Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Spanish
Size:
10K - 100K
License:
File size: 6,474 Bytes
db0a277 69292b1 db0a277 b35998e db0a277 35ed1d0 db0a277 69e308a db0a277 4c89b4f db0a277 ff4d390 d4bc45b 69e308a 4c89b4f ff4d390 0c40941 caa67c8 dc86d3e 9307aa9 0cb9d2b dc86d3e caa67c8 970cac2 caa67c8 c720ab1 dc86d3e ff4d390 db0a277 4c89b4f db0a277 4c89b4f db0a277 ff4d390 db0a277 0c40941 db0a277 93d9a09 db0a277 4c89b4f db0a277 69d818e db0a277 69d818e db0a277 93d9a09 db0a277 4c89b4f db0a277 4e78674 4f66fa4 4e78674 d4bc45b 0400dea d4bc45b 0400dea d4bc45b 69d818e 0400dea 69d818e 0400dea 4c89b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
annotations_creators:
- expert-generated
language:
- es
tags:
- biomedical
- clinical
- spanish
multilinguality:
- monolingual
task_categories:
- token-classification
task_ids:
- named-entity-recognition
license:
- cc-by-4.0
---
# PharmaCoNER
## Dataset Description
Manually classified collection of Spanish clinical case studies.
- **Homepage:** [zenodo](https://zenodo.org/record/4270158)
- **Paper:** [PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track](https://aclanthology.org/D19-5701/)
- **Point of Contact:** [email protected]
### Dataset Summary
Manually classified collection of clinical case studies derived from the Spanish Clinical Case Corpus (SPACCC), an open access electronic library that gathers Spanish medical publications from [SciELO](https://scielo.org/).
The PharmaCoNER corpus contains a total of 396,988 words and 1,000 clinical cases that have been randomly sampled into 3 subsets.
The training set contains 500 clinical cases, while the development and test sets contain 250 clinical cases each.
In terms of training examples, this translates to a total of 8129, 3787 and 3952 annotated sentences in each set.
The original dataset is distributed in [Brat](https://brat.nlplab.org/standoff.html) format.
The annotation of the entire set of entity mentions was carried out by domain experts.
It includes the following 4 entity types: NORMALIZABLES, NO_NORMALIZABLES, PROTEINAS and UNCLEAR.
This dataset was designed for the PharmaCoNER task, sponsored by [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx).
For further information, please visit [the official website](https://temu.bsc.es/pharmaconer/).
### Supported Tasks
Named Entity Recognition (NER)
### Languages
- Spanish (es)
### Directory Structure
* README.md
* pharmaconer.py
* dev-set_1.1.conll
* test-set_1.1.conll
* train-set_1.1.conll
## Dataset Structure
### Data Instances
Three four-column files, one for each split.
### Data Fields
Every file has four columns:
* 1st column: Word form or punctuation symbol
* 2nd column: Original BRAT file name
* 3rd column: Spans
* 4th column: IOB tag
#### Example
<pre>
La S0004-06142006000900008-1 123_125 O
paciente S0004-06142006000900008-1 126_134 O
tenía S0004-06142006000900008-1 135_140 O
antecedentes S0004-06142006000900008-1 141_153 O
de S0004-06142006000900008-1 154_156 O
hipotiroidismo S0004-06142006000900008-1 157_171 O
, S0004-06142006000900008-1 171_172 O
hipertensión S0004-06142006000900008-1 173_185 O
arterial S0004-06142006000900008-1 186_194 O
en S0004-06142006000900008-1 195_197 O
tratamiento S0004-06142006000900008-1 198_209 O
habitual S0004-06142006000900008-1 210_218 O
con S0004-06142006000900008-1 219-222 O
atenolol S0004-06142006000900008-1 223_231 B-NORMALIZABLES
y S0004-06142006000900008-1 232_233 O
enalapril S0004-06142006000900008-1 234_243 B-NORMALIZABLES
</pre>
### Data Splits
| Split | Size |
| ------------- | ------------- |
| `train` | 8,129 |
| `dev` | 3,787 |
| `test` | 3,952 |
## Dataset Creation
### Curation Rationale
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
### Source Data
#### Initial Data Collection and Normalization
Manually classified collection of clinical case report sections. The clinical cases were not restricted to a single medical discipline, covering a variety of medical disciplines, including oncology, urology, cardiology, pneumology or infectious diseases. This is key to cover a diverse set of chemicals and drugs.
#### Who are the source language producers?
Humans, there is no machine generated data.
### Annotations
#### Annotation process
The annotation process of the PharmaCoNER corpus was inspired by previous annotation schemes and corpora used for the BioCreative CHEMDNER and GPRO tracks, translating the guidelines used for these tracks into Spanish and adapting them to the characteristics and needs of clinically oriented documents by modifying the annotation criteria and rules to cover medical information needs. This adaptation was carried out in collaboration with practicing physicians and medicinal chemistry experts. The adaptation, translation and refinement of the guidelines was done on a sample set of the SPACCC corpus and linked to an iterative process of annotation consistency analysis through interannotator agreement (IAA) studies until a high annotation quality in terms of IAA was reached.
#### Who are the annotators?
Practicing physicians and medicinal chemistry experts.
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
This corpus contributes to the development of medical language models in Spanish.
### Discussion of Biases
[N/A]
## Additional Information
### Dataset Curators
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected]).
For further information, send an email to ([email protected]).
This work was funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://avancedigital.mineco.gob.es/en-us/Paginas/index.aspx) within the framework of the [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx).
### Licensing information
This work is licensed under [CC Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) License.
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
### Citation Information
```bibtex
@inproceedings{,
title = "PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track",
author = "Gonzalez-Agirre, Aitor and
Marimon, Montserrat and
Intxaurrondo, Ander and
Rabal, Obdulia and
Villegas, Marta and
Krallinger, Martin",
booktitle = "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5701",
doi = "10.18653/v1/D19-5701",
pages = "1--10",
}
```
### Contributions
[N/A]
|