automatically creates the correct decoder_input_ids >>> loss = model(pixel_values=pixel_values, labels=labels).loss ``` This model was contributed by [nielsr](https://github.com/nielsrogge). This model's TensorFlow and Flax versions were contributed by [ydshieh](https://github.com/ydshieh). ## VisionEncoderDecoderConfig [[autodoc]] VisionEncoderDecoderConfig <frameworkcontent> <pt> ## VisionEncoderDecoderModel [[autodoc]] VisionEncoderDecoderModel - forward - from_encoder_decoder_pretrained </pt> <tf> ## TFVisionEncoderDecoderModel [[autodoc]] TFVisionEncoderDecoderModel - call - from_encoder_decoder_pretrained </tf> <jax> ## FlaxVisionEncoderDecoderModel [[autodoc]] FlaxVisionEncoderDecoderModel - __call__ - from_encoder_decoder_pretrained </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/vision-encoder-decoder.md/0
{ "file_path": "transformers/docs/source/en/model_doc/vision-encoder-decoder.md", "repo_id": "transformers", "token_count": 2537 }
273
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Whisper ## Overview The Whisper model was proposed in [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever. The abstract from the paper is the following: *We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zeroshot transfer setting without the need for any finetuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.* This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ). The Tensorflow version of this model was contributed by [amyeroberts](https://huggingface.co/amyeroberts). The original code can be found [here](https://github.com/openai/whisper). ## Usage tips - The model usually performs well without requiring any finetuning. - The architecture follows a classic encoder-decoder architecture, which means that it relies on the [`~generation.GenerationMixin.generate`] function for inference. - One can use [`WhisperProcessor`] to prepare audio for the model, and decode the predicted ID's back into text. - To convert the model and the processor, we recommend using the following: ```bash python src/transformers/models/whisper/convert_openai_to_hf.py --checkpoint_path "" --pytorch_dump_folder_path "Arthur/whisper-3" --convert_preprocessor True ``` The script will automatically determine all necessary parameters from the OpenAI checkpoint. A `tiktoken` library needs to be installed to perform the conversion of the OpenAI tokenizer to the `tokenizers` version. ## Inference Here is a step-by-step guide to transcribing an audio sample using a pre-trained Whisper model: ```python >>> from datasets import load_dataset >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> # Select an audio file and read it: >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> audio_sample = ds[0]["audio"] >>> waveform = audio_sample["array"] >>> sampling_rate = audio_sample["sampling_rate"] >>> # Load the Whisper model in Hugging Face format: >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> # Use the model and processor to transcribe the audio: >>> input_features = processor( ... waveform, sampling_rate=sampling_rate, return_tensors="pt" ... ).input_features >>> # Generate token ids >>> predicted_ids = model.generate(input_features) >>> # Decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) >>> transcription[0] ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ``` ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Whisper. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. - A fork with a script to [convert a Whisper model in Hugging Face format to OpenAI format](https://github.com/zuazo-forks/transformers/blob/convert_hf_to_openai/src/transformers/models/whisper/convert_hf_to_openai.py). 🌎 Usage example: ```bash pip install -U openai-whisper python convert_hf_to_openai.py \ --checkpoint openai/whisper-tiny \ --whisper_dump_path whisper-tiny-openai.pt ``` ## WhisperConfig [[autodoc]] WhisperConfig ## WhisperTokenizer [[autodoc]] WhisperTokenizer - set_prefix_tokens - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary - batch_decode - decode - basic_normalize - normalize ## WhisperTokenizerFast [[autodoc]] WhisperTokenizerFast - set_prefix_tokens - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary - batch_decode - decode - basic_normalize - normalize ## WhisperFeatureExtractor [[autodoc]] WhisperFeatureExtractor - __call__ ## WhisperProcessor [[autodoc]] WhisperProcessor - __call__ - from_pretrained - save_pretrained - batch_decode - decode <frameworkcontent> <pt> ## WhisperModel [[autodoc]] WhisperModel - forward - _mask_input_features ## WhisperForConditionalGeneration [[autodoc]] WhisperForConditionalGeneration - forward - generate ## WhisperForCausalLM [[autodoc]] WhisperForCausalLM - forward ## WhisperForAudioClassification [[autodoc]] WhisperForAudioClassification - forward </pt> <tf> ## TFWhisperModel [[autodoc]] TFWhisperModel - call ## TFWhisperForConditionalGeneration [[autodoc]] TFWhisperForConditionalGeneration - call </tf> <jax> ## FlaxWhisperModel [[autodoc]] FlaxWhisperModel - __call__ ## FlaxWhisperForConditionalGeneration [[autodoc]] FlaxWhisperForConditionalGeneration - __call__ ## FlaxWhisperForAudioClassification [[autodoc]] FlaxWhisperForAudioClassification - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/whisper.md/0
{ "file_path": "transformers/docs/source/en/model_doc/whisper.md", "repo_id": "transformers", "token_count": 1948 }
274
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Perplexity of fixed-length models [[open-in-colab]] Perplexity (PPL) is one of the most common metrics for evaluating language models. Before diving in, we should note that the metric applies specifically to classical language models (sometimes called autoregressive or causal language models) and is not well defined for masked language models like BERT (see [summary of the models](model_summary)). Perplexity is defined as the exponentiated average negative log-likelihood of a sequence. If we have a tokenized sequence \\(X = (x_0, x_1, \dots, x_t)\\), then the perplexity of \\(X\\) is, $$\text{PPL}(X) = \exp \left\{ {-\frac{1}{t}\sum_i^t \log p_\theta (x_i|x_{<i}) } \right\}$$ where \\(\log p_\theta (x_i|x_{<i})\\) is the log-likelihood of the ith token conditioned on the preceding tokens \\(x_{<i}\\) according to our model. Intuitively, it can be thought of as an evaluation of the model's ability to predict uniformly among the set of specified tokens in a corpus. Importantly, this means that the tokenization procedure has a direct impact on a model's perplexity which should always be taken into consideration when comparing different models. This is also equivalent to the exponentiation of the cross-entropy between the data and model predictions. For more intuition about perplexity and its relationship to Bits Per Character (BPC) and data compression, check out this [fantastic blog post on The Gradient](https://thegradient.pub/understanding-evaluation-metrics-for-language-models/). ## Calculating PPL with fixed-length models If we weren't limited by a model's context size, we would evaluate the model's perplexity by autoregressively factorizing a sequence and conditioning on the entire preceding subsequence at each step, as shown below. <img width="600" alt="Full decomposition of a sequence with unlimited context length" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_full.gif"/> When working with approximate models, however, we typically have a constraint on the number of tokens the model can process. The largest version of [GPT-2](model_doc/gpt2), for example, has a fixed length of 1024 tokens, so we cannot calculate \\(p_\theta(x_t|x_{<t})\\) directly when \\(t\\) is greater than 1024. Instead, the sequence is typically broken into subsequences equal to the model's maximum input size. If a model's max input size is \\(k\\), we then approximate the likelihood of a token \\(x_t\\) by conditioning only on the \\(k-1\\) tokens that precede it rather than the entire context. When evaluating the model's perplexity of a sequence, a tempting but suboptimal approach is to break the sequence into disjoint chunks and add up the decomposed log-likelihoods of each segment independently. <img width="600" alt="Suboptimal PPL not taking advantage of full available context" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_chunked.gif"/> This is quick to compute since the perplexity of each segment can be computed in one forward pass, but serves as a poor approximation of the fully-factorized perplexity and will typically yield a higher (worse) PPL because the model will have less context at most of the prediction steps. Instead, the PPL of fixed-length models should be evaluated with a sliding-window strategy. This involves repeatedly sliding the context window so that the model has more context when making each prediction. <img width="600" alt="Sliding window PPL taking advantage of all available context" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_sliding.gif"/> This is a closer approximation to the true decomposition of the sequence probability and will typically yield a more favorable score. The downside is that it requires a separate forward pass for each token in the corpus. A good practical compromise is to employ a strided sliding window, moving the context by larger strides rather than sliding by 1 token a time. This allows computation to proceed much faster while still giving the model a large context to make predictions at each step. ## Example: Calculating perplexity with GPT-2 in 🤗 Transformers Let's demonstrate this process with GPT-2. ```python from transformers import GPT2LMHeadModel, GPT2TokenizerFast device = "cuda" model_id = "openai-community/gpt2-large" model = GPT2LMHeadModel.from_pretrained(model_id).to(device) tokenizer = GPT2TokenizerFast.from_pretrained(model_id) ``` We'll load in the WikiText-2 dataset and evaluate the perplexity using a few different sliding-window strategies. Since this dataset is small and we're just doing one forward pass over the set, we can just load and encode the entire dataset in memory. ```python from datasets import load_dataset test = load_dataset("wikitext", "wikitext-2-raw-v1", split="test") encodings = tokenizer("\n\n".join(test["text"]), return_tensors="pt") ``` With 🤗 Transformers, we can simply pass the `input_ids` as the `labels` to our model, and the average negative log-likelihood for each token is returned as the loss. With our sliding window approach, however, there is overlap in the tokens we pass to the model at each iteration. We don't want the log-likelihood for the tokens we're just treating as context to be included in our loss, so we can set these targets to `-100` so that they are ignored. The following is an example of how we could do this with a stride of `512`. This means that the model will have at least 512 tokens for context when calculating the conditional likelihood of any one token (provided there are 512 preceding tokens available to condition on). ```python import torch from tqdm import tqdm max_length = model.config.n_positions stride = 512 seq_len = encodings.input_ids.size(1) nlls = [] prev_end_loc = 0 for begin_loc in tqdm(range(0, seq_len, stride)): end_loc = min(begin_loc + max_length, seq_len) trg_len = end_loc - prev_end_loc # may be different from stride on last loop input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device) target_ids = input_ids.clone() target_ids[:, :-trg_len] = -100 with torch.no_grad(): outputs = model(input_ids, labels=target_ids) # loss is calculated using CrossEntropyLoss which averages over valid labels # N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels # to the left by 1. neg_log_likelihood = outputs.loss nlls.append(neg_log_likelihood) prev_end_loc = end_loc if end_loc == seq_len: break ppl = torch.exp(torch.stack(nlls).mean()) ``` Running this with the stride length equal to the max input length is equivalent to the suboptimal, non-sliding-window strategy we discussed above. The smaller the stride, the more context the model will have in making each prediction, and the better the reported perplexity will typically be. When we run the above with `stride = 1024`, i.e. no overlap, the resulting PPL is `19.44`, which is about the same as the `19.93` reported in the GPT-2 paper. By using `stride = 512` and thereby employing our striding window strategy, this jumps down to `16.45`. This is not only a more favorable score, but is calculated in a way that is closer to the true autoregressive decomposition of a sequence likelihood.
transformers/docs/source/en/perplexity.md/0
{ "file_path": "transformers/docs/source/en/perplexity.md", "repo_id": "transformers", "token_count": 2263 }
275
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Image captioning [[open-in-colab]] Image captioning is the task of predicting a caption for a given image. Common real world applications of it include aiding visually impaired people that can help them navigate through different situations. Therefore, image captioning helps to improve content accessibility for people by describing images to them. This guide will show you how to: * Fine-tune an image captioning model. * Use the fine-tuned model for inference. Before you begin, make sure you have all the necessary libraries installed: ```bash pip install transformers datasets evaluate -q pip install jiwer -q ``` We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in: ```python from huggingface_hub import notebook_login notebook_login() ``` ## Load the Pokémon BLIP captions dataset Use the 🤗 Dataset library to load a dataset that consists of {image-caption} pairs. To create your own image captioning dataset in PyTorch, you can follow [this notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/GIT/Fine_tune_GIT_on_an_image_captioning_dataset.ipynb). ```python from datasets import load_dataset ds = load_dataset("lambdalabs/pokemon-blip-captions") ds ``` ```bash DatasetDict({ train: Dataset({ features: ['image', 'text'], num_rows: 833 }) }) ``` The dataset has two features, `image` and `text`. <Tip> Many image captioning datasets contain multiple captions per image. In those cases, a common strategy is to randomly sample a caption amongst the available ones during training. </Tip> Split the dataset’s train split into a train and test set with the [`~datasets.Dataset.train_test_split`] method: ```python ds = ds["train"].train_test_split(test_size=0.1) train_ds = ds["train"] test_ds = ds["test"] ``` Let's visualize a couple of samples from the training set. ```python from textwrap import wrap import matplotlib.pyplot as plt import numpy as np def plot_images(images, captions): plt.figure(figsize=(20, 20)) for i in range(len(images)): ax = plt.subplot(1, len(images), i + 1) caption = captions[i] caption = "\n".join(wrap(caption, 12)) plt.title(caption) plt.imshow(images[i]) plt.axis("off") sample_images_to_visualize = [np.array(train_ds[i]["image"]) for i in range(5)] sample_captions = [train_ds[i]["text"] for i in range(5)] plot_images(sample_images_to_visualize, sample_captions) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/sample_training_images_image_cap.png" alt="Sample training images"/> </div> ## Preprocess the dataset Since the dataset has two modalities (image and text), the pre-processing pipeline will preprocess images and the captions. To do so, load the processor class associated with the model you are about to fine-tune. ```python from transformers import AutoProcessor checkpoint = "microsoft/git-base" processor = AutoProcessor.from_pretrained(checkpoint) ``` The processor will internally pre-process the image (which includes resizing, and pixel scaling) and tokenize the caption. ```python def transforms(example_batch): images = [x for x in example_batch["image"]] captions = [x for x in example_batch["text"]] inputs = processor(images=images, text=captions, padding="max_length") inputs.update({"labels": inputs["input_ids"]}) return inputs train_ds.set_transform(transforms) test_ds.set_transform(transforms) ``` With the dataset ready, you can now set up the model for fine-tuning. ## Load a base model Load the ["microsoft/git-base"](https://huggingface.co/microsoft/git-base) into a [`AutoModelForCausalLM`](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) object. ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(checkpoint) ``` ## Evaluate Image captioning models are typically evaluated with the [Rouge Score](https://huggingface.co/spaces/evaluate-metric/rouge) or [Word Error Rate](https://huggingface.co/spaces/evaluate-metric/wer). For this guide, you will use the Word Error Rate (WER). We use the 🤗 Evaluate library to do so. For potential limitations and other gotchas of the WER, refer to [this guide](https://huggingface.co/spaces/evaluate-metric/wer). ```python from evaluate import load import torch wer = load("wer") def compute_metrics(eval_pred): logits, labels = eval_pred predicted = logits.argmax(-1) decoded_labels = processor.batch_decode(labels, skip_special_tokens=True) decoded_predictions = processor.batch_decode(predicted, skip_special_tokens=True) wer_score = wer.compute(predictions=decoded_predictions, references=decoded_labels) return {"wer_score": wer_score} ``` ## Train! Now, you are ready to start fine-tuning the model. You will use the 🤗 [`Trainer`] for this. First, define the training arguments using [`TrainingArguments`]. ```python from transformers import TrainingArguments, Trainer model_name = checkpoint.split("/")[1] training_args = TrainingArguments( output_dir=f"{model_name}-pokemon", learning_rate=5e-5, num_train_epochs=50, fp16=True, per_device_train_batch_size=32, per_device_eval_batch_size=32, gradient_accumulation_steps=2, save_total_limit=3, evaluation_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=50, logging_steps=50, remove_unused_columns=False, push_to_hub=True, label_names=["labels"], load_best_model_at_end=True, ) ``` Then pass them along with the datasets and the model to 🤗 Trainer. ```python trainer = Trainer( model=model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, compute_metrics=compute_metrics, ) ``` To start training, simply call [`~Trainer.train`] on the [`Trainer`] object. ```python trainer.train() ``` You should see the training loss drop smoothly as training progresses. Once training is completed, share your model to the Hub with the [`~Trainer.push_to_hub`] method so everyone can use your model: ```python trainer.push_to_hub() ``` ## Inference Take a sample image from `test_ds` to test the model. ```python from PIL import Image import requests url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png" image = Image.open(requests.get(url, stream=True).raw) image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/test_image_image_cap.png" alt="Test image"/> </div> Prepare image for the model. ```python device = "cuda" if torch.cuda.is_available() else "cpu" inputs = processor(images=image, return_tensors="pt").to(device) pixel_values = inputs.pixel_values ``` Call [`generate`] and decode the predictions. ```python generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_caption) ``` ```bash a drawing of a pink and blue pokemon ``` Looks like the fine-tuned model generated a pretty good caption!
transformers/docs/source/en/tasks/image_captioning.md/0
{ "file_path": "transformers/docs/source/en/tasks/image_captioning.md", "repo_id": "transformers", "token_count": 2704 }
276
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Text to speech [[open-in-colab]] Text-to-speech (TTS) is the task of creating natural-sounding speech from text, where the speech can be generated in multiple languages and for multiple speakers. Several text-to-speech models are currently available in 🤗 Transformers, such as [Bark](../model_doc/bark), [MMS](../model_doc/mms), [VITS](../model_doc/vits) and [SpeechT5](../model_doc/speecht5). You can easily generate audio using the `"text-to-audio"` pipeline (or its alias - `"text-to-speech"`). Some models, like Bark, can also be conditioned to generate non-verbal communications such as laughing, sighing and crying, or even add music. Here's an example of how you would use the `"text-to-speech"` pipeline with Bark: ```py >>> from transformers import pipeline >>> pipe = pipeline("text-to-speech", model="suno/bark-small") >>> text = "[clears throat] This is a test ... and I just took a long pause." >>> output = pipe(text) ``` Here's a code snippet you can use to listen to the resulting audio in a notebook: ```python >>> from IPython.display import Audio >>> Audio(output["audio"], rate=output["sampling_rate"]) ``` For more examples on what Bark and other pretrained TTS models can do, refer to our [Audio course](https://huggingface.co/learn/audio-course/chapter6/pre-trained_models). If you are looking to fine-tune a TTS model, the only text-to-speech models currently available in 🤗 Transformers are [SpeechT5](model_doc/speecht5) and [FastSpeech2Conformer](model_doc/fastspeech2_conformer), though more will be added in the future. SpeechT5 is pre-trained on a combination of speech-to-text and text-to-speech data, allowing it to learn a unified space of hidden representations shared by both text and speech. This means that the same pre-trained model can be fine-tuned for different tasks. Furthermore, SpeechT5 supports multiple speakers through x-vector speaker embeddings. The remainder of this guide illustrates how to: 1. Fine-tune [SpeechT5](../model_doc/speecht5) that was originally trained on English speech on the Dutch (`nl`) language subset of the [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) dataset. 2. Use your refined model for inference in one of two ways: using a pipeline or directly. Before you begin, make sure you have all the necessary libraries installed: ```bash pip install datasets soundfile speechbrain accelerate ``` Install 🤗Transformers from source as not all the SpeechT5 features have been merged into an official release yet: ```bash pip install git+https://github.com/huggingface/transformers.git ``` <Tip> To follow this guide you will need a GPU. If you're working in a notebook, run the following line to check if a GPU is available: ```bash !nvidia-smi ``` or alternatively for AMD GPUs: ```bash !rocm-smi ``` </Tip> We encourage you to log in to your Hugging Face account to upload and share your model with the community. When prompted, enter your token to log in: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load the dataset [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) is a large-scale multilingual speech corpus consisting of data sourced from 2009-2020 European Parliament event recordings. It contains labelled audio-transcription data for 15 European languages. In this guide, we are using the Dutch language subset, feel free to pick another subset. Note that VoxPopuli or any other automated speech recognition (ASR) dataset may not be the most suitable option for training TTS models. The features that make it beneficial for ASR, such as excessive background noise, are typically undesirable in TTS. However, finding top-quality, multilingual, and multi-speaker TTS datasets can be quite challenging. Let's load the data: ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("facebook/voxpopuli", "nl", split="train") >>> len(dataset) 20968 ``` 20968 examples should be sufficient for fine-tuning. SpeechT5 expects audio data to have a sampling rate of 16 kHz, so make sure the examples in the dataset meet this requirement: ```py dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) ``` ## Preprocess the data Let's begin by defining the model checkpoint to use and loading the appropriate processor: ```py >>> from transformers import SpeechT5Processor >>> checkpoint = "microsoft/speecht5_tts" >>> processor = SpeechT5Processor.from_pretrained(checkpoint) ``` ### Text cleanup for SpeechT5 tokenization Start by cleaning up the text data. You'll need the tokenizer part of the processor to process the text: ```py >>> tokenizer = processor.tokenizer ``` The dataset examples contain `raw_text` and `normalized_text` features. When deciding which feature to use as the text input, consider that the SpeechT5 tokenizer doesn't have any tokens for numbers. In `normalized_text` the numbers are written out as text. Thus, it is a better fit, and we recommend using `normalized_text` as input text. Because SpeechT5 was trained on the English language, it may not recognize certain characters in the Dutch dataset. If left as is, these characters will be converted to `<unk>` tokens. However, in Dutch, certain characters like `à` are used to stress syllables. In order to preserve the meaning of the text, we can replace this character with a regular `a`. To identify unsupported tokens, extract all unique characters in the dataset using the `SpeechT5Tokenizer` which works with characters as tokens. To do this, write the `extract_all_chars` mapping function that concatenates the transcriptions from all examples into one string and converts it to a set of characters. Make sure to set `batched=True` and `batch_size=-1` in `dataset.map()` so that all transcriptions are available at once for the mapping function. ```py >>> def extract_all_chars(batch): ... all_text = " ".join(batch["normalized_text"]) ... vocab = list(set(all_text)) ... return {"vocab": [vocab], "all_text": [all_text]} >>> vocabs = dataset.map( ... extract_all_chars, ... batched=True, ... batch_size=-1, ... keep_in_memory=True, ... remove_columns=dataset.column_names, ... ) >>> dataset_vocab = set(vocabs["vocab"][0]) >>> tokenizer_vocab = {k for k, _ in tokenizer.get_vocab().items()} ``` Now you have two sets of characters: one with the vocabulary from the dataset and one with the vocabulary from the tokenizer. To identify any unsupported characters in the dataset, you can take the difference between these two sets. The resulting set will contain the characters that are in the dataset but not in the tokenizer. ```py >>> dataset_vocab - tokenizer_vocab {' ', 'à', 'ç', 'è', 'ë', 'í', 'ï', 'ö', 'ü'} ``` To handle the unsupported characters identified in the previous step, define a function that maps these characters to valid tokens. Note that spaces are already replaced by `▁` in the tokenizer and don't need to be handled separately. ```py >>> replacements = [ ... ("à", "a"), ... ("ç", "c"), ... ("è", "e"), ... ("ë", "e"), ... ("í", "i"), ... ("ï", "i"), ... ("ö", "o"), ... ("ü", "u"), ... ] >>> def cleanup_text(inputs): ... for src, dst in replacements: ... inputs["normalized_text"] = inputs["normalized_text"].replace(src, dst) ... return inputs >>> dataset = dataset.map(cleanup_text) ``` Now that you have dealt with special characters in the text, it's time to shift focus to the audio data. ### Speakers The VoxPopuli dataset includes speech from multiple speakers, but how many speakers are represented in the dataset? To determine this, we can count the number of unique speakers and the number of examples each speaker contributes to the dataset. With a total of 20,968 examples in the dataset, this information will give us a better understanding of the distribution of speakers and examples in the data. ```py >>> from collections import defaultdict >>> speaker_counts = defaultdict(int) >>> for speaker_id in dataset["speaker_id"]: ... speaker_counts[speaker_id] += 1 ``` By plotting a histogram you can get a sense of how much data there is for each speaker. ```py >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.hist(speaker_counts.values(), bins=20) >>> plt.ylabel("Speakers") >>> plt.xlabel("Examples") >>> plt.show() ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/tts_speakers_histogram.png" alt="Speakers histogram"/> </div> The histogram reveals that approximately one-third of the speakers in the dataset have fewer than 100 examples, while around ten speakers have more than 500 examples. To improve training efficiency and balance the dataset, we can limit the data to speakers with between 100 and 400 examples. ```py >>> def select_speaker(speaker_id): ... return 100 <= speaker_counts[speaker_id] <= 400 >>> dataset = dataset.filter(select_speaker, input_columns=["speaker_id"]) ``` Let's check how many speakers remain: ```py >>> len(set(dataset["speaker_id"])) 42 ``` Let's see how many examples are left: ```py >>> len(dataset) 9973 ``` You are left with just under 10,000 examples from approximately 40 unique speakers, which should be sufficient. Note that some speakers with few examples may actually have more audio available if the examples are long. However, determining the total amount of audio for each speaker requires scanning through the entire dataset, which is a time-consuming process that involves loading and decoding each audio file. As such, we have chosen to skip this step here. ### Speaker embeddings To enable the TTS model to differentiate between multiple speakers, you'll need to create a speaker embedding for each example. The speaker embedding is an additional input into the model that captures a particular speaker's voice characteristics. To generate these speaker embeddings, use the pre-trained [spkrec-xvect-voxceleb](https://huggingface.co/speechbrain/spkrec-xvect-voxceleb) model from SpeechBrain. Create a function `create_speaker_embedding()` that takes an input audio waveform and outputs a 512-element vector containing the corresponding speaker embedding. ```py >>> import os >>> import torch >>> from speechbrain.pretrained import EncoderClassifier >>> spk_model_name = "speechbrain/spkrec-xvect-voxceleb" >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> speaker_model = EncoderClassifier.from_hparams( ... source=spk_model_name, ... run_opts={"device": device}, ... savedir=os.path.join("/tmp", spk_model_name), ... ) >>> def create_speaker_embedding(waveform): ... with torch.no_grad(): ... speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform)) ... speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) ... speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() ... return speaker_embeddings ``` It's important to note that the `speechbrain/spkrec-xvect-voxceleb` model was trained on English speech from the VoxCeleb dataset, whereas the training examples in this guide are in Dutch. While we believe that this model will still generate reasonable speaker embeddings for our Dutch dataset, this assumption may not hold true in all cases. For optimal results, we recommend training an X-vector model on the target speech first. This will ensure that the model is better able to capture the unique voice characteristics present in the Dutch language. ### Processing the dataset Finally, let's process the data into the format the model expects. Create a `prepare_dataset` function that takes in a single example and uses the `SpeechT5Processor` object to tokenize the input text and load the target audio into a log-mel spectrogram. It should also add the speaker embeddings as an additional input. ```py >>> def prepare_dataset(example): ... audio = example["audio"] ... example = processor( ... text=example["normalized_text"], ... audio_target=audio["array"], ... sampling_rate=audio["sampling_rate"], ... return_attention_mask=False, ... ) ... # strip off the batch dimension ... example["labels"] = example["labels"][0] ... # use SpeechBrain to obtain x-vector ... example["speaker_embeddings"] = create_speaker_embedding(audio["array"]) ... return example ``` Verify the processing is correct by looking at a single example: ```py >>> processed_example = prepare_dataset(dataset[0]) >>> list(processed_example.keys()) ['input_ids', 'labels', 'stop_labels', 'speaker_embeddings'] ``` Speaker embeddings should be a 512-element vector: ```py >>> processed_example["speaker_embeddings"].shape (512,) ``` The labels should be a log-mel spectrogram with 80 mel bins. ```py >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.imshow(processed_example["labels"].T) >>> plt.show() ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/tts_logmelspectrogram_1.png" alt="Log-mel spectrogram with 80 mel bins"/> </div> Side note: If you find this spectrogram confusing, it may be due to your familiarity with the convention of placing low frequencies at the bottom and high frequencies at the top of a plot. However, when plotting spectrograms as an image using the matplotlib library, the y-axis is flipped and the spectrograms appear upside down. Now apply the processing function to the entire dataset. This will take between 5 and 10 minutes. ```py >>> dataset = dataset.map(prepare_dataset, remove_columns=dataset.column_names) ``` You'll see a warning saying that some examples in the dataset are longer than the maximum input length the model can handle (600 tokens). Remove those examples from the dataset. Here we go even further and to allow for larger batch sizes we remove anything over 200 tokens. ```py >>> def is_not_too_long(input_ids): ... input_length = len(input_ids) ... return input_length < 200 >>> dataset = dataset.filter(is_not_too_long, input_columns=["input_ids"]) >>> len(dataset) 8259 ``` Next, create a basic train/test split: ```py >>> dataset = dataset.train_test_split(test_size=0.1) ``` ### Data collator In order to combine multiple examples into a batch, you need to define a custom data collator. This collator will pad shorter sequences with padding tokens, ensuring that all examples have the same length. For the spectrogram labels, the padded portions are replaced with the special value `-100`. This special value instructs the model to ignore that part of the spectrogram when calculating the spectrogram loss. ```py >>> from dataclasses import dataclass >>> from typing import Any, Dict, List, Union >>> @dataclass ... class TTSDataCollatorWithPadding: ... processor: Any ... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: ... input_ids = [{"input_ids": feature["input_ids"]} for feature in features] ... label_features = [{"input_values": feature["labels"]} for feature in features] ... speaker_features = [feature["speaker_embeddings"] for feature in features] ... # collate the inputs and targets into a batch ... batch = processor.pad(input_ids=input_ids, labels=label_features, return_tensors="pt") ... # replace padding with -100 to ignore loss correctly ... batch["labels"] = batch["labels"].masked_fill(batch.decoder_attention_mask.unsqueeze(-1).ne(1), -100) ... # not used during fine-tuning ... del batch["decoder_attention_mask"] ... # round down target lengths to multiple of reduction factor ... if model.config.reduction_factor > 1: ... target_lengths = torch.tensor([len(feature["input_values"]) for feature in label_features]) ... target_lengths = target_lengths.new( ... [length - length % model.config.reduction_factor for length in target_lengths] ... ) ... max_length = max(target_lengths) ... batch["labels"] = batch["labels"][:, :max_length] ... # also add in the speaker embeddings ... batch["speaker_embeddings"] = torch.tensor(speaker_features) ... return batch ``` In SpeechT5, the input to the decoder part of the model is reduced by a factor 2. In other words, it throws away every other timestep from the target sequence. The decoder then predicts a sequence that is twice as long. Since the original target sequence length may be odd, the data collator makes sure to round the maximum length of the batch down to be a multiple of 2. ```py >>> data_collator = TTSDataCollatorWithPadding(processor=processor) ``` ## Train the model Load the pre-trained model from the same checkpoint as you used for loading the processor: ```py >>> from transformers import SpeechT5ForTextToSpeech >>> model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint) ``` The `use_cache=True` option is incompatible with gradient checkpointing. Disable it for training. ```py >>> model.config.use_cache = False ``` Define the training arguments. Here we are not computing any evaluation metrics during the training process. Instead, we'll only look at the loss: ```python >>> from transformers import Seq2SeqTrainingArguments >>> training_args = Seq2SeqTrainingArguments( ... output_dir="speecht5_finetuned_voxpopuli_nl", # change to a repo name of your choice ... per_device_train_batch_size=4, ... gradient_accumulation_steps=8, ... learning_rate=1e-5, ... warmup_steps=500, ... max_steps=4000, ... gradient_checkpointing=True, ... fp16=True, ... evaluation_strategy="steps", ... per_device_eval_batch_size=2, ... save_steps=1000, ... eval_steps=1000, ... logging_steps=25, ... report_to=["tensorboard"], ... load_best_model_at_end=True, ... greater_is_better=False, ... label_names=["labels"], ... push_to_hub=True, ... ) ``` Instantiate the `Trainer` object and pass the model, dataset, and data collator to it. ```py >>> from transformers import Seq2SeqTrainer >>> trainer = Seq2SeqTrainer( ... args=training_args, ... model=model, ... train_dataset=dataset["train"], ... eval_dataset=dataset["test"], ... data_collator=data_collator, ... tokenizer=processor, ... ) ``` And with that, you're ready to start training! Training will take several hours. Depending on your GPU, it is possible that you will encounter a CUDA "out-of-memory" error when you start training. In this case, you can reduce the `per_device_train_batch_size` incrementally by factors of 2 and increase `gradient_accumulation_steps` by 2x to compensate. ```py >>> trainer.train() ``` To be able to use your checkpoint with a pipeline, make sure to save the processor with the checkpoint: ```py >>> processor.save_pretrained("YOUR_ACCOUNT_NAME/speecht5_finetuned_voxpopuli_nl") ``` Push the final model to the 🤗 Hub: ```py >>> trainer.push_to_hub() ``` ## Inference ### Inference with a pipeline Great, now that you've fine-tuned a model, you can use it for inference! First, let's see how you can use it with a corresponding pipeline. Let's create a `"text-to-speech"` pipeline with your checkpoint: ```py >>> from transformers import pipeline >>> pipe = pipeline("text-to-speech", model="YOUR_ACCOUNT_NAME/speecht5_finetuned_voxpopuli_nl") ``` Pick a piece of text in Dutch you'd like narrated, e.g.: ```py >>> text = "hallo allemaal, ik praat nederlands. groetjes aan iedereen!" ``` To use SpeechT5 with the pipeline, you'll need a speaker embedding. Let's get it from an example in the test dataset: ```py >>> example = dataset["test"][304] >>> speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0) ``` Now you can pass the text and speaker embeddings to the pipeline, and it will take care of the rest: ```py >>> forward_params = {"speaker_embeddings": speaker_embeddings} >>> output = pipe(text, forward_params=forward_params) >>> output {'audio': array([-6.82714235e-05, -4.26525949e-04, 1.06134125e-04, ..., -1.22392643e-03, -7.76011671e-04, 3.29112721e-04], dtype=float32), 'sampling_rate': 16000} ``` You can then listen to the result: ```py >>> from IPython.display import Audio >>> Audio(output['audio'], rate=output['sampling_rate']) ``` ### Run inference manually You can achieve the same inference results without using the pipeline, however, more steps will be required. Load the model from the 🤗 Hub: ```py >>> model = SpeechT5ForTextToSpeech.from_pretrained("YOUR_ACCOUNT/speecht5_finetuned_voxpopuli_nl") ``` Pick an example from the test dataset obtain a speaker embedding. ```py >>> example = dataset["test"][304] >>> speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0) ``` Define the input text and tokenize it. ```py >>> text = "hallo allemaal, ik praat nederlands. groetjes aan iedereen!" >>> inputs = processor(text=text, return_tensors="pt") ``` Create a spectrogram with your model: ```py >>> spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) ``` Visualize the spectrogram, if you'd like to: ```py >>> plt.figure() >>> plt.imshow(spectrogram.T) >>> plt.show() ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/tts_logmelspectrogram_2.png" alt="Generated log-mel spectrogram"/> </div> Finally, use the vocoder to turn the spectrogram into sound. ```py >>> with torch.no_grad(): ... speech = vocoder(spectrogram) >>> from IPython.display import Audio >>> Audio(speech.numpy(), rate=16000) ``` In our experience, obtaining satisfactory results from this model can be challenging. The quality of the speaker embeddings appears to be a significant factor. Since SpeechT5 was pre-trained with English x-vectors, it performs best when using English speaker embeddings. If the synthesized speech sounds poor, try using a different speaker embedding. Increasing the training duration is also likely to enhance the quality of the results. Even so, the speech clearly is Dutch instead of English, and it does capture the voice characteristics of the speaker (compare to the original audio in the example). Another thing to experiment with is the model's configuration. For example, try using `config.reduction_factor = 1` to see if this improves the results. Finally, it is essential to consider ethical considerations. Although TTS technology has numerous useful applications, it may also be used for malicious purposes, such as impersonating someone's voice without their knowledge or consent. Please use TTS judiciously and responsibly.
