repo_name
stringlengths
6
96
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
762
753k
license
stringclasses
15 values
cuiwei0322/cost_analysis
tall_building_zero_attack_angle_cost_analysis/Result/peak_ng.py
1
2728
import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib from matplotlib import cm from matplotlib import pyplot as plt from itertools import product, combinations from matplotlib import rc from matplotlib.font_manager import FontProperties font_size = 8 rc('font',**{'family':'serif','serif':['Times New Roman'],'size':font_size}) step = 0.04 maxval = 1.0 fig = plt.figure(num=1, figsize=(2.9,2.4), dpi=300, facecolor='w', edgecolor='k') ax = fig.add_subplot(111, projection='3d') # create supporting points in polar coordinates r = np.linspace(0,0.8,40) p = np.linspace(0,2*np.pi,60) R,P = np.meshgrid(r,p) # transform them to cartesian system X,Y = R*np.cos(P),R*np.sin(P) mu_x = 0.3656; sigma_x = 0.1596; sigma_y = 0.1964; Z = np.exp(-(X - mu_x)**2/(2*sigma_x**2) - (Y)**2/(2*sigma_y**2)) / (2*np.pi*sigma_x*sigma_y) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, alpha = 0.7) cset = ax.contourf(X, Y, Z, zdir='z', offset=-1, cmap=cm.coolwarm) # cset = ax.contourf(X, Y, Z, zdir='x', offset=0.7, cmap=cm.coolwarm, alpha = 0.5) # cset = ax.contourf(X, Y, Z, zdir='y', offset=0.8, cmap=cm.coolwarm, alpha = 0.5) theta = np.linspace(0, 2 * np.pi, 100) r = 0.3 x = r * np.sin(theta) y = r * np.cos(theta) z = np.exp(-(x - mu_x)**2/(2*sigma_x**2) - (y)**2/(2*sigma_y**2)) / (2*np.pi*sigma_x*sigma_y) Z = -1 ax.plot(x, y, z, '-b',zorder = 10,linewidth = 0.5,label = 'Joint PDF on integral path') ax.plot(x, y, Z, '-.b',zorder = 9,linewidth = 0.5,label = 'Integral path') #draw a arrow r = 0.3 Z = -1 from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d class Arrow3D(FancyArrowPatch): def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0],ys[0]),(xs[1],ys[1])) FancyArrowPatch.draw(self, renderer) a = Arrow3D([0,r*np.cos(5/4*np.pi)],[0,r*np.sin(5/4*np.pi)],[Z,Z], mutation_scale=4, lw=0.5, arrowstyle="-|>", color="k") ax.add_artist(a) rt = 0.3 ax.text(rt*np.cos(4/4*np.pi)+0.1, rt*np.sin(4/4*np.pi)+0.05, Z, 'r', None) #done with arrow # legend # fontP = FontProperties() # fontP.set_size('small') legend = ax.legend(loc='upper center',shadow=False,handlelength = 3.8,prop={'size':font_size}) # ax.view_init(elev=30, azim=-110) ax.set_zlim3d(-1, 5) ax.set_xlabel(r'$r_x$', fontsize = font_size) ax.set_ylabel(r'$r_y$',fontsize = font_size) ax.set_zlabel(r'Joint PDF,$f(r_x,r_y)$') plt.tight_layout() # plt.show() plt.savefig("peak_ng.pdf")
apache-2.0
vybstat/scikit-learn
sklearn/utils/validation.py
30
24618
"""Utilities for input validation""" # Authors: Olivier Grisel # Gael Varoquaux # Andreas Mueller # Lars Buitinck # Alexandre Gramfort # Nicolas Tresegnie # License: BSD 3 clause import warnings import numbers import numpy as np import scipy.sparse as sp from ..externals import six from inspect import getargspec FLOAT_DTYPES = (np.float64, np.float32, np.float16) class DataConversionWarning(UserWarning): """A warning on implicit data conversions happening in the code""" pass warnings.simplefilter("always", DataConversionWarning) class NonBLASDotWarning(UserWarning): """A warning on implicit dispatch to numpy.dot""" class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. """ # Silenced by default to reduce verbosity. Turn on at runtime for # performance profiling. warnings.simplefilter('ignore', NonBLASDotWarning) def _assert_all_finite(X): """Like assert_all_finite, but only for ndarray.""" X = np.asanyarray(X) # First try an O(n) time, O(1) space solution for the common case that # everything is finite; fall back to O(n) space np.isfinite to prevent # false positives from overflow in sum method. if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all()): raise ValueError("Input contains NaN, infinity" " or a value too large for %r." % X.dtype) def assert_all_finite(X): """Throw a ValueError if X contains NaN or infinity. Input MUST be an np.ndarray instance or a scipy.sparse matrix.""" _assert_all_finite(X.data if sp.issparse(X) else X) def as_float_array(X, copy=True, force_all_finite=True): """Converts an array-like to an array of floats The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy. Parameters ---------- X : {array-like, sparse matrix} copy : bool, optional If True, a copy of X will be created. If False, a copy may still be returned if X's dtype is not a floating point type. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- XT : {array, sparse matrix} An array of type np.float """ if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray) and not sp.issparse(X)): return check_array(X, ['csr', 'csc', 'coo'], dtype=np.float64, copy=copy, force_all_finite=force_all_finite, ensure_2d=False) elif sp.issparse(X) and X.dtype in [np.float32, np.float64]: return X.copy() if copy else X elif X.dtype in [np.float32, np.float64]: # is numpy array return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X else: return X.astype(np.float32 if X.dtype == np.int32 else np.float64) def _is_arraylike(x): """Returns whether the input is array-like""" return (hasattr(x, '__len__') or hasattr(x, 'shape') or hasattr(x, '__array__')) def _num_samples(x): """Return number of samples in array-like x.""" if hasattr(x, 'fit'): # Don't get num_samples from an ensembles length! raise TypeError('Expected sequence or array-like, got ' 'estimator %s' % x) if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError("Expected sequence or array-like, got %s" % type(x)) if hasattr(x, 'shape'): if len(x.shape) == 0: raise TypeError("Singleton array %r cannot be considered" " a valid collection." % x) return x.shape[0] else: return len(x) def _shape_repr(shape): """Return a platform independent reprensentation of an array shape Under Python 2, the `long` type introduces an 'L' suffix when using the default %r format for tuples of integers (typically used to store the shape of an array). Under Windows 64 bit (and Python 2), the `long` type is used by default in numpy shapes even when the integer dimensions are well below 32 bit. The platform specific type causes string messages or doctests to change from one platform to another which is not desirable. Under Python 3, there is no more `long` type so the `L` suffix is never introduced in string representation. >>> _shape_repr((1, 2)) '(1, 2)' >>> one = 2 ** 64 / 2 ** 64 # force an upcast to `long` under Python 2 >>> _shape_repr((one, 2 * one)) '(1, 2)' >>> _shape_repr((1,)) '(1,)' >>> _shape_repr(()) '()' """ if len(shape) == 0: return "()" joined = ", ".join("%d" % e for e in shape) if len(shape) == 1: # special notation for singleton tuples joined += ',' return "(%s)" % joined def check_consistent_length(*arrays): """Check that all arrays have consistent first dimensions. Checks whether all objects in arrays have the same shape or length. Parameters ---------- *arrays : list or tuple of input objects. Objects that will be checked for consistent length. """ uniques = np.unique([_num_samples(X) for X in arrays if X is not None]) if len(uniques) > 1: raise ValueError("Found arrays with inconsistent numbers of samples: " "%s" % str(uniques)) def indexable(*iterables): """Make arrays indexable for cross-validation. Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse matrices to csr and converting non-interable objects to arrays. Parameters ---------- *iterables : lists, dataframes, arrays, sparse matrices List of objects to ensure sliceability. """ result = [] for X in iterables: if sp.issparse(X): result.append(X.tocsr()) elif hasattr(X, "__getitem__") or hasattr(X, "iloc"): result.append(X) elif X is None: result.append(X) else: result.append(np.array(X)) check_consistent_length(*result) return result def _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy, force_all_finite): """Convert a sparse matrix to a given format. Checks the sparse format of spmatrix and converts if necessary. Parameters ---------- spmatrix : scipy sparse matrix Input to validate and convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats ('csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- spmatrix_converted : scipy sparse matrix. Matrix that is ensured to have an allowed type. """ if accept_sparse in [None, False]: raise TypeError('A sparse matrix was passed, but dense ' 'data is required. Use X.toarray() to ' 'convert to a dense numpy array.') if dtype is None: dtype = spmatrix.dtype changed_format = False if (isinstance(accept_sparse, (list, tuple)) and spmatrix.format not in accept_sparse): # create new with correct sparse spmatrix = spmatrix.asformat(accept_sparse[0]) changed_format = True if dtype != spmatrix.dtype: # convert dtype spmatrix = spmatrix.astype(dtype) elif copy and not changed_format: # force copy spmatrix = spmatrix.copy() if force_all_finite: if not hasattr(spmatrix, "data"): warnings.warn("Can't check %s sparse matrix for nan or inf." % spmatrix.format) else: _assert_all_finite(spmatrix.data) return spmatrix def check_array(array, accept_sparse=None, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1, warn_on_dtype=False, estimator=None): """Input validation on an array, list, sparse matrix or similar. By default, the input is converted to an at least 2nd numpy array. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. ensure_min_samples : int (default=1) Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. warn_on_dtype : boolean (default=False) Raise DataConversionWarning if the dtype of the input data structure does not match the requested dtype, causing a memory copy. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. """ if isinstance(accept_sparse, str): accept_sparse = [accept_sparse] # store whether originally we wanted numeric dtype dtype_numeric = dtype == "numeric" dtype_orig = getattr(array, "dtype", None) if not hasattr(dtype_orig, 'kind'): # not a data type (e.g. a column named dtype in a pandas DataFrame) dtype_orig = None if dtype_numeric: if dtype_orig is not None and dtype_orig.kind == "O": # if input is object, convert to float. dtype = np.float64 else: dtype = None if isinstance(dtype, (list, tuple)): if dtype_orig is not None and dtype_orig in dtype: # no dtype conversion required dtype = None else: # dtype conversion required. Let's select the first element of the # list of accepted types. dtype = dtype[0] if sp.issparse(array): array = _ensure_sparse_format(array, accept_sparse, dtype, copy, force_all_finite) else: array = np.array(array, dtype=dtype, order=order, copy=copy) if ensure_2d: if array.ndim == 1: warnings.warn( "Passing 1d arrays as data is deprecated in 0.17 and will" "raise ValueError in 0.19. Reshape your data either using " "X.reshape(-1, 1) if your data has a single feature or " "X.reshape(1, -1) if it contains a single sample.", DeprecationWarning) array = np.atleast_2d(array) # To ensure that array flags are maintained array = np.array(array, dtype=dtype, order=order, copy=copy) # make sure we acually converted to numeric: if dtype_numeric and array.dtype.kind == "O": array = array.astype(np.float64) if not allow_nd and array.ndim >= 3: raise ValueError("Found array with dim %d. Expected <= 2" % array.ndim) if force_all_finite: _assert_all_finite(array) shape_repr = _shape_repr(array.shape) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError("Found array with %d sample(s) (shape=%s) while a" " minimum of %d is required." % (n_samples, shape_repr, ensure_min_samples)) if ensure_min_features > 0 and array.ndim == 2: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError("Found array with %d feature(s) (shape=%s) while" " a minimum of %d is required." % (n_features, shape_repr, ensure_min_features)) if warn_on_dtype and dtype_orig is not None and array.dtype != dtype_orig: msg = ("Data with input dtype %s was converted to %s" % (dtype_orig, array.dtype)) if estimator is not None: if not isinstance(estimator, six.string_types): estimator = estimator.__class__.__name__ msg += " by %s" % estimator warnings.warn(msg, DataConversionWarning) return array def check_X_y(X, y, accept_sparse=None, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False, ensure_min_samples=1, ensure_min_features=1, y_numeric=False, warn_on_dtype=False, estimator=None): """Input validation for standard estimators. Checks X and y for consistent length, enforces X 2d and y 1d. Standard input checks are only applied to y. For multi-label y, set multi_output=True to allow 2d and sparse y. If the dtype of X is object, attempt converting to float, raising on failure. Parameters ---------- X : nd-array, list or sparse matrix Input data. y : nd-array, list or sparse matrix Labels. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. multi_output : boolean (default=False) Whether to allow 2-d y (array or sparse matrix). If false, y will be validated as a vector. ensure_min_samples : int (default=1) Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. y_numeric : boolean (default=False) Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms. warn_on_dtype : boolean (default=False) Raise DataConversionWarning if the dtype of the input data structure does not match the requested dtype, causing a memory copy. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. y_converted : object The converted and validated y. """ X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) if multi_output: y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False, dtype=None) else: y = column_or_1d(y, warn=True) _assert_all_finite(y) if y_numeric and y.dtype.kind == 'O': y = y.astype(np.float64) check_consistent_length(X, y) return X, y def column_or_1d(y, warn=False): """ Ravel column or 1d numpy array, else raises an error Parameters ---------- y : array-like warn : boolean, default False To control display of warnings. Returns ------- y : array """ shape = np.shape(y) if len(shape) == 1: return np.ravel(y) if len(shape) == 2 and shape[1] == 1: if warn: warnings.warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) return np.ravel(y) raise ValueError("bad input shape {0}".format(shape)) def check_random_state(seed): """Turn seed into a np.random.RandomState instance If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed) def has_fit_parameter(estimator, parameter): """Checks whether the estimator's fit method supports the given parameter. Examples -------- >>> from sklearn.svm import SVC >>> has_fit_parameter(SVC(), "sample_weight") True """ return parameter in getargspec(estimator.fit)[0] def check_symmetric(array, tol=1E-10, raise_warning=True, raise_exception=False): """Make sure that array is 2D, square and symmetric. If the array is not symmetric, then a symmetrized version is returned. Optionally, a warning or exception is raised if the matrix is not symmetric. Parameters ---------- array : nd-array or sparse matrix Input object to check / convert. Must be two-dimensional and square, otherwise a ValueError will be raised. tol : float Absolute tolerance for equivalence of arrays. Default = 1E-10. raise_warning : boolean (default=True) If True then raise a warning if conversion is required. raise_exception : boolean (default=False) If True then raise an exception if array is not symmetric. Returns ------- array_sym : ndarray or sparse matrix Symmetrized version of the input array, i.e. the average of array and array.transpose(). If sparse, then duplicate entries are first summed and zeros are eliminated. """ if (array.ndim != 2) or (array.shape[0] != array.shape[1]): raise ValueError("array must be 2-dimensional and square. " "shape = {0}".format(array.shape)) if sp.issparse(array): diff = array - array.T # only csr, csc, and coo have `data` attribute if diff.format not in ['csr', 'csc', 'coo']: diff = diff.tocsr() symmetric = np.all(abs(diff.data) < tol) else: symmetric = np.allclose(array, array.T, atol=tol) if not symmetric: if raise_exception: raise ValueError("Array must be symmetric") if raise_warning: warnings.warn("Array is not symmetric, and will be converted " "to symmetric by average with its transpose.") if sp.issparse(array): conversion = 'to' + array.format array = getattr(0.5 * (array + array.T), conversion)() else: array = 0.5 * (array + array.T) return array def check_is_fitted(estimator, attributes, msg=None, all_or_any=all): """Perform is_fitted validation for estimator. Checks if the estimator is fitted by verifying the presence of "all_or_any" of the passed attributes and raises a NotFittedError with the given message. Parameters ---------- estimator : estimator instance. estimator instance for which the check is performed. attributes : attribute name(s) given as string or a list/tuple of strings Eg. : ["coef_", "estimator_", ...], "coef_" msg : string The default error message is, "This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this method." For custom messages if "%(name)s" is present in the message string, it is substituted for the estimator name. Eg. : "Estimator, %(name)s, must be fitted before sparsifying". all_or_any : callable, {all, any}, default all Specify whether all or any of the given attributes must exist. """ if msg is None: msg = ("This %(name)s instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this method.") if not hasattr(estimator, 'fit'): raise TypeError("%s is not an estimator instance." % (estimator)) if not isinstance(attributes, (list, tuple)): attributes = [attributes] if not all_or_any([hasattr(estimator, attr) for attr in attributes]): raise NotFittedError(msg % {'name': type(estimator).__name__}) def check_non_negative(X, whom): """ Check if there is any negative value in an array. Parameters ---------- X : array-like or sparse matrix Input data. whom : string Who passed X to this function. """ X = X.data if sp.issparse(X) else X if (X < 0).any(): raise ValueError("Negative values in data passed to %s" % whom)
bsd-3-clause
michigraber/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_scalability.py
225
5719
""" ============================================ Scalability of Approximate Nearest Neighbors ============================================ This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with ``n_estimators=20`` and ``n_candidates=200`` when varying the number of samples in the dataset. The first plot demonstrates the relationship between query time and index size of LSHForest. Query time is compared with the brute force method in exact nearest neighbor search for the same index sizes. The brute force queries have a very predictable linear scalability with the index (full scan). LSHForest index have sub-linear scalability profile but can be slower for small datasets. The second plot shows the speedup when using approximate queries vs brute force exact queries. The speedup tends to increase with the dataset size but should reach a plateau typically when doing queries on datasets with millions of samples and a few hundreds of dimensions. Higher dimensional datasets tends to benefit more from LSHForest indexing. The break even point (speedup = 1) depends on the dimensionality and structure of the indexed data and the parameters of the LSHForest index. The precision of approximate queries should decrease slowly with the dataset size. The speed of the decrease depends mostly on the LSHForest parameters and the dimensionality of the data. """ from __future__ import division print(__doc__) # Authors: Maheshakya Wijewardena <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause ############################################################################### import time import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Parameters of the study n_samples_min = int(1e3) n_samples_max = int(1e5) n_features = 100 n_centers = 100 n_queries = 100 n_steps = 6 n_iter = 5 # Initialize the range of `n_samples` n_samples_values = np.logspace(np.log10(n_samples_min), np.log10(n_samples_max), n_steps).astype(np.int) # Generate some structured data rng = np.random.RandomState(42) all_data, _ = make_blobs(n_samples=n_samples_max + n_queries, n_features=n_features, centers=n_centers, shuffle=True, random_state=0) queries = all_data[:n_queries] index_data = all_data[n_queries:] # Metrics to collect for the plots average_times_exact = [] average_times_approx = [] std_times_approx = [] accuracies = [] std_accuracies = [] average_speedups = [] std_speedups = [] # Calculate the average query time for n_samples in n_samples_values: X = index_data[:n_samples] # Initialize LSHForest for queries of a single neighbor lshf = LSHForest(n_estimators=20, n_candidates=200, n_neighbors=10).fit(X) nbrs = NearestNeighbors(algorithm='brute', metric='cosine', n_neighbors=10).fit(X) time_approx = [] time_exact = [] accuracy = [] for i in range(n_iter): # pick one query at random to study query time variability in LSHForest query = queries[rng.randint(0, n_queries)] t0 = time.time() exact_neighbors = nbrs.kneighbors(query, return_distance=False) time_exact.append(time.time() - t0) t0 = time.time() approx_neighbors = lshf.kneighbors(query, return_distance=False) time_approx.append(time.time() - t0) accuracy.append(np.in1d(approx_neighbors, exact_neighbors).mean()) average_time_exact = np.mean(time_exact) average_time_approx = np.mean(time_approx) speedup = np.array(time_exact) / np.array(time_approx) average_speedup = np.mean(speedup) mean_accuracy = np.mean(accuracy) std_accuracy = np.std(accuracy) print("Index size: %d, exact: %0.3fs, LSHF: %0.3fs, speedup: %0.1f, " "accuracy: %0.2f +/-%0.2f" % (n_samples, average_time_exact, average_time_approx, average_speedup, mean_accuracy, std_accuracy)) accuracies.append(mean_accuracy) std_accuracies.append(std_accuracy) average_times_exact.append(average_time_exact) average_times_approx.append(average_time_approx) std_times_approx.append(np.std(time_approx)) average_speedups.append(average_speedup) std_speedups.append(np.std(speedup)) # Plot average query time against n_samples plt.figure() plt.errorbar(n_samples_values, average_times_approx, yerr=std_times_approx, fmt='o-', c='r', label='LSHForest') plt.plot(n_samples_values, average_times_exact, c='b', label="NearestNeighbors(algorithm='brute', metric='cosine')") plt.legend(loc='upper left', fontsize='small') plt.ylim(0, None) plt.ylabel("Average query time in seconds") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Impact of index size on response time for first " "nearest neighbors queries") # Plot average query speedup versus index size plt.figure() plt.errorbar(n_samples_values, average_speedups, yerr=std_speedups, fmt='o-', c='r') plt.ylim(0, None) plt.ylabel("Average speedup") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Speedup of the approximate NN queries vs brute force") # Plot average precision versus index size plt.figure() plt.errorbar(n_samples_values, accuracies, std_accuracies, fmt='o-', c='c') plt.ylim(0, 1.1) plt.ylabel("precision@10") plt.xlabel("n_samples") plt.grid(which='both') plt.title("precision of 10-nearest-neighbors queries with index size") plt.show()
bsd-3-clause
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/groupby/aggregate/test_cython.py
2
6848
""" test cython .agg behavior """ import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, NaT, Series, Timedelta, Timestamp, bdate_range from pandas.core.groupby.groupby import DataError import pandas.util.testing as tm @pytest.mark.parametrize( "op_name", [ "count", "sum", "std", "var", "sem", "mean", pytest.param( "median", # ignore mean of empty slice # and all-NaN marks=[pytest.mark.filterwarnings("ignore::RuntimeWarning")], ), "prod", "min", "max", ], ) def test_cythonized_aggers(op_name): data = { "A": [0, 0, 0, 0, 1, 1, 1, 1, 1, 1.0, np.nan, np.nan], "B": ["A", "B"] * 6, "C": np.random.randn(12), } df = DataFrame(data) df.loc[2:10:2, "C"] = np.nan op = lambda x: getattr(x, op_name)() # single column grouped = df.drop(["B"], axis=1).groupby("A") exp = {cat: op(group["C"]) for cat, group in grouped} exp = DataFrame({"C": exp}) exp.index.name = "A" result = op(grouped) tm.assert_frame_equal(result, exp) # multiple columns grouped = df.groupby(["A", "B"]) expd = {} for (cat1, cat2), group in grouped: expd.setdefault(cat1, {})[cat2] = op(group["C"]) exp = DataFrame(expd).T.stack(dropna=False) exp.index.names = ["A", "B"] exp.name = "C" result = op(grouped)["C"] if op_name in ["sum", "prod"]: tm.assert_series_equal(result, exp) def test_cython_agg_boolean(): frame = DataFrame( { "a": np.random.randint(0, 5, 50), "b": np.random.randint(0, 2, 50).astype("bool"), } ) result = frame.groupby("a")["b"].mean() expected = frame.groupby("a")["b"].agg(np.mean) tm.assert_series_equal(result, expected) def test_cython_agg_nothing_to_agg(): frame = DataFrame({"a": np.random.randint(0, 5, 50), "b": ["foo", "bar"] * 25}) msg = "No numeric types to aggregate" with pytest.raises(DataError, match=msg): frame.groupby("a")["b"].mean() frame = DataFrame({"a": np.random.randint(0, 5, 50), "b": ["foo", "bar"] * 25}) with pytest.raises(DataError, match=msg): frame[["b"]].groupby(frame["a"]).mean() def test_cython_agg_nothing_to_agg_with_dates(): frame = DataFrame( { "a": np.random.randint(0, 5, 50), "b": ["foo", "bar"] * 25, "dates": pd.date_range("now", periods=50, freq="T"), } ) msg = "No numeric types to aggregate" with pytest.raises(DataError, match=msg): frame.groupby("b").dates.mean() def test_cython_agg_frame_columns(): # #2113 df = DataFrame({"x": [1, 2, 3], "y": [3, 4, 5]}) df.groupby(level=0, axis="columns").mean() df.groupby(level=0, axis="columns").mean() df.groupby(level=0, axis="columns").mean() df.groupby(level=0, axis="columns").mean() def test_cython_agg_return_dict(): # GH 16741 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "three", "two", "two", "one", "three"], "C": np.random.randn(8), "D": np.random.randn(8), } ) ts = df.groupby("A")["B"].agg(lambda x: x.value_counts().to_dict()) expected = Series( [{"two": 1, "one": 1, "three": 1}, {"two": 2, "one": 2, "three": 1}], index=Index(["bar", "foo"], name="A"), name="B", ) tm.assert_series_equal(ts, expected) def test_cython_fail_agg(): dr = bdate_range("1/1/2000", periods=50) ts = Series(["A", "B", "C", "D", "E"] * 10, index=dr) grouped = ts.groupby(lambda x: x.month) summed = grouped.sum() expected = grouped.agg(np.sum) tm.assert_series_equal(summed, expected) @pytest.mark.parametrize( "op, targop", [ ("mean", np.mean), ("median", np.median), ("var", np.var), ("add", np.sum), ("prod", np.prod), ("min", np.min), ("max", np.max), ("first", lambda x: x.iloc[0]), ("last", lambda x: x.iloc[-1]), ], ) def test__cython_agg_general(op, targop): df = DataFrame(np.random.randn(1000)) labels = np.random.randint(0, 50, size=1000).astype(float) result = df.groupby(labels)._cython_agg_general(op) expected = df.groupby(labels).agg(targop) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "op, targop", [ ("mean", np.mean), ("median", lambda x: np.median(x) if len(x) > 0 else np.nan), ("var", lambda x: np.var(x, ddof=1)), ("min", np.min), ("max", np.max), ], ) def test_cython_agg_empty_buckets(op, targop, observed): df = pd.DataFrame([11, 12, 13]) grps = range(0, 55, 5) # calling _cython_agg_general directly, instead of via the user API # which sets different values for min_count, so do that here. g = df.groupby(pd.cut(df[0], grps), observed=observed) result = g._cython_agg_general(op) g = df.groupby(pd.cut(df[0], grps), observed=observed) expected = g.agg(lambda x: targop(x)) tm.assert_frame_equal(result, expected) def test_cython_agg_empty_buckets_nanops(observed): # GH-18869 can't call nanops on empty groups, so hardcode expected # for these df = pd.DataFrame([11, 12, 13], columns=["a"]) grps = range(0, 25, 5) # add / sum result = df.groupby(pd.cut(df["a"], grps), observed=observed)._cython_agg_general( "add" ) intervals = pd.interval_range(0, 20, freq=5) expected = pd.DataFrame( {"a": [0, 0, 36, 0]}, index=pd.CategoricalIndex(intervals, name="a", ordered=True), ) if observed: expected = expected[expected.a != 0] tm.assert_frame_equal(result, expected) # prod result = df.groupby(pd.cut(df["a"], grps), observed=observed)._cython_agg_general( "prod" ) expected = pd.DataFrame( {"a": [1, 1, 1716, 1]}, index=pd.CategoricalIndex(intervals, name="a", ordered=True), ) if observed: expected = expected[expected.a != 1] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("op", ["first", "last", "max", "min"]) @pytest.mark.parametrize( "data", [Timestamp("2016-10-14 21:00:44.557"), Timedelta("17088 days 21:00:44.557")] ) def test_cython_with_timestamp_and_nat(op, data): # https://github.com/pandas-dev/pandas/issues/19526 df = DataFrame({"a": [0, 1], "b": [data, NaT]}) index = Index([0, 1], name="a") # We will group by a and test the cython aggregations expected = DataFrame({"b": [data, NaT]}, index=index) result = df.groupby("a").aggregate(op) tm.assert_frame_equal(expected, result)
