Datasets:

Modalities:
Text
Languages:
Spanish
Libraries:
Datasets
License:
File size: 6,474 Bytes
db0a277
 
 
69292b1
db0a277
b35998e
 
 
 
db0a277
 
 
35ed1d0
db0a277
 
69e308a
 
db0a277
 
4c89b4f
db0a277
ff4d390
d4bc45b
69e308a
 
4c89b4f
 
 
 
ff4d390
0c40941
caa67c8
dc86d3e
 
 
9307aa9
0cb9d2b
dc86d3e
caa67c8
 
 
970cac2
caa67c8
c720ab1
dc86d3e
ff4d390
db0a277
4c89b4f
db0a277
 
 
4c89b4f
db0a277
ff4d390
db0a277
 
0c40941
 
 
 
db0a277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93d9a09
db0a277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c89b4f
 
 
 
 
db0a277
 
 
 
 
 
 
 
 
 
 
69d818e
db0a277
 
 
69d818e
db0a277
 
 
 
 
93d9a09
 
db0a277
 
4c89b4f
db0a277
 
 
 
 
4e78674
 
 
 
 
 
 
 
4f66fa4
4e78674
d4bc45b
 
0400dea
 
d4bc45b
0400dea
 
 
 
 
 
 
 
d4bc45b
 
 
69d818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0400dea
69d818e
0400dea
4c89b4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
annotations_creators:
- expert-generated
language:
- es
tags:
- biomedical
- clinical
- spanish
multilinguality:
- monolingual
task_categories:
- token-classification
task_ids:
- named-entity-recognition
license:
- cc-by-4.0
---

# PharmaCoNER

## Dataset Description

Manually classified collection of Spanish clinical case studies.

- **Homepage:** [zenodo](https://zenodo.org/record/4270158)
- **Paper:** [PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track](https://aclanthology.org/D19-5701/)
- **Point of Contact:** [email protected]

### Dataset Summary

Manually classified collection of clinical case studies derived from the Spanish Clinical Case Corpus (SPACCC), an open access electronic library that gathers Spanish medical publications from [SciELO](https://scielo.org/).

The PharmaCoNER corpus contains a total of 396,988 words and 1,000 clinical cases that have been randomly sampled into 3 subsets.
The training set contains 500 clinical cases, while the development and test sets contain 250 clinical cases each.
In terms of training examples, this translates to a total of 8129, 3787 and 3952 annotated sentences in each set.
The original dataset is distributed in [Brat](https://brat.nlplab.org/standoff.html) format.

The annotation of the entire set of entity mentions was carried out by domain experts.
It includes the following 4 entity types: NORMALIZABLES, NO_NORMALIZABLES, PROTEINAS and UNCLEAR.

This dataset was designed for the PharmaCoNER task, sponsored by [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx).

For further information, please visit [the official website](https://temu.bsc.es/pharmaconer/).

### Supported Tasks

Named Entity Recognition (NER)

### Languages

- Spanish (es)

### Directory Structure

* README.md
* pharmaconer.py
* dev-set_1.1.conll
* test-set_1.1.conll
* train-set_1.1.conll

## Dataset Structure

### Data Instances

Three four-column files, one for each split.

### Data Fields

Every file has four columns:
* 1st column: Word form or punctuation symbol 
* 2nd column: Original BRAT file name
* 3rd column: Spans
* 4th column: IOB tag

#### Example
<pre>
La                S0004-06142006000900008-1  123_125  O
paciente          S0004-06142006000900008-1  126_134  O
tenía             S0004-06142006000900008-1  135_140  O
antecedentes      S0004-06142006000900008-1  141_153  O
de                S0004-06142006000900008-1  154_156  O
hipotiroidismo    S0004-06142006000900008-1  157_171  O
,                 S0004-06142006000900008-1  171_172  O
hipertensión      S0004-06142006000900008-1  173_185  O
arterial          S0004-06142006000900008-1  186_194  O
en                S0004-06142006000900008-1  195_197  O
tratamiento       S0004-06142006000900008-1  198_209  O
habitual          S0004-06142006000900008-1  210_218  O
con               S0004-06142006000900008-1  219-222  O
atenolol          S0004-06142006000900008-1  223_231  B-NORMALIZABLES
y                 S0004-06142006000900008-1  232_233  O
enalapril         S0004-06142006000900008-1  234_243  B-NORMALIZABLES
</pre>

### Data Splits

| Split | Size |
| ------------- | ------------- |
| `train`  | 8,129  |
| `dev`  | 3,787  |
| `test`  | 3,952  |

## Dataset Creation

### Curation Rationale

For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.

### Source Data

#### Initial Data Collection and Normalization

Manually classified collection of clinical case report sections. The clinical cases were not restricted to a single medical discipline, covering a variety of medical disciplines, including oncology, urology, cardiology, pneumology or infectious diseases. This is key to cover a diverse set of chemicals and drugs.

#### Who are the source language producers?

Humans, there is no machine generated data.

### Annotations

#### Annotation process

The annotation process of the PharmaCoNER corpus was inspired by previous annotation schemes and corpora used for the BioCreative CHEMDNER and GPRO tracks, translating the guidelines used for these tracks into Spanish and adapting them to the characteristics and needs of clinically oriented documents by modifying the annotation criteria and rules to cover medical information needs. This adaptation was carried out in collaboration with practicing physicians and medicinal chemistry experts. The adaptation, translation and refinement of the guidelines was done on a sample set of the SPACCC corpus and linked to an iterative process of annotation consistency analysis through interannotator agreement (IAA) studies until a high annotation quality in terms of IAA was reached.

#### Who are the annotators?

Practicing physicians and medicinal chemistry experts.

### Personal and Sensitive Information

No personal or sensitive information included.

## Considerations for Using the Data

### Social Impact of Dataset

This corpus contributes to the development of medical language models in Spanish.

### Discussion of Biases

[N/A]

## Additional Information

### Dataset Curators 
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected]). 

For further information, send an email to ([email protected]).

This work was funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://avancedigital.mineco.gob.es/en-us/Paginas/index.aspx) within the framework of the [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx).

### Licensing information
This work is licensed under [CC Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) License.

Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)

### Citation Information

```bibtex
@inproceedings{,
    title = "PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track",
    author = "Gonzalez-Agirre, Aitor  and
      Marimon, Montserrat  and
      Intxaurrondo, Ander  and
      Rabal, Obdulia  and
      Villegas, Marta  and
      Krallinger, Martin",
    booktitle = "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5701",
    doi = "10.18653/v1/D19-5701",
    pages = "1--10",
}
```
### Contributions

[N/A]