transformers/docs/source/en/tasks/text-to-speech.md/0
{ "file_path": "transformers/docs/source/en/tasks/text-to-speech.md", "repo_id": "transformers", "token_count": 7353 }
277
<!--- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Troubleshoot Sometimes errors occur, but we are here to help! This guide covers some of the most common issues we've seen and how you can resolve them. However, this guide isn't meant to be a comprehensive collection of every 🤗 Transformers issue. For more help with troubleshooting your issue, try: <Youtube id="S2EEG3JIt2A"/> 1. Asking for help on the [forums](https://discuss.huggingface.co/). There are specific categories you can post your question to, like [Beginners](https://discuss.huggingface.co/c/beginners/5) or [🤗 Transformers](https://discuss.huggingface.co/c/transformers/9). Make sure you write a good descriptive forum post with some reproducible code to maximize the likelihood that your problem is solved! <Youtube id="_PAli-V4wj0"/> 2. Create an [Issue](https://github.com/huggingface/transformers/issues/new/choose) on the 🤗 Transformers repository if it is a bug related to the library. Try to include as much information describing the bug as possible to help us better figure out what's wrong and how we can fix it. 3. Check the [Migration](migration) guide if you use an older version of 🤗 Transformers since some important changes have been introduced between versions. For more details about troubleshooting and getting help, take a look at [Chapter 8](https://huggingface.co/course/chapter8/1?fw=pt) of the Hugging Face course. ## Firewalled environments Some GPU instances on cloud and intranet setups are firewalled to external connections, resulting in a connection error. When your script attempts to download model weights or datasets, the download will hang and then timeout with the following message: ``` ValueError: Connection error, and we cannot find the requested files in the cached path. Please try again or make sure your Internet connection is on. ``` In this case, you should try to run 🤗 Transformers on [offline mode](installation#offline-mode) to avoid the connection error. ## CUDA out of memory Training large models with millions of parameters can be challenging without the appropriate hardware. A common error you may encounter when the GPU runs out of memory is: ``` CUDA out of memory. Tried to allocate 256.00 MiB (GPU 0; 11.17 GiB total capacity; 9.70 GiB already allocated; 179.81 MiB free; 9.85 GiB reserved in total by PyTorch) ``` Here are some potential solutions you can try to lessen memory use: - Reduce the [`per_device_train_batch_size`](main_classes/trainer#transformers.TrainingArguments.per_device_train_batch_size) value in [`TrainingArguments`]. - Try using [`gradient_accumulation_steps`](main_classes/trainer#transformers.TrainingArguments.gradient_accumulation_steps) in [`TrainingArguments`] to effectively increase overall batch size. <Tip> Refer to the Performance [guide](performance) for more details about memory-saving techniques. </Tip> ## Unable to load a saved TensorFlow model TensorFlow's [model.save](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model) method will save the entire model - architecture, weights, training configuration - in a single file. However, when you load the model file again, you may run into an error because 🤗 Transformers may not load all the TensorFlow-related objects in the model file. To avoid issues with saving and loading TensorFlow models, we recommend you: - Save the model weights as a `h5` file extension with [`model.save_weights`](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model) and then reload the model with [`~TFPreTrainedModel.from_pretrained`]: ```py >>> from transformers import TFPreTrainedModel >>> from tensorflow import keras >>> model.save_weights("some_folder/tf_model.h5") >>> model = TFPreTrainedModel.from_pretrained("some_folder") ``` - Save the model with [`~TFPretrainedModel.save_pretrained`] and load it again with [`~TFPreTrainedModel.from_pretrained`]: ```py >>> from transformers import TFPreTrainedModel >>> model.save_pretrained("path_to/model") >>> model = TFPreTrainedModel.from_pretrained("path_to/model") ``` ## ImportError Another common error you may encounter, especially if it is a newly released model, is `ImportError`: ``` ImportError: cannot import name 'ImageGPTImageProcessor' from 'transformers' (unknown location) ``` For these error types, check to make sure you have the latest version of 🤗 Transformers installed to access the most recent models: ```bash pip install transformers --upgrade ``` ## CUDA error: device-side assert triggered Sometimes you may run into a generic CUDA error about an error in the device code. ``` RuntimeError: CUDA error: device-side assert triggered ``` You should try to run the code on a CPU first to get a more descriptive error message. Add the following environment variable to the beginning of your code to switch to a CPU: ```py >>> import os >>> os.environ["CUDA_VISIBLE_DEVICES"] = "" ``` Another option is to get a better traceback from the GPU. Add the following environment variable to the beginning of your code to get the traceback to point to the source of the error: ```py >>> import os >>> os.environ["CUDA_LAUNCH_BLOCKING"] = "1" ``` ## Incorrect output when padding tokens aren't masked In some cases, the output `hidden_state` may be incorrect if the `input_ids` include padding tokens. To demonstrate, load a model and tokenizer. You can access a model's `pad_token_id` to see its value. The `pad_token_id` may be `None` for some models, but you can always manually set it. ```py >>> from transformers import AutoModelForSequenceClassification >>> import torch >>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-uncased") >>> model.config.pad_token_id 0 ``` The following example shows the output without masking the padding tokens: ```py >>> input_ids = torch.tensor([[7592, 2057, 2097, 2393, 9611, 2115], [7592, 0, 0, 0, 0, 0]]) >>> output = model(input_ids) >>> print(output.logits) tensor([[ 0.0082, -0.2307], [ 0.1317, -0.1683]], grad_fn=<AddmmBackward0>) ``` Here is the actual output of the second sequence: ```py >>> input_ids = torch.tensor([[7592]]) >>> output = model(input_ids) >>> print(output.logits) tensor([[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>) ``` Most of the time, you should provide an `attention_mask` to your model to ignore the padding tokens to avoid this silent error. Now the output of the second sequence matches its actual output: <Tip> By default, the tokenizer creates an `attention_mask` for you based on your specific tokenizer's defaults. </Tip> ```py >>> attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0]]) >>> output = model(input_ids, attention_mask=attention_mask) >>> print(output.logits) tensor([[ 0.0082, -0.2307], [-0.1008, -0.4061]], grad_fn=<AddmmBackward0>) ``` 🤗 Transformers doesn't automatically create an `attention_mask` to mask a padding token if it is provided because: - Some models don't have a padding token. - For some use-cases, users want a model to attend to a padding token. ## ValueError: Unrecognized configuration class XYZ for this kind of AutoModel Generally, we recommend using the [`AutoModel`] class to load pretrained instances of models. This class can automatically infer and load the correct architecture from a given checkpoint based on the configuration. If you see this `ValueError` when loading a model from a checkpoint, this means the Auto class couldn't find a mapping from the configuration in the given checkpoint to the kind of model you are trying to load. Most commonly, this happens when a checkpoint doesn't support a given task. For instance, you'll see this error in the following example because there is no GPT2 for question answering: ```py >>> from transformers import AutoProcessor, AutoModelForQuestionAnswering >>> processor = AutoProcessor.from_pretrained("openai-community/gpt2-medium") >>> model = AutoModelForQuestionAnswering.from_pretrained("openai-community/gpt2-medium") ValueError: Unrecognized configuration class <class 'transformers.models.gpt2.configuration_gpt2.GPT2Config'> for this kind of AutoModel: AutoModelForQuestionAnswering. Model type should be one of AlbertConfig, BartConfig, BertConfig, BigBirdConfig, BigBirdPegasusConfig, BloomConfig, ... ```
transformers/docs/source/en/troubleshooting.md/0
{ "file_path": "transformers/docs/source/en/troubleshooting.md", "repo_id": "transformers", "token_count": 2569 }
278
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Reconocimiento automático del habla <Youtube id="TksaY_FDgnk"/> El reconocimiento automático del habla (ASR, por sus siglas en inglés) convierte una señal de habla en texto y mapea una secuencia de entradas de audio en salidas en forma de texto. Los asistentes virtuales como Siri y Alexa usan modelos de ASR para ayudar a sus usuarios todos los días. De igual forma, hay muchas otras aplicaciones, como la transcripción de contenidos en vivo y la toma automática de notas durante reuniones. En esta guía te mostraremos como: 1. Hacer fine-tuning al modelo [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) con el dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) para transcribir audio a texto. 2. Usar tu modelo ajustado para tareas de inferencia. <Tip> Revisa la [página de la tarea](https://huggingface.co/tasks/automatic-speech-recognition) de reconocimiento automático del habla para acceder a más información sobre los modelos, datasets y métricas asociados. </Tip> Antes de comenzar, asegúrate de haber instalado todas las librerías necesarias: ```bash pip install transformers datasets evaluate jiwer ``` Te aconsejamos iniciar sesión con tu cuenta de Hugging Face para que puedas subir tu modelo y comartirlo con la comunidad. Cuando te sea solicitado, ingresa tu token para iniciar sesión: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Cargar el dataset MInDS-14 Comencemos cargando un subconjunto más pequeño del dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) desde la biblioteca 🤗 Datasets. De esta forma, tendrás la oportunidad de experimentar y asegurarte de que todo funcione antes de invertir más tiempo entrenando con el dataset entero. ```py >>> from datasets import load_dataset, Audio >>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train[:100]") ``` Divide la partición `train` (entrenamiento) en una partición de entrenamiento y una de prueba usando el método [`~Dataset.train_test_split`]: ```py >>> minds = minds.train_test_split(test_size=0.2) ``` Ahora échale un vistazo al dataset: ```py >>> minds DatasetDict({ train: Dataset({ features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'], num_rows: 16 }) test: Dataset({ features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'], num_rows: 4 }) }) ``` Aunque el dataset contiene mucha información útil, como los campos `lang_id` (identificador del lenguaje) y `english_transcription` (transcripción al inglés), en esta guía nos enfocaremos en los campos `audio` y `transcription`. Puedes quitar las otras columnas con el método [`~datasets.Dataset.remove_columns`]: ```py >>> minds = minds.remove_columns(["english_transcription", "intent_class", "lang_id"]) ``` Vuelve a echarle un vistazo al ejemplo: ```py >>> minds["train"][0] {'audio': {'array': array([-0.00024414, 0. , 0. , ..., 0.00024414, 0.00024414, 0.00024414], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav', 'sampling_rate': 8000}, 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav', 'transcription': "hi I'm trying to use the banking app on my phone and currently my checking and savings account balance is not refreshing"} ``` Hay dos campos: - `audio`: un `array` (arreglo) unidimensional de la señal de habla que debe ser invocado para cargar y re-muestrear el archivo de audio. - `transcription`: el texto objetivo. ## Preprocesamiento El siguiente paso es cargar un procesador Wav2Vec2 para procesar la señal de audio: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base") ``` El dataset MInDS-14 tiene una tasa de muestreo de 8000kHz (puedes encontrar esta información en su [tarjeta de dataset](https://huggingface.co/datasets/PolyAI/minds14)), lo que significa que tendrás que re-muestrear el dataset a 16000kHz para poder usar el modelo Wav2Vec2 pre-entrenado: ```py >>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000)) >>> minds["train"][0] {'audio': {'array': array([-2.38064706e-04, -1.58618059e-04, -5.43987835e-06, ..., 2.78103951e-04, 2.38446111e-04, 1.18740834e-04], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav', 'sampling_rate': 16000}, 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav', 'transcription': "hi I'm trying to use the banking app on my phone and currently my checking and savings account balance is not refreshing"} ``` Como puedes ver en el campo `transcription`, el texto contiene una mezcla de carácteres en mayúsculas y en minúsculas. El tokenizer Wav2Vec2 fue entrenado únicamente con carácteres en mayúsculas, así que tendrás que asegurarte de que el texto se ajuste al vocabulario del tokenizer: ```py >>> def uppercase(example): ... return {"transcription": example["transcription"].upper()} >>> minds = minds.map(uppercase) ``` Ahora vamos a crear una función de preprocesamiento que: 1. Invoque la columna `audio` para cargar y re-muestrear el archivo de audio. 2. Extraiga el campo `input_values` (valores de entrada) del archivo de audio y haga la tokenización de la columna `transcription` con el procesador. ```py >>> def prepare_dataset(batch): ... audio = batch["audio"] ... batch = processor(audio["array"], sampling_rate=audio["sampling_rate"], text=batch["transcription"]) ... batch["input_length"] = len(batch["input_values"][0]) ... return batch ``` Para aplicar la función de preprocesamiento a todo el dataset, puedes usar la función [`~datasets.Dataset.map`] de 🤗 Datasets. Para acelerar la función `map` puedes incrementar el número de procesos con el parámetro `num_proc`. Quita las columnas que no necesites con el método [`~datasets.Dataset.remove_columns`]: ```py >>> encoded_minds = minds.map(prepare_dataset, remove_columns=minds.column_names["train"], num_proc=4) ``` 🤗 Transformers no tiene un collator de datos para la tarea de ASR, así que tendrás que adaptar el [`DataCollatorWithPadding`] para crear un lote de ejemplos. El collator también le aplicará padding dinámico a tu texto y etiquetas para que tengan la longitud del elemento más largo en su lote (en vez de la mayor longitud en el dataset entero), de forma que todas las muestras tengan una longitud uniforme. Aunque es posible hacerle padding a tu texto con el `tokenizer` haciendo `padding=True`, el padding dinámico es más eficiente. A diferencia de otros collators de datos, este tiene que aplicarle un método de padding distinto a los campos `input_values` (valores de entrada) y `labels` (etiquetas): ```py >>> import torch >>> from dataclasses import dataclass, field >>> from typing import Any, Dict, List, Optional, Union >>> @dataclass ... class DataCollatorCTCWithPadding: ... processor: AutoProcessor ... padding: Union[bool, str] = "longest" ... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: ... # particiona las entradas y las etiquetas ya que tienen que tener longitudes distintas y ... # requieren métodos de padding diferentes ... input_features = [{"input_values": feature["input_values"][0]} for feature in features] ... label_features = [{"input_ids": feature["labels"]} for feature in features] ... batch = self.processor.pad(input_features, padding=self.padding, return_tensors="pt") ... labels_batch = self.processor.pad(labels=label_features, padding=self.padding, return_tensors="pt") ... # remplaza el padding con -100 para ignorar la pérdida de forma correcta ... labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) ... batch["labels"] = labels ... return batch ``` Ahora puedes instanciar tu `DataCollatorForCTCWithPadding`: ```py >>> data_collator = DataCollatorCTCWithPadding(processor=processor, padding="longest") ``` ## Evaluación A menudo es útil incluir una métrica durante el entrenamiento para evaluar el rendimiento de tu modelo. Puedes cargar un método de evaluación rápidamente con la biblioteca 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index). Para esta tarea, puedes usar la métrica de [tasa de error por palabra](https://huggingface.co/spaces/evaluate-metric/wer) (WER, por sus siglas en inglés). Puedes ver la [guía rápida](https://huggingface.co/docs/evaluate/a_quick_tour) de 🤗 Evaluate para aprender más acerca de cómo cargar y computar una métrica. ```py >>> import evaluate >>> wer = evaluate.load("wer") ``` Ahora crea una función que le pase tus predicciones y etiquetas a [`~evaluate.EvaluationModule.compute`] para calcular la WER: ```py >>> import numpy as np >>> def compute_metrics(pred): ... pred_logits = pred.predictions ... pred_ids = np.argmax(pred_logits, axis=-1) ... pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id ... pred_str = processor.batch_decode(pred_ids) ... label_str = processor.batch_decode(pred.label_ids, group_tokens=False) ... wer = wer.compute(predictions=pred_str, references=label_str) ... return {"wer": wer} ``` Ahora tu función `compute_metrics` (computar métricas) está lista y podrás usarla cuando estés preparando tu entrenamiento. ## Entrenamiento <frameworkcontent> <pt> <Tip> Si no tienes experiencia haciéndole fine-tuning a un modelo con el [`Trainer`], ¡échale un vistazo al tutorial básico [aquí](../training#train-with-pytorch-trainer)! </Tip> ¡Ya puedes empezar a entrenar tu modelo! Para ello, carga Wav2Vec2 con [`AutoModelForCTC`]. Especifica la reducción que quieres aplicar con el parámetro `ctc_loss_reduction`. A menudo, es mejor usar el promedio en lugar de la sumatoria que se hace por defecto. ```py >>> from transformers import AutoModelForCTC, TrainingArguments, Trainer >>> model = AutoModelForCTC.from_pretrained( ... "facebook/wav2vec2-base", ... ctc_loss_reduction="mean", ... pad_token_id=processor.tokenizer.pad_token_id, ... ) ``` En este punto, solo quedan tres pasos: 1. Define tus hiperparámetros de entrenamiento en [`TrainingArguments`]. El único parámetro obligatorio es `output_dir` (carpeta de salida), el cual especifica dónde guardar tu modelo. Puedes subir este modelo al Hub haciendo `push_to_hub=True` (debes haber iniciado sesión en Hugging Face para subir tu modelo). Al final de cada época, el [`Trainer`] evaluará la WER y guardará el punto de control del entrenamiento. 2. Pásale los argumentos del entrenamiento al [`Trainer`] junto con el modelo, el dataset, el tokenizer, el collator de datos y la función `compute_metrics`. 3. Llama el método [`~Trainer.train`] para hacerle fine-tuning a tu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="my_awesome_asr_mind_model", ... per_device_train_batch_size=8, ... gradient_accumulation_steps=2, ... learning_rate=1e-5, ... warmup_steps=500, ... max_steps=2000, ... gradient_checkpointing=True, ... fp16=True, ... group_by_length=True, ... evaluation_strategy="steps", ... per_device_eval_batch_size=8, ... save_steps=1000, ... eval_steps=1000, ... logging_steps=25, ... load_best_model_at_end=True, ... metric_for_best_model="wer", ... greater_is_better=False, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=encoded_minds["train"], ... eval_dataset=encoded_minds["test"], ... tokenizer=processor.feature_extractor, ... data_collator=data_collator, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` Una vez que el entrenamiento haya sido completado, comparte tu modelo en el Hub con el método [`~transformers.Trainer.push_to_hub`] para que todo el mundo pueda usar tu modelo: ```py >>> trainer.push_to_hub() ``` </pt> </frameworkcontent> <Tip> Para ver un ejemplo más detallado de cómo hacerle fine-tuning a un modelo para reconocimiento automático del habla, échale un vistazo a esta [entrada de blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) para ASR en inglés y a esta [entrada](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) para ASR multilingüe. </Tip> ## Inferencia ¡Genial, ahora que le has hecho fine-tuning a un modelo, puedes usarlo para inferencia! Carga el archivo de audio sobre el cual quieras correr la inferencia. ¡Recuerda re-muestrar la tasa de muestreo del archivo de audio para que sea la misma del modelo si es necesario! ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", "en-US", split="train") >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) >>> sampling_rate = dataset.features["audio"].sampling_rate >>> audio_file = dataset[0]["audio"]["path"] ``` La manera más simple de probar tu modelo para hacer inferencia es usarlo en un [`pipeline`]. Puedes instanciar un `pipeline` para reconocimiento automático del habla con tu modelo y pasarle tu archivo de audio: ```py >>> from transformers import pipeline >>> transcriber = pipeline("automatic-speech-recognition", model="stevhliu/my_awesome_asr_minds_model") >>> transcriber(audio_file) {'text': 'I WOUD LIKE O SET UP JOINT ACOUNT WTH Y PARTNER'} ``` <Tip> La transcripción es decente, pero podría ser mejor. ¡Intenta hacerle fine-tuning a tu modelo con más ejemplos para obtener resultados aún mejores! </Tip> También puedes replicar de forma manual los resultados del `pipeline` si lo deseas: <frameworkcontent> <pt> Carga un procesador para preprocesar el archivo de audio y la transcripción y devuelve el `input` como un tensor de PyTorch: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("stevhliu/my_awesome_asr_mind_model") >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") ``` Pásale tus entradas al modelo y devuelve los logits: ```py >>> from transformers import AutoModelForCTC >>> model = AutoModelForCTC.from_pretrained("stevhliu/my_awesome_asr_mind_model") >>> with torch.no_grad(): ... logits = model(**inputs).logits ``` Obtén los identificadores de los tokens con mayor probabilidad en las predicciones y usa el procesador para decodificarlos y transformarlos en texto: ```py >>> import torch >>> predicted_ids = torch.argmax(logits, dim=-1) >>> transcription = processor.batch_decode(predicted_ids) >>> transcription ['I WOUL LIKE O SET UP JOINT ACOUNT WTH Y PARTNER'] ``` </pt> </frameworkcontent>
transformers/docs/source/es/tasks/asr.md/0
{ "file_path": "transformers/docs/source/es/tasks/asr.md", "repo_id": "transformers", "token_count": 6032 }
279