apache-2.0
indigowhale33/Digit-Recognizer
mnist992.py
1
1289
# -*- coding: utf-8 -*- """ Created on Fri Apr 8 12:34:27 2016 @author: Steve Cho """ import pandas as pd df_wine= pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header = None) from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler X, y = df_wine.iloc[:,1:].values, df_wine.iloc[:,0].values X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, random_state=0) sc= StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) from sklearn.decomposition import PCA pca = PCA(n_components = len(X.T)) X_train_pca_sklearn = pca.fit_transform(X_train_std) variance_retained=0.9 cum_VE=0 i=1 while cum_VE < variance_retained: i=i+1 cum_VE = sum(pca.explained_variance_ratio_[0:i]) npcs=i print ("Use", npcs, "principal components to retain ", variance_retained*100, "% of the variance") pca = PCA(n_components = npcs) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors = 5, p=2, metric='minkowski') knn.fit(X_train_pca, y_train) y_pred = knn.predict(X_test_pca)
gpl-3.0
pford68/nupic.research
union_pooling/union_pooling/activation/excite_functions/excite_functions_all.py
2
3781
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import numpy import matplotlib.pyplot as plt from excite_function_base import ExciteFunctionBase class LogisticExciteFunction(ExciteFunctionBase): """ Implementation of a logistic activation function for activation updating. Specifically, the function has the following form: f(x) = (maxValue - minValue) / (1 + exp(-steepness * (x - xMidpoint) ) ) + minValue Note: The excitation rate is linear. The activation function is logistic. """ def __init__(self, xMidpoint=5, minValue=10, maxValue=20, steepness=1): """ @param xMidpoint: Controls where function output is half of 'maxValue,' i.e. f(xMidpoint) = maxValue / 2 @param minValue: Minimum value of the function @param maxValue: Controls the maximum value of the function's range @param steepness: Controls the steepness of the "middle" part of the curve where output values begin changing rapidly. Must be a non-zero value. """ assert steepness != 0 self._xMidpoint = xMidpoint self._maxValue = maxValue self._minValue = minValue self._steepness = steepness def excite(self, currentActivation, inputs): """ Increases current activation by amount. @param currentActivation (numpy array) Current activation levels for each cell @param inputs (numpy array) inputs for each cell """ currentActivation = self._minValue + (self._maxValue - self._minValue) / \ (1 + numpy.exp(-self._steepness * (inputs - self._xMidpoint))) return currentActivation def plot(self): """ plot the activation function """ plt.ion() plt.show() x = numpy.linspace(0, 15, 100) y = numpy.zeros(x.shape) y = self.excite(y, x) plt.plot(x, y) plt.xlabel('Input') plt.ylabel('Persistence') plt.title('Sigmoid Activation Function') class FixedExciteFunction(ExciteFunctionBase): """ Implementation of a simple fixed excite function The function reset the activation level to a fixed amount """ def __init__(self, targetExcLevel=10.0): """ """ self._targetExcLevel = targetExcLevel def excite(self, currentActivation, inputs): """ Increases current activation by a fixed amount. @param currentActivation (numpy array) Current activation levels for each cell @param inputs (numpy array) inputs for each cell """ currentActivation = self._targetExcLevel return currentActivation def plot(self): """ plot the activation function """ plt.ion() plt.show() x = numpy.linspace(0, 15, 100) y = numpy.zeros(x.shape) y = self.excite(y, x) plt.plot(x, y) plt.xlabel('Input') plt.ylabel('Persistence')
gpl-3.0
OshynSong/scikit-learn
examples/feature_selection/plot_feature_selection.py
249
2827
""" =============================== Univariate Feature Selection =============================== An example showing univariate feature selection. Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights. In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm from sklearn.feature_selection import SelectPercentile, f_classif ############################################################################### # import some data to play with # The iris dataset iris = datasets.load_iris() # Some noisy data not correlated E = np.random.uniform(0, 0.1, size=(len(iris.data), 20)) # Add the noisy data to the informative features X = np.hstack((iris.data, E)) y = iris.target ############################################################################### plt.figure(1) plt.clf() X_indices = np.arange(X.shape[-1]) ############################################################################### # Univariate feature selection with F-test for feature scoring # We use the default selection function: the 10% most significant features selector = SelectPercentile(f_classif, percentile=10) selector.fit(X, y) scores = -np.log10(selector.pvalues_) scores /= scores.max() plt.bar(X_indices - .45, scores, width=.2, label=r'Univariate score ($-Log(p_{value})$)', color='g') ############################################################################### # Compare to the weights of an SVM clf = svm.SVC(kernel='linear') clf.fit(X, y) svm_weights = (clf.coef_ ** 2).sum(axis=0) svm_weights /= svm_weights.max() plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight', color='r') clf_selected = svm.SVC(kernel='linear') clf_selected.fit(selector.transform(X), y) svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0) svm_weights_selected /= svm_weights_selected.max() plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected, width=.2, label='SVM weights after selection', color='b') plt.title("Comparing feature selection") plt.xlabel('Feature number') plt.yticks(()) plt.axis('tight') plt.legend(loc='upper right') plt.show()
bsd-3-clause
mblue9/tools-iuc
tools/vsnp/vsnp_add_zero_coverage.py
2
8655
#!/usr/bin/env python import argparse import multiprocessing import os import queue import re import shutil import pandas import pysam from Bio import SeqIO INPUT_BAM_DIR = 'input_bam_dir' INPUT_VCF_DIR = 'input_vcf_dir' OUTPUT_VCF_DIR = 'output_vcf_dir' OUTPUT_METRICS_DIR = 'output_metrics_dir' def get_base_file_name(file_path): base_file_name = os.path.basename(file_path) if base_file_name.find(".") > 0: # Eliminate the extension. return os.path.splitext(base_file_name)[0] elif base_file_name.endswith("_vcf"): # The "." character has likely # changed to an "_" character. return base_file_name.rstrip("_vcf") return base_file_name def get_coverage_and_snp_count(task_queue, reference, output_metrics, output_vcf, timeout): while True: try: tup = task_queue.get(block=True, timeout=timeout) except queue.Empty: break bam_file, vcf_file = tup # Create a coverage dictionary. coverage_dict = {} coverage_list = pysam.depth(bam_file, split_lines=True) for line in coverage_list: chrom, position, depth = line.split('\t') coverage_dict["%s-%s" % (chrom, position)] = depth # Convert it to a data frame. coverage_df = pandas.DataFrame.from_dict(coverage_dict, orient='index', columns=["depth"]) # Create a zero coverage dictionary. zero_dict = {} for record in SeqIO.parse(reference, "fasta"): chrom = record.id total_len = len(record.seq) for pos in list(range(1, total_len + 1)): zero_dict["%s-%s" % (str(chrom), str(pos))] = 0 # Convert it to a data frame with depth_x # and depth_y columns - index is NaN. zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"]) coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer') # depth_x "0" column no longer needed. coverage_df = coverage_df.drop(columns=['depth_x']) coverage_df = coverage_df.rename(columns={'depth_y': 'depth'}) # Covert the NaN to 0 coverage and get some metrics. coverage_df = coverage_df.fillna(0) coverage_df['depth'] = coverage_df['depth'].apply(int) total_length = len(coverage_df) average_coverage = coverage_df['depth'].mean() zero_df = coverage_df[coverage_df['depth'] == 0] total_zero_coverage = len(zero_df) total_coverage = total_length - total_zero_coverage genome_coverage = "{:.2%}".format(total_coverage / total_length) # Process the associated VCF input. column_names = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "Sample"] vcf_df = pandas.read_csv(vcf_file, sep='\t', header=None, names=column_names, comment='#') good_snp_count = len(vcf_df[(vcf_df['ALT'].str.len() == 1) & (vcf_df['REF'].str.len() == 1) & (vcf_df['QUAL'] > 150)]) base_file_name = get_base_file_name(vcf_file) if total_zero_coverage > 0: header_file = "%s_header.csv" % base_file_name with open(header_file, 'w') as outfile: with open(vcf_file) as infile: for line in infile: if re.search('^#', line): outfile.write("%s" % line) vcf_df_snp = vcf_df[vcf_df['REF'].str.len() == 1] vcf_df_snp = vcf_df_snp[vcf_df_snp['ALT'].str.len() == 1] vcf_df_snp['ABS_VALUE'] = vcf_df_snp['CHROM'].map(str) + "-" + vcf_df_snp['POS'].map(str) vcf_df_snp = vcf_df_snp.set_index('ABS_VALUE') cat_df = pandas.concat([vcf_df_snp, zero_df], axis=1, sort=False) cat_df = cat_df.drop(columns=['CHROM', 'POS', 'depth']) cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']] = cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']].fillna('.') cat_df['REF'] = cat_df['REF'].fillna('N') cat_df['FORMAT'] = cat_df['FORMAT'].fillna('GT') cat_df['Sample'] = cat_df['Sample'].fillna('./.') cat_df['temp'] = cat_df.index.str.rsplit('-', n=1) cat_df[['CHROM', 'POS']] = pandas.DataFrame(cat_df.temp.values.tolist(), index=cat_df.index) cat_df = cat_df[['CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', 'Sample']] cat_df['POS'] = cat_df['POS'].astype(int) cat_df = cat_df.sort_values(['CHROM', 'POS']) body_file = "%s_body.csv" % base_file_name cat_df.to_csv(body_file, sep='\t', header=False, index=False) if output_vcf is None: output_vcf_file = os.path.join(OUTPUT_VCF_DIR, "%s.vcf" % base_file_name) else: output_vcf_file = output_vcf with open(output_vcf_file, "w") as outfile: for cf in [header_file, body_file]: with open(cf, "r") as infile: for line in infile: outfile.write("%s" % line) else: if output_vcf is None: output_vcf_file = os.path.join(OUTPUT_VCF_DIR, "%s.vcf" % base_file_name) else: output_vcf_file = output_vcf shutil.copyfile(vcf_file, output_vcf_file) bam_metrics = [base_file_name, "", "%4f" % average_coverage, genome_coverage] vcf_metrics = [base_file_name, str(good_snp_count), "", ""] if output_metrics is None: output_metrics_file = os.path.join(OUTPUT_METRICS_DIR, "%s.tabular" % base_file_name) else: output_metrics_file = output_metrics metrics_columns = ["File", "Number of Good SNPs", "Average Coverage", "Genome Coverage"] with open(output_metrics_file, "w") as fh: fh.write("# %s\n" % "\t".join(metrics_columns)) fh.write("%s\n" % "\t".join(bam_metrics)) fh.write("%s\n" % "\t".join(vcf_metrics)) task_queue.task_done() def set_num_cpus(num_files, processes): num_cpus = int(multiprocessing.cpu_count()) if num_files < num_cpus and num_files < processes: return num_files if num_cpus < processes: half_cpus = int(num_cpus / 2) if num_files < half_cpus: return num_files return half_cpus return processes if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=False, default=None, help='Output metrics text file') parser.add_argument('--output_vcf', action='store', dest='output_vcf', required=False, default=None, help='Output VCF file') parser.add_argument('--reference', action='store', dest='reference', help='Reference dataset') parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting') args = parser.parse_args() # The assumption here is that the list of files # in both INPUT_BAM_DIR and INPUT_VCF_DIR are # equal in number and named such that they are # properly matched if the directories contain # more than 1 file (i.e., hopefully the bam file # names and vcf file names will be something like # Mbovis-01D6_* so they can be # sorted and properly # associated with each other). bam_files = [] for file_name in sorted(os.listdir(INPUT_BAM_DIR)): file_path = os.path.abspath(os.path.join(INPUT_BAM_DIR, file_name)) bam_files.append(file_path) vcf_files = [] for file_name in sorted(os.listdir(INPUT_VCF_DIR)): file_path = os.path.abspath(os.path.join(INPUT_VCF_DIR, file_name)) vcf_files.append(file_path) multiprocessing.set_start_method('spawn') queue1 = multiprocessing.JoinableQueue() num_files = len(bam_files) cpus = set_num_cpus(num_files, args.processes) # Set a timeout for get()s in the queue. timeout = 0.05 # Add each associated bam and vcf file pair to the queue. for i, bam_file in enumerate(bam_files): vcf_file = vcf_files[i] queue1.put((bam_file, vcf_file)) # Complete the get_coverage_and_snp_count task. processes = [multiprocessing.Process(target=get_coverage_and_snp_count, args=(queue1, args.reference, args.output_metrics, args.output_vcf, timeout, )) for _ in range(cpus)] for p in processes: p.start() for p in processes: p.join() queue1.join() if queue1.empty(): queue1.close() queue1.join_thread()
mit
almarklein/scikit-image
viewer_examples/plugins/watershed_demo.py
4
1276
import matplotlib.pyplot as plt from skimage import data from skimage import filter from skimage import morphology from skimage.viewer import ImageViewer from skimage.viewer.widgets import history from skimage.viewer.plugins.labelplugin import LabelPainter class OKCancelButtons(history.OKCancelButtons): def update_original_image(self): # OKCancelButtons updates the original image with the filtered image # by default. Override this method to update the overlay. self.plugin._show_watershed() self.plugin.close() class WatershedPlugin(LabelPainter): def help(self): helpstr = ("Watershed plugin", "----------------", "Use mouse to paint each region with a different label.", "Press OK to display segmented image.") return '\n'.join(helpstr) def _show_watershed(self): viewer = self.image_viewer edge_image = filter.sobel(viewer.image) labels = morphology.watershed(edge_image, self.paint_tool.overlay) viewer.ax.imshow(labels, cmap=plt.cm.jet, alpha=0.5) viewer.redraw() image = data.coins() plugin = WatershedPlugin() plugin += OKCancelButtons() viewer = ImageViewer(image) viewer += plugin viewer.show()
bsd-3-clause
sandipde/bokehplot
plot-server/main.py
1
4359
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from copy import copy from bokeh.core.properties import field from bokeh.io import curdoc from bokeh.layouts import layout,column,row from bokeh.models.layouts import HBox from bokeh.models import ( ColumnDataSource, HoverTool, SingleIntervalTicker, Slider, Button, Label, CategoricalColorMapper, ) from bokeh.models.widgets import Panel, Tabs from bokeh.models import ColumnDataSource, CustomJS, Rect,Spacer from bokeh.models import HoverTool,TapTool,FixedTicker,Circle from bokeh.models import BoxSelectTool, LassoSelectTool from bokeh.models.mappers import LinearColorMapper from bokeh.plotting import figure from bokeh.layouts import row, widgetbox from bokeh.models import Select from cosmo import create_plot #from data import process_data from os.path import dirname, join def selected_point(data,xcol,ycol,indx): xval=copy(data[indx,xcol]) yval=copy(data[indx,ycol]) return xval,yval def animate_update(): global indx,n indx = slider.value + 1 if indx > (n-1): indx = 0 slider.value = indx #def slider_update(attrname, old, new): # year = slider.value # label.text = str(year) # source.data = data[year] #slider = Slider(start=years[0], end=years[-1], value=years[0], step=1, title="Year") #def slider_callback2(src=datasrc,source=s2, window=None): def slider_update(attrname, old, new): global indx,s2 col_dict={"cv1":0,"cv2": 1,"index": 2,"energy": 3} indx = slider.value # label.text = str(indx) xval,yval=selected_point(colvar,col_dict[xcol.value],col_dict[ycol.value],indx) s = ColumnDataSource(data=dict(xs=[xval], ys=[yval])) s2.data=s.data def animate(): if button.label == '► Play': button.label = '❚❚ Pause' curdoc().add_periodic_callback(animate_update, 500) else: button.label = '► Play' curdoc().remove_periodic_callback(animate_update) def update(attr, old, new): global indx,s2 col_dict={"cv1":0,"cv2": 1,"index": 2,"energy": 3} p1,p2,slider = create_plot(colvar,col_dict[xcol.value],col_dict[ycol.value],col_dict[ccol.value],plt_name.value) xval,yval=selected_point(colvar,col_dict[xcol.value],col_dict[ycol.value],indx) s = ColumnDataSource(data=dict(xs=[xval], ys=[yval])) s2.data=s.data p1.circle('xs', 'ys', source=s2, fill_alpha=0.9, fill_color="blue",line_color='black',line_width=1, size=8,name="mycircle") button = Button(label='► Play', width=60) button.on_click(animate) lay.children[1] = row(p1,p2) datafile=join(dirname(__file__), 'data', 'MAPbI.dat') colvar=np.loadtxt(datafile) #dtype='float32') n=len(colvar) columns=["cv1","cv2","index","energy"] col_dict={"cv1":0,"cv2": 1,"index": 2,"energy": 3} xcol = Select(title='X-Axis', value='cv1', options=columns) xcol.on_change('value', update) ycol = Select(title='Y-Axis', value='cv2', options=columns) ycol.on_change('value', update) ccol = Select(title='Color', value='energy', options=columns) ccol.on_change('value', update) plt_name = Select(title='Palette', value='Magma256', options=["Magma256","Plasma256","Spectral6","Inferno256","Viridis256","Greys256"]) plt_name.on_change('value', update) xm=widgetbox(xcol,width=100) ym=widgetbox(ycol,width=100) cm=widgetbox(ccol,width=100) pm=widgetbox(plt_name,width=100) #controls = row(xcol, ycol, ccol, plt_name),width=600) controls = row(xm, ym, cm, pm) button = Button(label='► Play', width=60) button.on_click(animate) indx=0 xval,yval=selected_point(colvar,col_dict[xcol.value],col_dict[ycol.value],indx) s2 = ColumnDataSource(data=dict(xs=[xval], ys=[yval])) p1,p2,slider= create_plot(colvar,col_dict[xcol.value],col_dict[ycol.value],col_dict[ccol.value],plt_name.value) p1.circle('xs', 'ys', source=s2, fill_alpha=0.9, fill_color="blue",line_color='black',line_width=1, size=8,name="mycircle") #p1.circle('xs', 'ys', source=s2, fill_alpha=1, fill_color="black", size=10,name="mycircle") slider.on_change('value', slider_update) #plots=column(row(p1,p2),row(s,Spacer(width=20, height=30))) #,button) slide=widgetbox(slider,width=600) lay = layout([ [controls], [p1,p2], [slider, button], ], sizing_mode='fixed') curdoc().add_root(lay) curdoc().template_variables["js_files"] = ["plot-server/static/jmol/JSmol.min.js"] curdoc().title = "Sketchmap"
mit
yukke42/machine-learning
2/p30.py
1
2222
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() - 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() - 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) class Perceptron(object): def __init__(self, eta=0.01, n_iter=10): self.eta = eta self.n_iter = n_iter def fit(self, X, Y): """ paramater # X.shape = [n_samples, n_features] # Y.shape = [n_samples] return # object """ self.w_ = np.zeros(1 + X.shape[1]) self.errors_ = [] for _ in range(self.n_iter): errors = 0 for xi, target in zip(X, y): update = self.eta * (target - self.predict(xi)) self.w_[1:] += update * xi self.w_[0] += update errors += int(update != 0.0) self.errors_.append(errors) return self def net_input(self, X): return np.dot(X, self.w_[1:]) + self.w_[0] def predict(self, X): return np.where(self.net_input(X) >= 0.0, 1, -1) df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) y = df.iloc[0:150, 4].values y = np.where(y == 'Iris-setosa', -1, 1) X = df.iloc[0:150, [0,2]].values ppn = Perceptron(eta=0.01, n_iter=10) ppn.fit(X, y) plot_decision_regions(X, y, classifier=ppn) plt.xlabel('sepal lenght') plt.ylabel('petal lenght') plt.legend(loc='upper left') plt.show()
mit
mixturemodel-flow/tensorflow
tensorflow/contrib/timeseries/examples/predict_test.py
80
2487
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests that the TensorFlow parts of the prediction example run.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from os import path from tensorflow.contrib.timeseries.examples import predict from tensorflow.python.platform import test _MODULE_PATH = path.dirname(__file__) _DATA_FILE = path.join(_MODULE_PATH, "data/period_trend.csv") class PeriodTrendExampleTest(test.TestCase): def test_shapes_and_variance_structural(self): (times, observed, all_times, mean, upper_limit, lower_limit ) = predict.structural_ensemble_train_and_predict(_DATA_FILE) # Just check that plotting will probably be OK. We can't actually run the # plotting code since we don't want to pull in matplotlib as a dependency # for this test. self.assertAllEqual([500], times.shape) self.assertAllEqual([500], observed.shape) self.assertAllEqual([700], all_times.shape) self.assertAllEqual([700], mean.shape) self.assertAllEqual([700], upper_limit.shape) self.assertAllEqual([700], lower_limit.shape) # Check that variance hasn't blown up too much. This is a relatively good # indication that training was successful. self.assertLess(upper_limit[-1] - lower_limit[-1], 1.5 * (upper_limit[0] - lower_limit[0])) def test_ar(self): (times, observed, all_times, mean, upper_limit, lower_limit) = predict.ar_train_and_predict(_DATA_FILE) self.assertAllEqual(times.shape, observed.shape) self.assertAllEqual(all_times.shape, mean.shape) self.assertAllEqual(all_times.shape, upper_limit.shape) self.assertAllEqual(all_times.shape, lower_limit.shape) self.assertLess((upper_limit - lower_limit).mean(), 4.) if __name__ == "__main__": test.main()
apache-2.0
kveeramah/aDNA_GenoCaller
aDNA_GenoCaller.py
1
25225
#!/usr/bin/env python # -*- coding: ASCII -*- ###This program calls genotypes from bam files at positions/regions specified in a bed file while taking into account post mortem damage as estimate by MapDamage. ###Otherwise the algorithm is the same as GATK Unified Genotype for diploid calls ###This version of the program will take any genotype with a low quality heterozygote call (Q<30) and convert to the next best homozygote call ###Three files are created: ###An emit all vcf file noting the call for all base pairs in the bed file ###An vcf file with only those sites with evidence for at least one alternative allele and that passes a predetermined QUAL filter ###An haploid emit all vcf, that gives you the most likely base under a haploid model. If two or more basepairs are tied, the reported allele is randomly chosen. ###pysam and matplotlib need to be installed. ###to run type: ##aDNA_GenoCaller <indexed bamfile> <bed file> <reference genome> <5C-T mapdamage file> <3G-A mapdamage file> from sys import argv import pysam import math import numpy as np import string import numpy.ma as ma import random import matplotlib matplotlib.use('Agg') from matplotlib import rcParams import matplotlib.pyplot as plt from scipy.optimize import curve_fit from scipy.optimize import minimize from scipy.optimize import fmin from scipy.optimize import fminbound from scipy.optimize import curve_fit import time from random import randint filenamein=argv[1] filenameinB=argv[2] ref_file=argv[3] mapdamageCT=argv[4] mapdamageGA=argv[5] min_RD=1 MQ=15 BQ=15 GQ=30 QUALpass=30 theta=0.001 if filenamein[-4:] == '.bam': filenameout=string.split(filenamein,'.bam')[0] else: filenameout=filenamein[:] if '/' in filenamein: filenameout=string.split(filenameout,'/')[-1] plotfile=filenameout+'.'+filenameinB+'.aDNA.expMDfit_WB.pdf' MDfile=filenameout+'.'+filenameinB+'.aDNA.fitted_model_params_WB' filenameout1=filenameout+'.'+filenameinB+'.aDNA.emit_all.vcf' filenameout2=filenameout+'.'+filenameinB+'.aDNA.vcf' filenameout3=filenameout+'.'+filenameinB+'.aDNA.haploid.emit_all.vcf_like' def phred2prob(x): return 10.0**(-x/10.0) def prob2phred(x): return -10*math.log10(x) #exponential function def exp_fit(x,a,b,c): return a*np.exp(-x*b)+c #stretched exponential (weibell) function def weibull_fit(x,a,b,c): return a*np.exp(-(x**c)*b) #genotype called that incorporates damage for aDNA def geno_caller_10GT_aDNA(X): GL=np.zeros(10) #all 10 possible genotypes and order = AA,AC,AG,AT,CC,CG,CT,GG,GT,TT hap=np.zeros((len(X),4)) #all 4 haploid possibilities, A,C,G,T all_dic={} all_dic['A']=0 all_dic['C']=1 all_dic['G']=2 all_dic['T']=3 count=0 for g in range(len(X)): if all_dic.has_key(X[g][0])==False: continue err=phred2prob(X[g][1]) hap[g]=err/3.0 if X[g][0]=='A': hap[g][0]=1-err hap[g][2]=((1-X[g][3])*(err/3.0))+(X[g][3]*(1-err)) elif X[g][0]=='C': hap[g][1]= ((1-X[g][2])*(1-err))+(X[g][2]*(err/3.0)) elif X[g][0]=='G': hap[g][2]= ((1-X[g][3])*(1-err))+(X[g][3]*(err/3.0)) elif X[g][0]=='T': hap[g][3]=1-err hap[g][1]=((1-X[g][2])*(err/3.0))+(X[g][2]*(1-err)) GL[0]=GL[0]+math.log10(hap[g][0]) GL[1]=GL[1]+math.log10((hap[g][0]+hap[g][1])/2) GL[2]=GL[2]+math.log10((hap[g][0]+hap[g][2])/2) GL[3]=GL[3]+math.log10((hap[g][0]+hap[g][3])/2) GL[4]=GL[4]+math.log10(hap[g][1]) GL[5]=GL[5]+math.log10((hap[g][1]+hap[g][2])/2) GL[6]=GL[6]+math.log10((hap[g][1]+hap[g][3])/2) GL[7]=GL[7]+math.log10(hap[g][2]) GL[8]=GL[8]+math.log10((hap[g][2]+hap[g][3])/2) GL[9]=GL[9]+math.log10(hap[g][3]) count+=1 if count==0: GL.fill(-9) return GL #open up mapdamage files and put results in an array fileCT=open(mapdamageCT,'r') CTdata=fileCT.read() fileCT.close() CTdata=string.split(CTdata,'\n') if CTdata[-1]=='': del(CTdata[-1]) fileGA=open(mapdamageGA,'r') GAdata=fileGA.read() fileGA.close() GAdata=string.split(GAdata,'\n') if GAdata[-1]=='': del(GAdata[-1]) X_CT=[] X_GA=[] Y_CT=[] Y_GA=[] for g in range(1,len(CTdata)): k=string.split(CTdata[g],'\t') X_CT.append(float(k[0])) Y_CT.append(float(k[1])) k=string.split(GAdata[g],'\t') X_GA.append(float(k[0])) Y_GA.append(float(k[1])) X_CT=np.asarray(X_CT) Y_CT=np.asarray(Y_CT) X_GA=np.asarray(X_GA) Y_GA=np.asarray(Y_GA) try: #Perform curve fitting of MapDamage results to an exponential function print '\nFitting the following weibull model to the MapDamage data : a*exp(-(x^c)*b)' fitParams_CT = curve_fit(weibull_fit, X_CT, Y_CT) CTa=fitParams_CT[0][0] CTb=fitParams_CT[0][1] CTc=fitParams_CT[0][2] fitParams_GA = curve_fit(weibull_fit, X_GA, Y_GA) GAa=fitParams_GA[0][0] GAb=fitParams_GA[0][1] GAc=fitParams_GA[0][2] out='Fit the following weibull model to the MapDamage data : a*exp(-(x^c)*b)\n\n' out=out+'Fitted coefficients for CT changes:\na\t'+str(CTa)+'\nb\t'+str(CTb)+'\nc\t'+str(CTc)+'\n' out=out+'\nFitted coefficients for GA changes:\na\t'+str(GAa)+'\nb\t'+str(GAb)+'\nc\t'+str(GAc)+'\n' print '\n'+out #print coefficient inference to file fileMD=open(MDfile,'w') fileMD.write(out) fileMD.close() print '\nWrote fitted coefficients to '+MDfile #set up plot area rcParams['figure.figsize'] = 10, 6 plt.ylabel('Substitution Frequency', fontsize = 16) plt.xlabel('Read position', fontsize = 16) plt.xlim(0,26) #plot points and fitted curve plt.plot(X_CT,Y_CT,'ro') plt.plot(X_GA,Y_GA,'bo') plt.plot(X_CT,weibull_fit(X_CT, fitParams_CT[0][0], fitParams_CT[0][1], fitParams_CT[0][2]),'r',ms=10,linewidth=2.0,label='C>T') plt.plot(X_GA,weibull_fit(X_GA, fitParams_GA[0][0], fitParams_GA[0][1], fitParams_GA[0][2]),'b',ms=10,linewidth=2.0,label='G>A') plt.legend() # save plot to a file plt.savefig(plotfile, bbox_inches=0, dpi=600) plt.close() print '\nPlotted MapDamage curve fit to '+plotfile #Make a reference list to determine how much to adjust a particular quality score given it's read position (maxed at 300 here) CT_decay=[] GA_decay=[] for g in range(300): CTpoint=weibull_fit(g+1,CTa,CTb,CTc)-theta GApoint=weibull_fit(g+1,GAa,GAb,GAc)-theta if CTpoint<0.0: CTpoint=0.0 if GApoint<0.0: GApoint=0.0 CT_decay.append(CTpoint) GA_decay.append(GApoint) #in case weibull does not fit (occurs for low damage) use exponential fit except: #Perform curve fitting of MapDamage results to an exponential function print '\nCould not fit weibull' print '\nFitting the following exponential model to the MapDamage data : a*exp(-x*b)+c' fitParams_CT = curve_fit(exp_fit, X_CT, Y_CT) CTa=fitParams_CT[0][0] CTb=fitParams_CT[0][1] CTc=fitParams_CT[0][2] fitParams_GA = curve_fit(exp_fit, X_GA, Y_GA) GAa=fitParams_GA[0][0] GAb=fitParams_GA[0][1] GAc=fitParams_GA[0][2] out='Fit the following exponential model to the MapDamage data : a*exp(-x*b)+c\n\n' out=out+'Fitted coefficients for CT changes:\na\t'+str(CTa)+'\nb\t'+str(CTb)+'\nc\t'+str(CTc)+'\n' out=out+'\nFitted coefficients for GA changes:\na\t'+str(GAa)+'\nb\t'+str(GAb)+'\nc\t'+str(GAc)+'\n' print '\n'+out #print coefficient inference to file fileMD=open(MDfile,'w') fileMD.write(out) fileMD.close() print '\nWrote fitted coefficients to '+MDfile #set up plot area rcParams['figure.figsize'] = 10, 6 plt.ylabel('Substitution Frequency', fontsize = 16) plt.xlabel('Read