<!--- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Installation Installez 🤗 Transformers pour n'importe quelle librairie d'apprentissage profond avec laquelle vous avez l'habitude de travaillez, configurez votre cache et configurez 🤗 Transformers pour un usage hors ligne (facultatif). 🤗 Transformers est testé avec Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+ et Flax. Consulter les instructions d'installation ci-dessous pour la librairie d'apprentissage profond que vous utilisez: * Instructions d'installation pour [PyTorch](https://pytorch.org/get-started/locally/). * Instructions d'installation pour [TensorFlow 2.0](https://www.tensorflow.org/install/pip). * Instructions d'installation pour [Flax](https://flax.readthedocs.io/en/latest/). ## Installation avec pip Vous devriez installer 🤗 Transformers dans un [environnement virtuel](https://docs.python.org/3/library/venv.html). Si vous n'êtes pas à l'aise avec les environnements virtuels, consultez ce [guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Utiliser un environnement virtuel permet de facilement gérer différents projets et d'éviter des erreurs de compatibilité entre les différentes dépendances. Commencez par créer un environnement virtuel dans l'espace de travail de votre projet : ```bash python -m venv .env ``` Activez l'environnement virtuel. Sur Linux ou MacOs : ```bash source .env/bin/activate ``` Activez l'environnement virtuel sur Windows : ```bash .env/Scripts/activate ``` Maintenant, 🤗 Transformers peut être installé avec la commande suivante : ```bash pip install transformers ``` Pour une utilisation avec CPU seulement, 🤗 Transformers et la librairie d'apprentissage profond de votre choix peuvent être installés en une seule ligne. Par exemple, installez 🤗 Transformers et PyTorch avec la commande suivante : ```bash pip install 'transformers[torch]' ``` 🤗 Transformers et TensorFlow 2.0 : ```bash pip install 'transformers[tf-cpu]' ``` <Tip warning={true}> Pour les architectures mac M1 / ARM Vous devez installer les outils suivants avant d'installer TensorFLow 2.0 ```bash brew install cmake brew install pkg-config ``` </Tip> 🤗 Transformers et Flax : ```bash pip install 'transformers[flax]' ``` Vérifiez que 🤗 Transformers a bien été installé avec la commande suivante. La commande va télécharger un modèle pré-entraîné : ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))" ``` Le label et score sont ensuite affichés : ```bash [{'label': 'POSITIVE', 'score': 0.9998704791069031}] ``` ## Installation depuis le code source Installez 🤗 Transformers depuis le code source avec la commande suivante : ```bash pip install git+https://github.com/huggingface/transformers ``` Cette commande installe la version depuis la branche `main` au lieu de la dernière version stable. La version de la branche `main` est utile pour avoir les derniers développements. Par exemple, si un bug a été résolu depuis la dernière version stable mais n'a pas encore été publié officiellement. Cependant, cela veut aussi dire que la version de la branche `main` n'est pas toujours stable. Nous nous efforçons de maintenir la version de la branche `main` opérationnelle, et la plupart des problèmes sont généralement résolus en l'espace de quelques heures ou d'un jour. Si vous recontrez un problème, n'hésitez pas à créer une [Issue](https://github.com/huggingface/transformers/issues) pour que l'on puisse trouver une solution au plus vite ! Vérifiez que 🤗 Transformers a bien été installé avec la commande suivante : ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))" ``` ## Installation modifiable Vous aurez besoin d'une installation modifiable si vous le souhaitez : * Utiliser la version de la branche `main` du code source. * Contribuer à 🤗 Transformers et vouler tester vos modifications du code source. Clonez le projet et installez 🤗 Transformers avec les commandes suivantes : ```bash git clone https://github.com/huggingface/transformers.git cd transformers pip install -e . ``` Ces commandes créent des liens entre le dossier où le projet a été cloné et les chemins de vos librairies Python. Python regardera maintenant dans le dossier que vous avez cloné en plus des dossiers où sont installées vos autres librairies. Par exemple, si vos librairies Python sont installées dans `~/anaconda3/envs/main/lib/python3.7/site-packages/`, Python cherchera aussi dans le dossier où vous avez cloné : `~/transformers/`. <Tip warning={true}> Vous devez garder le dossier `transformers` si vous voulez continuer d'utiliser la librairie. </Tip> Maintenant, vous pouvez facilement mettre à jour votre clone avec la dernière version de 🤗 Transformers en utilisant la commande suivante : ```bash cd ~/transformers/ git pull ``` Votre environnement Python utilisera la version de la branche `main` lors de la prochaine exécution. ## Installation avec conda Installation via le canal `conda-forge` de conda : ```bash conda install conda-forge::transformers ``` ## Configuration du cache Les modèles pré-entraînés sont téléchargés et mis en cache localement dans le dossier suivant : `~/.cache/huggingface/hub`. C'est le dossier par défaut donné par la variable d'environnement `TRANSFORMERS_CACHE`. Sur Windows, le dossier par défaut est `C:\Users\nom_utilisateur\.cache\huggingface\hub`. Vous pouvez modifier les variables d'environnement indiquées ci-dessous - par ordre de priorité - pour spécifier un dossier de cache différent : 1. Variable d'environnement (par défaut) : `HUGGINGFACE_HUB_CACHE` ou `TRANSFORMERS_CACHE`. 2. Variable d'environnement : `HF_HOME`. 3. Variable d'environnement : `XDG_CACHE_HOME` + `/huggingface`. <Tip> 🤗 Transformers utilisera les variables d'environnement `PYTORCH_TRANSFORMERS_CACHE` ou `PYTORCH_PRETRAINED_BERT_CACHE` si vous utilisez une version précédente de cette librairie et avez défini ces variables d'environnement, sauf si vous spécifiez la variable d'environnement `TRANSFORMERS_CACHE`. </Tip> ## Mode hors ligne 🤗 Transformers peut fonctionner dans un environnement cloisonné ou hors ligne en n'utilisant que des fichiers locaux. Définissez la variable d'environnement `TRANSFORMERS_OFFLINE=1` pour activer ce mode. <Tip> Ajoutez [🤗 Datasets](https://huggingface.co/docs/datasets/) à votre processus d'entraînement hors ligne en définissant la variable d'environnement `HF_DATASETS_OFFLINE=1`. </Tip> ```bash HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \ python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ... ``` Le script devrait maintenant s'exécuter sans rester en attente ou attendre une expiration, car il n'essaiera pas de télécharger des modèle sur le Hub. Vous pouvez aussi éviter de télécharger un modèle à chaque appel de la fonction [`~PreTrainedModel.from_pretrained`] en utilisant le paramètre [local_files_only]. Seuls les fichiers locaux sont chargés lorsque ce paramètre est activé (c.-à-d. `local_files_only=True`) : ```py from transformers import T5Model model = T5Model.from_pretrained("./path/to/local/directory", local_files_only=True) ``` ### Récupérer des modèles et des tokenizers pour une utilisation hors ligne Une autre option pour utiliser 🤗 Transformers hors ligne est de télécharger les fichiers à l'avance, puis d'utiliser les chemins locaux lorsque vous en avez besoin en mode hors ligne. Il existe trois façons de faire cela : * Téléchargez un fichier via l'interface utilisateur sur le [Model Hub](https://huggingface.co/models) en cliquant sur l'icône ↓. ![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png) * Utilisez les fonctions [`PreTrainedModel.from_pretrained`] et [`PreTrainedModel.save_pretrained`] : 1. Téléchargez vos fichiers à l'avance avec [`PreTrainedModel.from_pretrained`]: ```py >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B") >>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B") ``` 2. Sauvegardez les fichiers dans un dossier de votre choix avec [`PreTrainedModel.save_pretrained`]: ```py >>> tokenizer.save_pretrained("./your/path/bigscience_t0") >>> model.save_pretrained("./your/path/bigscience_t0") ``` 3. Maintenant, lorsque vous êtes hors ligne, rechargez vos fichiers avec [`PreTrainedModel.from_pretrained`] depuis le dossier où vous les avez sauvegardés : ```py >>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0") >>> model = AutoModel.from_pretrained("./your/path/bigscience_t0") ``` * Téléchargez des fichiers de manière automatique avec la librairie [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) : 1. Installez la librairie `huggingface_hub` dans votre environnement virtuel : ```bash python -m pip install huggingface_hub ``` 2. Utilisez la fonction [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) pour télécharger un fichier vers un chemin de votre choix. Par exemple, la commande suivante télécharge le fichier `config.json` du modèle [T0](https://huggingface.co/bigscience/T0_3B) vers le chemin de votre choix : ```py >>> from huggingface_hub import hf_hub_download >>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0") ``` Une fois que votre fichier est téléchargé et caché localement, spécifiez son chemin local pour le charger et l'utiliser : ```py >>> from transformers import AutoConfig >>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json") ``` <Tip> Consultez la section [How to download files from the Hub (Comment télécharger des fichiers depuis le Hub)](https://huggingface.co/docs/hub/how-to-downstream) pour plus de détails sur le téléchargement de fichiers stockés sur le Hub. </Tip>
transformers/docs/source/fr/installation.md/0
{ "file_path": "transformers/docs/source/fr/installation.md", "repo_id": "transformers", "token_count": 3849 }
280
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Preprocess [[open-in-colab]] Prima di poter usare i dati in un modello, bisogna processarli in un formato accettabile per quest'ultimo. Un modello non comprende il testo grezzo, le immagini o l'audio. Bisogna convertire questi input in numeri e assemblarli all'interno di tensori. In questa esercitazione, tu potrai: * Preprocessare dati testuali con un tokenizer. * Preprocessare immagini o dati audio con un estrattore di caratteristiche. * Preprocessare dati per attività multimodali mediante un processore. ## NLP <Youtube id="Yffk5aydLzg"/> Lo strumento principale per processare dati testuali è un [tokenizer](main_classes/tokenizer). Un tokenizer inizia separando il testo in *tokens* secondo una serie di regole. I tokens sono convertiti in numeri, questi vengono utilizzati per costruire i tensori di input del modello. Anche altri input addizionali se richiesti dal modello vengono aggiunti dal tokenizer. <Tip> Se stai pensando si utilizzare un modello preaddestrato, è importante utilizzare il tokenizer preaddestrato associato. Questo assicura che il testo sia separato allo stesso modo che nel corpus usato per l'addestramento, e venga usata la stessa mappatura tokens-to-index (solitamente indicato come il *vocabolario*) come nel preaddestramento. </Tip> Iniziamo subito caricando un tokenizer preaddestrato con la classe [`AutoTokenizer`]. Questo scarica il *vocabolario* usato quando il modello è stato preaddestrato. ### Tokenize Carica un tokenizer preaddestrato con [`AutoTokenizer.from_pretrained`]: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") ``` Poi inserisci le tue frasi nel tokenizer: ```py >>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.") >>> print(encoded_input) {'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` Il tokenizer restituisce un dizionario contenente tre oggetti importanti: * [input_ids](glossary#input-ids) sono gli indici che corrispondono ad ogni token nella frase. * [attention_mask](glossary#attention-mask) indicata se un token deve essere elaborato o no. * [token_type_ids](glossary#token-type-ids) identifica a quale sequenza appartiene un token se è presente più di una sequenza. Si possono decodificare gli `input_ids` per farsi restituire l'input originale: ```py >>> tokenizer.decode(encoded_input["input_ids"]) '[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]' ``` Come si può vedere, il tokenizer aggiunge due token speciali - `CLS` e `SEP` (classificatore e separatore) - alla frase. Non tutti i modelli hanno bisogno dei token speciali, ma se servono, il tokenizer li aggiungerà automaticamente. Se ci sono più frasi che vuoi processare, passale come una lista al tokenizer: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_inputs = tokenizer(batch_sentences) >>> print(encoded_inputs) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]} ``` ### Pad Questo è un argomento importante. Quando processi un insieme di frasi potrebbero non avere tutte la stessa lunghezza. Questo è un problema perchè i tensori, in input del modello, devono avere dimensioni uniformi. Il padding è una strategia per assicurarsi che i tensori siano rettangolari aggiungendo uno speciale *padding token* alle frasi più corte. Imposta il parametro `padding` a `True` per imbottire le frasi più corte nel gruppo in modo che combacino con la massima lunghezza presente: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` Nota che il tokenizer aggiunge alle sequenze degli `0` perchè sono troppo corte! ### Truncation L'altra faccia della medaglia è che avolte le sequenze possono essere troppo lunghe per essere gestite dal modello. In questo caso, avrai bisogno di troncare la sequenza per avere una lunghezza minore. Imposta il parametro `truncation` a `True` per troncare una sequenza alla massima lunghezza accettata dal modello: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` ### Costruire i tensori Infine, vuoi che il tokenizer restituisca i tensori prodotti dal modello. Imposta il parametro `return_tensors` su `pt` per PyTorch, o `tf` per TensorFlow: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch, padding=True, truncation=True, return_tensors="pt") >>> print(encoded_input) {'input_ids': tensor([[ 101, 153, 7719, 21490, 1122, 1114, 9582, 1623, 102], [ 101, 5226, 1122, 9649, 1199, 2610, 1236, 102, 0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0]])} ===PT-TF-SPLIT=== >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch, padding=True, truncation=True, return_tensors="tf") >>> print(encoded_input) {'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[ 101, 153, 7719, 21490, 1122, 1114, 9582, 1623, 102], [ 101, 5226, 1122, 9649, 1199, 2610, 1236, 102, 0]], dtype=int32)>, 'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0]], dtype=int32)>} ``` ## Audio Gli input audio sono processati in modo differente rispetto al testo, ma l'obiettivo rimane lo stesso: creare sequenze numeriche che il modello può capire. Un [estrattore di caratteristiche](main_classes/feature_extractor) è progettato con lo scopo preciso di estrarre caratteristiche da immagini o dati audio grezzi e convertirli in tensori. Prima di iniziare, installa 🤗 Datasets per caricare un dataset audio e sperimentare: ```bash pip install datasets ``` Carica il dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) (vedi il 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub) per avere maggiori dettagli su come caricare un dataset): ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") ``` Accedi al primo elemento della colonna `audio` per dare uno sguardo all'input. Richiamando la colonna `audio` sarà caricato automaticamente e ricampionato il file audio: ```py >>> dataset[0]["audio"] {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, 0. , 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 8000} ``` Questo restituisce tre oggetti: * `array` è il segnale vocale caricato - e potenzialmente ricampionato - come vettore 1D. * `path` il percorso del file audio. * `sampling_rate` si riferisce al numero di campioni del segnale vocale misurati al secondo. ### Ricampionamento Per questo tutorial, puoi usare il modello [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base). Come puoi vedere dalla model card, il modello Wav2Vec2 è preaddestrato su un campionamento vocale a 16kHz.È importante che la frequenza di campionamento dei tuoi dati audio combaci con la frequenza di campionamento del dataset usato per preaddestrare il modello. Se la frequenza di campionamento dei tuoi dati non è uguale dovrai ricampionare i tuoi dati audio. Per esempio, il dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) ha una frequenza di campionamento di 8000kHz. Utilizzando il modello Wav2Vec2 su questo dataset, alzala a 16kHz: ```py >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") >>> dataset[0]["audio"] {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, 0. , 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 8000} ``` 1. Usa il metodo di 🤗 Datasets' [`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.cast_column) per alzare la frequenza di campionamento a 16kHz: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) ``` 2. Carica il file audio: ```py >>> dataset[0]["audio"] {'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 16000} ``` Come puoi notare, la `sampling_rate` adesso è 16kHz! ### Feature extractor Il prossimo passo è caricare un estrattore di caratteristiche per normalizzare e fare padding sull'input. Quando applichiamo il padding sui dati testuali, uno `0` è aggiunto alle sequenze più brevi. La stessa idea si applica ai dati audio, l'estrattore di caratteristiche per gli audio aggiungerà uno `0` - interpretato come silenzio - agli `array`. Carica l'estrattore delle caratteristiche con [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") ``` Inserisci l' `array` audio nell'estrattore delle caratteristiche. Noi raccomandiamo sempre di aggiungere il parametro `sampling_rate` nell'estrattore delle caratteristiche per correggere meglio qualche errore, dovuto ai silenzi, che potrebbe verificarsi. ```py >>> audio_input = [dataset[0]["audio"]["array"]] >>> feature_extractor(audio_input, sampling_rate=16000) {'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ..., 5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]} ``` ### Pad e truncate Come per il tokenizer, puoi applicare le operazioni padding o truncation per manipolare sequenze di variabili a lotti. Dai uno sguaro alla lunghezza delle sequenze di questi due campioni audio: ```py >>> dataset[0]["audio"]["array"].shape (173398,) >>> dataset[1]["audio"]["array"].shape (106496,) ``` Come puoi vedere, il primo campione ha una sequenza più lunga del secondo. Crea una funzione che preprocesserà il dataset. Specifica una lunghezza massima del campione, e l'estrattore di features si occuperà di riempire o troncare la sequenza per coincidervi: ```py >>> def preprocess_function(examples): ... audio_arrays = [x["array"] for x in examples["audio"]] ... inputs = feature_extractor( ... audio_arrays, ... sampling_rate=16000, ... padding=True, ... max_length=100000, ... truncation=True, ... ) ... return inputs ``` Applica la funzione ai primi esempi nel dataset: ```py >>> processed_dataset = preprocess_function(dataset[:5]) ``` Adesso guarda la lunghezza dei campioni elaborati: ```py >>> processed_dataset["input_values"][0].shape (100000,) >>> processed_dataset["input_values"][1].shape (100000,) ``` La lunghezza dei campioni adesso coincide con la massima lunghezza impostata nelle funzione. ## Vision Un estrattore di caratteristiche si può usare anche per processare immagini e per compiti di visione. Ancora una volta, l'obiettivo è convertire l'immagine grezza in un lotto di tensori come input. Carica il dataset [food101](https://huggingface.co/datasets/food101) per questa esercitazione. Usa il parametro `split` di 🤗 Datasets per caricare solo un piccolo campione dal dataset di addestramento poichè il set di dati è molto grande: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("food101", split="train[:100]") ``` Secondo passo, dai uno sguardo alle immagini usando la caratteristica [`Image`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=image#datasets.Image) di 🤗 Datasets: ```py >>> dataset[0]["image"] ``` ![vision-preprocess-tutorial.png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png) ### Feature extractor Carica l'estrattore di caratteristiche [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224") ``` ### Data augmentation Per le attività di visione, è usuale aggiungere alcuni tipi di data augmentation alle immagini come parte del preprocessing. Puoi aggiungere augmentations con qualsiasi libreria che preferisci, ma in questa esercitazione, userai il modulo [`transforms`](https://pytorch.org/vision/stable/transforms.html) di torchvision. 1. Normalizza l'immagine e usa [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html) per concatenare alcune trasformazioni - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) e [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - insieme: ```py >>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor >>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) >>> _transforms = Compose( ... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize] ... ) ``` 2. Il modello accetta [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) come input. Questo valore è generato dall'estrattore di caratteristiche. Crea una funzione che genera `pixel_values` dai transforms: ```py >>> def transforms(examples): ... examples["pixel_values"] = [_transforms(image.convert("RGB")) for image in examples["image"]] ... return examples ``` 3. Poi utilizza 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process#format-transform)per applicare al volo la trasformazione: ```py >>> dataset.set_transform(transforms) ``` 4. Adesso quando accedi all'immagine, puoi notare che l'estrattore di caratteristiche ha aggiunto `pixel_values` allo schema di input: ```py >>> dataset[0]["image"] {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F1A7B0630D0>, 'label': 6, 'pixel_values': tensor([[[ 0.0353, 0.0745, 0.1216, ..., -0.9922, -0.9922, -0.9922], [-0.0196, 0.0667, 0.1294, ..., -0.9765, -0.9843, -0.9922], [ 0.0196, 0.0824, 0.1137, ..., -0.9765, -0.9686, -0.8667], ..., [ 0.0275, 0.0745, 0.0510, ..., -0.1137, -0.1216, -0.0824], [ 0.0667, 0.0824, 0.0667, ..., -0.0588, -0.0745, -0.0980], [ 0.0353, 0.0353, 0.0431, ..., -0.0039, -0.0039, -0.0588]], [[ 0.2078, 0.2471, 0.2863, ..., -0.9451, -0.9373, -0.9451], [ 0.1608, 0.2471, 0.3098, ..., -0.9373, -0.9451, -0.9373], [ 0.2078, 0.2706, 0.3020, ..., -0.9608, -0.9373, -0.8275], ..., [-0.0353, 0.0118, -0.0039, ..., -0.2392, -0.2471, -0.2078], [ 0.0196, 0.0353, 0.0196, ..., -0.1843, -0.2000, -0.2235], [-0.0118, -0.0039, -0.0039, ..., -0.0980, -0.0980, -0.1529]], [[ 0.3961, 0.4431, 0.4980, ..., -0.9216, -0.9137, -0.9216], [ 0.3569, 0.4510, 0.5216, ..., -0.9059, -0.9137, -0.9137], [ 0.4118, 0.4745, 0.5216, ..., -0.9137, -0.8902, -0.7804], ..., [-0.2314, -0.1922, -0.2078, ..., -0.4196, -0.4275, -0.3882], [-0.1843, -0.1686, -0.2000, ..., -0.3647, -0.3804, -0.4039], [-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])} ``` Di seguito come si vede l'immagine dopo la fase di preprocessing. Come ci si aspetterebbe dalle trasformazioni applicate, l'immagine è stata ritagliata in modo casuale e le proprietà del colore sono diverse. ```py >>> import numpy as np >>> import matplotlib.pyplot as plt >>> img = dataset[0]["pixel_values"] >>> plt.imshow(img.permute(1, 2, 0)) ``` ![preprocessed_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png) ## Multimodal Per attività multimodali userai una combinazione di tutto quello che hai imparato poco fa e applicherai le tue competenze alla comprensione automatica del parlato (Automatic Speech Recognition - ASR). Questo significa che avrai bisogno di: * Un estrattore delle caratteristiche per processare i dati audio. * Il Tokenizer per processare i testi. Ritorna sul datasere [LJ Speech](https://huggingface.co/datasets/lj_speech): ```py >>> from datasets import load_dataset >>> lj_speech = load_dataset("lj_speech", split="train") ``` Visto che sei interessato solo alle colonne `audio` e `text`, elimina tutte le altre: ```py >>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"]) ``` Adesso guarda le colonne `audio` e `text`: ```py >>> lj_speech[0]["audio"] {'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ..., 7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', 'sampling_rate': 22050} >>> lj_speech[0]["text"] 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition' ``` Ricorda dalla sezione precedente sull'elaborazione dei dati audio, tu dovresti sempre [ricampionare](preprocessing#audio) la frequenza di campionamento dei tuoi dati audio per farla coincidere con quella del dataset usato dal modello preaddestrato: ```py >>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000)) ``` ### Processor Un processor combina un estrattore di caratteristiche e un tokenizer. Carica un processor con [`AutoProcessor.from_pretrained`]: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") ``` 1. Crea una funzione che processi i dati audio in `input_values`, e tokenizza il testo in `labels`. Questi sono i tuoi input per il modello: ```py >>> def prepare_dataset(example): ... audio = example["audio"] ... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000)) ... return example ``` 2. Applica la funzione `prepare_dataset` ad un campione: ```py >>> prepare_dataset(lj_speech[0]) ``` Nota che il processor ha aggiunto `input_values` e `labels`. La frequenza di campionamento è stata corretta riducendola a 16kHz. Fantastico, ora dovresti essere in grado di preelaborare i dati per qualsiasi modalità e persino di combinare modalità diverse! Nella prossima esercitazione, impareremo a mettere a punto un modello sui dati appena pre-elaborati.
transformers/docs/source/it/preprocessing.md/0
{ "file_path": "transformers/docs/source/it/preprocessing.md", "repo_id": "transformers", "token_count": 9562 }
281
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Create a custom architecture [`AutoClass`](model_doc/auto)は、モデルのアーキテクチャを自動的に推論し、事前学習済みの設定と重みをダウンロードします。一般的には、チェックポイントに依存しないコードを生成するために`AutoClass`を使用することをお勧めします。ただし、特定のモデルパラメータに対する制御をより詳細に行いたいユーザーは、いくつかの基本クラスからカスタム🤗 Transformersモデルを作成できます。これは、🤗 Transformersモデルを研究、トレーニング、または実験する興味があるユーザーに特に役立つかもしれません。このガイドでは、`AutoClass`を使用しないカスタムモデルの作成について詳しく説明します。次の方法を学びます: - モデルの設定をロードおよびカスタマイズする。 - モデルアーキテクチャを作成する。 - テキスト用の遅いトークナイザと高速トークナイザを作成する。 - ビジョンタスク用の画像プロセッサを作成する。 - オーディオタスク用の特徴抽出器を作成する。 - マルチモーダルタスク用のプロセッサを作成する。 ## Configuration [設定](main_classes/configuration)は、モデルの特定の属性を指します。各モデルの設定には異なる属性があります。たとえば、すべてのNLPモデルには、`hidden_size`、`num_attention_heads`、`num_hidden_layers`、および`vocab_size`属性が共通してあります。これらの属性は、モデルを構築するための注意ヘッドの数や隠れ層の数を指定します。 [DistilBERT](model_doc/distilbert)をより詳しく調べるために、[`DistilBertConfig`]にアクセスしてその属性を調べてみましょう: ```py >>> from transformers import DistilBertConfig >>> config = DistilBertConfig() >>> print(config) DistilBertConfig { "activation": "gelu", "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` [`DistilBertConfig`]は、基本の[`DistilBertModel`]を構築するために使用されるすべてのデフォルト属性を表示します。 すべての属性はカスタマイズ可能で、実験のためのスペースを提供します。例えば、デフォルトのモデルをカスタマイズして以下のようなことができます: - `activation`パラメータで異なる活性化関数を試す。 - `attention_dropout`パラメータで注意確率の高いドロップアウト率を使用する。 ```py >>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4) >>> print(my_config) DistilBertConfig { "activation": "relu", "attention_dropout": 0.4, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "model_type": "distilbert", "n_heads": 12, "n_layers": 6, "pad_token_id": 0, "qa_dropout": 0.1, "seq_classif_dropout": 0.2, "sinusoidal_pos_embds": false, "transformers_version": "4.16.2", "vocab_size": 30522 } ``` 事前学習済みモデルの属性は、[`~PretrainedConfig.from_pretrained`] 関数で変更できます: ```py >>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4) ``` Once you are satisfied with your model configuration, you can save it with [`PretrainedConfig.save_pretrained`]. Your configuration file is stored as a JSON file in the specified save directory. ```py >>> my_config.save_pretrained(save_directory="./your_model_save_path") ``` 設定ファイルを再利用するには、[`~PretrainedConfig.from_pretrained`]を使用してそれをロードします: ```py >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") ``` <Tip> カスタム構成ファイルを辞書として保存することも、カスタム構成属性とデフォルトの構成属性の違いだけを保存することもできます!詳細については[configuration](main_classes/configuration)のドキュメンテーションをご覧ください。 </Tip> ## Model 次のステップは、[モデル](main_classes/models)を作成することです。モデル(アーキテクチャとも緩く言われることがあります)は、各レイヤーが何をしているか、どの操作が行われているかを定義します。構成からの `num_hidden_layers` のような属性はアーキテクチャを定義するために使用されます。 すべてのモデルは [`PreTrainedModel`] をベースクラスとし、入力埋め込みのリサイズやセルフアテンションヘッドのプルーニングなど、共通のメソッドがいくつかあります。 さらに、すべてのモデルは [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)、[`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)、または [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) のいずれかのサブクラスでもあります。つまり、モデルはそれぞれのフレームワークの使用法と互換性があります。 <frameworkcontent> <pt> モデルにカスタム構成属性をロードします: ```py >>> from transformers import DistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json") >>> model = DistilBertModel(my_config) ``` これにより、事前トレーニング済みの重みではなくランダムな値を持つモデルが作成されます。 これは、トレーニングが行われるまで、まだ有用なものとして使用することはできません。 トレーニングはコストと時間がかかるプロセスです。 通常、トレーニングに必要なリソースの一部しか使用せず、より速くより良い結果を得るために事前学習済みモデルを使用することが良いでしょう。 [`~PreTrainedModel.from_pretrained`]を使用して事前学習済みモデルを作成します: ```py >>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased") ``` 事前学習済みの重みをロードする際、モデルが🤗 Transformersによって提供されている場合、デフォルトのモデル設定が自動的にロードされます。ただし、必要に応じてデフォルトのモデル設定属性の一部またはすべてを独自のもので置き換えることができます。 ```py >>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config) ``` </pt> <tf> モデルにカスタム設定属性をロードしてください: ```py >>> from transformers import TFDistilBertModel >>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json") >>> tf_model = TFDistilBertModel(my_config) ``` これにより、事前学習済みの重みではなくランダムな値を持つモデルが作成されます。 このモデルを有用な目的にはまだ使用することはできません。トレーニングはコストがかかり、時間がかかるプロセスです。 一般的には、トレーニングに必要なリソースの一部しか使用せずに、より速く優れた結果を得るために事前学習済みモデルを使用することが良いでしょう。 [`~TFPreTrainedModel.from_pretrained`]を使用して事前学習済みモデルを作成します: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased") ``` 事前学習済みの重みをロードする際、モデルが🤗 Transformersによって提供されている場合、デフォルトのモデル構成が自動的にロードされます。ただし、必要であればデフォルトのモデル構成属性の一部またはすべてを独自のもので置き換えることもできます: ```py >>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config) ``` </tf> </frameworkcontent> ### Model heads この時点で、ベースのDistilBERTモデルがあり、これは隠れた状態を出力します。隠れた状態はモデルのヘッドへの入力として渡され、最終的な出力を生成します。🤗 Transformersは、モデルがそのタスクをサポートしている限り、各タスクに対応する異なるモデルヘッドを提供します(つまり、DistilBERTを翻訳のようなシーケンス対シーケンスタスクに使用することはできません)。 <frameworkcontent> <pt> たとえば、[`DistilBertForSequenceClassification`]は、シーケンス分類ヘッドを持つベースのDistilBERTモデルです。シーケンス分類ヘッドは、プールされた出力の上にある線形層です。 ```py >>> from transformers import DistilBertForSequenceClassification >>> model = DistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 新しいタスクにこのチェックポイントを簡単に再利用するには、異なるモデルヘッドに切り替えます。 質問応答タスクの場合、[`DistilBertForQuestionAnswering`] モデルヘッドを使用します。 質問応答ヘッドはシーケンス分類ヘッドと類似していますが、隠れ状態の出力の上に線形層があります。 ```py >>> from transformers import DistilBertForQuestionAnswering >>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased") ``` </pt> <tf> 例えば、[`TFDistilBertForSequenceClassification`]は、シーケンス分類ヘッドを持つベースのDistilBERTモデルです。シーケンス分類ヘッドは、プールされた出力の上にある線形層です。 ```py >>> from transformers import TFDistilBertForSequenceClassification >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 別のタスクにこのチェックポイントを簡単に再利用することができ、異なるモデルヘッドに切り替えるだけです。 質問応答タスクの場合、[`TFDistilBertForQuestionAnswering`]モデルヘッドを使用します。 質問応答ヘッドはシーケンス分類ヘッドと似ていますが、隠れ状態の出力の上に線形層があるだけです。 ```py >>> from transformers import TFDistilBertForQuestionAnswering >>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased") ``` </tf> </frameworkcontent> ## Tokenizer テキストデータをモデルで使用する前に必要な最後のベースクラスは、生のテキストをテンソルに変換するための[トークナイザ](main_classes/tokenizer)です。 🤗 Transformersで使用できる2つのタイプのトークナイザがあります: - [`PreTrainedTokenizer`]: トークナイザのPython実装です。 - [`PreTrainedTokenizerFast`]: Rustベースの[🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/)ライブラリからのトークナイザです。 このトークナイザのタイプは、そのRust実装により、特にバッチトークナイゼーション中に高速です。 高速なトークナイザは、トークンを元の単語または文字にマッピングする*オフセットマッピング*などの追加メソッドも提供します。 両方のトークナイザは、エンコードとデコード、新しいトークンの追加、特別なトークンの管理など、共通のメソッドをサポートしています。 <Tip warning={true}> すべてのモデルが高速なトークナイザをサポートしているわけではありません。 モデルが高速なトークナイザをサポートしているかどうかを確認するには、この[表](index#supported-frameworks)をご覧ください。 </Tip> 独自のトークナイザをトレーニングした場合、*ボキャブラリー*ファイルからトークナイザを作成できます。 ```py >>> from transformers import DistilBertTokenizer >>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left") ``` カスタムトークナイザーから生成される語彙は、事前学習済みモデルのトークナイザーが生成する語彙とは異なることを覚えておくことは重要です。 事前学習済みモデルを使用する場合は、事前学習済みモデルの語彙を使用する必要があります。そうしないと、入力が意味をなさなくなります。 [`DistilBertTokenizer`]クラスを使用して、事前学習済みモデルの語彙を持つトークナイザーを作成します: ```py >>> from transformers import DistilBertTokenizer >>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` [`DistilBertTokenizerFast`]クラスを使用して高速なトークナイザを作成します: ```py >>> from transformers import DistilBertTokenizerFast >>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased") ``` <Tip> デフォルトでは、[`AutoTokenizer`]は高速なトークナイザを読み込もうとします。`from_pretrained`内で`use_fast=False`を設定することで、この動作を無効にすることができます。 </Tip> ## Image Processor 画像プロセッサはビジョン入力を処理します。これは基本クラス [`~image_processing_utils.ImageProcessingMixin`] を継承しています。 使用するには、使用しているモデルに関連付けられた画像プロセッサを作成します。 たとえば、画像分類に[ViT](model_doc/vit)を使用する場合、デフォルトの [`ViTImageProcessor`] を作成します。 ```py >>> from transformers import ViTImageProcessor >>> vit_extractor = ViTImageProcessor() >>> print(vit_extractor) ViTImageProcessor { "do_normalize": true, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.5, 0.5, 0.5 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": 2, "size": 224 } ``` <Tip> カスタマイズを必要としない場合、モデルのデフォルトの画像プロセッサパラメータをロードするには、単純に`from_pretrained`メソッドを使用してください。 </Tip> [`ViTImageProcessor`]のパラメータを変更して、カスタムの画像プロセッサを作成できます: ```py >>> from transformers import ViTImageProcessor >>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3]) >>> print(my_vit_extractor) ViTImageProcessor { "do_normalize": false, "do_resize": true, "image_processor_type": "ViTImageProcessor", "image_mean": [ 0.3, 0.3, 0.3 ], "image_std": [ 0.5, 0.5, 0.5 ], "resample": "PIL.Image.BOX", "size": 224 } ``` ## Feature Extractor フィーチャー抽出器は音声入力を処理します。これは基本的な [`~feature_extraction_utils.FeatureExtractionMixin`] クラスから継承され、音声入力を処理するための [`SequenceFeatureExtractor`] クラスからも継承されることがあります。 使用するには、モデルに関連付けられたフィーチャー抽出器を作成します。たとえば、音声分類に [Wav2Vec2](model_doc/wav2vec2) を使用する場合、デフォルトの [`Wav2Vec2FeatureExtractor`] を作成します。 ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor() >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": true, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 16000 } ``` <Tip> カスタマイズを行わない場合、モデルのデフォルトの特徴抽出器パラメーターをロードするには、単に `from_pretrained` メソッドを使用してください。 </Tip> [`Wav2Vec2FeatureExtractor`] のパラメーターを変更して、カスタム特徴抽出器を作成できます: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False) >>> print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": false, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 8000 } ``` ## Processor マルチモーダルタスクをサポートするモデルに対して、🤗 Transformersは便利なプロセッサクラスを提供しています。 このプロセッサクラスは、特徴量抽出器やトークナイザなどの処理クラスを便利にラップし、単一のオブジェクトに結合します。 たとえば、自動音声認識タスク(ASR)用に[`Wav2Vec2Processor`]を使用してみましょう。 ASRは音声をテキストに転写するタスクであり、音声入力を処理するために特徴量抽出器とトークナイザが必要です。 音声入力を処理する特徴量抽出器を作成します: ```py >>> from transformers import Wav2Vec2FeatureExtractor >>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True) ``` テキスト入力を処理するトークナイザを作成します: ```py >>> from transformers import Wav2Vec2CTCTokenizer >>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt") ``` [`Wav2Vec2Processor`]で特徴量抽出器とトークナイザを組み合わせます: ```py >>> from transformers import Wav2Vec2Processor >>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) ``` 二つの基本クラス - 設定とモデル - および追加の前処理クラス(トークナイザ、画像プロセッサ、特徴抽出器、またはプロセッサ)を使用することで、🤗 Transformers がサポートするモデルのいずれかを作成できます。これらの基本クラスは設定可能で、必要な特性を使用できます。モデルをトレーニング用に簡単にセットアップしたり、既存の事前学習済みモデルを微調整することができます。
transformers/docs/source/ja/create_a_model.md/0
{ "file_path": "transformers/docs/source/ja/create_a_model.md", "repo_id": "transformers", "token_count": 8236 }
282
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Pipelines パイプラインは、推論にモデルを使うための簡単で優れた方法である。パイプラインは、複雑なコードのほとんどを抽象化したオブジェクトです。 パイプラインは、ライブラリから複雑なコードのほとんどを抽象化したオブジェクトで、名前付き固有表現認識、マスク言語モデリング、感情分析、特徴抽出、質問応答などのタスクに特化したシンプルなAPIを提供します。 Recognition、Masked Language Modeling、Sentiment Analysis、Feature Extraction、Question Answeringなどのタスクに特化したシンプルなAPIを提供します。以下を参照のこと。 [タスク概要](../task_summary)を参照してください。 パイプラインの抽象化には2つのカテゴリーがある: - [`pipeline`] は、他のすべてのパイプラインをカプセル化する最も強力なオブジェクトです。 - タスク固有のパイプラインは、[オーディオ](#audio)、[コンピューター ビジョン](#computer-vision)、[自然言語処理](#natural-language-processing)、および [マルチモーダル](#multimodal) タスクで使用できます。 ## The pipeline abstraction *パイプライン* 抽象化は、他のすべての利用可能なパイプラインのラッパーです。他のものと同様にインスタンス化されます パイプラインですが、さらなる生活の質を提供できます。 1 つの項目に対する単純な呼び出し: ```python >>> pipe = pipeline("text-classification") >>> pipe("This restaurant is awesome") [{'label': 'POSITIVE', 'score': 0.9998743534088135}] ``` [ハブ](https://huggingface.co) の特定のモデルを使用したい場合は、モデルがオンになっている場合はタスクを無視できます。 ハブはすでにそれを定義しています。 ```python >>> pipe = pipeline(model="FacebookAI/roberta-large-mnli") >>> pipe("This restaurant is awesome") [{'label': 'NEUTRAL', 'score': 0.7313136458396912}] ``` 多くの項目に対してパイプラインを呼び出すには、*list* を使用してパイプラインを呼び出すことができます。 ```python >>> pipe = pipeline("text-classification") >>> pipe(["This restaurant is awesome", "This restaurant is awful"]) [{'label': 'POSITIVE', 'score': 0.9998743534088135}, {'label': 'NEGATIVE', 'score': 0.9996669292449951}] ``` 完全なデータセットを反復するには、`Dataset`を直接使用することをお勧めします。これは、割り当てる必要がないことを意味します データセット全体を一度に処理することも、自分でバッチ処理を行う必要もありません。これはカスタムループと同じくらい速く動作するはずです。 GPU。それが問題でない場合は、ためらわずに問題を作成してください。 ```python import datasets from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset from tqdm.auto import tqdm pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0) dataset = datasets.load_dataset("superb", name="asr", split="test") # KeyDataset (only *pt*) will simply return the item in the dict returned by the dataset item # as we're not interested in the *target* part of the dataset. For sentence pair use KeyPairDataset for out in tqdm(pipe(KeyDataset(dataset, "file"))): print(out) # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"} # {"text": ....} # .... ``` 使いやすくするために、ジェネレーターを使用することもできます。 ```python from transformers import pipeline pipe = pipeline("text-classification") def data(): while True: # This could come from a dataset, a database, a queue or HTTP request # in a server # Caveat: because this is iterative, you cannot use `num_workers > 1` variable # to use multiple threads to preprocess data. You can still have 1 thread that # does the preprocessing while the main runs the big inference yield "This is a test" for out in pipe(data()): print(out) # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"} # {"text": ....} # .... ``` [[autodoc]] pipeline ## Pipeline batching すべてのパイプラインでバッチ処理を使用できます。これはうまくいきます パイプラインがストリーミング機能を使用するときは常に (つまり、リスト、`dataset`、または `generator`を渡すとき)。 ```python from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset import datasets dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised") pipe = pipeline("text-classification", device=0) for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"): print(out) # [{'label': 'POSITIVE', 'score': 0.9998743534088135}] # Exactly the same output as before, but the content are passed # as batches to the model ``` <Tip warning={true}> ただし、これによってパフォーマンスが自動的に向上するわけではありません。状況に応じて、10 倍の高速化または 5 倍の低速化のいずれかになります。 ハードウェア、データ、使用されている実際のモデルについて。 主に高速化である例: </Tip> ```python from transformers import pipeline from torch.utils.data import Dataset from tqdm.auto import tqdm pipe = pipeline("text-classification", device=0) class MyDataset(Dataset): def __len__(self): return 5000 def __getitem__(self, i): return "This is a test" dataset = MyDataset() for batch_size in [1, 8, 64, 256]: print("-" * 30) print(f"Streaming batch_size={batch_size}") for out in tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)): pass ``` ``` # On GTX 970 ------------------------------ Streaming no batching 100%|██████████████████████████████████████████████████████████████████████| 5000/5000 [00:26<00:00, 187.52it/s] ------------------------------ Streaming batch_size=8 100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:04<00:00, 1205.95it/s] ------------------------------ Streaming batch_size=64 100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:02<00:00, 2478.24it/s] ------------------------------ Streaming batch_size=256 100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:01<00:00, 2554.43it/s] (diminishing returns, saturated the GPU) ``` 最も速度が低下する例: ```python class MyDataset(Dataset): def __len__(self): return 5000 def __getitem__(self, i): if i % 64 == 0: n = 100 else: n = 1 return "This is a test" * n ``` これは、他の文に比べて非常に長い文が時折あります。その場合、**全体**のバッチは 400 である必要があります。 トークンが長いため、バッチ全体が [64, 4] ではなく [64, 400] になり、速度が大幅に低下します。さらに悪いことに、 バッチが大きくなると、プログラムは単純にクラッシュします。 ``` ------------------------------ Streaming no batching 100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:05<00:00, 183.69it/s] ------------------------------ Streaming batch_size=8 100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:03<00:00, 265.74it/s] ------------------------------ Streaming batch_size=64 100%|██████████████████████████████████████████████████████████████████████| 1000/1000 [00:26<00:00, 37.80it/s] ------------------------------ Streaming batch_size=256 0%| | 0/1000 [00:00<?, ?it/s] Traceback (most recent call last): File "/home/nicolas/src/transformers/test.py", line 42, in <module> for out in tqdm(pipe(dataset, batch_size=256), total=len(dataset)): .... q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head) RuntimeError: CUDA out of memory. Tried to allocate 376.00 MiB (GPU 0; 3.95 GiB total capacity; 1.72 GiB already allocated; 354.88 MiB free; 2.46 GiB reserved in total by PyTorch) ``` この問題に対する適切な (一般的な) 解決策はなく、使用できる距離はユースケースによって異なる場合があります。のルール 親指: ユーザーにとっての経験則は次のとおりです。 - **ハードウェアを使用して、負荷に対するパフォーマンスを測定します。測って、測って、測り続ける。実数というのは、 進むべき唯一の方法。** - レイテンシに制約がある場合 (実際の製品が推論を実行している場合)、バッチ処理を行わないでください。 - CPU を使用している場合は、バッチ処理を行わないでください。 - GPU でスループットを使用している場合 (大量の静的データでモデルを実行したい場合)、次のようにします。 - sequence_length (「自然な」データ) のサイズについてまったくわからない場合は、デフォルトではバッチ処理や測定を行わず、 暫定的に追加してみます。失敗した場合に回復するために OOM チェックを追加します (失敗した場合は、ある時点で回復します)。 sequence_length を制御します。) - sequence_length が非常に規則的である場合、バッチ処理は非常に興味深いものとなる可能性が高く、測定してプッシュしてください。 OOM が発生するまで続けます。 - GPU が大きいほど、バッチ処理がより興味深いものになる可能性が高くなります。 - バッチ処理を有効にしたらすぐに、OOM を適切に処理できることを確認してください。 ## Pipeline chunk batching `zero-shot-classification` と `question-answering` は、単一の入力で結果が得られる可能性があるという意味で、少し特殊です。 モデルの複数の前方パス。通常の状況では、これにより `batch_size` 引数に関する問題が発生します。 この問題を回避するために、これらのパイプラインはどちらも少し特殊になっており、代わりに `ChunkPipeline` になっています。 通常の `Pipeline`。要するに: ```python preprocessed = pipe.preprocess(inputs) model_outputs = pipe.forward(preprocessed) outputs = pipe.postprocess(model_outputs) ``` 今は次のようになります: ```python all_model_outputs = [] for preprocessed in pipe.preprocess(inputs): model_outputs = pipe.forward(preprocessed) all_model_outputs.append(model_outputs) outputs = pipe.postprocess(all_model_outputs) ``` パイプラインは以下で使用されるため、これはコードに対して非常に透過的である必要があります。 同じ方法。 パイプラインはバッチを自動的に処理できるため、これは簡略化されたビューです。気にする必要はないという意味です 入力が実際にトリガーする前方パスの数については、`batch_size` を最適化できます。 入力とは独立して。前のセクションの注意事項が引き続き適用されます。 ## Pipeline custom code 特定のパイプラインをオーバーライドする場合。 目の前のタスクに関する問題を作成することを躊躇しないでください。パイプラインの目標は、使いやすく、ほとんどのユーザーをサポートすることです。 したがって、`transformers`があなたのユースケースをサポートする可能性があります。 単純に試してみたい場合は、次のことができます。 - 選択したパイプラインをサブクラス化します ```python class MyPipeline(TextClassificationPipeline): def postprocess(): # Your code goes here scores = scores * 100 # And here my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, ...) # or if you use *pipeline* function, then: my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline) ``` これにより、必要なカスタム コードをすべて実行できるようになります。 ## Implementing a pipeline [Implementing a new pipeline](../add_new_pipeline) ## Audio オーディオ タスクに使用できるパイプラインには次のものがあります。 ### AudioClassificationPipeline [[autodoc]] AudioClassificationPipeline - __call__ - all ### AutomaticSpeechRecognitionPipeline [[autodoc]] AutomaticSpeechRecognitionPipeline - __call__ - all ### TextToAudioPipeline [[autodoc]] TextToAudioPipeline - __call__ - all ### ZeroShotAudioClassificationPipeline [[autodoc]] ZeroShotAudioClassificationPipeline - __call__ - all ## Computer vision コンピューター ビジョン タスクに使用できるパイプラインには次のものがあります。 ### DepthEstimationPipeline [[autodoc]] DepthEstimationPipeline - __call__ - all ### ImageClassificationPipeline [[autodoc]] ImageClassificationPipeline - __call__ - all ### ImageSegmentationPipeline [[autodoc]] ImageSegmentationPipeline - __call__ - all ### ImageToImagePipeline [[autodoc]] ImageToImagePipeline - __call__ - all ### ObjectDetectionPipeline [[autodoc]] ObjectDetectionPipeline - __call__ - all ### VideoClassificationPipeline [[autodoc]] VideoClassificationPipeline - __call__ - all ### ZeroShotImageClassificationPipeline [[autodoc]] ZeroShotImageClassificationPipeline - __call__ - all ### ZeroShotObjectDetectionPipeline [[autodoc]] ZeroShotObjectDetectionPipeline - __call__ - all ## Natural Language Processing 自然言語処理タスクに使用できるパイプラインには次のものがあります。 ### ConversationalPipeline [[autodoc]] Conversation [[autodoc]] ConversationalPipeline - __call__ - all ### FillMaskPipeline [[autodoc]] FillMaskPipeline - __call__ - all ### NerPipeline [[autodoc]] NerPipeline 詳細については、[`TokenClassificationPipeline`] を参照してください。 ### QuestionAnsweringPipeline [[autodoc]] QuestionAnsweringPipeline - __call__ - all ### SummarizationPipeline [[autodoc]] SummarizationPipeline - __call__ - all ### TableQuestionAnsweringPipeline [[autodoc]] TableQuestionAnsweringPipeline - __call__ ### TextClassificationPipeline [[autodoc]] TextClassificationPipeline - __call__ - all ### TextGenerationPipeline [[autodoc]] TextGenerationPipeline - __call__ - all ### Text2TextGenerationPipeline [[autodoc]] Text2TextGenerationPipeline - __call__ - all ### TokenClassificationPipeline [[autodoc]] TokenClassificationPipeline - __call__ - all ### TranslationPipeline [[autodoc]] TranslationPipeline - __call__ - all ### ZeroShotClassificationPipeline [[autodoc]] ZeroShotClassificationPipeline - __call__ - all ## Multimodal マルチモーダル タスクに使用できるパイプラインには次のものがあります。 ### DocumentQuestionAnsweringPipeline [[autodoc]] DocumentQuestionAnsweringPipeline - __call__ - all ### FeatureExtractionPipeline [[autodoc]] FeatureExtractionPipeline - __call__ - all ### ImageFeatureExtractionPipeline [[autodoc]] ImageFeatureExtractionPipeline - __call__ - all ### ImageToTextPipeline [[autodoc]] ImageToTextPipeline - __call__ - all ### VisualQuestionAnsweringPipeline [[autodoc]] VisualQuestionAnsweringPipeline - __call__ - all ## Parent class: `Pipeline` [[autodoc]] Pipeline
transformers/docs/source/ja/main_classes/pipelines.md/0
{ "file_path": "transformers/docs/source/ja/main_classes/pipelines.md", "repo_id": "transformers", "token_count": 6689 }
283