position', fontsize = 16) plt.xlim(0,26) #plot points and fitted curve plt.plot(X_CT,Y_CT,'ro') plt.plot(X_GA,Y_GA,'bo') plt.plot(X_CT,exp_fit(X_CT, fitParams_CT[0][0], fitParams_CT[0][1], fitParams_CT[0][2]),'r',ms=10,linewidth=2.0,label='C>T') plt.plot(X_GA,exp_fit(X_GA, fitParams_GA[0][0], fitParams_GA[0][1], fitParams_GA[0][2]),'b',ms=10,linewidth=2.0,label='G>A') plt.legend() # save plot to a file plt.savefig(plotfile, bbox_inches=0, dpi=600) plt.close() print '\nPlotted MapDamage curve fit to '+plotfile #Make a reference list to determine how much to adjust a particular quality score given it's read position (maxed at 300 here) CT_decay=[] GA_decay=[] for g in range(300): CT_decay.append(exp_fit(g+1,CTa,CTb,CTc)-theta) GA_decay.append(exp_fit(g+1,GAa,GAb,GAc)-theta) ###open up reference file ref=pysam.FastaFile(ref_file) ###set up various look up dictionaries all_dic={} all_dic={} all_dic['A']=0 all_dic['C']=1 all_dic['G']=2 all_dic['T']=3 all_dic['N']=-99 all_dic[0]='A' all_dic[1]='C' all_dic[2]='G' all_dic[3]='T' all_dic[-9]='.' all_dic[-99]='N' GL_dic={} GL_dic['AA']=0 GL_dic['AC']=1 GL_dic['AG']=2 GL_dic['AT']=3 GL_dic['CC']=4 GL_dic['CG']=5 GL_dic['CT']=6 GL_dic['GG']=7 GL_dic['GT']=8 GL_dic['TT']=9 GL_dic[0]='AA' GL_dic[1]='AC' GL_dic[2]='AG' GL_dic[3]='AT' GL_dic[4]='CC' GL_dic[5]='CG' GL_dic[6]='CT' GL_dic[7]='GG' GL_dic[8]='GT' GL_dic[9]='TT' GL_dic[-9]='./.' homs=[0,4,7,9] alt_dic={} alt_dic[0]=[0,0] alt_dic[1]=[0,1] alt_dic[2]=[0,2] alt_dic[3]=[0,3] alt_dic[4]=[1,1] alt_dic[5]=[1,2] alt_dic[6]=[1,3] alt_dic[7]=[2,2] alt_dic[8]=[2,3] alt_dic[9]=[3,3] tri_dic={} tri_dic[1]='A,C' tri_dic[2]='A,G' tri_dic[3]='A,T' tri_dic[5]='C,G' tri_dic[6]='C,T' tri_dic[8]='G,T' LL0_map={} LL0_map[0]=[0] LL0_map[1]=[4] LL0_map[2]=[7] LL0_map[3]=[9] LL1_map={} LL1_map[0]=[1,2,3] LL1_map[1]=[1,5,6] LL1_map[2]=[2,5,8] LL1_map[3]=[3,6,8] LL2_map={} LL2_map[0]=[4,5,6,7,8,9] LL2_map[1]=[0,2,3,7,8,9] LL2_map[2]=[0,1,3,4,6,9] LL2_map[3]=[0,1,2,4,5,7] homs=[0,4,7,9] ###make a list of regions to be interogated file = open(filenameinB) data=file.read() data=string.split(data,'\n') file.close() if data[-1]=='': del(data[-1]) SNPdir={} SNPll={} SNPlist=[] count=0 for g in range(len(data)): k=string.split(data[g]) key=k[0]+'_'+k[1]+'_'+k[2] ## chromo=k[0] ## start=int(k[1]) ## end=int(k[2]) ## seq=ref.fetch(chromo,start,end) ## seq=seq.upper() SNPlist.append(key) SNPdir[key]=k ###open up bam file (must be indexed) samfile = pysam.AlignmentFile(filenamein, "rb") samp_name=samfile.header['RG'][0]['SM'] count=0 ###set up output files fileout=open(filenameout1,'w') fileout2=open(filenameout2,'w') fileout3=open(filenameout3,'w') ###set up output headers out1='##fileformat=VCFv4.1\n' out2='##fileformat=VCFv4.1\n' out3='##fileformat=Custom variant caller for_aDNA, emit all haploid\n' outA='##Caller_arguments=<MappingQuality_filter='+str(MQ)+',BaseQuality_filter='+str(BQ) outA=outA+',GenotypeQuality_filter='+str(GQ)+',minRD='+str(min_RD) outA=outA+',bam_in='+filenamein+',bedfile='+filenameinB outA=outA+',C>T_damagefile='+mapdamageCT outA=outA+',G>A_damagefile='+mapdamageGA+'>\n' outB='##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">\n' outB=outB+'##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">\n' outB=outB+'##INFO=<ID=MQ,Number=1,Type=Float,Description="mean Mapping Quality (not RMS)">\n' outB=outB+'##INFO=<ID=MQ0,Number=1,Type=Integer,Description="Total Mapping Quality Zero Reads">\n' outB=outB+'##INFO=<ID=SGC,Number=1,Type=Integer,Description="low GQ heterozygote switched to best homozygote">\n' outC='##Time created='+(time.strftime("%H:%M:%S"))+' '+(time.strftime("%d/%m/%Y"))+'\n' for i in range(len(ref.lengths)): outC=outC+'##contig=<ID='+ref.references[i]+',length='+str(ref.lengths[i])+'>\n' outC=outC+'##reference=file:'+ref_file+'\n' out_e='#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+samp_name+'\n' out_f='#CHROM\tPOS\tREF\tCALL\tBEST_PROB\tALL_PROB\tAD\n' fileout.write(out1+outA+outB+outC+out_e) fileout2.write(out2+outA+outB+outC+out_e) fileout3.write(out3+outA+outC+out_f) ###Precomputed prios for QUAL estimation theta_prior=[0,theta/1,theta/2] theta_prior[0]=1-sum(theta_prior) ###Start running through regions in the bed for gg in range(len(SNPlist)): print 'Calculating genotype likelihoods for locus '+str(gg+1)+' : '+SNPlist[gg] chromo=SNPdir[SNPlist[gg]][0] pos_start=int(SNPdir[SNPlist[gg]][1]) pos_end=int(SNPdir[SNPlist[gg]][2]) ###set up arrays to store results for a given bed entry (probably not to efficient for SNP data, more suited for long regions) seq_len=pos_end-pos_start GLs=np.zeros((seq_len,10),dtype='float32') ##Genotype likelihoods PLs=np.zeros((seq_len,10),dtype='float32') ##Phred-scale normalized likelihoods RDs=np.zeros((seq_len,4),dtype='int32') ##Read depth for each of the four bases GQs=np.zeros((seq_len),dtype='float64') ##Estimated genotype qualitues REFs=np.zeros((seq_len),dtype='int32') ##Reference allele index GTs=np.zeros((seq_len),dtype='int32') ##Genotype index [order is AA,AC,AG,AT,CC,CG,CT,GG,GT,TT] POS=np.zeros((seq_len),dtype='int32') ##1-based position ALTs=np.zeros((seq_len),dtype='int32') ##Alternate allele index. If trinucleotide, store as 10 QUALs=np.zeros((seq_len),dtype='float32') ##Bayesian quality score MQ0=np.zeros((seq_len),dtype='int32') ##number of reads with mapping 0 MQm=np.zeros((seq_len),dtype='float32') #mean mapping score SEG=np.zeros((seq_len),dtype='int32') #hom ref, het with ref, hom alt, het without ref (tri) SWGQ=np.zeros((seq_len),dtype='int32') #low GQhet switched to hom ref = 1 ###make a list of positions count=0 for ggg in range(pos_start,pos_end): POS[count]=ggg+1 count+=1 ###prepopulate arrays with -9s GTs.fill(-9) REFs.fill(-9) ALTs.fill(-9) SEG.fill(-9) ###Go base by base through each region in the bam file for pileupcolumn in samfile.pileup(chromo,pos_start,pos_end,truncate=True,stepper='all'): nucl=ref.fetch(chromo,pileupcolumn.pos,pileupcolumn.pos+1) ##grab reference sequence for region nucl=nucl.upper() var_list=[] ##a list to store read bases map_list=[] ##a list to store mapping qualities index=pileupcolumn.pos-pos_start ##tells us what position we are in for the arrays given the nucleotide position REFs[index]=all_dic[nucl] ##recrod the reference allele ###go read by read for each position for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip: ##ensure not an indel or duplicate map_list.append(pileupread.alignment.mapping_quality) ##record mapping quality of read if (pileupread.alignment.mapping_quality>=MQ) and (ord(pileupread.alignment.qual[pileupread.query_position])-33>=BQ) and (REFs[index]<>-99): ###Add base calls meeting the MQ and BQ filters var_list.append([pileupread.alignment.query_sequence[pileupread.query_position],ord(pileupread.alignment.qual[pileupread.query_position])-33,CT_decay[pileupread.query_position],GA_decay[len(pileupread.alignment.query_sequence)-1-pileupread.query_position]]) ###rescale qualities that are greater than 40 to a max of 40. for ggg in range(len(var_list)): if var_list[ggg][1]>40: var_list[ggg][1]=40 ###record read depth for each basetype if len(var_list)>0: all_list=list(zip(*var_list)[0]) RDs[index]=[all_list.count('A'),all_list.count('C'),all_list.count('G'),all_list.count('T')] ###work out MQ0 and mean mapping quality for the snp (not RMSE) MQ0[index]=map_list.count(0) try: MQm[index]=sum(map_list)/float(len(map_list)) except: MQm[index]=0.0 ###if minimum read depth is met, try calling the genotype if len(var_list)>=min_RD: GLs[index]=geno_caller_10GT_aDNA(var_list) ##ancient DNA aware calculation of genotype likelihoods GTs[index]=np.argmax(GLs[index]) ##record best genotype PLs[index]=(GLs[index]-np.max(GLs[index]))*-10 ###calculte Phred-scale values GQs[index]=np.msort(PLs[index])[1] ###record genotype quality ###if GQ is less than threshold and site is heterozygous, swith to best homozygous genotype if (alt_dic[GTs[index]][0]<>alt_dic[GTs[index]][1]) and (GQs[index]<GQ): GTs[index]=homs[np.argmax(GLs[index][homs])] SWGQ[index]=1 ###Work out basesian QUALity score ## LL_0=np.sum(10**GLs[index][LL0_map[REFs[index]]]) ## LL_1=np.sum(10**GLs[index][LL1_map[REFs[index]]]) ## LL_2=np.sum(10**GLs[index][LL2_map[REFs[index]]]) ## norconst1=sum([LL_0,LL_1,LL_2]) ###Depristo says this, but it really should be multiplied by the prior ## norconst2=sum([LL_0*theta_prior[0],LL_1*theta_prior[1],LL_2*theta_prior[2]]) ###Depristo says this, but it really should be multiplied by the prior ## ## Pr0=(theta_prior[0]*LL_0)/norconst2 ## Pr1=(theta_prior[1]*LL_1)/norconst2 ## Pr2=(theta_prior[2]*LL_2)/norconst2 ###this new version add constant to log likelihoods to avoid underflow LL_0=np.sum(10**(GLs[index][LL0_map[REFs[index]]]-np.max(GLs[index]))) ##total likelihood for q=0|X LL_1=np.sum(10**(GLs[index][LL1_map[REFs[index]]]-np.max(GLs[index]))) ##total likelihood for q=1|X, three different genotypes summed LL_2=np.sum(10**(GLs[index][LL2_map[REFs[index]]]-np.max(GLs[index]))) ##total likelihood for q=2|X, six different genotypes summed ###calculate normalizing constant for bayes formula ## norconst1=sum([LL_0,LL_1,LL_2]) ###Depristo says this, but it really should be multiplied by the prior norconst2=sum([LL_0*theta_prior[0],LL_1*theta_prior[1],LL_2*theta_prior[2]]) ###Depristo says this, but it really should be multiplied by the prior ###calculate posterio probabilities for q=0,1 and 2 Pr0=(theta_prior[0]*LL_0)/norconst2 Pr1=(theta_prior[1]*LL_1)/norconst2 Pr2=(theta_prior[2]*LL_2)/norconst2 ###work out QUAL. If Pr=0 is greatest, work out qual from probability for q not equalling 0, otherwise, work out from qual=0 if LL0_map[REFs[index]][0]==GTs[index]: try: QUALs[index]=-10*math.log10(1-Pr0) except: QUALs[index]=100.0 #add hoc solution to deal with extremely small ref homozygote probability SEG[index]=0 else: try: QUALs[index]=-10*math.log10(Pr0) except: QUALs[index]=1000.0 #add hoc solution to deal with extremely small ref homozygote probability ###Work out what the reference allele is, and if there is in fact a trinucleotide to if REFs[index]==alt_dic[GTs[index]][0]: ##homo,alt heterozygote ALTs[index]=alt_dic[GTs[index]][1] SEG[index]=1 elif REFs[index]==alt_dic[GTs[index]][1]: ##homo,alt heterozygote ALTs[index]=alt_dic[GTs[index]][0] SEG[index]=1 elif alt_dic[GTs[index]][0]==alt_dic[GTs[index]][1]: #homozygote alternate ALTs[index]=alt_dic[GTs[index]][0] SEG[index]=2 else: #must be trinucleotide ALTs[index]=10 SEG[index]=3 ###start writing calls to vcf file for ggg in range(len(GLs)): LQ=0 ##indicator for a low quality site out=chromo+'\t'+str(POS[ggg])+'\t.\t'+all_dic[REFs[ggg]]+'\t' if ALTs[ggg]<10: out=out+all_dic[ALTs[ggg]] #write none or single alternate allele else: out=out+tri_dic[GTs[ggg]] #write trinucleotide alleles if SEG[ggg]<>-9: ###this sites was callable, even if QUAL was low out=out+'\t'+str(round(QUALs[ggg],2))+'\t' ###indicate whether site had low QUAL score or not if QUALs[ggg]>=QUALpass: out=out+'PASS\t' LQ=1 else: out=out+'low_quality\t' ###Info tag information, alternate allele count, frequency, as well as mapping qualities if SEG[ggg]==0: out=out+'AC=0;AF=0.0;MQ='+str(round(MQm[ggg],2))+';MQ0='+str(MQ0[ggg]) elif SEG[ggg]==1: out=out+'AC=1;AF=0.5;MQ='+str(round(MQm[ggg],2))+';MQ0='+str(MQ0[ggg]) elif SEG[ggg]==2: out=out+'AC=2;AF=1.0;MQ='+str(round(MQm[ggg],2))+';MQ0='+str(MQ0[ggg]) elif SEG[ggg]==3: out=out+'AC=1,1;AF=0.5,0.5;MQ='+str(round(MQm[ggg],2))+';MQ0='+str(MQ0[ggg]) ###Make a note that heterozygote call was converted to homozygous call if SWGQ[ggg]==1: out=out+';SGC='+GL_dic[np.argmax(GLs[ggg])] if SEG[ggg]==0: #site is homozygous reference, just note, GT,DP and GQ out=out+'\tGT:DP:GQ:PL\t0/0:'+str(RDs[ggg][REFs[ggg]])+':' if GQs[ggg]>99: out=out+'99:' else: out=out+str(int(round(GQs[ggg])))+':' ##output all 10 PL values. Note the order is not the same as GATK for gggg in range(len(PLs[ggg])): out=out+str(int(round(PLs[ggg][gggg])))+',' out=out[:-1]+'\n' else: #Site is heterozygous so note more information out=out+'\tGT:AD:DP:GQ:PL\t' if SEG[ggg]<3: #there is only one alternate allele if SEG[ggg]==1: out=out+'0/1:' elif SEG[ggg]==2: out=out+'1/1:' out=out+str(RDs[ggg][REFs[ggg]])+','+str(RDs[ggg][ALTs[ggg]])+':'+str(np.sum(RDs[ggg]))+':' else: #there are two alternate alleles out=out+'1/2:' out=out+str(RDs[ggg][REFs[ggg]])+','+str(RDs[ggg][alt_dic[GTs[ggg]][0]])+','+str(RDs[ggg][alt_dic[GTs[ggg]][1]])+':'+str(np.sum(RDs[ggg]))+':' ##cap reported GQ score to 99 if GQs[ggg]>99: out=out+'99:' else: out=out+str(int(round(GQs[ggg])))+':' ##output all 10 PL values. Note the order is not the same as GATK for gggg in range(len(PLs[ggg])): out=out+str(int(round(PLs[ggg][gggg])))+',' out=out[:-1]+'\n' else: ###Site had not data, i.e. usable read depth 0 out=out+'\t.\t.\t.\t.\t./.\n' fileout.write(out) ##write to emit all if (SEG[ggg]>=1) and (LQ==1): fileout2.write(out) ##write to variable only vcf that passes QUAL threshold ###bayesian best haploid call out_h=chromo+'\t'+str(POS[ggg])+'\t'+all_dic[REFs[ggg]]+'\t' if SEG[ggg]>=0: ###Use GLs for homozygous genotypes to calculate probablity of A,C,G,T. Reference unaware, so prior probability of a particular base is equal to the other three bases norm_const3=np.sum(10**(GLs[ggg][homs]-np.max(GLs[ggg][homs]))*0.25) post=(10**(GLs[ggg][homs]-np.max(GLs[ggg][homs]))*0.25)/norm_const3 ##this section checks if the highest posterior is unique or found for multiple bases max_val=np.max(post) matches=[] post_str='' for gggg in range(len(post)): if post[gggg]==max_val: matches.append(gggg) post_str=post_str+str(round(post[gggg],3))+',' ##if max val is 0.25, there is not information at this site, so set as N if max_val<=0.25: out_h=out_h+'N\t0.25\t0.25,0.25,0.25,0.25' else: if len(matches)==1: ##get the base with the highest LL out_h=out_h+all_dic[matches[0]]+'\t'+str(round(post[matches[0]],3))+'\t'+post_str[:-1] else: rand_allele=randint(0,len(matches)-1) ##if two or more bases are tied for best likelihood, randomly choose one out_h=out_h+all_dic[matches[rand_allele]]+'\t'+str(round(post[matches[rand_allele]],3))+'\t'+post_str[:-1] out_h=out_h+'\t'+str(RDs[ggg][0])+','+str(RDs[ggg][1])+','+str(RDs[ggg][2])+','+str(RDs[ggg][3])+'\n' else: out_h=out_h+'N\t0.25\t0.25,0.25,0.25,0.25\t0,0,0,0\n' fileout3.write(out_h) fileout.close() fileout2.close() fileout3.close()