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BEiT ## Overview BEiT モデルは、[BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) で提案されました。 ハンボ・バオ、リー・ドン、フル・ウェイ。 BERT に触発された BEiT は、自己教師ありの事前トレーニングを作成した最初の論文です。 ビジョン トランスフォーマー (ViT) は、教師付き事前トレーニングよりも優れたパフォーマンスを発揮します。クラスを予測するためにモデルを事前トレーニングするのではなく ([オリジナルの ViT 論文](https://arxiv.org/abs/2010.11929) で行われたように) 画像の BEiT モデルは、次のように事前トレーニングされています。 マスクされた OpenAI の [DALL-E モデル](https://arxiv.org/abs/2102.12092) のコードブックからビジュアル トークンを予測します パッチ。 論文の要約は次のとおりです。 *自己教師あり視覚表現モデル BEiT (Bidirectional Encoderpresentation) を導入します。 イメージトランスフォーマーより。自然言語処理分野で開発されたBERTに倣い、マスク画像を提案します。 ビジョントランスフォーマーを事前にトレーニングするためのモデリングタスク。具体的には、事前トレーニングでは各画像に 2 つのビューがあります。 パッチ (16x16 ピクセルなど)、およびビジュアル トークン (つまり、個別のトークン)。まず、元の画像を「トークン化」して、 ビジュアルトークン。次に、いくつかの画像パッチをランダムにマスクし、それらをバックボーンの Transformer に供給します。事前トレーニング 目的は、破損したイメージ パッチに基づいて元のビジュアル トークンを回復することです。 BEiTの事前トレーニング後、 事前トレーニングされたエンコーダーにタスク レイヤーを追加することで、ダウンストリーム タスクのモデル パラメーターを直接微調整します。 画像分類とセマンティックセグメンテーションに関する実験結果は、私たちのモデルが競争力のある結果を達成することを示しています 以前の事前トレーニング方法を使用して。たとえば、基本サイズの BEiT は、ImageNet-1K で 83.2% のトップ 1 精度を達成します。 同じ設定でゼロからの DeiT トレーニング (81.8%) を大幅に上回りました。また、大型BEiTは 86.3% は ImageNet-1K のみを使用しており、ImageNet-22K での教師付き事前トレーニングを使用した ViT-L (85.2%) を上回っています。* ## Usage tips - BEiT モデルは通常のビジョン トランスフォーマーですが、教師ありではなく自己教師ありの方法で事前トレーニングされています。彼らは ImageNet-1K および CIFAR-100 で微調整すると、[オリジナル モデル (ViT)](vit) と [データ効率の高いイメージ トランスフォーマー (DeiT)](deit) の両方を上回るパフォーマンスを発揮します。推論に関するデモノートブックもチェックできます。 カスタム データの微調整は [こちら](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) (置き換えるだけで済みます) [`BeitImageProcessor`] による [`ViTFeatureExtractor`] と [`ViTForImageClassification`] by [`BeitForImageClassification`])。 - DALL-E の画像トークナイザーと BEiT を組み合わせる方法を紹介するデモ ノートブックも利用可能です。 マスクされた画像モデリングを実行します。 [ここ](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/BEiT) で見つけることができます。 - BEiT モデルは各画像が同じサイズ (解像度) であることを期待しているため、次のように使用できます。 [`BeitImageProcessor`] を使用して、モデルの画像のサイズを変更 (または再スケール) し、正規化します。 - 事前トレーニングまたは微調整中に使用されるパッチ解像度と画像解像度の両方が名前に反映されます。 各チェックポイント。たとえば、`microsoft/beit-base-patch16-224`は、パッチ付きの基本サイズのアーキテクチャを指します。 解像度は 16x16、微調整解像度は 224x224 です。すべてのチェックポイントは [ハブ](https://huggingface.co/models?search=microsoft/beit) で見つけることができます。 - 利用可能なチェックポイントは、(1) [ImageNet-22k](http://www.image-net.org/) で事前トレーニングされています ( 1,400 万の画像と 22,000 のクラス) のみ、(2) ImageNet-22k でも微調整、または (3) [ImageNet-1k](http://www.image-net.org/challenges/LSVRC)でも微調整/2012/) (ILSVRC 2012 とも呼ばれ、130 万件のコレクション) 画像と 1,000 クラス)。 - BEiT は、T5 モデルからインスピレーションを得た相対位置埋め込みを使用します。事前トレーニング中に、著者は次のことを共有しました。 いくつかの自己注意層間の相対的な位置の偏り。微調整中、各レイヤーの相対位置 バイアスは、事前トレーニング後に取得された共有相対位置バイアスで初期化されます。ご希望の場合は、 モデルを最初から事前トレーニングするには、`use_relative_position_bias` または 追加するには、[`BeitConfig`] の `use_relative_position_bias` 属性を `True` に設定します。 位置の埋め込み。 <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/beit_architecture.jpg" alt="drawing" width="600"/> <small> BEiT の事前トレーニング。 <a href="https://arxiv.org/abs/2106.08254">元の論文から抜粋。</a> </small> このモデルは、[nielsr](https://huggingface.co/nielsr) によって提供されました。このモデルの JAX/FLAX バージョンは、 [kamalkraj](https://huggingface.co/kamalkraj) による投稿。元のコードは [ここ](https://github.com/microsoft/unilm/tree/master/beit) にあります。 ## Resources BEiT の使用を開始するのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示されている) リソースのリスト。 <PipelineTag pipeline="image-classification"/> - [`BeitForImageClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)。 - 参照: [画像分類タスク ガイド](../tasks/image_classification) **セマンティック セグメンテーション** - [セマンティック セグメンテーション タスク ガイド](../tasks/semantic_segmentation) ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。 ## BEiT specific outputs [[autodoc]] models.beit.modeling_beit.BeitModelOutputWithPooling [[autodoc]] models.beit.modeling_flax_beit.FlaxBeitModelOutputWithPooling ## BeitConfig [[autodoc]] BeitConfig ## BeitFeatureExtractor [[autodoc]] BeitFeatureExtractor - __call__ - post_process_semantic_segmentation ## BeitImageProcessor [[autodoc]] BeitImageProcessor - preprocess - post_process_semantic_segmentation ## BeitModel [[autodoc]] BeitModel - forward ## BeitForMaskedImageModeling [[autodoc]] BeitForMaskedImageModeling - forward ## BeitForImageClassification [[autodoc]] BeitForImageClassification - forward ## BeitForSemanticSegmentation [[autodoc]] BeitForSemanticSegmentation - forward ## FlaxBeitModel [[autodoc]] FlaxBeitModel - __call__ ## FlaxBeitForMaskedImageModeling [[autodoc]] FlaxBeitForMaskedImageModeling - __call__ ## FlaxBeitForImageClassification [[autodoc]] FlaxBeitForImageClassification - __call__
transformers/docs/source/ja/model_doc/beit.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/beit.md", "repo_id": "transformers", "token_count": 3840 }
284
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # BROS ## Overview BROS モデルは、Teakgyu Hon、Donghyun Kim、Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park によって [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) で提案されました。 BROS は *BERT Relying On Spatality* の略です。これは、一連のトークンとその境界ボックスを入力として受け取り、一連の隠れ状態を出力するエンコーダー専用の Transformer モデルです。 BROS は、絶対的な空間情報を使用する代わりに、相対的な空間情報をエンコードします。 BERT で使用されるトークンマスク言語モデリング目標 (TMLM) と新しいエリアマスク言語モデリング目標 (AMLM) の 2 つの目標で事前トレーニングされています。 TMLM では、トークンはランダムにマスクされ、モデルは空間情報と他のマスクされていないトークンを使用してマスクされたトークンを予測します。 AMLM は TMLM の 2D バージョンです。テキスト トークンをランダムにマスクし、TMLM と同じ情報で予測しますが、テキスト ブロック (領域) をマスクします。 `BrosForTokenClassification`には、BrosModel の上に単純な線形層があります。各トークンのラベルを予測します。 `BrosSpadeEEForTokenClassification`には、BrosModel の上に`initial_token_classifier`と`subsequent_token_classifier`があります。 `initial_token_classifier` は各エンティティの最初のトークンを予測するために使用され、`subsequent_token_classifier` はエンティティ内の次のトークンを予測するために使用されます。 `BrosSpadeELForTokenClassification`には BrosModel の上に`entity_linker`があります。 `entity_linker` は 2 つのエンティティ間の関係を予測するために使用されます。 `BrosForTokenClassification`と`BrosSpadeEEForTokenClassification`は基本的に同じジョブを実行します。ただし、`BrosForTokenClassification`は入力トークンが完全にシリアル化されていることを前提としています (トークンは 2D 空間に存在するため、これは非常に困難な作業です)。一方、`BrosSpadeEEForTokenClassification`は 1 つのトークンから次の接続トークンを予測するため、シリアル化エラーの処理をより柔軟に行うことができます。 `BrosSpadeELForTokenClassification` はエンティティ内のリンク タスクを実行します。これら 2 つのエンティティが何らかの関係を共有する場合、(あるエンティティの) 1 つのトークンから (別のエンティティの) 別のトークンへの関係を予測します。 BROS は、明示的な視覚機能に依存せずに、FUNSD、SROIE、CORD、SciTSR などの Key Information Extraction (KIE) ベンチマークで同等以上の結果を達成します。 論文の要約は次のとおりです。 *文書画像からの重要情報抽出 (KIE) には、2 次元 (2D) 空間におけるテキストの文脈的および空間的意味論を理解する必要があります。最近の研究の多くは、文書画像の視覚的特徴とテキストおよびそのレイアウトを組み合わせることに重点を置いた事前トレーニング済み言語モデルを開発することで、この課題を解決しようとしています。一方、このペーパーでは、テキストとレイアウトの効果的な組み合わせという基本に立ち返ってこの問題に取り組みます。具体的には、BROS (BERT Relying On Spatality) という名前の事前トレーニング済み言語モデルを提案します。この言語モデルは、2D 空間内のテキストの相対位置をエンコードし、エリア マスキング戦略を使用してラベルのないドキュメントから学習します。 2D 空間内のテキストを理解するためのこの最適化されたトレーニング スキームにより、BROS は、視覚的な特徴に依存することなく、4 つの KIE ベンチマーク (FUNSD、SROIE*、CORD、および SciTSR) で以前の方法と比較して同等以上のパフォーマンスを示しました。また、この論文では、KIE タスクにおける 2 つの現実世界の課題 ((1) 間違ったテキスト順序によるエラーの最小化、および (2) 少数の下流例からの効率的な学習) を明らかにし、以前の方法に対する BROS の優位性を実証します。* このモデルは [jinho8345](https://huggingface.co/jinho8345) によって寄稿されました。元のコードは [ここ](https://github.com/clovaai/bros) にあります。 ## Usage tips and examples - [`~transformers.BrosModel.forward`] には、`input_ids` と `bbox` (バウンディング ボックス) が必要です。各境界ボックスは、(x0、y0、x1、y1) 形式 (左上隅、右下隅) である必要があります。境界ボックスの取得は外部 OCR システムに依存します。 「x」座標はドキュメント画像の幅で正規化する必要があり、「y」座標はドキュメント画像の高さで正規化する必要があります。 ```python def expand_and_normalize_bbox(bboxes, doc_width, doc_height): # here, bboxes are numpy array # Normalize bbox -> 0 ~ 1 bboxes[:, [0, 2]] = bboxes[:, [0, 2]] / width bboxes[:, [1, 3]] = bboxes[:, [1, 3]] / height ``` - [`~transformers.BrosForTokenClassification.forward`、`~transformers.BrosSpadeEEForTokenClassification.forward`、`~transformers.BrosSpadeEEForTokenClassification.forward`] では、損失計算に `input_ids` と `bbox` だけでなく `box_first_token_mask` も必要です。これは、各ボックスの先頭以外のトークンを除外するためのマスクです。このマスクは、単語から `input_ids` を作成するときに境界ボックスの開始トークン インデックスを保存することで取得できます。次のコードで`box_first_token_mask`を作成できます。 ```python def make_box_first_token_mask(bboxes, words, tokenizer, max_seq_length=512): box_first_token_mask = np.zeros(max_seq_length, dtype=np.bool_) # encode(tokenize) each word from words (List[str]) input_ids_list: List[List[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words] # get the length of each box tokens_length_list: List[int] = [len(l) for l in input_ids_list] box_end_token_indices = np.array(list(itertools.accumulate(tokens_length_list))) box_start_token_indices = box_end_token_indices - np.array(tokens_length_list) # filter out the indices that are out of max_seq_length box_end_token_indices = box_end_token_indices[box_end_token_indices < max_seq_length - 1] if len(box_start_token_indices) > len(box_end_token_indices): box_start_token_indices = box_start_token_indices[: len(box_end_token_indices)] # set box_start_token_indices to True box_first_token_mask[box_start_token_indices] = True return box_first_token_mask ``` ## Resources - デモ スクリプトは [こちら](https://github.com/clovaai/bros) にあります。 ## BrosConfig [[autodoc]] BrosConfig ## BrosProcessor [[autodoc]] BrosProcessor - __call__ ## BrosModel [[autodoc]] BrosModel - forward ## BrosForTokenClassification [[autodoc]] BrosForTokenClassification - forward ## BrosSpadeEEForTokenClassification [[autodoc]] BrosSpadeEEForTokenClassification - forward ## BrosSpadeELForTokenClassification [[autodoc]] BrosSpadeELForTokenClassification - forward
transformers/docs/source/ja/model_doc/bros.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/bros.md", "repo_id": "transformers", "token_count": 3458 }
285
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # The Transformer model family 2017年に導入されて以来、[元のTransformer](https://arxiv.org/abs/1706.03762)モデルは、自然言語処理(NLP)のタスクを超える多くの新しいエキサイティングなモデルをインスパイアしました。[タンパク質の折りたたまれた構造を予測](https://huggingface.co/blog/deep-learning-with-proteins)するモデル、[チーターを走らせるためのトレーニング](https://huggingface.co/blog/train-decision-transformers)するモデル、そして[時系列予測](https://huggingface.co/blog/time-series-transformers)のためのモデルなどがあります。Transformerのさまざまなバリアントが利用可能ですが、大局を見落とすことがあります。これらのすべてのモデルに共通するのは、元のTransformerアーキテクチャに基づいていることです。一部のモデルはエンコーダまたはデコーダのみを使用し、他のモデルは両方を使用します。これは、Transformerファミリー内のモデルの高レベルの違いをカテゴライズし、調査するための有用な分類法を提供し、以前に出会ったことのないTransformerを理解するのに役立ちます。 元のTransformerモデルに慣れていないか、リフレッシュが必要な場合は、Hugging Faceコースの[Transformerの動作原理](https://huggingface.co/course/chapter1/4?fw=pt)章をチェックしてください。 <div align="center"> <iframe width="560" height="315" src="https://www.youtube.com/embed/H39Z_720T5s" title="YouTubeビデオプレーヤー" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </div> ## Computer vision <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FacQBpeFBVvrDUlzFlkejoz%2FModelscape-timeline%3Fnode-id%3D0%253A1%26t%3Dm0zJ7m2BQ9oe0WtO-1" allowfullscreen></iframe> ### Convolutional network 長い間、畳み込みネットワーク(CNN)はコンピュータビジョンのタスクにおいて支配的なパラダイムでしたが、[ビジョンTransformer](https://arxiv.org/abs/2010.11929)はそのスケーラビリティと効率性を示しました。それでも、一部のCNNの最高の特性、特に特定のタスクにとっては非常に強力な翻訳不変性など、一部のTransformerはアーキテクチャに畳み込みを組み込んでいます。[ConvNeXt](model_doc/convnext)は、畳み込みを現代化するためにTransformerから設計の選択肢を取り入れ、例えば、ConvNeXtは画像をパッチに分割するために重なり合わないスライディングウィンドウと、グローバル受容野を増加させるための大きなカーネルを使用します。ConvNeXtは、メモリ効率を向上させ、パフォーマンスを向上させるためにいくつかのレイヤーデザインの選択肢も提供し、Transformerと競合的になります! ### Encoder[[cv-encoder]] [ビジョン トランスフォーマー(ViT)](model_doc/vit) は、畳み込みを使用しないコンピュータビジョンタスクの扉を開けました。ViT は標準のトランスフォーマーエンコーダーを使用しますが、画像を扱う方法が主要なブレークスルーでした。画像を固定サイズのパッチに分割し、それらをトークンのように使用して埋め込みを作成します。ViT は、当時のCNNと競争力のある結果を示すためにトランスフォーマーの効率的なアーキテクチャを活用しましたが、トレーニングに必要なリソースが少なくて済みました。ViT に続いて、セグメンテーションや検出などの密なビジョンタスクを処理できる他のビジョンモデルも登場しました。 これらのモデルの1つが[Swin](model_doc/swin) トランスフォーマーです。Swin トランスフォーマーは、より小さなサイズのパッチから階層的な特徴マップ(CNNのようで ViT とは異なります)を構築し、深層のパッチと隣接するパッチとマージします。注意はローカルウィンドウ内でのみ計算され、ウィンドウは注意のレイヤー間でシフトされ、モデルがより良く学習するのをサポートする接続を作成します。Swin トランスフォーマーは階層的な特徴マップを生成できるため、セグメンテーションや検出などの密な予測タスクに適しています。[SegFormer](model_doc/segformer) も階層的な特徴マップを構築するためにトランスフォーマーエンコーダーを使用しますが、すべての特徴マップを組み合わせて予測するためにシンプルなマルチレイヤーパーセプトロン(MLP)デコーダーを追加します。 BeIT および ViTMAE などの他のビジョンモデルは、BERTの事前トレーニング目標からインスピレーションを得ました。[BeIT](model_doc/beit) は *masked image modeling (MIM)* によって事前トレーニングされています。画像パッチはランダムにマスクされ、画像も視覚トークンにトークン化されます。BeIT はマスクされたパッチに対応する視覚トークンを予測するようにトレーニングされます。[ViTMAE](model_doc/vitmae) も似たような事前トレーニング目標を持っており、視覚トークンの代わりにピクセルを予測する必要があります。異例なのは画像パッチの75%がマスクされていることです!デコーダーはマスクされたトークンとエンコードされたパッチからピクセルを再構築します。事前トレーニングの後、デコーダーは捨てられ、エンコーダーはダウンストリームのタスクで使用できる状態です。 ### Decoder[[cv-decoder]] デコーダーのみのビジョンモデルは珍しいです。なぜなら、ほとんどのビジョンモデルは画像表現を学ぶためにエンコーダーを使用するからです。しかし、画像生成などのユースケースでは、デコーダーは自然な適応です。これは、GPT-2などのテキスト生成モデルから見てきたように、[ImageGPT](model_doc/imagegpt) でも同様のアーキテクチャを使用しますが、シーケンス内の次のトークンを予測する代わりに、画像内の次のピクセルを予測します。画像生成に加えて、ImageGPT は画像分類のためにもファインチューニングできます。 ### Encoder-decoder[[cv-encoder-decoder]] ビジョンモデルは一般的にエンコーダー(バックボーンとも呼ばれます)を使用して重要な画像特徴を抽出し、それをトランスフォーマーデコーダーに渡すために使用します。[DETR](model_doc/detr) は事前トレーニング済みのバックボーンを持っていますが、オブジェクト検出のために完全なトランスフォーマーエンコーダーデコーダーアーキテクチャも使用しています。エンコーダーは画像表現を学び、デコーダー内のオブジェクトクエリ(各オブジェクトクエリは画像内の領域またはオブジェクトに焦点を当てた学習された埋め込みです)と組み合わせます。DETR は各オブジェクトクエリに対する境界ボックスの座標とクラスラベルを予測します。 ## Natural lanaguage processing <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FUhbQAZDlpYW5XEpdFy6GoG%2Fnlp-model-timeline%3Fnode-id%3D0%253A1%26t%3D4mZMr4r1vDEYGJ50-1" allowfullscreen></iframe> ### Encoder[[nlp-encoder]] [BERT](model_doc/bert) はエンコーダー専用のTransformerで、入力の一部のトークンをランダムにマスクして他のトークンを見ないようにしています。これにより、トークンをマスクした文脈に基づいてマスクされたトークンを予測することが事前トレーニングの目標です。これにより、BERTは入力のより深いかつ豊かな表現を学習するのに左右の文脈を完全に活用できます。しかし、BERTの事前トレーニング戦略にはまだ改善の余地がありました。[RoBERTa](model_doc/roberta) は、トレーニングを長時間行い、より大きなバッチでトレーニングし、事前処理中に一度だけでなく各エポックでトークンをランダムにマスクし、次文予測の目標を削除する新しい事前トレーニングレシピを導入することでこれを改善しました。 性能を向上させる主要な戦略はモデルのサイズを増やすことですが、大規模なモデルのトレーニングは計算コストがかかります。計算コストを削減する方法の1つは、[DistilBERT](model_doc/distilbert) のような小さなモデルを使用することです。DistilBERTは[知識蒸留](https://arxiv.org/abs/1503.02531) - 圧縮技術 - を使用して、BERTのほぼすべての言語理解機能を保持しながら、より小さなバージョンを作成します。 しかし、ほとんどのTransformerモデルは引き続きより多くのパラメータに焦点を当て、トレーニング効率を向上させる新しいモデルが登場しています。[ALBERT](model_doc/albert) は、2つの方法でパラメータの数を減らすことによってメモリ消費量を削減します。大きな語彙埋め込みを2つの小さな行列に分割し、レイヤーがパラメータを共有できるようにします。[DeBERTa](model_doc/deberta) は、単語とその位置を2つのベクトルで別々にエンコードする解かれた注意機構を追加しました。注意はこれらの別々のベクトルから計算されます。単語と位置の埋め込みが含まれる単一のベクトルではなく、[Longformer](model_doc/longformer) は、特に長いシーケンス長のドキュメントを処理するために注意をより効率的にすることに焦点を当てました。固定されたウィンドウサイズの周りの各トークンから計算されるローカルウィンドウ付き注意(特定のタスクトークン(分類のための `[CLS]` など)のみのためのグローバルな注意を含む)の組み合わせを使用して、完全な注意行列ではなく疎な注意行列を作成します。 ### Decoder[[nlp-decoder]] [GPT-2](model_doc/gpt2)は、シーケンス内の次の単語を予測するデコーダー専用のTransformerです。モデルは先を見ることができないようにトークンを右にマスクし、"のぞき見"を防ぎます。大量のテキストを事前トレーニングしたことにより、GPT-2はテキスト生成が非常に得意で、テキストが正確であることがあるにしても、時折正確ではないことがあります。しかし、GPT-2にはBERTの事前トレーニングからの双方向コンテキストが不足しており、特定のタスクには適していませんでした。[XLNET](model_doc/xlnet)は、双方向に学習できる順列言語モデリング目標(PLM)を使用することで、BERTとGPT-2の事前トレーニング目標のベストを組み合わせています。 GPT-2の後、言語モデルはさらに大きく成長し、今では*大規模言語モデル(LLM)*として知られています。大規模なデータセットで事前トレーニングされれば、LLMはほぼゼロショット学習を示すことがあります。[GPT-J](model_doc/gptj)は、6Bのパラメータを持つLLMで、400Bのトークンでトレーニングされています。GPT-Jには[OPT](model_doc/opt)が続き、そのうち最大のモデルは175Bで、180Bのトークンでトレーニングされています。同じ時期に[BLOOM](model_doc/bloom)がリリースされ、このファミリーの最大のモデルは176Bのパラメータを持ち、46の言語と13のプログラミング言語で366Bのトークンでトレーニングされています。 ### Encoder-decoder[[nlp-encoder-decoder]] [BART](model_doc/bart)は、元のTransformerアーキテクチャを保持していますが、事前トレーニング目標を*テキスト補完*の破損に変更しています。一部のテキストスパンは単一の`mask`トークンで置換されます。デコーダーは破損していないトークンを予測し(未来のトークンはマスクされます)、エンコーダーの隠れた状態を使用して予測を補助します。[Pegasus](model_doc/pegasus)はBARTに似ていますが、Pegasusはテキストスパンの代わりに文全体をマスクします。マスクされた言語モデリングに加えて、Pegasusはギャップ文生成(GSG)によって事前トレーニングされています。GSGの目標は、文書に重要な文をマスクし、それらを`mask`トークンで置換することです。デコーダーは残りの文から出力を生成しなければなりません。[T5](model_doc/t5)は、すべてのNLPタスクを特定のプレフィックスを使用してテキスト対テキストの問題に変換するよりユニークなモデルです。たとえば、プレフィックス`Summarize:`は要約タスクを示します。T5は教師ありトレーニング(GLUEとSuperGLUE)と自己教師ありトレーニング(トークンの15%をランダムにサンプルしドロップアウト)によって事前トレーニングされています。 ## Audio <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2Fvrchl8jDV9YwNVPWu2W0kK%2Fspeech-and-audio-model-timeline%3Fnode-id%3D0%253A1%26t%3DmM4H8pPMuK23rClL-1" allowfullscreen></iframe> ### Encoder[[audio-encoder]] [Wav2Vec2](model_doc/wav2vec2) は、生のオーディオ波形から直接音声表現を学習するためのTransformerエンコーダーを使用します。これは、対照的なタスクで事前学習され、一連の偽の表現から真の音声表現を特定します。 [HuBERT](model_doc/hubert) はWav2Vec2に似ていますが、異なるトレーニングプロセスを持っています。ターゲットラベルは、類似したオーディオセグメントがクラスタに割り当てられ、これが隠れユニットになるクラスタリングステップによって作成されます。隠れユニットは埋め込みにマップされ、予測を行います。 ### Encoder-decoder[[audio-encoder-decoder]] [Speech2Text](model_doc/speech_to_text) は、自動音声認識(ASR)および音声翻訳のために設計された音声モデルです。このモデルは、オーディオ波形から抽出されたログメルフィルターバンクフィーチャーを受け入れ、事前トレーニングされた自己回帰的にトランスクリプトまたは翻訳を生成します。 [Whisper](model_doc/whisper) もASRモデルですが、他の多くの音声モデルとは異なり、✨ ラベル付き ✨ オーディオトランスクリプションデータを大量に事前に学習して、ゼロショットパフォーマンスを実現します。データセットの大部分には非英語の言語も含まれており、Whisperは低リソース言語にも使用できます。構造的には、WhisperはSpeech2Textに似ています。オーディオ信号はエンコーダーによってエンコードされたログメルスペクトログラムに変換されます。デコーダーはエンコーダーの隠れ状態と前のトークンからトランスクリプトを自己回帰的に生成します。 ## Multimodal <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FcX125FQHXJS2gxeICiY93p%2Fmultimodal%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe> ### Encoder[[mm-encoder]] [VisualBERT](model_doc/visual_bert) は、BERTの後にリリースされたビジョン言語タスク向けのマルチモーダルモデルです。これはBERTと事前トレーニングされた物体検出システムを組み合わせ、画像特徴をビジュアル埋め込みに抽出し、テキスト埋め込みと一緒にBERTに渡します。VisualBERTは非マスクテキストを基にしたマスクテキストを予測し、テキストが画像と整合しているかどうかも予測する必要があります。ViTがリリースされた際、[ViLT](model_doc/vilt) は画像埋め込みを取得するためにこの方法を採用しました。画像埋め込みはテキスト埋め込みと共に共同で処理されます。それから、ViLTは画像テキストマッチング、マスク言語モデリング、および全単語マスキングによる事前トレーニングが行われます。 [CLIP](model_doc/clip) は異なるアプローチを取り、(`画像`、`テキスト`) のペア予測を行います。画像エンコーダー(ViT)とテキストエンコーダー(Transformer)は、(`画像`、`テキスト`) ペアデータセット上で共同トレーニングされ、(`画像`、`テキスト`) ペアの画像とテキストの埋め込みの類似性を最大化します。事前トレーニング後、CLIPを使用して画像からテキストを予測したり、その逆を行うことができます。[OWL-ViT](model_doc/owlvit) は、ゼロショット物体検出のバックボーンとしてCLIPを使用しています。事前トレーニング後、物体検出ヘッドが追加され、(`クラス`、`バウンディングボックス`) ペアに対するセット予測が行われます。 ### Encoder-decoder[[mm-encoder-decoder]] 光学文字認識(OCR)は、通常、画像を理解しテキストを生成するために複数のコンポーネントが関与するテキスト認識タスクです。 [TrOCR](model_doc/trocr) は、エンドツーエンドのTransformerを使用してこのプロセスを簡略化します。エンコーダーは画像を固定サイズのパッチとして処理するためのViTスタイルのモデルであり、デコーダーはエンコーダーの隠れ状態を受け入れ、テキストを自己回帰的に生成します。[Donut](model_doc/donut) はOCRベースのアプローチに依存しないより一般的なビジュアルドキュメント理解モデルで、エンコーダーとしてSwin Transformer、デコーダーとして多言語BARTを使用します。 Donutは画像とテキストの注釈に基づいて次の単語を予測することにより、テキストを読むために事前トレーニングされます。デコーダーはプロンプトを与えられたトークンシーケンスを生成します。プロンプトは各ダウンストリームタスクごとに特別なトークンを使用して表現されます。例えば、ドキュメントの解析には`解析`トークンがあり、エンコーダーの隠れ状態と組み合わされてドキュメントを構造化された出力フォーマット(JSON)に解析します。 ## Reinforcement learning <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FiB3Y6RvWYki7ZuKO6tNgZq%2Freinforcement-learning%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe> ### Decoder[[rl-decoder]] 意思決定と軌跡トランスフォーマーは、状態、アクション、報酬をシーケンスモデリングの問題として捉えます。 [Decision Transformer](model_doc/decision_transformer) は、リターン・トゥ・ゴー、過去の状態、およびアクションに基づいて将来の希望リターンにつながるアクションの系列を生成します。最後の *K* タイムステップでは、3つのモダリティそれぞれがトークン埋め込みに変換され、将来のアクショントークンを予測するためにGPTのようなモデルによって処理されます。[Trajectory Transformer](model_doc/trajectory_transformer) も状態、アクション、報酬をトークン化し、GPTアーキテクチャで処理します。報酬調整に焦点を当てたDecision Transformerとは異なり、Trajectory Transformerはビームサーチを使用して将来のアクションを生成します。
transformers/docs/source/ja/model_summary.md/0
{ "file_path": "transformers/docs/source/ja/model_summary.md", "repo_id": "transformers", "token_count": 9488 }
286
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Training on TPU with TensorFlow <Tip> 詳細な説明が不要で、単にTPUのコードサンプルを入手してトレーニングを開始したい場合は、[私たちのTPUの例のノートブックをチェックしてください!](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) </Tip> ### What is a TPU? TPUは**Tensor Processing Unit(テンソル処理ユニット)**の略です。これらはGoogleが設計したハードウェアで、ニューラルネットワーク内のテンソル計算を大幅に高速化するために使用されます。これはGPUのようなものです。ネットワークのトレーニングと推論の両方に使用できます。一般的にはGoogleのクラウドサービスを介してアクセスされますが、Google ColabとKaggle Kernelsを通じても無料で小規模のTPUに直接アクセスできます。 [🤗 TransformersのすべてのTensorFlowモデルはKerasモデルです](https://huggingface.co/blog/tensorflow-philosophy)ので、この文書のほとんどの方法は一般的にKerasモデル用のTPUトレーニングに適用できます!ただし、TransformersとDatasetsのHuggingFaceエコシステム(hug-o-system?)に固有のポイントもいくつかあり、それについては適用するときにそれを示します。 ### What kinds of TPU are available? 新しいユーザーは、さまざまなTPUとそのアクセス方法に関する幅広い情報によく混乱します。理解するための最初の重要な違いは、**TPUノード**と**TPU VM**の違いです。 **TPUノード**を使用すると、事実上リモートのTPUに間接的にアクセスします。別個のVMが必要で、ネットワークとデータパイプラインを初期化し、それらをリモートノードに転送します。Google ColabでTPUを使用すると、**TPUノード**スタイルでアクセスしています。 TPUノードを使用すると、それに慣れていない人々にはかなり予期しない動作が発生することがあります!特に、TPUはPythonコードを実行しているマシンと物理的に異なるシステムに配置されているため、データはローカルマシンにローカルで格納されているデータパイプラインが完全に失敗します。代わりに、データはGoogle Cloud Storageに格納する必要があります。ここでデータパイプラインはリモートのTPUノードで実行されている場合でも、データにアクセスできます。 <Tip> すべてのデータを`np.ndarray`または`tf.Tensor`としてメモリに収めることができる場合、ColabまたはTPUノードを使用している場合でも、データをGoogle Cloud Storageにアップロードせずに`fit()`でトレーニングできます。 </Tip> <Tip> **🤗 Hugging Face固有のヒント🤗:** TFコードの例でよく見るであろう`Dataset.to_tf_dataset()`とその高レベルのラッパーである`model.prepare_tf_dataset()`は、TPUノードで失敗します。これは、`tf.data.Dataset`を作成しているにもかかわらず、それが「純粋な」`tf.data`パイプラインではなく、`tf.numpy_function`または`Dataset.from_generator()`を使用して基盤となるHuggingFace `Dataset`からデータをストリームで読み込むことからです。このHuggingFace `Dataset`はローカルディスク上のデータをバックアップしており、リモートTPUノードが読み取ることができないためです。 </Tip> TPUにアクセスする第二の方法は、**TPU VM**を介してです。TPU VMを使用する場合、TPUが接続されているマシンに直接接続します。これはGPU VMでトレーニングを行うのと同様です。TPU VMは一般的にデータパイプラインに関しては特に作業がしやすく、上記のすべての警告はTPU VMには適用されません! これは主観的な文書ですので、こちらの意見です:**可能な限りTPUノードの使用を避けてください。** TPU VMよりも混乱しやすく、デバッグが難しいです。将来的にはサポートされなくなる可能性もあります - Googleの最新のTPUであるTPUv4は、TPU VMとしてのみアクセスできるため、TPUノードは将来的には「レガシー」のアクセス方法になる可能性が高いです。ただし、無料でTPUにアクセスできるのはColabとKaggle Kernelsの場合があります。その場合、どうしても使用しなければならない場合の取り扱い方法を説明しようとします!詳細は[TPUの例のノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)で詳細な説明を確認してください。 ### What sizes of TPU are available? 単一のTPU(v2-8/v3-8/v4-8)は8つのレプリカを実行します。TPUは数百から数千のレプリカを同時に実行できる**ポッド**に存在します。単一のTPUよりも多くのTPUを使用するが、ポッド全体ではない場合(たとえばv3-32)、TPUフリートは**ポッドスライス**として参照されます。 Colabを介して無料のTPUにアクセスする場合、通常は単一のv2-8 TPUが提供されます。 ### I keep hearing about this XLA thing. What’s XLA, and how does it relate to TPUs? XLAは、TensorFlowとJAXの両方で使用される最適化コンパイラです。JAXでは唯一のコンパイラであり、TensorFlowではオプションですが(しかしTPUでは必須です!)、Kerasモデルをトレーニングする際に`model.compile()`に引数`jit_compile=True`を渡すことで最も簡単に有効にできます。エラーが発生せず、パフォーマンスが良好であれば、それはTPUに移行する準備が整った良い兆候です! TPU上でのデバッグは一般的にCPU/GPUよりも少し難しいため、TPUで試す前にまずCPU/GPUでXLAを使用してコードを実行することをお勧めします。もちろん、長時間トレーニングする必要はありません。モデルとデータパイプラインが期待通りに動作するかを確認するための数ステップだけです。 <Tip> XLAコンパイルされたコードは通常高速です。したがって、TPUで実行する予定がない場合でも、`jit_compile=True`を追加することでパフォーマンスを向上させることができます。ただし、以下のXLA互換性に関する注意事項に注意してください! </Tip> <Tip warning={true}> **苦い経験から生まれたヒント:** `jit_compile=True`を使用することは、CPU/GPUコードがXLA互換であることを確認し、速度を向上させる良い方法ですが、実際にTPUでコードを実行する際には多くの問題を引き起こす可能性があります。 XLAコンパイルはTPU上で暗黙的に行われるため、実際にコードをTPUで実行する前にその行を削除することを忘れないでください! </Tip> ### How do I make my model XLA compatible? 多くの場合、コードはすでにXLA互換かもしれません!ただし、XLAでは動作する通常のTensorFlowでも動作しないいくつかの要素があります。以下に、3つの主要なルールにまとめています: <Tip> **🤗 HuggingFace固有のヒント🤗:** TensorFlowモデルと損失関数をXLA互換に書き直すために多くの努力を払っています。通常、モデルと損失関数はデフォルトでルール#1と#2に従っているため、`transformers`モデルを使用している場合はこれらをスキップできます。ただし、独自のモデルと損失関数を記述する場合は、これらのルールを忘れないでください! </Tip> #### XLA Rule #1: Your code cannot have “data-dependent conditionals” これは、任意の`if`ステートメントが`tf.Tensor`内の値に依存していない必要があることを意味します。例えば、次のコードブロックはXLAでコンパイルできません! ```python if tf.reduce_sum(tensor) > 10: tensor = tensor / 2.0 ``` これは最初は非常に制限的に思えるかもしれませんが、ほとんどのニューラルネットコードはこれを行う必要はありません。通常、この制約を回避するために`tf.cond`を使用するか(ドキュメントはこちらを参照)、条件を削除して代わりに指示変数を使用したりすることができます。次のように: ```python sum_over_10 = tf.cast(tf.reduce_sum(tensor) > 10, tf.float32) tensor = tensor / (1.0 + sum_over_10) ``` このコードは、上記のコードとまったく同じ効果を持っていますが、条件を回避することで、XLAで問題なくコンパイルできることを確認します! #### XLA Rule #2: Your code cannot have “data-dependent shapes” これは、コード内のすべての `tf.Tensor` オブジェクトの形状が、その値に依存しないことを意味します。たとえば、`tf.unique` 関数はXLAでコンパイルできないので、このルールに違反します。なぜなら、これは入力 `Tensor` の一意の値の各インスタンスを含む `tensor` を返すためです。この出力の形状は、入力 `Tensor` の重複具合によって異なるため、XLAはそれを処理しないことになります! 一般的に、ほとんどのニューラルネットワークコードはデフォルトでルール#2に従います。ただし、いくつかの一般的なケースでは問題が発生することがあります。非常に一般的なケースの1つは、**ラベルマスキング**を使用する場合です。ラベルを無視して損失を計算する場所を示すために、ラベルを負の値に設定する方法です。NumPyまたはPyTorchのラベルマスキングをサポートする損失関数を見ると、次のような[ブールインデックス](https://numpy.org/doc/stable/user/basics.indexing.html#boolean-array-indexing)を使用したコードがよく見られます: ```python label_mask = labels >= 0 masked_outputs = outputs[label_mask] masked_labels = labels[label_mask] loss = compute_loss(masked_outputs, masked_labels) mean_loss = torch.mean(loss) ``` このコードはNumPyやPyTorchでは完全に機能しますが、XLAでは動作しません!なぜなら、`masked_outputs`と`masked_labels`の形状はマスクされた位置の数に依存するため、これは**データ依存の形状**になります。ただし、ルール#1と同様に、このコードを書き直して、データ依存の形状なしでまったく同じ出力を生成できることがあります。 ```python label_mask = tf.cast(labels >= 0, tf.float32) loss = compute_loss(outputs, labels) loss = loss * label_mask # Set negative label positions to 0 mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(label_mask) ``` ここでは、データ依存の形状を避けるために、各位置で損失を計算してから、平均を計算する際に分子と分母の両方でマスクされた位置をゼロ化する方法を紹介します。これにより、最初のアプローチとまったく同じ結果が得られますが、XLA互換性を維持します。注意点として、ルール#1と同じトリックを使用します - `tf.bool`を`tf.float32`に変換して指標変数として使用します。これは非常に便利なトリックですので、自分のコードをXLAに変換する必要がある場合には覚えておいてください! #### XLA Rule #3: XLA will need to recompile your model for every different input shape it sees これは重要なルールです。これはつまり、入力形状が非常に変動的な場合、XLA はモデルを何度も再コンパイルする必要があるため、大きなパフォーマンスの問題が発生する可能性があるということです。これは NLP モデルで一般的に発生し、トークナイズ後の入力テキストの長さが異なる場合があります。他のモダリティでは、静的な形状が一般的であり、このルールはほとんど問題になりません。 ルール#3を回避する方法は何でしょうか?鍵は「パディング」です - すべての入力を同じ長さにパディングし、次に「attention_mask」を使用することで、可変形状と同じ結果を得ることができますが、XLA の問題は発生しません。ただし、過度のパディングも深刻な遅延を引き起こす可能性があります - データセット全体で最大の長さにすべてのサンプルをパディングすると、多くの計算とメモリを無駄にする可能性があります! この問題には完璧な解決策はありませんが、いくつかのトリックを試すことができます。非常に便利なトリックの1つは、**バッチのサンプルを32または64トークンの倍数までパディングする**ことです。これにより、トークン数がわずかに増加するだけで、すべての入力形状が32または64の倍数である必要があるため、一意の入力形状の数が大幅に減少します。一意の入力形状が少ないと、XLA の再コンパイルが少なくなります! <Tip> **🤗 HuggingFace に関する具体的なヒント🤗:** 弊社のトークナイザーとデータコレクターには、ここで役立つメソッドがあります。トークナイザーを呼び出す際に `padding="max_length"` または `padding="longest"` を使用して、パディングされたデータを出力するように設定できます。トークナイザーとデータコレクターには、一意の入力形状の数を減らすのに役立つ `pad_to_multiple_of` 引数もあります! </Tip> ### How do I actually train my model on TPU? 一度トレーニングが XLA 互換性があることを確認し、(TPU Node/Colab を使用する場合は)データセットが適切に準備されている場合、TPU 上で実行することは驚くほど簡単です!コードを変更する必要があるのは、いくつかの行を追加して TPU を初期化し、モデルとデータセットが `TPUStrategy` スコープ内で作成されるようにすることだけです。これを実際に見るには、[TPU のサンプルノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)をご覧ください! ### Summary ここでは多くの情報が提供されましたので、TPU でモデルをトレーニングする際に以下のチェックリストを使用できます: - コードが XLA の三つのルールに従っていることを確認します。 - CPU/GPU で `jit_compile=True` を使用してモデルをコンパイルし、XLA でトレーニングできることを確認します。 - データセットをメモリに読み込むか、TPU 互換のデータセット読み込みアプローチを使用します([ノートブックを参照](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb))。 - コードを Colab(アクセラレータを「TPU」に設定)または Google Cloud の TPU VM に移行します。 - TPU 初期化コードを追加します([ノートブックを参照](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb))。 - `TPUStrategy` を作成し、データセットの読み込みとモデルの作成が `strategy.scope()` 内で行われることを確認します([ノートブックを参照](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb))。 - TPU に移行する際に `jit_compile=True` を外すのを忘れないでください! - 🙏🙏🙏🥺🥺🥺 - `model.fit()` を呼び出します。 - おめでとうございます!