gpl-3.0
djgagne/scikit-learn
sklearn/datasets/tests/test_base.py
205
5878
import os import shutil import tempfile import warnings import nose import numpy from pickle import loads from pickle import dumps from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_boston from sklearn.datasets.base import Bunch from sklearn.externals.six import b, u from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises DATA_HOME = tempfile.mkdtemp(prefix="scikit_learn_data_home_test_") LOAD_FILES_ROOT = tempfile.mkdtemp(prefix="scikit_learn_load_files_test_") TEST_CATEGORY_DIR1 = "" TEST_CATEGORY_DIR2 = "" def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" for path in [DATA_HOME, LOAD_FILES_ROOT]: _remove_dir(path) def setup_load_files(): global TEST_CATEGORY_DIR1 global TEST_CATEGORY_DIR2 TEST_CATEGORY_DIR1 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) TEST_CATEGORY_DIR2 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) sample_file = tempfile.NamedTemporaryFile(dir=TEST_CATEGORY_DIR1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() def teardown_load_files(): _remove_dir(TEST_CATEGORY_DIR1) _remove_dir(TEST_CATEGORY_DIR2) def test_data_home(): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=DATA_HOME) assert_equal(data_home, DATA_HOME) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=DATA_HOME) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_default_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_w_categories_desc_and_encoding(): category = os.path.abspath(TEST_CATEGORY_DIR1).split('/').pop() res = load_files(LOAD_FILES_ROOT, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_wo_load_content(): res = load_files(LOAD_FILES_ROOT, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): have_PIL = True try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: have_PIL = False if have_PIL: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert_equal(bunch_from_pkl['x'], bunch_from_pkl.x)
bsd-3-clause
christobal54/aei-grad-school
bin/ebv-scales-growth-hist.py
1
3965
#!/usr/bin/python ##### # plots distributions of growth EBV variables ##### import aei import gdal import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap as lsc from matplotlib.colors import ColorConverter as cc from scipy.stats import gaussian_kde # set base directory for files base = '/home/cba/Downloads/scale-figures/' # file to read file = base + 'CR-GROWTH-stack4.tif' # set the output file ofile = base + 'CR-histograms.tif' # band names names = ['TreeCover', 'NIRv', 'Temperature', 'Insolation', 'CloudCover'] titles = ['Tree Cover (%)', 'NIRv (unitless)', 'Temperature (C)', 'Solar Insolation (kWh / m2)', 'Annual Cloud Cover (%)'] cor_titles = ['Tree Cover\n(%)', 'NIRv\n(unitless)', 'Temperature\n(C)', 'Solar Insolation\n(kWh / m2)', 'Annual Cloud Cover (%)'] # create color maps for each plot tree_cmap = lsc.from_list('tree_cmap', [(0, cc.to_rgba('#cc78a7')), (1, cc.to_rgba('#06de37'))]) nirv_cmap = lsc.from_list('nirv_cmap', [(0, cc.to_rgba('#e74726')), (1, cc.to_rgba('#5db3e5'))]) temp_cmap = lsc.from_list('temp_cmap', [(0, cc.to_rgba('#0773b3')), (1, cc.to_rgba('#f1e545'))]) insl_cmap = lsc.from_list('insl_cmap', [(0, cc.to_rgba('#0d0887')), (0.5, cc.to_rgba('#da5b69')), (1, cc.to_rgba('#f0f921'))]) cmap = [tree_cmap, nirv_cmap, temp_cmap, insl_cmap] # read the data reference ref = gdal.Open(file) ndval = 0 data = ref.ReadAsArray() # get the no data locations gd = np.where(data[0,:,:] != ndval) # loop through each band and plot a density distribution plt.figure(1) counter = 0 for i in [3,0,1,2]: # subset to a 1d array band_data = data[i,gd[0], gd[1]] # find min/max for plot bounds xmin = np.percentile(band_data, 2) xmax = np.percentile(band_data, 98) # create ticks to plot xticks = np.around(np.arange(0,1.25, 0.25) * (xmax - xmin) + xmin, 2) # set custom covariance to smooth peaks covar = 0.5 dns = gaussian_kde(band_data) if i == 2: dns.covariance_factor = lambda : covar dns._compute_covariance() # set xscale to plot npts = 100 xs = np.linspace(xmin, xmax, npts) # create a normalizing function for color filling norm = matplotlib.colors.Normalize(vmin=xmin, vmax=xmax) # set a vertical structure for this plot format plt.subplot(411 + counter) # calculate the lines to plot ydata = dns(xs) # plot the function plt.plot(xs, dns(xs), color = 'black', lw = 3) plt.xlabel(titles[i]) plt.yticks([], []) plt.xticks(xticks) plt.ylabel('%') # add the fill point by point for j in range(npts-1): plt.fill_between([xs[j], xs[j+1]], [ydata[j], ydata[j+1]], color = cmap[i](norm(xs[j]))) counter += 1 # save the final figure plt.tight_layout() plt.savefig(ofile, dpi = 300) # calculate correlation coefficients between variables cor = np.corrcoef(data[0:4, gd[0], gd[1]]) arr = data[0:4, gd[0], gd[1]] # create heat maps using hexbin to plot correlations between each variable ctable = 'plasma' #ctable = 'copper' stanford_cmap = temp_cmap = lsc.from_list('stanford_cmap', [(0, cc.to_rgba("#000000")), (1, cc.to_rgba("#8C1515"))]) plt.figure(2) # set up the plots to use #plots = [[0,0], [0,1], [0,2], [0,3], [1,1], [1,2], [1,3], [2,2], [2,3], [3,3]] plots = [[0,1], [0,2], [0,3], [1,2], [1,3], [2,3]] for plot in plots: #plt.subplot(441) #plt.subplot(4, 4, 1 + plot[0] + (plot[1] * 4)) plt.subplot(3, 3, 1 + plot[0] + ((plot[1]-1) * 3)) plt.hexbin(arr[plot[0]], arr[plot[1]], gridsize = 20, cmap = ctable, alpha = 0.95, linewidths = 0, bins = 'log') # label the correlation plt.title("pearson's r: {:0.2f}".format(cor[plot[0], plot[1]])) # label the axes if plot[0] == 0: plt.ylabel(cor_titles[plot[1]]) if plot[1] == 3: plt.xlabel(cor_titles[plot[0]])
mit
vybstat/scikit-learn
examples/covariance/plot_robust_vs_empirical_covariance.py
248
6359
r""" ======================================= Robust vs Empirical covariance estimate ======================================= The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set. Minimum Covariance Determinant Estimator ---------------------------------------- The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples} - n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples} + n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]_. Evaluation ---------- In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets: - The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the data set - The robust MCD, that has a low error provided :math:`n_\text{samples} > 5n_\text{features}` - The mean and the empirical covariance of the observations that are known to be good ones. This can be considered as a "perfect" MCD estimation, so one can trust our implementation by comparing to this case. References ---------- .. [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. .. [2] Johanna Hardin, David M Rocke. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. .. [3] Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size / 5 + 1)], err_cov_emp_full.mean(1)[:(x_size / 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size / 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size / 5):(x_size / 2 - 1)], err_cov_emp_full.mean(1)[(x_size / 5):(x_size / 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
bsd-3-clause
YihaoLu/statsmodels
docs/sphinxext/numpy_ext/docscrape_sphinx.py
62
7703
import re, inspect, textwrap, pydoc import sphinx from docscrape import NumpyDocString, FunctionDoc, ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param,param_type,desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc,8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::', ' :toctree:', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "="*maxlen_0 + " " + "="*maxlen_1 + " " + "="*10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
katstalk/android_external_chromium_org
chrome/test/nacl_test_injection/buildbot_chrome_nacl_stage.py
26
11131
#!/usr/bin/python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Do all the steps required to build and test against nacl.""" import optparse import os.path import re import shutil import subprocess import sys import find_chrome # Copied from buildbot/buildbot_lib.py def TryToCleanContents(path, file_name_filter=lambda fn: True): """ Remove the contents of a directory without touching the directory itself. Ignores all failures. """ if os.path.exists(path): for fn in os.listdir(path): TryToCleanPath(os.path.join(path, fn), file_name_filter) # Copied from buildbot/buildbot_lib.py def TryToCleanPath(path, file_name_filter=lambda fn: True): """ Removes a file or directory. Ignores all failures. """ if os.path.exists(path): if file_name_filter(path): print 'Trying to remove %s' % path if os.path.isdir(path): shutil.rmtree(path, ignore_errors=True) else: try: os.remove(path) except Exception: pass else: print 'Skipping %s' % path # TODO(ncbray): this is somewhat unsafe. We should fix the underlying problem. def CleanTempDir(): # Only delete files and directories like: # a) C:\temp\83C4.tmp # b) /tmp/.org.chromium.Chromium.EQrEzl file_name_re = re.compile( r'[\\/]([0-9a-fA-F]+\.tmp|\.org\.chrom\w+\.Chrom\w+\..+)$') file_name_filter = lambda fn: file_name_re.search(fn) is not None path = os.environ.get('TMP', os.environ.get('TEMP', '/tmp')) if len(path) >= 4 and os.path.isdir(path): print print "Cleaning out the temp directory." print TryToCleanContents(path, file_name_filter) else: print print "Cannot find temp directory, not cleaning it." print def RunCommand(cmd, cwd, env): sys.stdout.write('\nRunning %s\n\n' % ' '.join(cmd)) sys.stdout.flush() retcode = subprocess.call(cmd, cwd=cwd, env=env) if retcode != 0: sys.stdout.write('\nFailed: %s\n\n' % ' '.join(cmd)) sys.exit(retcode) def RunTests(name, cmd, nacl_dir, env): sys.stdout.write('\n\nBuilding files needed for %s testing...\n\n' % name) RunCommand(cmd + ['do_not_run_tests=1', '-j8'], nacl_dir, env) sys.stdout.write('\n\nRunning %s tests...\n\n' % name) RunCommand(cmd, nacl_dir, env) def BuildAndTest(options): # Refuse to run under cygwin. if sys.platform == 'cygwin': raise Exception('I do not work under cygwin, sorry.') # By default, use the version of Python is being used to run this script. python = sys.executable if sys.platform == 'darwin': # Mac 10.5 bots tend to use a particularlly old version of Python, look for # a newer version. macpython27 = '/Library/Frameworks/Python.framework/Versions/2.7/bin/python' if os.path.exists(macpython27): python = macpython27 script_dir = os.path.dirname(os.path.abspath(__file__)) src_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir))) nacl_dir = os.path.join(src_dir, 'native_client') # Decide platform specifics. if options.browser_path: chrome_filename = options.browser_path else: chrome_filename = find_chrome.FindChrome(src_dir, [options.mode]) if chrome_filename is None: raise Exception('Cannot find a chome binary - specify one with ' '--browser_path?') env = dict(os.environ) if sys.platform in ['win32', 'cygwin']: if options.bits == 64: bits = 64 elif options.bits == 32: bits = 32 elif '64' in os.environ.get('PROCESSOR_ARCHITECTURE', '') or \ '64' in os.environ.get('PROCESSOR_ARCHITEW6432', ''): bits = 64 else: bits = 32 msvs_path = ';'.join([ r'c:\Program Files\Microsoft Visual Studio 9.0\VC', r'c:\Program Files (x86)\Microsoft Visual Studio 9.0\VC', r'c:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools', r'c:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\Tools', r'c:\Program Files\Microsoft Visual Studio 8\VC', r'c:\Program Files (x86)\Microsoft Visual Studio 8\VC', r'c:\Program Files\Microsoft Visual Studio 8\Common7\Tools', r'c:\Program Files (x86)\Microsoft Visual Studio 8\Common7\Tools', ]) env['PATH'] += ';' + msvs_path scons = [python, 'scons.py'] elif sys.platform == 'darwin': if options.bits == 64: bits = 64 elif options.bits == 32: bits = 32 else: p = subprocess.Popen(['file', chrome_filename], stdout=subprocess.PIPE) (p_stdout, _) = p.communicate() assert p.returncode == 0 if p_stdout.find('executable x86_64') >= 0: bits = 64 else: bits = 32 scons = [python, 'scons.py'] else: p = subprocess.Popen( 'uname -m | ' 'sed -e "s/i.86/ia32/;s/x86_64/x64/;s/amd64/x64/;s/arm.*/arm/"', shell=True, stdout=subprocess.PIPE) (p_stdout, _) = p.communicate() assert p.returncode == 0 if options.bits == 64: bits = 64 elif options.bits == 32: bits = 32 elif p_stdout.find('64') >= 0: bits = 64 else: bits = 32 # xvfb-run has a 2-second overhead per invocation, so it is cheaper to wrap # the entire build step rather than each test (browser_headless=1). # We also need to make sure that there are at least 24 bits per pixel. # https://code.google.com/p/chromium/issues/detail?id=316687 scons = [ 'xvfb-run', '--auto-servernum', '--server-args', '-screen 0 1024x768x24', python, 'scons.py', ] if options.jobs > 1: scons.append('-j%d' % options.jobs) scons.append('disable_tests=%s' % options.disable_tests) if options.buildbot is not None: scons.append('buildbot=%s' % (options.buildbot,)) # Clean the output of the previous build. # Incremental builds can get wedged in weird ways, so we're trading speed # for reliability. shutil.rmtree(os.path.join(nacl_dir, 'scons-out'), True) # check that the HOST (not target) is 64bit # this is emulating what msvs_env.bat is doing if '64' in os.environ.get('PROCESSOR_ARCHITECTURE', '') or \ '64' in os.environ.get('PROCESSOR_ARCHITEW6432', ''): # 64bit HOST env['VS90COMNTOOLS'] = ('c:\\Program Files (x86)\\' 'Microsoft Visual Studio 9.0\\Common7\\Tools\\') env['VS80COMNTOOLS'] = ('c:\\Program Files (x86)\\' 'Microsoft Visual Studio 8.0\\Common7\\Tools\\') else: # 32bit HOST env['VS90COMNTOOLS'] = ('c:\\Program Files\\Microsoft Visual Studio 9.0\\' 'Common7\\Tools\\') env['VS80COMNTOOLS'] = ('c:\\Program Files\\Microsoft Visual Studio 8.0\\' 'Common7\\Tools\\') # Run nacl/chrome integration tests. # Note that we have to add nacl_irt_test to --mode in order to get # inbrowser_test_runner to run. # TODO(mseaborn): Change it so that inbrowser_test_runner is not a # special case. cmd = scons + ['--verbose', '-k', 'platform=x86-%d' % bits, '--mode=opt-host,nacl,nacl_irt_test', 'chrome_browser_path=%s' % chrome_filename, ] if not options.integration_bot and not options.morenacl_bot: cmd.append('disable_flaky_tests=1') cmd.append('chrome_browser_tests') # Propagate path to JSON output if present. # Note that RunCommand calls sys.exit on