transformers/docs/source/ja/perf_train_tpu_tf.md/0
{ "file_path": "transformers/docs/source/ja/perf_train_tpu_tf.md", "repo_id": "transformers", "token_count": 7360 }
287
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Image captioning [[open-in-colab]] 画像のキャプション付けは、特定の画像のキャプションを予測するタスクです。一般的な現実世界のアプリケーションには次のものがあります。 視覚障害者がさまざまな状況を乗り越えられるよう支援します。したがって、画像のキャプション 画像を説明することで人々のコンテンツへのアクセシビリティを向上させるのに役立ちます。 このガイドでは、次の方法を説明します。 * 画像キャプション モデルを微調整します。 * 微調整されたモデルを推論に使用します。 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install transformers datasets evaluate -q pip install jiwer -q ``` モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。 ```python from huggingface_hub import notebook_login notebook_login() ``` ## Load the Pokémon BLIP captions dataset 🤗 データセット ライブラリを使用して、{image-caption} ペアで構成されるデータセットを読み込みます。独自の画像キャプション データセットを作成するには PyTorch では、[このノートブック](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/GIT/Fine_tune_GIT_on_an_image_captioning_dataset.ipynb) を参照できます。 ```py ds = load_dataset("lambdalabs/pokemon-blip-captions") ds ``` ```bash DatasetDict({ train: Dataset({ features: ['image', 'text'], num_rows: 833 }) }) ``` データセットには `image`と`text`の 2 つの機能があります。 <Tip> 多くの画像キャプション データセットには、画像ごとに複数のキャプションが含まれています。このような場合、一般的な戦略は、トレーニング中に利用可能なキャプションの中からランダムにキャプションをサンプリングすることです。 </Tip> [`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットのトレイン スプリットをトレイン セットとテスト セットに分割します。 ```python ds = ds["train"].train_test_split(test_size=0.1) train_ds = ds["train"] test_ds = ds["test"] ``` トレーニング セットからのいくつかのサンプルを視覚化してみましょう。 ```python from textwrap import wrap import matplotlib.pyplot as plt import numpy as np def plot_images(images, captions): plt.figure(figsize=(20, 20)) for i in range(len(images)): ax = plt.subplot(1, len(images), i + 1) caption = captions[i] caption = "\n".join(wrap(caption, 12)) plt.title(caption) plt.imshow(images[i]) plt.axis("off") sample_images_to_visualize = [np.array(train_ds[i]["image"]) for i in range(5)] sample_captions = [train_ds[i]["text"] for i in range(5)] plot_images(sample_images_to_visualize, sample_captions) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/sample_training_images_image_cap.png" alt="Sample training images"/> </div> ## Preprocess the dataset データセットには 2 つのモダリティ (画像とテキスト) があるため、前処理パイプラインは画像とキャプションを前処理します。 これを行うには、微調整しようとしているモデルに関連付けられたプロセッサ クラスをロードします。 ```python from transformers import AutoProcessor checkpoint = "microsoft/git-base" processor = AutoProcessor.from_pretrained(checkpoint) ``` プロセッサは内部で画像を前処理し (サイズ変更やピクセル スケーリングを含む)、キャプションをトークン化します。 ```python def transforms(example_batch): images = [x for x in example_batch["image"]] captions = [x for x in example_batch["text"]] inputs = processor(images=images, text=captions, padding="max_length") inputs.update({"labels": inputs["input_ids"]}) return inputs train_ds.set_transform(transforms) test_ds.set_transform(transforms) ``` データセットの準備ができたら、微調整用にモデルをセットアップできます。 ## Load a base model ["microsoft/git-base"](https://huggingface.co/microsoft/git-base) を [`AutoModelForCausalLM`](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) オブジェクト。 ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(checkpoint) ``` ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(checkpoint) ``` ## Evaluate 画像キャプション モデルは通常、[Rouge Score](https://huggingface.co/spaces/evaluate-metric/rouge) または [Word Error Rate](https://huggingface.co/spaces/evaluate-metric/) で評価されます。そうだった)。このガイドでは、Word Error Rate (WER) を使用します。 これを行うには 🤗 Evaluate ライブラリを使用します。 WER の潜在的な制限やその他の問題点については、[このガイド](https://huggingface.co/spaces/evaluate-metric/wer) を参照してください。 ```python from evaluate import load import torch wer = load("wer") def compute_metrics(eval_pred): logits, labels = eval_pred predicted = logits.argmax(-1) decoded_labels = processor.batch_decode(labels, skip_special_tokens=True) decoded_predictions = processor.batch_decode(predicted, skip_special_tokens=True) wer_score = wer.compute(predictions=decoded_predictions, references=decoded_labels) return {"wer_score": wer_score} ``` ## Train! これで、モデルの微調整を開始する準備が整いました。これには 🤗 [`Trainer`] を使用します。 まず、[`TrainingArguments`] を使用してトレーニング引数を定義します。 ```python from transformers import TrainingArguments, Trainer model_name = checkpoint.split("/")[1] training_args = TrainingArguments( output_dir=f"{model_name}-pokemon", learning_rate=5e-5, num_train_epochs=50, fp16=True, per_device_train_batch_size=32, per_device_eval_batch_size=32, gradient_accumulation_steps=2, save_total_limit=3, evaluation_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=50, logging_steps=50, remove_unused_columns=False, push_to_hub=True, label_names=["labels"], load_best_model_at_end=True, ) ``` Trainer 次に、次に、データセットとモデルと一緒に 🤗 に渡します。 ```python trainer = Trainer( model=model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, compute_metrics=compute_metrics, ) ``` トレーニングを開始するには、[`Trainer`] オブジェクトの [`~Trainer.train`] を呼び出すだけです。 ```python trainer.train() ``` トレーニングが進むにつれて、トレーニングの損失がスムーズに減少することがわかります。 トレーニングが完了したら、 [`~Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。 ```python trainer.push_to_hub() ``` ## Inference `test_ds` からサンプル画像を取得してモデルをテストします。 ```python from PIL import Image import requests url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png" image = Image.open(requests.get(url, stream=True).raw) image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/test_image_image_cap.png" alt="Test image"/> </div> モデル用の画像を準備します。 ```python device = "cuda" if torch.cuda.is_available() else "cpu" inputs = processor(images=image, return_tensors="pt").to(device) pixel_values = inputs.pixel_values ``` [`generate`] を呼び出して予測をデコードします。 ```python generated_ids = model.generate(pixel_values=pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_caption) ``` ```bash a drawing of a pink and blue pokemon ``` 微調整されたモデルにより、非常に優れたキャプションが生成されたようです。
transformers/docs/source/ja/tasks/image_captioning.md/0
{ "file_path": "transformers/docs/source/ja/tasks/image_captioning.md", "repo_id": "transformers", "token_count": 3779 }
288
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Translation [[open-in-colab]] <Youtube id="1JvfrvZgi6c"/> 翻訳では、一連のテキストをある言語から別の言語に変換します。これは、シーケンス間問題として定式化できるいくつかのタスクの 1 つであり、翻訳や要約など、入力から何らかの出力を返すための強力なフレームワークです。翻訳システムは通常、異なる言語のテキスト間の翻訳に使用されますが、音声、またはテキストから音声への変換や音声からテキストへの変換など、音声間の組み合わせにも使用できます。 このガイドでは、次の方法を説明します。 1. [OPUS Books](https://huggingface.co/datasets/opus_books) データセットの英語-フランス語サブセットの [T5](https://huggingface.co/google-t5/t5-small) を微調整して、英語のテキストを次の形式に翻訳します。フランス語。 2. 微調整されたモデルを推論に使用します。 <Tip> このチュートリアルで説明するタスクは、次のモデル アーキテクチャでサポートされています。 <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> [BART](../model_doc/bart), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [Blenderbot](../model_doc/blenderbot), [BlenderbotSmall](../model_doc/blenderbot-small), [Encoder decoder](../model_doc/encoder-decoder), [FairSeq Machine-Translation](../model_doc/fsmt), [GPTSAN-japanese](../model_doc/gptsan-japanese), [LED](../model_doc/led), [LongT5](../model_doc/longt5), [M2M100](../model_doc/m2m_100), [Marian](../model_doc/marian), [mBART](../model_doc/mbart), [MT5](../model_doc/mt5), [MVP](../model_doc/mvp), [NLLB](../model_doc/nllb), [NLLB-MOE](../model_doc/nllb-moe), [Pegasus](../model_doc/pegasus), [PEGASUS-X](../model_doc/pegasus_x), [PLBart](../model_doc/plbart), [ProphetNet](../model_doc/prophetnet), [SwitchTransformers](../model_doc/switch_transformers), [T5](../model_doc/t5), [UMT5](../model_doc/umt5), [XLM-ProphetNet](../model_doc/xlm-prophetnet) <!--End of the generated tip--> </Tip> 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install transformers datasets evaluate sacrebleu ``` モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。 ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load OPUS Books dataset まず、🤗 データセット ライブラリから [OPUS Books](https://huggingface.co/datasets/opus_books) データセットの英語とフランス語のサブセットを読み込みます。 ```py >>> from datasets import load_dataset >>> books = load_dataset("opus_books", "en-fr") ``` [`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットをトレイン セットとテスト セットに分割します。 ```py >>> books = books["train"].train_test_split(test_size=0.2) ``` 次に、例を見てみましょう。 ```py >>> books["train"][0] {'id': '90560', 'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.', 'fr': 'Mais ce plateau élevé ne mesurait que quelques toises, et bientôt nous fûmes rentrés dans notre élément.'}} ``` `translation`: テキストの英語とフランス語の翻訳。 ## Preprocess <Youtube id="XAR8jnZZuUs"/> 次のステップでは、T5 トークナイザーをロードして英語とフランス語の言語ペアを処理します。 ```py >>> from transformers import AutoTokenizer >>> checkpoint = "google-t5/t5-small" >>> tokenizer = AutoTokenizer.from_pretrained(checkpoint) ``` 作成する前処理関数は次のことを行う必要があります。 1. T5 がこれが翻訳タスクであることを認識できるように、入力の前にプロンプ​​トを付けます。複数の NLP タスクが可能な一部のモデルでは、特定のタスクのプロンプトが必要です。 2. 英語の語彙で事前トレーニングされたトークナイザーを使用してフランス語のテキストをトークン化することはできないため、入力 (英語) とターゲット (フランス語) を別々にトークン化します。 3. `max_length`パラメータで設定された最大長を超えないようにシーケンスを切り詰めます。 ```py >>> source_lang = "en" >>> target_lang = "fr" >>> prefix = "translate English to French: " >>> def preprocess_function(examples): ... inputs = [prefix + example[source_lang] for example in examples["translation"]] ... targets = [example[target_lang] for example in examples["translation"]] ... model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True) ... return model_inputs ``` データセット全体に前処理関数を適用するには、🤗 Datasets [`~datasets.Dataset.map`] メソッドを使用します。 `batched=True` を設定してデータセットの複数の要素を一度に処理することで、`map` 関数を高速化できます。 ```py >>> tokenized_books = books.map(preprocess_function, batched=True) ``` 次に、[`DataCollat​​orForSeq2Seq`] を使用してサンプルのバッチを作成します。データセット全体を最大長までパディングするのではなく、照合中にバッチ内の最長の長さまで文を *動的にパディング* する方が効率的です。 <frameworkcontent> <pt> ```py >>> from transformers import DataCollatorForSeq2Seq >>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint) ``` </pt> <tf> ```py >>> from transformers import DataCollatorForSeq2Seq >>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf") ``` </tf> </frameworkcontent> ## Evaluate トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) ライブラリを使用して、評価メソッドをすばやくロードできます。このタスクでは、[SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu) メトリクスをロードします (🤗 Evaluate [クイック ツアー](https://huggingface.co/docs/evaluate/a_quick_tour) を参照してください) ) メトリクスの読み込みと計算方法の詳細については、次を参照してください)。 ```py >>> import evaluate >>> metric = evaluate.load("sacrebleu") ``` 次に、予測とラベルを [`~evaluate.EvaluationModule.compute`] に渡して SacreBLEU スコアを計算する関数を作成します。 ```py >>> import numpy as np >>> def postprocess_text(preds, labels): ... preds = [pred.strip() for pred in preds] ... labels = [[label.strip()] for label in labels] ... return preds, labels >>> def compute_metrics(eval_preds): ... preds, labels = eval_preds ... if isinstance(preds, tuple): ... preds = preds[0] ... decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) ... labels = np.where(labels != -100, labels, tokenizer.pad_token_id) ... decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) ... decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) ... result = metric.compute(predictions=decoded_preds, references=decoded_labels) ... result = {"bleu": result["score"]} ... prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] ... result["gen_len"] = np.mean(prediction_lens) ... result = {k: round(v, 4) for k, v in result.items()} ... return result ``` これで`compute_metrics`関数の準備が整いました。トレーニングをセットアップするときにこの関数に戻ります。 ## Train <frameworkcontent> <pt> <Tip> [`Trainer`] を使用したモデルの微調整に慣れていない場合は、[ここ](../training#train-with-pytorch-trainer) の基本的なチュートリアルをご覧ください。 </Tip> これでモデルのトレーニングを開始する準備が整いました。 [`AutoModelForSeq2SeqLM`] を使用して T5 をロードします。 ```py >>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer >>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) ``` この時点で残っているステップは 3 つだけです。 1. [`Seq2SeqTrainingArguments`] でトレーニング ハイパーパラメータを定義します。唯一の必須パラメータは、モデルの保存場所を指定する `output_dir` です。 `push_to_hub=True`を設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。各エポックの終了時に、[`Trainer`] は SacreBLEU メトリクスを評価し、トレーニング チェックポイントを保存します。 2. トレーニング引数をモデル、データセット、トークナイザー、データ照合器、および `compute_metrics` 関数とともに [`Seq2SeqTrainer`] に渡します。 3. [`~Trainer.train`] を呼び出してモデルを微調整します。 ```py >>> training_args = Seq2SeqTrainingArguments( ... output_dir="my_awesome_opus_books_model", ... evaluation_strategy="epoch", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... weight_decay=0.01, ... save_total_limit=3, ... num_train_epochs=2, ... predict_with_generate=True, ... fp16=True, ... push_to_hub=True, ... ) >>> trainer = Seq2SeqTrainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_books["train"], ... eval_dataset=tokenized_books["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` トレーニングが完了したら、 [`~transformers.Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。 ```py >>> trainer.push_to_hub() ``` </pt> <tf> <Tip> Keras を使用したモデルの微調整に慣れていない場合は、[こちら](../training#train-a-tensorflow-model-with-keras) の基本的なチュートリアルをご覧ください。 </Tip> TensorFlow でモデルを微調整するには、オプティマイザー関数、学習率スケジュール、およびいくつかのトレーニング ハイパーパラメーターをセットアップすることから始めます。 ```py >>> from transformers import AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` 次に、[`TFAutoModelForSeq2SeqLM`] を使用して T5 をロードできます。 ```py >>> from transformers import TFAutoModelForSeq2SeqLM >>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint) ``` [`~transformers.TFPreTrainedModel.prepare_tf_dataset`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。 ```py >>> tf_train_set = model.prepare_tf_dataset( ... tokenized_books["train"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = model.prepare_tf_dataset( ... tokenized_books["test"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) を使用してトレーニング用のモデルを設定します。 Transformers モデルにはすべてデフォルトのタスク関連の損失関数があるため、次の場合を除き、損失関数を指定する必要はないことに注意してください。 ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) # No loss argument! ``` トレーニングを開始する前にセットアップする最後の 2 つのことは、予測から SacreBLEU メトリクスを計算し、モデルをハブにプッシュする方法を提供することです。どちらも [Keras コールバック](../main_classes/keras_callbacks) を使用して行われます。 `compute_metrics` 関数を [`~transformers.KerasMetricCallback`] に渡します。 ```py >>> from transformers.keras_callbacks import KerasMetricCallback >>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set) ``` [`~transformers.PushToHubCallback`] でモデルとトークナイザーをプッシュする場所を指定します。 ```py >>> from transformers.keras_callbacks import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="my_awesome_opus_books_model", ... tokenizer=tokenizer, ... ) ``` 次に、コールバックをまとめてバンドルします。 ```py >>> callbacks = [metric_callback, push_to_hub_callback] ``` ついに、モデルのトレーニングを開始する準備が整いました。トレーニングおよび検証データセット、エポック数、コールバックを指定して [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) を呼び出し、モデルを微調整します。 ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks) ``` トレーニングが完了すると、モデルは自動的にハブにアップロードされ、誰でも使用できるようになります。 </tf> </frameworkcontent> <Tip> 翻訳用にモデルを微調整する方法の詳細な例については、対応するドキュメントを参照してください。 [PyTorch ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb) または [TensorFlow ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)。 </Tip> ## Inference モデルを微調整したので、それを推論に使用できるようになりました。 別の言語に翻訳したいテキストを考え出します。 T5 の場合、作業中のタスクに応じて入力に接頭辞を付ける必要があります。英語からフランス語に翻訳する場合は、以下に示すように入力に接頭辞を付ける必要があります。 ```py >>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria." ``` 推論用に微調整されたモデルを試す最も簡単な方法は、それを [`pipeline`] で使用することです。モデルを使用して翻訳用の`pipeline`をインスタンス化し、テキストをそれに渡します。 ```py >>> from transformers import pipeline >>> translator = pipeline("translation", model="my_awesome_opus_books_model") >>> translator(text) [{'translation_text': 'Legumes partagent des ressources avec des bactéries azotantes.'}] ``` 必要に応じて、`pipeline`の結果を手動で複製することもできます。 <frameworkcontent> <pt> テキストをトークン化し、`input_ids` を PyTorch テンソルとして返します。 ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model") >>> inputs = tokenizer(text, return_tensors="pt").input_ids ``` [`~transformers.generation_utils.GenerationMixin.generate`] メソッドを使用して翻訳を作成します。さまざまなテキスト生成戦略と生成を制御するためのパラメーターの詳細については、[Text Generation](../main_classes/text_generation) API を確認してください。 ```py >>> from transformers import AutoModelForSeq2SeqLM >>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model") >>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) ``` 生成されたトークン ID をデコードしてテキストに戻します。 ```py >>> tokenizer.decode(outputs[0], skip_special_tokens=True) 'Les lignées partagent des ressources avec des bactéries enfixant l'azote.' ``` </pt> <tf> `input_ids`を TensorFlow テンソルとして返します。 tensors: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model") >>> inputs = tokenizer(text, return_tensors="tf").input_ids ``` [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] メソッドを使用して翻訳を作成します。さまざまなテキスト生成戦略と生成を制御するためのパラメーターの詳細については、[Text Generation](../main_classes/text_generation) API を確認してください。 ```py >>> from transformers import TFAutoModelForSeq2SeqLM >>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model") >>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) ``` 生成されたトークン ID をデコードしてテキストに戻します。 ```py >>> tokenizer.decode(outputs[0], skip_special_tokens=True) 'Les lugumes partagent les ressources avec des bactéries fixatrices d'azote.' ``` </tf> </frameworkcontent>
transformers/docs/source/ja/tasks/translation.md/0
{ "file_path": "transformers/docs/source/ja/tasks/translation.md", "repo_id": "transformers", "token_count": 7463 }
289
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 🤗 Accelerate를 활용한 분산 학습[[distributed-training-with-accelerate]] 모델이 커지면서 병렬 처리는 제한된 하드웨어에서 더 큰 모델을 훈련하고 훈련 속도를 몇 배로 가속화하기 위한 전략으로 등장했습니다. Hugging Face에서는 사용자가 하나의 머신에 여러 개의 GPU를 사용하든 여러 머신에 여러 개의 GPU를 사용하든 모든 유형의 분산 설정에서 🤗 Transformers 모델을 쉽게 훈련할 수 있도록 돕기 위해 [🤗 Accelerate](https://huggingface.co/docs/accelerate) 라이브러리를 만들었습니다. 이 튜토리얼에서는 분산 환경에서 훈련할 수 있도록 기본 PyTorch 훈련 루프를 커스터마이즈하는 방법을 알아봅시다. ## 설정[[setup]] 🤗 Accelerate 설치 시작하기: ```bash pip install accelerate ``` 그 다음, [`~accelerate.Accelerator`] 객체를 불러오고 생성합니다. [`~accelerate.Accelerator`]는 자동으로 분산 설정 유형을 감지하고 훈련에 필요한 모든 구성 요소를 초기화합니다. 장치에 모델을 명시적으로 배치할 필요는 없습니다. ```py >>> from accelerate import Accelerator >>> accelerator = Accelerator() ``` ## 가속화를 위한 준비[[prepare-to-accelerate]] 다음 단계는 관련된 모든 훈련 객체를 [`~accelerate.Accelerator.prepare`] 메소드에 전달하는 것입니다. 여기에는 훈련 및 평가 데이터로더, 모델 및 옵티마이저가 포함됩니다: ```py >>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ... train_dataloader, eval_dataloader, model, optimizer ... ) ``` ## 백워드(Backward)[[backward]] 마지막으로 훈련 루프의 일반적인 `loss.backward()`를 🤗 Accelerate의 [`~accelerate.Accelerator.backward`] 메소드로 대체하기만 하면 됩니다: ```py >>> for epoch in range(num_epochs): ... for batch in train_dataloader: ... outputs = model(**batch) ... loss = outputs.loss ... accelerator.backward(loss) ... optimizer.step() ... lr_scheduler.step() ... optimizer.zero_grad() ... progress_bar.update(1) ``` 다음 코드에서 볼 수 있듯이, 훈련 루프에 코드 네 줄만 추가하면 분산 학습을 활성화할 수 있습니다! ```diff + from accelerate import Accelerator from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + accelerator = Accelerator() model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) optimizer = AdamW(model.parameters(), lr=3e-5) - device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") - model.to(device) + train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( + train_dataloader, eval_dataloader, model, optimizer + ) num_epochs = 3 num_training_steps = num_epochs * len(train_dataloader) lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) progress_bar = tqdm(range(num_training_steps)) model.train() for epoch in range(num_epochs): for batch in train_dataloader: - batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss - loss.backward() + accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) ``` ## 학습[[train]] 관련 코드를 추가한 후에는 스크립트나 Colaboratory와 같은 노트북에서 훈련을 시작하세요. ### 스크립트로 학습하기[[train-with-a-script]] 스크립트에서 훈련을 실행하는 경우, 다음 명령을 실행하여 구성 파일을 생성하고 저장합니다: ```bash accelerate config ``` Then launch your training with: ```bash accelerate launch train.py ``` ### 노트북으로 학습하기[[train-with-a-notebook]] Collaboratory의 TPU를 사용하려는 경우, 노트북에서도 🤗 Accelerate를 실행할 수 있습니다. 훈련을 담당하는 모든 코드를 함수로 감싸서 [`~accelerate.notebook_launcher`]에 전달하세요: ```py >>> from accelerate import notebook_launcher >>> notebook_launcher(training_function) ``` 🤗 Accelerate 및 다양한 기능에 대한 자세한 내용은 [documentation](https://huggingface.co/docs/accelerate)를 참조하세요.
transformers/docs/source/ko/accelerate.md/0
{ "file_path": "transformers/docs/source/ko/accelerate.md", "repo_id": "transformers", "token_count": 2885 }
290
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Trainer API를 사용한 하이퍼파라미터 탐색 [[hyperparameter-search-using-trainer-api]] 🤗 Transformers에서는 🤗 Transformers 모델을 학습시키는데 최적화된 [`Trainer`] 클래스를 제공하기 때문에, 사용자는 직접 훈련 루프를 작성할 필요 없이 더욱 간편하게 학습을 시킬 수 있습니다. 또한, [`Trainer`]는 하이퍼파라미터 탐색을 위한 API를 제공합니다. 이 문서에서 이 API를 활용하는 방법을 예시와 함께 보여드리겠습니다. ## 하이퍼파라미터 탐색 백엔드 [[hyperparameter-search-backend]] [`Trainer`]는 현재 아래 4가지 하이퍼파라미터 탐색 백엔드를 지원합니다: [optuna](https://optuna.org/)와 [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html), [wandb](https://wandb.ai/site/sweeps) 입니다. 하이퍼파라미터 탐색 백엔드로 사용하기 전에 아래의 명령어를 사용하여 라이브러리들을 설치하세요. ```bash pip install optuna/sigopt/wandb/ray[tune] ``` ## 예제에서 하이퍼파라미터 탐색을 활성화하는 방법 [[how-to-enable-hyperparameter-search-in-example]] 하이퍼파라미터 탐색 공간을 정의하세요. 하이퍼파라미터 탐색 백엔드마다 서로 다른 형식이 필요합니다. sigopt의 경우, 해당 [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def sigopt_hp_space(trial): ... return [ ... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"}, ... { ... "categorical_values": ["16", "32", "64", "128"], ... "name": "per_device_train_batch_size", ... "type": "categorical", ... }, ... ] ``` optuna의 경우, 해당 [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def optuna_hp_space(trial): ... return { ... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), ... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]), ... } ``` raytune의 경우, 해당 [object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def ray_hp_space(trial): ... return { ... "learning_rate": tune.loguniform(1e-6, 1e-4), ... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]), ... } ``` wandb의 경우, 해당 [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def wandb_hp_space(trial): ... return { ... "method": "random", ... "metric": {"name": "objective", "goal": "minimize"}, ... "parameters": { ... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4}, ... "per_device_train_batch_size": {"values": [16, 32, 64, 128]}, ... }, ... } ``` `model_init` 함수를 정의하고 이를 [`Trainer`]에 전달하세요. 아래는 그 예시입니다. ```py >>> def model_init(trial): ... return AutoModelForSequenceClassification.from_pretrained( ... model_args.model_name_or_path, ... from_tf=bool(".ckpt" in model_args.model_name_or_path), ... config=config, ... cache_dir=model_args.cache_dir, ... revision=model_args.model_revision, ... token=True if model_args.use_auth_token else None, ... ) ``` 아래와 같이 `model_init` 함수, 훈련 인수, 훈련 및 테스트 데이터셋, 그리고 평가 함수를 사용하여 [`Trainer`]를 생성하세요: ```py >>> trainer = Trainer( ... model=None, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... tokenizer=tokenizer, ... model_init=model_init, ... data_collator=data_collator, ... ) ``` 하이퍼파라미터 탐색을 호출하고, 최적의 시험 매개변수를 가져오세요. 백엔드는 `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"` 중에서 선택할 수 있습니다. 방향은 `"minimize"` 또는 `"maximize"` 중 선택하며, 목표를 최소화할 것인지 최대화할 것인지를 결정합니다. 자신만의 compute_objective 함수를 정의할 수 있습니다. 만약 이 함수를 정의하지 않으면, 기본 compute_objective가 호출되고, f1과 같은 평가 지표의 합이 목푯값으로 반환됩니다. ```py >>> best_trial = trainer.hyperparameter_search( ... direction="maximize", ... backend="optuna", ... hp_space=optuna_hp_space, ... n_trials=20, ... compute_objective=compute_objective, ... ) ``` ## DDP 미세 조정을 위한 하이퍼파라미터 탐색 [[hyperparameter-search-for-ddp-finetune]] 현재, DDP(Distributed Data Parallelism; 분산 데이터 병렬처리)를 위한 하이퍼파라미터 탐색은 optuna와 sigopt에서 가능합니다. 최상위 프로세스가 하이퍼파라미터 탐색 과정을 시작하고 그 결과를 다른 프로세스에 전달합니다.
transformers/docs/source/ko/hpo_train.md/0
{ "file_path": "transformers/docs/source/ko/hpo_train.md", "repo_id": "transformers", "token_count": 3520 }
291
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ONNX로 내보내기 [[export-to-onnx]] 🤗 Transformers 모델을 제품 환경에서 배포하기 위해서는 모델을 직렬화된 형식으로 내보내고 특정 런타임과 하드웨어에서 로드하고 실행할 수 있으면 유용합니다. 🤗 Optimum은 Transformers의 확장으로, PyTorch 또는 TensorFlow에서 모델을 ONNX와 TFLite와 같은 직렬화된 형식으로 내보낼 수 있도록 하는 `exporters` 모듈을 통해 제공됩니다. 🤗 Optimum은 또한 성능 최적화 도구 세트를 제공하여 특정 하드웨어에서 모델을 훈련하고 실행할 때 최대 효율성을 달성할 수 있습니다. 이 안내서는 🤗 Optimum을 사용하여 🤗 Transformers 모델을 ONNX로 내보내는 방법을 보여줍니다. TFLite로 모델을 내보내는 안내서는 [TFLite로 내보내기 페이지](tflite)를 참조하세요. ## ONNX로 내보내기 [[export-to-onnx]] [ONNX (Open Neural Network eXchange)](http://onnx.ai)는 PyTorch와 TensorFlow를 포함한 다양한 프레임워크에서 심층 학습 모델을 나타내는 데 사용되는 공통 연산자 세트와 공통 파일 형식을 정의하는 오픈 표준입니다. 모델이 ONNX 형식으로 내보내지면 이러한 연산자를 사용하여 신경망을 통해 데이터가 흐르는 흐름을 나타내는 계산 그래프(일반적으로 _중간 표현_이라고 함)가 구성됩니다. 표준화된 연산자와 데이터 유형을 가진 그래프를 노출함으로써, ONNX는 프레임워크 간에 쉽게 전환할 수 있습니다. 예를 들어, PyTorch에서 훈련된 모델을 ONNX 형식으로 내보내고 TensorFlow에서 가져올 수 있습니다(그 반대도 가능합니다). ONNX 형식으로 내보낸 모델은 다음과 같이 사용할 수 있습니다: - [그래프 최적화](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization) 및 [양자화](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/quantization)와 같은 기법을 사용하여 추론을 위해 최적화됩니다. - ONNX Runtime을 통해 실행할 수 있습니다. [`ORTModelForXXX` 클래스들](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort)을 통해 동일한 `AutoModel` API를 따릅니다. 이 API는 🤗 Transformers에서 사용하는 것과 동일합니다. - [최적화된 추론 파이프라인](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines)을 사용할 수 있습니다. 이는 🤗 Transformers의 [`pipeline`] 함수와 동일한 API를 가지고 있습니다. 🤗 Optimum은 구성 객체를 활용하여 ONNX 내보내기를 지원합니다. 이러한 구성 객체는 여러 모델 아키텍처에 대해 미리 준비되어 있으며 다른 아키텍처에 쉽게 확장할 수 있도록 설계되었습니다. 미리 준비된 구성 목록은 [🤗 Optimum 문서](https://huggingface.co/docs/optimum/exporters/onnx/overview)를 참조하세요. 🤗 Transformers 모델을 ONNX로 내보내는 두 가지 방법이 있습니다. 여기에서 두 가지 방법을 모두 보여줍니다: - 🤗 Optimum을 사용하여 CLI로 내보내기 - `optimum.onnxruntime`을 사용하여 🤗 Optimum으로 ONNX로 내보내기 ### CLI를 사용하여 🤗 Transformers 모델을 ONNX로 내보내기 [[exporting-a-transformers-model-to-onnx-with-cli]] 🤗 Transformers 모델을 ONNX로 내보내려면 먼저 추가 종속성을 설치하세요: ```bash pip install optimum[exporters] ``` 사용 가능한 모든 인수를 확인하려면 [🤗 Optimum 문서](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)를 참조하거나 명령줄에서 도움말을 보세요. ```bash optimum-cli export onnx --help ``` 예를 들어, 🤗 Hub에서 `distilbert/distilbert-base-uncased-distilled-squad`와 같은 모델의 체크포인트를 내보내려면 다음 명령을 실행하세요: ```bash optimum-cli export onnx --model distilbert/distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/ ``` 위와 같이 진행 상황을 나타내는 로그가 표시되고 결과인 `model.onnx`가 저장된 위치가 표시됩니다. ```bash Validating ONNX model distilbert_base_uncased_squad_onnx/model.onnx... -[✓] ONNX model output names match reference model (start_logits, end_logits) - Validating ONNX Model output "start_logits": -[✓] (2, 16) matches (2, 16) -[✓] all values close (atol: 0.0001) - Validating ONNX Model output "end_logits": -[✓] (2, 16) matches (2, 16) -[✓] all values close (atol: 0.0001) The ONNX export succeeded and the exported model was saved at: distilbert_base_uncased_squad_onnx ``` 위의 예제는 🤗 Hub에서 체크포인트를 내보내는 것을 설명합니다. 로컬 모델을 내보낼 때에는 모델의 가중치와 토크나이저 파일을 동일한 디렉토리(`local_path`)에 저장했는지 확인하세요. CLI를 사용할 때에는 🤗 Hub의 체크포인트 이름 대신 `model` 인수에 `local_path`를 전달하고 `--task` 인수를 제공하세요. 지원되는 작업의 목록은 [🤗 Optimum 문서](https://huggingface.co/docs/optimum/exporters/task_manager)를 참조하세요. `task` 인수가 제공되지 않으면 작업에 특화된 헤드 없이 모델 아키텍처로 기본 설정됩니다. ```bash optimum-cli export onnx --model local_path --task question-answering distilbert_base_uncased_squad_onnx/ ``` 그 결과로 생성된 `model.onnx` 파일은 ONNX 표준을 지원하는 많은 [가속기](https://onnx.ai/supported-tools.html#deployModel) 중 하나에서 실행할 수 있습니다. 예를 들어, [ONNX Runtime](https://onnxruntime.ai/)을 사용하여 모델을 로드하고 실행할 수 있습니다: ```python >>> from transformers import AutoTokenizer >>> from optimum.onnxruntime import ORTModelForQuestionAnswering >>> tokenizer = AutoTokenizer.from_pretrained("distilbert_base_uncased_squad_onnx") >>> model = ORTModelForQuestionAnswering.from_pretrained("distilbert_base_uncased_squad_onnx") >>> inputs = tokenizer("What am I using?", "Using DistilBERT with ONNX Runtime!", return_tensors="pt") >>> outputs = model(**inputs) ``` Hub의 TensorFlow 체크포인트에 대해서도 동일한 프로세스가 적용됩니다. 예를 들어, [Keras organization](https://huggingface.co/keras-io)에서 순수한 TensorFlow 체크포인트를 내보내는 방법은 다음과 같습니다: ```bash optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_squad_onnx/ ``` ### `optimum.onnxruntime`을 사용하여 🤗 Transformers 모델을 ONNX로 내보내기 [[exporting-a-transformers-model-to-onnx-with-optimumonnxruntime]] CLI 대신에 `optimum.onnxruntime`을 사용하여 프로그래밍 방식으로 🤗 Transformers 모델을 ONNX로 내보낼 수도 있습니다. 다음과 같이 진행하세요: ```python >>> from optimum.onnxruntime import ORTModelForSequenceClassification >>> from transformers import AutoTokenizer >>> model_checkpoint = "distilbert_base_uncased_squad" >>> save_directory = "onnx/" >>> # Load a model from transformers and export it to ONNX >>> ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint, export=True) >>> tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) >>> # Save the onnx model and tokenizer >>> ort_model.save_pretrained(save_directory) >>> tokenizer.save_pretrained(save_directory) ``` ### 지원되지 않는 아키텍처의 모델 내보내기 [[exporting-a-model-for-an-unsupported-architecture]] 현재 내보낼 수 없는 모델을 지원하기 위해 기여하려면, 먼저 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)에서 지원되는지 확인한 후 지원되지 않는 경우에는 [🤗 Optimum에 기여](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)하세요. ### `transformers.onnx`를 사용하여 모델 내보내기 [[exporting-a-model-with-transformersonnx]] <Tip warning={true}> `tranformers.onnx`는 더 이상 유지되지 않습니다. 위에서 설명한 대로 🤗 Optimum을 사용하여 모델을 내보내세요. 이 섹션은 향후 버전에서 제거될 예정입니다. </Tip> 🤗 Transformers 모델을 ONNX로 내보내려면 추가 종속성을 설치하세요: ```bash pip install transformers[onnx] ``` `transformers.onnx` 패키지를 Python 모듈로 사용하여 준비된 구성을 사용하여 체크포인트를 내보냅니다: ```bash python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/ ``` 이렇게 하면 `--model` 인수에 정의된 체크포인트의 ONNX 그래프가 내보내집니다. 🤗 Hub에서 제공하는 체크포인트나 로컬에 저장된 체크포인트를 전달할 수 있습니다. 결과로 생성된 `model.onnx` 파일은 ONNX 표준을 지원하는 많은 가속기 중 하나에서 실행할 수 있습니다. 예를 들어, 다음과 같이 ONNX Runtime을 사용하여 모델을 로드하고 실행할 수 있습니다: ```python >>> from transformers import AutoTokenizer >>> from onnxruntime import InferenceSession >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") >>> session = InferenceSession("onnx/model.onnx") >>> # ONNX Runtime expects NumPy arrays as input >>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np") >>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs)) ``` 필요한 출력 이름(예: `["last_hidden_state"]`)은 각 모델의 ONNX 구성을 확인하여 얻을 수 있습니다. 예를 들어, DistilBERT의 경우 다음과 같습니다: ```python >>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig >>> config = DistilBertConfig() >>> onnx_config = DistilBertOnnxConfig(config) >>> print(list(onnx_config.outputs.keys())) ["last_hidden_state"] ``` Hub의 TensorFlow 체크포인트에 대해서도 동일한 프로세스가 적용됩니다. 예를 들어, 다음과 같이 순수한 TensorFlow 체크포인트를 내보냅니다: ```bash python -m transformers.onnx --model=keras-io/transformers-qa onnx/ ``` 로컬에 저장된 모델을 내보내려면 모델의 가중치 파일과 토크나이저 파일을 동일한 디렉토리에 저장한 다음, transformers.onnx 패키지의 --model 인수를 원하는 디렉토리로 지정하여 ONNX로 내보냅니다: ```bash python -m transformers.onnx --model=local-pt-checkpoint onnx/ ```
transformers/docs/source/ko/serialization.md/0
{ "file_path": "transformers/docs/source/ko/serialization.md", "repo_id": "transformers", "token_count": 6886 }
292
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Classificação de tokens <Youtube id="wVHdVlPScxA"/> A classificação de tokens atribui um rótulo a tokens individuais em uma frase. Uma das tarefas de classificação de tokens mais comuns é o Reconhecimento de Entidade Nomeada, também chamada de NER (sigla em inglês para Named Entity Recognition). O NER tenta encontrar um rótulo para cada entidade em uma frase, como uma pessoa, local ou organização. Este guia mostrará como realizar o fine-tuning do [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) no conjunto de dados [WNUT 17](https://huggingface.co/datasets/wnut_17) para detectar novas entidades. <Tip> Consulte a [página de tarefas de classificação de tokens](https://huggingface.co/tasks/token-classification) para obter mais informações sobre outras formas de classificação de tokens e seus modelos, conjuntos de dados e métricas associadas. </Tip> ## Carregando o conjunto de dados WNUT 17 Carregue o conjunto de dados WNUT 17 da biblioteca 🤗 Datasets: ```py >>> from datasets import load_dataset >>> wnut = load_dataset("wnut_17") ``` E dê uma olhada em um exemplo: ```py >>> wnut["train"][0] {'id': '0', 'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'] } ``` Cada número em `ner_tags` representa uma entidade. Converta o número em um rótulo para obter mais informações: ```py >>> label_list = wnut["train"].features[f"ner_tags"].feature.names >>> label_list [ "O", "B-corporation", "I-corporation", "B-creative-work", "I-creative-work", "B-group", "I-group", "B-location", "I-location", "B-person", "I-person", "B-product", "I-product", ] ``` O `ner_tag` descreve uma entidade, como uma organização, local ou pessoa. A letra que prefixa cada `ner_tag` indica a posição do token da entidade: - `B-` indica o início de uma entidade. - `I-` indica que um token está contido dentro da mesma entidade (por exemplo, o token `State` pode fazer parte de uma entidade como `Empire State Building`). - `0` indica que o token não corresponde a nenhuma entidade. ## Pré-processamento <Youtube id="iY2AZYdZAr0"/> Carregue o tokenizer do DistilBERT para processar os `tokens`: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` Como a entrada já foi dividida em palavras, defina `is_split_into_words=True` para tokenizar as palavras em subpalavras: ```py >>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True) >>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"]) >>> tokens ['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]'] ``` Ao adicionar os tokens especiais `[CLS]` e `[SEP]` e a tokenização de subpalavras uma incompatibilidade é gerada entre a entrada e os rótulos. Uma única palavra correspondente a um único rótulo pode ser dividida em duas subpalavras. Você precisará realinhar os tokens e os rótulos da seguinte forma: 1. Mapeie todos os tokens para a palavra correspondente com o método [`word_ids`](https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.Encoding.word_ids). 2. Atribuindo o rótulo `-100` aos tokens especiais `[CLS]` e `[SEP]` para que a função de loss do PyTorch ignore eles. 3. Rotular apenas o primeiro token de uma determinada palavra. Atribuindo `-100` a outros subtokens da mesma palavra. Aqui está como você pode criar uma função para realinhar os tokens e rótulos e truncar sequências para não serem maiores que o comprimento máximo de entrada do DistilBERT: ```py >>> def tokenize_and_align_labels(examples): ... tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) ... labels = [] ... for i, label in enumerate(examples[f"ner_tags"]): ... word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word. ... previous_word_idx = None ... label_ids = [] ... for word_idx in word_ids: # Set the special tokens to -100. ... if word_idx is None: ... label_ids.append(-100) ... elif word_idx != previous_word_idx: # Only label the first token of a given word. ... label_ids.append(label[word_idx]) ... else: ... label_ids.append(-100) ... previous_word_idx = word_idx ... labels.append(label_ids) ... tokenized_inputs["labels"] = labels ... return tokenized_inputs ``` Use a função [`map`](https://huggingface.co/docs/datasets/process#map) do 🤗 Datasets para tokenizar e alinhar os rótulos em todo o conjunto de dados. Você pode acelerar a função `map` configurando `batched=True` para processar vários elementos do conjunto de dados de uma só vez: ```py >>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True) ``` Use o [`DataCollatorForTokenClassification`] para criar um batch de exemplos. Ele também *preencherá dinamicamente* seu texto e rótulos para o comprimento do elemento mais longo em seu batch, para que tenham um comprimento uniforme. Embora seja possível preencher seu texto na função `tokenizer` configurando `padding=True`, o preenchimento dinâmico é mais eficiente. <frameworkcontent> <pt> ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ``` </pt> <tf> ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf") ``` </tf> </frameworkcontent> ## Treinamento <frameworkcontent> <pt> Carregue o DistilBERT com o [`AutoModelForTokenClassification`] junto com o número de rótulos esperados: ```py >>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer >>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased", num_labels=14) ``` <Tip> Se você não estiver familiarizado com o fine-tuning de um modelo com o [`Trainer`], dê uma olhada no tutorial básico [aqui](../training#finetune-with-trainer)! </Tip> Nesse ponto, restam apenas três passos: 1. Definir seus hiperparâmetros de treinamento em [`TrainingArguments`]. 2. Passar os argumentos de treinamento para o [`Trainer`] junto com o modelo, conjunto de dados, tokenizador e o data collator. 3. Chamar a função [`~Trainer.train`] para executar o fine-tuning do seu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="./results", ... evaluation_strategy="epoch", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... num_train_epochs=3, ... weight_decay=0.01, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_wnut["train"], ... eval_dataset=tokenized_wnut["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... ) >>> trainer.train() ``` </pt> <tf> Para executar o fine-tuning de um modelo no TensorFlow, comece convertendo seu conjunto de dados para o formato `tf.data.Dataset` com [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.to_tf_dataset). Nessa execução você deverá especificar as entradas e rótulos (no parâmetro `columns`), se deseja embaralhar o conjunto de dados, o tamanho do batch e o data collator: ```py >>> tf_train_set = tokenized_wnut["train"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_validation_set = tokenized_wnut["validation"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` <Tip> Se você não estiver familiarizado com o fine-tuning de um modelo com o Keras, dê uma olhada no tutorial básico [aqui](training#finetune-with-keras)! </Tip> Configure o otimizador e alguns hiperparâmetros de treinamento: ```py >>> from transformers import create_optimizer >>> batch_size = 16 >>> num_train_epochs = 3 >>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs >>> optimizer, lr_schedule = create_optimizer( ... init_lr=2e-5, ... num_train_steps=num_train_steps, ... weight_decay_rate=0.01, ... num_warmup_steps=0, ... ) ``` Carregue o DistilBERT com o [`TFAutoModelForTokenClassification`] junto com o número de rótulos esperados: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased", num_labels=2) ``` Configure o modelo para treinamento com o método [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` Chame o método [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para executar o fine-tuning do modelo: ```py >>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3) ``` </tf> </frameworkcontent> <Tip> Para obter um exemplo mais aprofundado de como executar o fine-tuning de um modelo para classificação de tokens, dê uma olhada nesse [notebook utilizando PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb) ou nesse [notebook utilizando TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb). </Tip>
transformers/docs/source/pt/tasks/token_classification.md/0
{ "file_path": "transformers/docs/source/pt/tasks/token_classification.md", "repo_id": "transformers", "token_count": 4235 }
293
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 调试 ## 多GPU网络问题调试 当使用`DistributedDataParallel`和多个GPU进行训练或推理时,如果遇到进程和(或)节点之间的互联问题,您可以使用以下脚本来诊断网络问题。 ```bash wget https://raw.githubusercontent.com/huggingface/transformers/main/scripts/distributed/torch-distributed-gpu-test.py ``` 例如,要测试两个GPU之间的互联,请执行以下操作: ```bash python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py ``` 如果两个进程能够相互通信并分配GPU内存,它们各自将打印出 "OK" 状态。 对于更多的GPU或节点,可以根据脚本中的参数进行调整。 在诊断脚本内部,您将找到更多详细信息,甚至有关如何在SLURM环境中运行它的说明。 另一种级别的调试是添加 `NCCL_DEBUG=INFO` 环境变量,如下所示: ```bash NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py ``` 这将产生大量与NCCL相关的调试信息,如果发现有问题报告,您可以在线搜索以获取相关信息。或者,如果您不确定如何解释输出,可以在`issue`中分享日志文件。 ## 下溢和上溢检测 <Tip> 目前,此功能仅适用于PyTorch。 </Tip> <Tip> 对于多GPU训练,它需要使用DDP(`torch.distributed.launch`)。 </Tip> <Tip> 此功能可以与任何基于`nn.Module`的模型一起使用。 </Tip> 如果您开始发现`loss=NaN`或模型因激活值或权重中的`inf`或`nan`而出现一些异常行为,就需要发现第一个下溢或上溢发生的地方以及导致它的原因。幸运的是,您可以通过激活一个特殊模块来自动进行检测。 如果您正在使用[`Trainer`],只需把以下内容: ```bash --debug underflow_overflow ``` 添加到常规命令行参数中,或在创建[`TrainingArguments`]对象时传递 `debug="underflow_overflow"`。 如果您正在使用自己的训练循环或其他Trainer,您可以通过以下方式实现相同的功能: ```python from transformers.debug_utils import DebugUnderflowOverflow debug_overflow = DebugUnderflowOverflow(model) ``` [`debug_utils.DebugUnderflowOverflow`] 将`hooks`插入模型,紧跟在每次前向调用之后,进而测试输入和输出变量,以及相应模块的权重。一旦在激活值或权重的至少一个元素中检测到`inf`或`nan`,程序将执行`assert`并打印报告,就像这样(这是在`google/mt5-small`下使用fp16混合精度捕获的): ``` Detected inf/nan during batch_number=0 Last 21 forward frames: abs min abs max metadata encoder.block.1.layer.1.DenseReluDense.dropout Dropout 0.00e+00 2.57e+02 input[0] 0.00e+00 2.85e+02 output [...] encoder.block.2.layer.0 T5LayerSelfAttention 6.78e-04 3.15e+03 input[0] 2.65e-04 3.42e+03 output[0] None output[1] 2.25e-01 1.00e+04 output[2] encoder.block.2.layer.1.layer_norm T5LayerNorm 8.69e-02 4.18e-01 weight 2.65e-04 3.42e+03 input[0] 1.79e-06 4.65e+00 output encoder.block.2.layer.1.DenseReluDense.wi_0 Linear 2.17e-07 4.50e+00 weight 1.79e-06 4.65e+00 input[0] 2.68e-06 3.70e+01 output encoder.block.2.layer.1.DenseReluDense.wi_1 Linear 8.08e-07 2.66e+01 weight 1.79e-06 4.65e+00 input[0] 1.27e-04 2.37e+02 output encoder.block.2.layer.1.DenseReluDense.dropout Dropout 0.00e+00 8.76e+03 input[0] 0.00e+00 9.74e+03 output encoder.block.2.layer.1.DenseReluDense.wo Linear 1.01e-06 6.44e+00 weight 0.00e+00 9.74e+03 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense 1.79e-06 4.65e+00 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.dropout Dropout 3.18e-04 6.27e+04 input[0] 0.00e+00 inf output ``` 由于篇幅原因,示例输出中间的部分已经被缩减。 第二列显示了绝对最大元素的值,因此,如果您仔细查看最后`frame`,输入和输出都在`1e4`的范围内。因此,在使用fp16混合精度进行训练时,最后一步发生了溢出(因为在`fp16`下,在`inf`之前的最大数字是`64e3`)。为了避免在`fp16`下发生溢出,激活值必须保持低于`1e4`,因为`1e4 * 1e4 = 1e8`,因此任何具有大激活值的矩阵乘法都会导致数值溢出。 在跟踪的开始处,您可以发现问题发生在哪个批次(这里的`Detected inf/nan during batch_number=0`表示问题发生在第一个批次)。 每个报告的`frame`都以声明相应模块的层信息为开头,说明这一`frame`是为哪个模块报告的。如果只看这个`frame`: ``` encoder.block.2.layer.1.layer_norm T5LayerNorm 8.69e-02 4.18e-01 weight 2.65e-04 3.42e+03 input[0] 1.79e-06 4.65e+00 output ``` 在这里,`encoder.block.2.layer.1.layer_norm` 表示它是编码器的第二个块中第一层的`layer norm`。而 `forward` 的具体调用是 `T5LayerNorm`。 让我们看看该报告的最后几个`frame`: ``` Detected inf/nan during batch_number=0 Last 21 forward frames: abs min abs max metadata [...] encoder.block.2.layer.1.DenseReluDense.wi_0 Linear 2.17e-07 4.50e+00 weight 1.79e-06 4.65e+00 input[0] 2.68e-06 3.70e+01 output encoder.block.2.layer.1.DenseReluDense.wi_1 Linear 8.08e-07 2.66e+01 weight 1.79e-06 4.65e+00 input[0] 1.27e-04 2.37e+02 output encoder.block.2.layer.1.DenseReluDense.wo Linear 1.01e-06 6.44e+00 weight 0.00e+00 9.74e+03 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense 1.79e-06 4.65e+00 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.dropout Dropout 3.18e-04 6.27e+04 input[0] 0.00e+00 inf output ``` 最后一个`frame`报告了`Dropout.forward`函数,第一个条目是唯一的输入,第二个条目是唯一的输出。您可以看到,它是从`DenseReluDense`类内的属性`dropout`中调用的。我们可以看到它发生在第2个块的第1层,也就是在第一个批次期间。最后,绝对最大的输入元素值为`6.27e+04`,输出也是`inf`。 您可以在这里看到,`T5DenseGatedGeluDense.forward`产生了输出激活值,其绝对最大值约为62.7K,非常接近fp16的上限64K。在下一个`frame`中,我们有`Dropout`对权重进行重新归一化,之后将某些元素归零,将绝对最大值推到了64K以上,导致溢出(`inf`)。 正如你所看到的,我们需要查看前面的`frame`, 从那里fp16数字开始变得非常大。 让我们将报告与`models/t5/modeling_t5.py`中的代码匹配: ```python class T5DenseGatedGeluDense(nn.Module): def __init__(self, config): super().__init__() self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.gelu_act = ACT2FN["gelu_new"] def forward(self, hidden_states): hidden_gelu = self.gelu_act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states ``` 现在很容易看到`dropout`调用,以及所有之前的调用。 由于检测是在前向`hook`中进行的,这些报告将立即在每个`forward`返回后打印出来。 回到完整的报告,要采取措施并解决问题,我们需要往回看几个`frame`,在那里数字开始上升,并且最有可能切换到fp32模式以便在乘法或求和时数字不会溢出。当然,可能还有其他解决方案。例如,如果启用了`amp`,我们可以在将原始`forward`移到`helper wrapper`中后,暂时关闭它,如下所示: ```python def _forward(self, hidden_states): hidden_gelu = self.gelu_act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states import torch def forward(self, hidden_states): if torch.is_autocast_enabled(): with torch.cuda.amp.autocast(enabled=False): return self._forward(hidden_states) else: return self._forward(hidden_states) ``` 由于自动检测器仅报告完整`frame`的输入和输出,一旦知道在哪里查找,您可能还希望分析特定`forward`函数的中间阶段。在这种情况下,您可以使用`detect_overflow`辅助函数将检测器放到希望的位置,例如: ```python from debug_utils import detect_overflow class T5LayerFF(nn.Module): [...] def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) detect_overflow(forwarded_states, "after layer_norm") forwarded_states = self.DenseReluDense(forwarded_states) detect_overflow(forwarded_states, "after DenseReluDense") return hidden_states + self.dropout(forwarded_states) ``` 可以看到,我们添加了2个检测器,现在我们可以跟踪是否在`forwarded_states`中间的某个地方检测到了`inf`或`nan`。 实际上,检测器已经报告了这些,因为上面示例中的每个调用都是一个`nn.Module`,但假设如果您有一些本地的直接计算,这就是您将如何执行的方式。 此外,如果您在自己的代码中实例化调试器,您可以调整从其默认打印的`frame`数,例如: ```python from transformers.debug_utils import DebugUnderflowOverflow debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100) ``` ### 特定批次的绝对最小值和最大值跟踪 当关闭下溢/上溢检测功能, 同样的调试类可以用于批处理跟踪。 假设您想要监视给定批次的每个`forward`调用的所有成分的绝对最小值和最大值,并且仅对批次1和3执行此操作,您可以这样实例化这个类: ```python debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3]) ``` 现在,完整的批次1和3将以与下溢/上溢检测器相同的格式进行跟踪。 批次从0开始计数。 如果您知道程序在某个批次编号之后开始出现问题,那么您可以直接快进到该区域。以下是一个截取的配置示例输出: ``` *** Starting batch number=1 *** abs min abs max metadata shared Embedding 1.01e-06 7.92e+02 weight 0.00e+00 2.47e+04 input[0] 5.36e-05 7.92e+02 output [...] decoder.dropout Dropout 1.60e-07 2.27e+01 input[0] 0.00e+00 2.52e+01 output decoder T5Stack not a tensor output lm_head Linear 1.01e-06 7.92e+02 weight 0.00e+00 1.11e+00 input[0] 6.06e-02 8.39e+01 output T5ForConditionalGeneration not a tensor output *** Starting batch number=3 *** abs min abs max metadata shared Embedding 1.01e-06 7.92e+02 weight 0.00e+00 2.78e+04 input[0] 5.36e-05 7.92e+02 output [...] ``` 在这里,您将获得大量的`frame`被`dump` - 与您的模型中的前向调用一样多,它有可能符合也可能不符合您的要求,但有时对于调试目的来说,它可能比正常的调试器更容易使用。例如,如果问题开始发生在批次号150上,您可以`dump`批次149和150的跟踪,并比较数字开始发散的地方。 你还可以使用以下命令指定停止训练的批次号: ```python debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3], abort_after_batch_num=3) ```
transformers/docs/source/zh/debugging.md/0
{ "file_path": "transformers/docs/source/zh/debugging.md", "repo_id": "transformers", "token_count": 7278 }
294
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 用于 TensorFlow 模型的 XLA 集成 [[open-in-colab]] 加速线性代数,也称为XLA,是一个用于加速TensorFlow模型运行时间的编译器。从[官方文档](https://www.tensorflow.org/xla)中可以看到: XLA(加速线性代数)是一种针对线性代数的特定领域编译器,可以在可能不需要更改源代码的情况下加速TensorFlow模型。 在TensorFlow中使用XLA非常简单——它包含在`tensorflow`库中,并且可以使用任何图创建函数中的`jit_compile`参数来触发,例如[`tf.function`](https://www.tensorflow.org/guide/intro_to_graphs)。在使用Keras方法如`fit()`和`predict()`时,只需将`jit_compile`参数传递给`model.compile()`即可启用XLA。然而,XLA不仅限于这些方法 - 它还可以用于加速任何任意的`tf.function`。 在🤗 Transformers中,几个TensorFlow方法已经被重写为与XLA兼容,包括[GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)、[T5](https://huggingface.co/docs/transformers/model_doc/t5)和[OPT](https://huggingface.co/docs/transformers/model_doc/opt)等文本生成模型,以及[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)等语音处理模型。 虽然确切的加速倍数很大程度上取决于模型,但对于🤗 Transformers中的TensorFlow文本生成模型,我们注意到速度提高了约100倍。本文档将解释如何在这些模型上使用XLA获得最大的性能。如果您有兴趣了解更多关于基准测试和我们在XLA集成背后的设计哲学的信息,我们还将提供额外的资源链接。 ## 使用 XLA 运行 TensorFlow 函数 让我们考虑以下TensorFlow 中的模型: ```py import tensorflow as tf model = tf.keras.Sequential( [tf.keras.layers.Dense(10, input_shape=(10,), activation="relu"), tf.keras.layers.Dense(5, activation="softmax")] ) ``` 上述模型接受维度为 `(10,)` 的输入。我们可以像下面这样使用模型进行前向传播: ```py # Generate random inputs for the model. batch_size = 16 input_vector_dim = 10 random_inputs = tf.random.normal((batch_size, input_vector_dim)) # Run a forward pass. _ = model(random_inputs) ``` 为了使用 XLA 编译的函数运行前向传播,我们需要执行以下操作: ```py xla_fn = tf.function(model, jit_compile=True) _ = xla_fn(random_inputs) ``` `model`的默认`call()`函数用于编译XLA图。但如果你想将其他模型函数编译成XLA,也是可以的,如下所示: ```py my_xla_fn = tf.function(model.my_xla_fn, jit_compile=True) ``` ## 在🤗 Transformers库中使用XLA运行TensorFlow文本生成模型 要在🤗 Transformers中启用XLA加速生成,您需要安装最新版本的`transformers`。您可以通过运行以下命令来安装它: ```bash pip install transformers --upgrade ``` 然后您可以运行以下代码: ```py import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForCausalLM # Will error if the minimal version of Transformers is not installed. from transformers.utils import check_min_version check_min_version("4.21.0") tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", padding_side="left", pad_token="</s>") model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2") input_string = ["TensorFlow is"] # One line to create an XLA generation function xla_generate = tf.function(model.generate, jit_compile=True) tokenized_input = tokenizer(input_string, return_tensors="tf") generated_tokens = xla_generate(**tokenized_input, num_beams=2) decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) print(f"Generated -- {decoded_text}") # Generated -- TensorFlow is an open-source, open-source, distributed-source application # framework for the ``` 正如您所注意到的,在`generate()`上启用XLA只需要一行代码。其余部分代码保持不变。然而,上面的代码片段中有一些与XLA相关的注意事项。您需要了解这些注意事项,以充分利用XLA可能带来的性能提升。我们将在下面的部分讨论这些内容。 ## 需要关注的注意事项 当您首次执行启用XLA的函数(如上面的`xla_generate()`)时,它将在内部尝试推断计算图,这是一个耗时的过程。这个过程被称为[“tracing”](https://www.tensorflow.org/guide/intro_to_graphs#when_is_a_function_tracing)。 您可能会注意到生成时间并不快。连续调用`xla_generate()`(或任何其他启用了XLA的函数)不需要再次推断计算图,只要函数的输入与最初构建计算图时的形状相匹配。对于具有固定输入形状的模态(例如图像),这不是问题,但如果您正在处理具有可变输入形状的模态(例如文本),则必须注意。 为了确保`xla_generate()`始终使用相同的输入形状,您可以在调用`tokenizer`时指定`padding`参数。 ```py import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", padding_side="left", pad_token="</s>") model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2") input_string = ["TensorFlow is"] xla_generate = tf.function(model.generate, jit_compile=True) # Here, we call the tokenizer with padding options. tokenized_input = tokenizer(input_string, pad_to_multiple_of=8, padding=True, return_tensors="tf") generated_tokens = xla_generate(**tokenized_input, num_beams=2) decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) print(f"Generated -- {decoded_text}") ``` 通过这种方式,您可以确保`xla_generate()`的输入始终具有它跟踪的形状,从而加速生成时间。您可以使用以下代码来验证这一点: ```py import time import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", padding_side="left", pad_token="</s>") model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2") xla_generate = tf.function(model.generate, jit_compile=True) for input_string in ["TensorFlow is", "TensorFlow is a", "TFLite is a"]: tokenized_input = tokenizer(input_string, pad_to_multiple_of=8, padding=True, return_tensors="tf") start = time.time_ns() generated_tokens = xla_generate(**tokenized_input, num_beams=2) end = time.time_ns() print(f"Execution time -- {(end - start) / 1e6:.1f} ms\n") ``` 在Tesla T4 GPU上,您可以期望如下的输出: ```bash Execution time -- 30819.6 ms Execution time -- 79.0 ms Execution time -- 78.9 ms ``` 第一次调用`xla_generate()`会因为`tracing`而耗时,但后续的调用会快得多。请注意,任何时候对生成选项的更改都会触发重新`tracing`,从而导致生成时间减慢。 在本文档中,我们没有涵盖🤗 Transformers提供的所有文本生成选项。我们鼓励您阅读文档以了解高级用例。 ## 附加资源 以下是一些附加资源,如果您想深入了解在🤗 Transformers和其他库下使用XLA: * [这个Colab Notebook](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/91_tf_xla_generate.ipynb) 提供了一个互动演示,让您可以尝试使用XLA兼容的编码器-解码器(例如[T5](https://huggingface.co/docs/transformers/model_doc/t5))和仅解码器(例如[GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2))文本生成模型。 * [这篇博客文章](https://huggingface.co/blog/tf-xla-generate) 提供了XLA兼容模型的比较基准概述,以及关于在TensorFlow中使用XLA的友好介绍。 * [这篇博客文章](https://blog.tensorflow.org/2022/11/how-hugging-face-improved-text-generation-performance-with-xla.html) 讨论了我们在🤗 Transformers中为TensorFlow模型添加XLA支持的设计理念。 * 推荐用于更多学习XLA和TensorFlow图的资源: * [XLA:面向机器学习的优化编译器](https://www.tensorflow.org/xla) * [图和tf.function简介](https://www.tensorflow.org/guide/intro_to_graphs) * [使用tf.function获得更好的性能](https://www.tensorflow.org/guide/function)
transformers/docs/source/zh/tf_xla.md/0
{ "file_path": "transformers/docs/source/zh/tf_xla.md", "repo_id": "transformers", "token_count": 4549 }
295
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pre-training/Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=text-generation """ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. import json import logging import math import os import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from itertools import chain from pathlib import Path from typing import Callable, Optional import datasets import jax import jax.numpy as jnp import numpy as np import optax from datasets import Dataset, load_dataset from flax import jax_utils, traverse_util from flax.jax_utils import pad_shard_unpad, unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key from huggingface_hub import HfApi from tqdm import tqdm import transformers from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, AutoConfig, AutoTokenizer, FlaxAutoModelForCausalLM, HfArgumentParser, is_tensorboard_available, set_seed, ) from transformers.testing_utils import CaptureLogger from transformers.utils import send_example_telemetry logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) block_size: Optional[int] = field( default=None, metadata={ "help": ( "Optional input sequence length after tokenization. " "The training dataset will be truncated in block of this size for training. " "Default to the model max input length for single sentence inputs (take into account special tokens)." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) keep_linebreaks: bool = field( default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("train_file` should be a csv, json or text file.") if self.validation_file is not None: extension = self.validation_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("`validation_file` should be a csv, json or text file.") class TrainState(train_state.TrainState): dropout_rng: jnp.ndarray def replicate(self): return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True): """ Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. """ if shuffle: batch_idx = jax.random.permutation(rng, len(dataset)) batch_idx = np.asarray(batch_idx) else: batch_idx = np.arange(len(dataset)) if drop_last: steps_per_epoch = len(dataset) // batch_size batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) else: steps_per_epoch = math.ceil(len(dataset) / batch_size) batch_idx = np.array_split(batch_idx, steps_per_epoch) for idx in batch_idx: batch = dataset[idx] batch = {k: np.array(v) for k, v in batch.items()} yield batch def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.ndarray]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_clm", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id api = HfApi() repo_id = api.create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) if "validation" not in dataset.keys(): dataset["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) dataset["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) else: data_files = {} dataset_args = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = data_args.keep_linebreaks dataset = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, **dataset_args, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) if "validation" not in dataset.keys(): dataset["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, **dataset_args, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) dataset["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, **dataset_args, token=model_args.token, num_proc=data_args.preprocessing_num_workers, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained( model_args.config_name, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = FlaxAutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: model = FlaxAutoModelForCausalLM.from_config( config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), trust_remote_code=model_args.trust_remote_code, ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = dataset["train"].column_names else: column_names = dataset["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base") def tokenize_function(examples): with CaptureLogger(tok_logger) as cl: output = tokenizer(examples[text_column_name]) # clm input could be much much longer than block_size if "Token indices sequence length is longer than the" in cl.out: tok_logger.warning( "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits" " before being passed to the model." ) return output tokenized_datasets = dataset.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.block_size is None: block_size = tokenizer.model_max_length if block_size > config.max_position_embeddings: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"Using block_size={min(1024, config.max_position_embeddings)} instead. You can change that default value by passing --block_size xxx." ) block_size = min(1024, config.max_position_embeddings) else: if data_args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model " f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(data_args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/process#map lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_train: if "train" not in tokenized_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = lm_datasets["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) if training_args.do_eval: if "validation" not in tokenized_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = lm_datasets["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) rng, dropout_rng = jax.random.split(rng) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() steps_per_epoch = len(train_dataset) // train_batch_size total_train_steps = steps_per_epoch * num_epochs # Create learning rate schedule linear_decay_lr_schedule_fn = create_learning_rate_fn( len(train_dataset), train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer if training_args.adafactor: # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=linear_decay_lr_schedule_fn, ) else: optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng) def loss_fn(logits, labels): shift_logits = logits[..., :-1, :] shift_labels = labels[..., 1:] loss = optax.softmax_cross_entropy(shift_logits, onehot(shift_labels, shift_logits.shape[-1])) return loss.mean() # Define gradient update step fn def train_step(state, batch): dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) def compute_loss(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss = loss_fn(logits, labels) return loss grad_fn = jax.value_and_grad(compute_loss) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} metrics = jax.lax.pmean(metrics, axis_name="batch") return new_state, metrics # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] loss = loss_fn(logits, labels) # summarize metrics metrics = {"loss": loss} metrics = jax.lax.pmean(metrics, axis_name="batch") return metrics # Create parallel version of the train and eval step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) p_eval_step = jax.pmap(eval_step, "batch") # Replicate the train state on each device state = state.replicate() logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {num_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") logger.info(f" Total optimization steps = {total_train_steps}") train_time = 0 train_metrics = [] epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) steps_per_epoch = len(train_dataset) // train_batch_size # train for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): batch = next(train_loader) batch = shard(batch) state, train_metric = p_train_step(state, batch) train_metrics.append(train_metric) cur_step = epoch * (len(train_dataset) // train_batch_size) + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:" f" {train_metric['learning_rate'].mean()})" ) train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: # ======================== Evaluating ============================== eval_metrics = [] eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False) eval_steps = math.ceil(len(eval_dataset) / eval_batch_size) for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): # Model forward batch = next(eval_loader) metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, batch, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) try: eval_metrics["perplexity"] = math.exp(eval_metrics["loss"]) except OverflowError: eval_metrics["perplexity"] = float("inf") # Print metrics and update progress bar desc = ( f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity:" f" {eval_metrics['perplexity']})" ) epochs.write(desc) epochs.desc = desc # Save metrics if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if cur_step % training_args.save_steps == 0 and cur_step > 0: # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(unreplicate(state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: api.upload_folder( commit_message=f"Saving weights and logs of step {cur_step}", folder_path=training_args.output_dir, repo_id=repo_id, repo_type="model", token=training_args.hub_token, ) # Eval after training if training_args.do_eval: eval_metrics = [] eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False) eval_steps = math.ceil(len(eval_dataset) / eval_batch_size) for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): # Model forward batch = next(eval_loader) metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, batch, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(lambda x: jnp.mean(x).item(), eval_metrics) try: eval_metrics["perplexity"] = math.exp(eval_metrics["loss"]) except OverflowError: eval_metrics["perplexity"] = float("inf") if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers/examples/flax/language-modeling/run_clm_flax.py/0
{ "file_path": "transformers/examples/flax/language-modeling/run_clm_flax.py", "repo_id": "transformers", "token_count": 16207 }
296
import os import sys sys.path.insert(1, os.path.dirname(os.path.realpath(__file__)))
transformers/examples/legacy/seq2seq/__init__.py/0
{ "file_path": "transformers/examples/legacy/seq2seq/__init__.py", "repo_id": "transformers", "token_count": 34 }
297
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fire from utils import calculate_rouge, save_json def calculate_rouge_path(pred_path, tgt_path, save_path=None, **kwargs): """Kwargs will be passed to calculate_rouge""" pred_lns = [x.strip() for x in open(pred_path).readlines()] tgt_lns = [x.strip() for x in open(tgt_path).readlines()][: len(pred_lns)] metrics = calculate_rouge(pred_lns, tgt_lns, **kwargs) if save_path is not None: save_json(metrics, save_path, indent=None) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
transformers/examples/legacy/seq2seq/rouge_cli.py/0
{ "file_path": "transformers/examples/legacy/seq2seq/rouge_cli.py", "repo_id": "transformers", "token_count": 385 }
298
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """ import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available logger = logging.getLogger(__name__) @dataclass class InputExample: """ A single training/test example for token classification. Args: guid: Unique id for the example. words: list. The words of the sequence. labels: (Optional) list. The labels for each word of the sequence. This should be specified for train and dev examples, but not for test examples. """ guid: str words: List[str] labels: Optional[List[str]] @dataclass class InputFeatures: """ A single set of features of data. Property names are the same names as the corresponding inputs to a model. """ input_ids: List[int] attention_mask: List[int] token_type_ids: Optional[List[int]] = None label_ids: Optional[List[int]] = None class Split(Enum): train = "train" dev = "dev" test = "test" class TokenClassificationTask: @staticmethod def read_examples_from_file(data_dir, mode: Union[Split, str]) -> List[InputExample]: raise NotImplementedError @staticmethod def get_labels(path: str) -> List[str]: raise NotImplementedError @staticmethod def convert_examples_to_features( examples: List[InputExample], label_list: List[str], max_seq_length: int, tokenizer: PreTrainedTokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, pad_token_segment_id=0, pad_token_label_id=-100, sequence_a_segment_id=0, mask_padding_with_zero=True, ) -> List[InputFeatures]: """Loads a data file into a list of `InputFeatures` `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ # TODO clean up all this to leverage built-in features of tokenizers label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in enumerate(examples): if ex_index % 10_000 == 0: logger.info("Writing example %d of %d", ex_index, len(examples)) tokens = [] label_ids = [] for word, label in zip(example.words, example.labels): word_tokens = tokenizer.tokenize(word) # google-bert/bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(word_tokens) > 0: tokens.extend(word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = tokenizer.num_special_tokens_to_add() if len(tokens) > max_seq_length - special_tokens_count: tokens = tokens[: (max_seq_length - special_tokens_count)] label_ids = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens label_ids = [pad_token_label_id] + label_ids segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids label_ids = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("tokens: %s", " ".join([str(x) for x in tokens])) logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) if "token_type_ids" not in tokenizer.model_input_names: segment_ids = None features.append( InputFeatures( input_ids=input_ids, attention_mask=input_mask, token_type_ids=segment_ids, label_ids=label_ids ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class TokenClassificationDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ features: List[InputFeatures] pad_token_label_id: int = nn.CrossEntropyLoss().ignore_index # Use cross entropy ignore_index as padding label id so that only # real label ids contribute to the loss later. def __init__( self, token_classification_task: TokenClassificationTask, data_dir: str, tokenizer: PreTrainedTokenizer, labels: List[str], model_type: str, max_seq_length: Optional[int] = None, overwrite_cache=False, mode: Split = Split.train, ): # Load data features from cache or dataset file cached_features_file = os.path.join( data_dir, "cached_{}_{}_{}".format(mode.value, tokenizer.__class__.__name__, str(max_seq_length)), ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" with FileLock(lock_path): if os.path.exists(cached_features_file) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}") self.features = torch.load(cached_features_file) else: logger.info(f"Creating features from dataset file at {data_dir}") examples = token_classification_task.read_examples_from_file(data_dir, mode) # TODO clean up all this to leverage built-in features of tokenizers self.features = token_classification_task.convert_examples_to_features( examples, labels, max_seq_length, tokenizer, cls_token_at_end=bool(model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=False, # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(tokenizer.padding_side == "left"), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) logger.info(f"Saving features into cached file {cached_features_file}") torch.save(self.features, cached_features_file) def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class TFTokenClassificationDataset: """ This will be superseded by a framework-agnostic approach soon. """ features: List[InputFeatures] pad_token_label_id: int = -100 # Use cross entropy ignore_index as padding label id so that only # real label ids contribute to the loss later. def __init__( self, token_classification_task: TokenClassificationTask, data_dir: str, tokenizer: PreTrainedTokenizer, labels: List[str], model_type: str, max_seq_length: Optional[int] = None, overwrite_cache=False, mode: Split = Split.train, ): examples = token_classification_task.read_examples_from_file(data_dir, mode) # TODO clean up all this to leverage built-in features of tokenizers self.features = token_classification_task.convert_examples_to_features( examples, labels, max_seq_length, tokenizer, cls_token_at_end=bool(model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=False, # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(tokenizer.padding_side == "left"), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: self.dataset = tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64), ( {"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([None]), ), ) else: self.dataset = tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, tf.TensorShape([None]), ), ) def get_dataset(self): self.dataset = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) return self.dataset def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i]
transformers/examples/legacy/token-classification/utils_ner.py/0
{ "file_path": "transformers/examples/legacy/token-classification/utils_ner.py", "repo_id": "transformers", "token_count": 7660 }
299