errors, so potential errors # from one command won't be overwritten by another one. Overwriting # a successful results file with either success or failure is fine. if options.json_build_results_output_file: cmd.append('json_build_results_output_file=%s' % options.json_build_results_output_file) # Download the toolchain(s). RunCommand([python, os.path.join(nacl_dir, 'build', 'download_toolchains.py'), '--no-arm-trusted', '--no-pnacl', 'TOOL_REVISIONS'], nacl_dir, os.environ) CleanTempDir() if options.enable_newlib: RunTests('nacl-newlib', cmd, nacl_dir, env) if options.enable_glibc: RunTests('nacl-glibc', cmd + ['--nacl_glibc'], nacl_dir, env) def MakeCommandLineParser(): parser = optparse.OptionParser() parser.add_option('-m', '--mode', dest='mode', default='Debug', help='Debug/Release mode') parser.add_option('-j', dest='jobs', default=1, type='int', help='Number of parallel jobs') parser.add_option('--enable_newlib', dest='enable_newlib', default=-1, type='int', help='Run newlib tests?') parser.add_option('--enable_glibc', dest='enable_glibc', default=-1, type='int', help='Run glibc tests?') parser.add_option('--json_build_results_output_file', help='Path to a JSON file for machine-readable output.') # Deprecated, but passed to us by a script in the Chrome repo. # Replaced by --enable_glibc=0 parser.add_option('--disable_glibc', dest='disable_glibc', action='store_true', default=False, help='Do not test using glibc.') parser.add_option('--disable_tests', dest='disable_tests', type='string', default='', help='Comma-separated list of tests to omit') builder_name = os.environ.get('BUILDBOT_BUILDERNAME', '') is_integration_bot = 'nacl-chrome' in builder_name parser.add_option('--integration_bot', dest='integration_bot', type='int', default=int(is_integration_bot), help='Is this an integration bot?') is_morenacl_bot = ( 'More NaCl' in builder_name or 'naclmore' in builder_name) parser.add_option('--morenacl_bot', dest='morenacl_bot', type='int', default=int(is_morenacl_bot), help='Is this a morenacl bot?') # Not used on the bots, but handy for running the script manually. parser.add_option('--bits', dest='bits', action='store', type='int', default=None, help='32/64') parser.add_option('--browser_path', dest='browser_path', action='store', type='string', default=None, help='Path to the chrome browser.') parser.add_option('--buildbot', dest='buildbot', action='store', type='string', default=None, help='Value passed to scons as buildbot= option.') return parser def Main(): parser = MakeCommandLineParser() options, args = parser.parse_args() if options.integration_bot and options.morenacl_bot: parser.error('ERROR: cannot be both an integration bot and a morenacl bot') # Set defaults for enabling newlib. if options.enable_newlib == -1: options.enable_newlib = 1 # Set defaults for enabling glibc. if options.enable_glibc == -1: if options.integration_bot or options.morenacl_bot: options.enable_glibc = 1 else: options.enable_glibc = 0 if args: parser.error('ERROR: invalid argument') BuildAndTest(options) if __name__ == '__main__': Main()
bsd-3-clause
endolith/scikit-image
doc/examples/segmentation/plot_rag.py
25
2139
""" ======================= Region Adjacency Graphs ======================= This example demonstrates the use of the `merge_nodes` function of a Region Adjacency Graph (RAG). The `RAG` class represents a undirected weighted graph which inherits from `networkx.graph` class. When a new node is formed by merging two nodes, the edge weight of all the edges incident on the resulting node can be updated by a user defined function `weight_func`. The default behaviour is to use the smaller edge weight in case of a conflict. The example below also shows how to use a custom function to select the larger weight instead. """ from skimage.future.graph import rag import networkx as nx from matplotlib import pyplot as plt import numpy as np def max_edge(g, src, dst, n): """Callback to handle merging nodes by choosing maximum weight. Returns either the weight between (`src`, `n`) or (`dst`, `n`) in `g` or the maximum of the two when both exist. Parameters ---------- g : RAG The graph under consideration. src, dst : int The vertices in `g` to be merged. n : int A neighbor of `src` or `dst` or both. Returns ------- weight : float The weight between (`src`, `n`) or (`dst`, `n`) in `g` or the maximum of the two when both exist. """ w1 = g[n].get(src, {'weight': -np.inf})['weight'] w2 = g[n].get(dst, {'weight': -np.inf})['weight'] return max(w1, w2) def display(g, title): """Displays a graph with the given title.""" pos = nx.circular_layout(g) plt.figure() plt.title(title) nx.draw(g, pos) nx.draw_networkx_edge_labels(g, pos, font_size=20) g = rag.RAG() g.add_edge(1, 2, weight=10) g.add_edge(2, 3, weight=20) g.add_edge(3, 4, weight=30) g.add_edge(4, 1, weight=40) g.add_edge(1, 3, weight=50) # Assigning dummy labels. for n in g.nodes(): g.node[n]['labels'] = [n] gc = g.copy() display(g, "Original Graph") g.merge_nodes(1, 3) display(g, "Merged with default (min)") gc.merge_nodes(1, 3, weight_func=max_edge, in_place=False) display(gc, "Merged with max without in_place") plt.show()
bsd-3-clause
genehughes/trading-with-python
nautilus/nautilus.py
77
5403
''' Created on 26 dec. 2011 Copyright: Jev Kuznetsov License: BSD ''' from PyQt4.QtCore import * from PyQt4.QtGui import * from ib.ext.Contract import Contract from ib.opt import ibConnection from ib.ext.Order import Order import tradingWithPython.lib.logger as logger from tradingWithPython.lib.eventSystem import Sender, ExampleListener import tradingWithPython.lib.qtpandas as qtpandas import numpy as np import pandas priceTicks = {1:'bid',2:'ask',4:'last',6:'high',7:'low',9:'close', 14:'open'} class PriceListener(qtpandas.DataFrameModel): def __init__(self): super(PriceListener,self).__init__() self._header = ['position','bid','ask','last'] def addSymbol(self,symbol): data = dict(zip(self._header,[0,np.nan,np.nan,np.nan])) row = pandas.DataFrame(data, index = pandas.Index([symbol])) self.df = self.df.append(row[self._header]) # append data and set correct column order def priceHandler(self,sender,event,msg=None): if msg['symbol'] not in self.df.index: self.addSymbol(msg['symbol']) if msg['type'] in self._header: self.df.ix[msg['symbol'],msg['type']] = msg['price'] self.signalUpdate() #print self.df class Broker(Sender): def __init__(self, name = "broker"): super(Broker,self).__init__() self.name = name self.log = logger.getLogger(self.name) self.log.debug('Initializing broker. Pandas version={0}'.format(pandas.__version__)) self.contracts = {} # a dict to keep track of subscribed contracts self._id2symbol = {} # id-> symbol dict self.tws = None self._nextId = 1 # tws subscription id self.nextValidOrderId = None def connect(self): """ connect to tws """ self.tws = ibConnection() # tws interface self.tws.registerAll(self._defaultHandler) self.tws.register(self._nextValidIdHandler,'NextValidId') self.log.debug('Connecting to tws') self.tws.connect() self.tws.reqAccountUpdates(True,'') self.tws.register(self._priceHandler,'TickPrice') def subscribeStk(self,symbol, secType='STK', exchange='SMART',currency='USD'): ''' subscribe to stock data ''' self.log.debug('Subscribing to '+symbol) c = Contract() c.m_symbol = symbol c.m_secType = secType c.m_exchange = exchange c.m_currency = currency subId = self._nextId self._nextId += 1 self.tws.reqMktData(subId,c,'',False) self._id2symbol[subId] = c.m_symbol self.contracts[symbol]=c def disconnect(self): self.tws.disconnect() #------event handlers-------------------- def _defaultHandler(self,msg): ''' default message handler ''' #print msg.typeName if msg.typeName == 'Error': self.log.error(msg) def _nextValidIdHandler(self,msg): self.nextValidOrderId = msg.orderId self.log.debug( 'Next valid order id:{0}'.format(self.nextValidOrderId)) def _priceHandler(self,msg): #translate to meaningful messages message = {'symbol':self._id2symbol[msg.tickerId], 'price':msg.price, 'type':priceTicks[msg.field]} self.dispatch('price',message) #-----------------GUI elements------------------------- class TableView(QTableView): """ extended table view """ def __init__(self,name='TableView1', parent=None): super(TableView,self).__init__(parent) self.name = name self.setSelectionBehavior(QAbstractItemView.SelectRows) def contextMenuEvent(self, event): menu = QMenu(self) Action = menu.addAction("print selected rows") Action.triggered.connect(self.printName) menu.exec_(event.globalPos()) def printName(self): print "Action triggered from " + self.name print 'Selected :' for idx in self.selectionModel().selectedRows(): print self.model().df.ix[idx.row(),:] class Form(QDialog): def __init__(self,parent=None): super(Form,self).__init__(parent) self.broker = Broker() self.price = PriceListener() self.broker.connect() symbols = ['SPY','XLE','QQQ','VXX','XIV'] for symbol in symbols: self.broker.subscribeStk(symbol) self.broker.register(self.price.priceHandler, 'price') widget = TableView(parent=self) widget.setModel(self.price) widget.horizontalHeader().setResizeMode(QHeaderView.Stretch) layout = QVBoxLayout() layout.addWidget(widget) self.setLayout(layout) def __del__(self): print 'Disconnecting.' self.broker.disconnect() if __name__=="__main__": print "Running nautilus" import sys app = QApplication(sys.argv) form = Form() form.show() app.exec_() print "All done."
bsd-3-clause
ua-snap/downscale
snap_scripts/epscor_sc/testing_deltadownscale_deficiency_tasmin_tasmax_epscor_sc_CLIMtest.py
1
7419
# SLICE YEARS AND CROP TO THE BASE EXTENT OF AKCAN IN WGS84 PCLL def transform_from_latlon( lat, lon ): ''' simple way to make an affine transform from lats and lons coords ''' from affine import Affine lat = np.asarray( lat ) lon = np.asarray( lon ) trans = Affine.translation(lon[0], lat[0]) scale = Affine.scale(lon[1] - lon[0], lat[1] - lat[0]) return trans * scale if __name__ == '__main__': import matplotlib matplotlib.use( 'agg' ) from matplotlib import pyplot as plt import os, rasterio from rasterio import crs import xarray as xr import numpy as np import pandas as pd import geopandas as gpd filelist = [ '/workspace/Shared/Tech_Projects/EPSCoR_Southcentral/project_data/cmip5/prepped/IPSL-CM5A-LR/rcp85/tasmin/tasmin_IPSL-CM5A-LR_rcp85_r1i1p1_2006_2100.nc', '/workspace/Shared/Tech_Projects/EPSCoR_Southcentral/project_data/cmip5/prepped/IPSL-CM5A-LR/rcp85/tasmax/tasmax_IPSL-CM5A-LR_rcp85_r1i1p1_2006_2100.nc', '/workspace/Shared/Tech_Projects/EPSCoR_Southcentral/project_data/cmip5/prepped/IPSL-CM5A-LR/rcp85/tas/tas_IPSL-CM5A-LR_rcp85_r1i1p1_2006_2100.nc' ] historicals = [ '/workspace/Shared/Tech_Projects/EPSCoR_Southcentral/project_data/cmip5/prepped/IPSL-CM5A-LR/historical/tasmin/tasmin_IPSL-CM5A-LR_historical_r1i1p1_1860_2005.nc', '/workspace/Shared/Tech_Projects/EPSCoR_Southcentral/project_data/cmip5/prepped/IPSL-CM5A-LR/historical/tasmax/tasmax_IPSL-CM5A-LR_historical_r1i1p1_1860_2005.nc', '/workspace/Shared/Tech_Projects/EPSCoR_Southcentral/project_data/cmip5/prepped/IPSL-CM5A-LR/historical/tas/tas_IPSL-CM5A-LR_historical_r1i1p1_1860_2005.nc' ] variables = ['tasmin', 'tasmax', 'tas'] output_path = '/workspace/Shared/Tech_Projects/EPSCoR_Southcentral/project_data/downscaled_test_ipsl/IPSL-CM5A-LR_raw/rcp85' begin = '2096' end = '2096' model = 'IPSL-CM5A-LR' scenario = 'rcp85' figsize = (16,9) # pacific-centered reference system 4326 pacific = "+proj=longlat +ellps=WGS84 +pm=-180 +datum=WGS84 +no_defs" shp_fn = '/workspace/Shared/Tech_Projects/EPSCoR_Southcentral/project_data/SCTC_studyarea/Kenai_StudyArea.shp' shp = gpd.read_file( shp_fn ) shp_pacific = shp.to_crs( pacific ) bounds = shp_pacific.bounds raw_dict = {} anom_dict = {} for variable, fn, fn_hist in zip( variables, filelist, historicals ): print( 'running: {}'.format( variable ) ) ds = xr.open_dataset( fn ) ds = ds[ variable ].sel( time=slice( begin, end ) ) ds = ds - 273.15 time_suffix = [ t.strftime('%m_%Y') for t in ds.time.to_pandas() ] # get the historicals for climatology ds_hist = xr.open_dataset( fn_hist ) ds_hist = ds_hist[ variable ].sel( time=slice( '01-1961', '12-1990' ) ) ds_hist = ds_hist - 273.15 climatology = ds_hist.groupby( 'time.month' ).mean( axis=0 ) # create anomalies anomalies = ds.groupby( 'time.month' ) - climatology count, height, width = climatology.shape affine = transform_from_latlon( ds.lat, ds.lon ) # can we window the data here? # this will involve generating a window object using rasterio and extracting using slicing. meta = { 'crs':crs.from_string( pacific ), 'affine':affine, 'dtype':'float64', 'driver':'GTiff', 'height': height, 'width': width, 'count':count } # write out the climatlogies # # # # CLIMATOLOGY OUTPUT #out_fn = '' out_fn = '/workspace/Shared/Tech_Projects/EPSCoR_Southcentral/project_data/downscaled_test_ipsl/IPSL-CM5A-LR/'+ variable +'_IPSL-CM5A-LR_rcp85_clim.tif' with rasterio.open( out_fn, 'w', **meta ) as rst: window = rst.window( *bounds.as_matrix().ravel().tolist() ) rst.write( climatology.data ) # read it back from window new_affine = rst.window_transform( window ) raw_arr = rst.read( window=window ) # same for anom arr rst.write( anomalies ) clim_arr = rst.read( window=window ) out_fn = '' with rasterio.open( out_fn, 'w', **meta ) as rst: window = rst.window( *bounds.as_matrix().ravel().tolist() ) rst.write( ds.data ) # read it back from window new_affine = rst.window_transform( window ) raw_arr = rst.read( window=window ) # same for anom arr rst.write( anomalies ) anom_arr = rst.read( window=window ) rst = None count, height, width = raw_arr.shape meta.update( height=height, width=width, affine=new_affine, driver='GTiff' ) # write out raw arr out_fn = os.path.join( output_path, '{}_IPSL_CM5A_raw_data_{}_epscor_sc_{}_{}.tif'.format( variable,'rcp85',begin, end )) dirname = os.path.dirname( out_fn ) if not os.path.exists( dirname ): os.makedirs( dirname ) with rasterio.open( out_fn, 'w', **meta ) as out: out.write( raw_arr ) # write out anom_arr out_fn = os.path.join( output_path, '{}_IPSL_CM5A_raw_anom_data_{}_epscor_sc_{}_{}.tif'.format( variable,'rcp85',begin, end )) dirname = os.path.dirname( out_fn ) if not os.path.exists( dirname ): os.makedirs( dirname ) with rasterio.open( out_fn, 'w', **meta ) as out: out.write( anom_arr ) raw_dict[ variable ] = raw_arr.mean( axis=(1,2) ) anom_dict[ variable ] = anom_arr.mean( axis=(1,2) ) # plot the above data in groups showing the raw values and the df_raw = pd.DataFrame( raw_dict ) df_anom = pd.DataFrame( anom_dict ) col_list = ['tasmax', 'tas', 'tasmin'] df_raw = df_raw[ col_list ] df_raw.index = pd.date_range('2096', '2097', freq='M') df_anom = df_anom[ col_list ] df_anom.index = pd.date_range('2096', '2097', freq='M') # RAW FIRST # now plot the dataframe if begin == end: title = 'EPSCoR SC AOI Temp Mean {} {} {}'.format( model, scenario, begin ) else: title = 'EPSCoR SC AOI Temp Mean {} {} {} - {}'.format( model, scenario, begin, end ) if 'tas' in variables: colors = ['red', 'black', 'blue' ] else: colors = [ 'blue', 'black' ] ax = df_raw.plot( kind='line', title=title, figsize=figsize, color=colors ) output_dir = os.path.join( output_path, 'test_min_max_issue' ) if not os.path.exists( output_dir ): os.makedirs( output_dir ) out_metric_fn = 'temps' if 'pr' in variables: out_metric_fn = 'prec' if begin == end: output_filename = os.path.join( output_dir,'mean_{}_epscor_sc_{}_{}_{}.png'.format( out_metric_fn, model, scenario, begin ) ) else: output_filename = os.path.join( output_dir,'mean_{}_epscor_sc_{}_{}_{}_{}.png'.format( out_metric_fn, model, scenario, begin, end ) ) plt.savefig( output_filename, dpi=700 ) plt.close() # ANOM NEXT # now plot the dataframe if begin == end: title = 'EPSCoR SC AOI Temp Mean Anomalies {} {} {}'.format( model, scenario, begin ) else: title = 'EPSCoR SC AOI Temp Mean Anomalies {} {} {} - {}'.format( model, scenario, begin, end ) if 'tas' in variables: colors = ['red', 'black', 'blue' ] else: colors = [ 'blue', 'black' ] ax = df_anom.plot( kind='line', title=title, figsize=figsize, color=colors ) output_dir = os.path.join( output_path, 'test_min_max_issue' ) if not os.path.exists( output_dir ): os.makedirs( output_dir ) # now plot the dataframe out_metric_fn = 'temps' if 'pr' in variables: out_metric_fn = 'prec' if begin == end: output_filename = os.path.join( output_dir,'mean_{}_epscor_sc_anom_{}_{}_{}.png'.format( out_metric_fn, model, scenario, begin ) ) else: output_filename = os.path.join( output_dir,'mean_{}_epscor_sc_anom_{}_{}_{}_{}.png'.format( out_metric_fn, model, scenario, begin, end ) ) plt.savefig( output_filename, dpi=700 ) plt.close()
mit
brodoll/sms-tools
lectures/06-Harmonic-model/plots-code/f0Twm-piano.py
19
1261
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackman import math import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF import stft as STFT import sineModel as SM import harmonicModel as HM (fs, x) = UF.wavread('../../../sounds/piano.wav') w = np.blackman(1501) N = 2048 t = -90 minf0 = 100 maxf0 = 300 f0et = 1 maxnpeaksTwm = 4 H = 128 x1 = x[1.5*fs:1.8*fs] plt.figure(1, figsize=(9, 7)) mX, pX = STFT.stftAnal(x, fs, w, N, H) f0 = HM.f0Detection(x, fs, w, N, H, t, minf0, maxf0, f0et) f0 = UF.cleaningTrack(f0, 5) yf0 = UF.sinewaveSynth(f0, .8, H, fs) f0[f0==0] = np.nan maxplotfreq = 800.0 numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:N*maxplotfreq/fs+1])) plt.autoscale(tight=True) plt.plot(frmTime, f0, linewidth=2, color='k') plt.autoscale(tight=True) plt.title('mX + f0 (piano.wav), TWM') plt.tight_layout() plt.savefig('f0Twm-piano.png') UF.wavwrite(yf0, fs, 'f0Twm-piano.wav') plt.show()
agpl-3.0
smcantab/pele
pele/gui/graph_viewer.py
5
13967
import networkx as nx import numpy as np from PyQt4 import QtCore, QtGui from PyQt4.QtGui import QWidget from pele.gui.ui.graph_view_ui import Ui_Form from pele.utils.events import Signal from pele.utils.disconnectivity_graph import database2graph from pele.gui.ui.dgraph_dlg import minimum_energy_path, check_thermodynamic_info from pele.rates import compute_committors try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: _fromUtf8 = lambda s: s class ShowPathAction(QtGui.QAction): """this action will show the minimum energy path to minimum1""" def __init__(self, minimum1, minimum2, parent=None): QtGui.QAction.__init__(self, "show path to %d" % minimum2._id, parent) self.parent = parent self.minimum1 = minimum1 self.minimum2 = minimum2 self.triggered.connect(self.__call__) def __call__(self, val): self.parent._show_minimum_energy_path(self.minimum1, self.minimum2) class ColorByCommittorAction(QtGui.QAction): """this action will color the graph by committor probabilities""" def __init__(self, minimum1, minimum2, parent=None): QtGui.QAction.__init__(self, "color by committor %d" % minimum2._id, parent) self.parent = parent self.minimum1 = minimum1 self.minimum2 = minimum2 self.triggered.connect(self.__call__) def __call__(self, val): dialog = QtGui.QInputDialog(parent=self.parent) dialog.setLabelText("Temperature for committor calculation") dialog.setInputMode(2) dialog.setDoubleValue(1.) dialog.exec_() if dialog.result(): T = dialog.doubleValue() self.parent._color_by_committor(self.minimum1, self.minimum2, T=T) class GraphViewWidget(QWidget): def __init__(self, database=None, parent=None, app=None, minima=None): QWidget.__init__(self, parent=parent) self.ui = Ui_Form() self.ui.setupUi(self) self.database = database self.minima = minima self.app = app self.canvas = self.ui.canvas.canvas self.axes = self.canvas.axes self.fig = self.canvas.fig self.on_minima_picked = Signal() self.from_minima = set() self.positions = dict() self.boundary_nodes = set() self._selected_minimum = None self._mpl_cid = None self._minima_color_value = None def on_btn_show_all_clicked(self, clicked=None): if clicked is None: return self.show_all() def _reset_minima_lists(self): self.from_minima.clear() self.positions.clear() self.boundary_nodes.clear() self._minima_color_value = None def show_all(self): self.ui.label_status.setText("showing full graph") self._reset_minima_lists() self.make_graph() self.show_graph() def make_graph_from(self, minima, cutoff=1): """rebuild the graph using only the passed minima and those in self.from_minima""" # cutoff += 1 self.from_minima.update(minima) minima = self.from_minima nodes = set() # make a graph from the minima in self.minima and nearest neighbors outer_layer = set() for m in minima: nodesdir = nx.single_source_shortest_path(self.full_graph, m, cutoff=cutoff) for n, path in nodesdir.iteritems(): d = len(path) - 1 if d < cutoff: # n is close to m, remove it from outer layer outer_layer.discard(n) elif d == cutoff: if n not in nodes: # n is in the outer layer of m and not near any other nodes. outer_layer.add(n) nodes.update(nodesdir) self.boundary_nodes = outer_layer self.graph = self.full_graph.subgraph(nodes) # remove nodes not in the graph from the dictionary positions difference = set(self.positions.viewkeys()) difference.difference_update(self.graph.nodes()) for m in difference: self.positions.pop(m) print "boundary nodes", len(self.boundary_nodes), self.graph.number_of_nodes() def make_graph(self, database=None, minima=None): """build an nx graph from the database""" if database is None: database = self.database if minima is None: minima = self.minima print "making graph", database, minima # get the graph object, eliminate nodes without edges graph = database2graph(database) if minima is not None: to_remove = set(graph.nodes()).difference(set(minima)) graph.remove_nodes_from(to_remove) self.full_graph = graph print graph.number_of_nodes() degree = graph.degree() nodes = [n for n, nedges in degree.items() if nedges > 0] self.graph = graph.subgraph(nodes) print self.graph.number_of_nodes(), self.graph.number_of_edges() def _show_minimum_energy_path(self, m1, m2): """show only the minima in the path from m1 to m2""" self._reset_minima_lists() path = minimum_energy_path(self.full_graph, m1, m2) self.make_graph_from(path) print "there are", len(path), "minima in the path from", m1._id, "to", m2._id status = "showing path from minimum %d to %d" % (m1._id, m2._id) self.ui.label_status.setText(status) self.show_graph() def _color_by_committor(self, min1, min2, T=1.): print "coloring by the probability that a trajectory gets to minimum", min1._id, "before", min2._id # get a list of transition states in the same cluster as min1 edges = nx.bfs_edges(self.graph, min1) transition_states = [ self.graph.get_edge_data(u, v)["ts"] for u, v in edges ] if not check_thermodynamic_info(transition_states): raise Exception("The thermodynamic information is not yet computed. Use the main menu of the gui under 'Actions'") A = [min2] B = [min1] committors = compute_committors(transition_states, A, B, T=T) self._minima_color_value = committors def get_committor(m): try: return committors[m] except KeyError: return 1. self._minima_color_value = get_committor self.show_graph() def _on_right_click_minimum(self, minimum): """create a menu with the list of available actions""" print "you right clicked on minimum with id", minimum._id, "and energy", minimum.energy menu = QtGui.QMenu("list menu", parent=self) if self._selected_minimum is not None: menu.addAction(ShowPathAction(minimum, self._selected_minimum, parent=self)) menu.addAction(ColorByCommittorAction(minimum, self._selected_minimum, parent=self)) menu.exec_(QtGui.QCursor.pos()) def _on_left_click_minimum(self, min1): self._selected_minimum = min1 print "you clicked on minimum with id", min1._id, "and energy", min1.energy self.on_minima_picked(min1) if self.ui.checkBox_zoom.isChecked(): self.make_graph_from([min1]) text = "showing graph near minima " for m in self.from_minima: text += " " + str(m._id) self.ui.label_status.setText(text) self.show_graph() def _on_mpl_pick_event(self, event): """matplotlib event called when a minimum is clicked on""" artists = {self._boundary_points, self._minima_points} if event.artist not in artists: # print "you clicked on something other than a node" return True ind = event.ind[0] if event.artist == self._minima_points: min1 = self._mimima_layout_list[ind][0] else: min1 = self._boundary_layout_list[ind][0] if event.mouseevent.button == 3: self._on_right_click_minimum(min1) else: self._on_left_click_minimum(min1) def show_graph(self, fixed=False, show_ids=True): """draw the graph""" import pylab as pl if not hasattr(self, "graph"): self.make_graph() print "showing graph" # I need to clear the figure and make a new axes object because # I can't find any other way to remove old colorbars self.fig.clf() self.axes = self.fig.add_subplot(111) ax = self.axes ax.clear() graph = self.graph # get the layout of the nodes from networkx oldlayout = self.positions layout = nx.spring_layout(graph, pos=oldlayout) self.positions.update(layout) layout = self.positions # draw the edges as lines from matplotlib.collections import LineCollection linecollection = LineCollection([(layout[u], layout[v]) for u, v in graph.edges() if u not in self.boundary_nodes and v not in self.boundary_nodes]) linecollection.set_color('k') ax.add_collection(linecollection) if self.boundary_nodes: # draw the edges connecting the boundary nodes as thin lines from matplotlib.collections import LineCollection linecollection = LineCollection([(layout[u], layout[v]) for u, v in graph.edges() if u in self.boundary_nodes or v in self.boundary_nodes]) linecollection.set_color('k') linecollection.set_linewidth(0.2) ax.add_collection(linecollection) markersize = 8**2 # draw the interior nodes interior_nodes = set(graph.nodes()) - self.boundary_nodes layoutlist = filter(lambda nxy: nxy[0] in interior_nodes, layout.items()) xypos = np.array([xy for n, xy in layoutlist]) if self._minima_color_value is None: #color the nodes by energy color_values = [m.energy for m, xy in layoutlist] else: color_values = [self._minima_color_value(m) for m, xy in layoutlist] #plot the nodes self._minima_points = ax.scatter(xypos[:,0], xypos[:,1], picker=5, s=markersize, c=color_values, cmap=pl.cm.autumn) self._mimima_layout_list = layoutlist # if not hasattr(self, "colorbar"): self.colorbar = self.fig.colorbar(self._minima_points) self._boundary_points = None self._boundary_list = [] if self.boundary_nodes: # draw the boundary nodes as empty circles with thin lines boundary_layout_list = filter(lambda nxy: nxy[0] in self.boundary_nodes, layout.items()) xypos = np.array([xy for n, xy in boundary_layout_list]) #plot the nodes # marker = mpl.markers.MarkerStyle("o", fillstyle="none") # marker.set_fillstyle("none") self._boundary_points = ax.scatter(xypos[:,0], xypos[:,1], picker=5, s=markersize, marker="o", facecolors="none", linewidths=.5) self._boundary_layout_list = boundary_layout_list #scale the axes so the points are not cutoff xmax = max((x for x,y in layout.itervalues() )) xmin = min((x for x,y in layout.itervalues() )) ymax = max((y for x,y in layout.itervalues() )) ymin = min((y for x,y in layout.itervalues() )) dx = (xmax - xmin)*.1 dy = (ymax - ymin)*.1 ax.set_xlim([xmin-dx, xmax+dx]) ax.set_ylim([ymin-dy, ymax+dy]) if self._mpl_cid is not None: self.canvas.mpl_disconnect(self._mpl_cid) self._mpl_cid = None self._mpl_cid = self.fig.canvas.mpl_connect('pick_event', self._on_mpl_pick_event) self.canvas.draw() self.app.processEvents() class GraphViewDialog(QtGui.QMainWindow): def __init__(self, database, parent=None, app=None): QtGui.QMainWindow.__init__(self, parent=parent) self.setWindowTitle("Connectivity graph") self.widget = GraphViewWidget(database=database, parent=self, app=app) self.setCentralWidget(self.widget) self.app = app def start(self): self.widget.show_all() def test(): from OpenGL.GLUT import glutInit import sys import pylab as pl app = QtGui.QApplication(sys.argv) from pele.systems import LJCluster pl.ion() natoms = 13 system = LJCluster(natoms) system.params.double_ended_connect.local_connect_params.NEBparams.iter_density = 5. dbname = "lj%dtest.db" % (natoms,) db = system.create_database(dbname) #get some minima if False: bh = system.get_basinhopping(database=db) bh.run(10) minima = db.minima() else: x1, e1 = system.get_random_minimized_configuration()[:2] x2, e2 = system.get_random_minimized_configuration()[:2] min1 = db.addMinimum(e1, x1) min2 = db.addMinimum(e2, x2) minima = [min1, min2] # connect some of the minima nmax = min(3, len(minima)) m1 = minima[0] for m2 in minima[1:nmax]: connect = system.get_double_ended_connect(m1, m2, db) connect.connect() if True: from pele.thermodynamics import get_thermodynamic_information get_thermodynamic_information(system, db, nproc=4) wnd = GraphViewDialog(db, app=app) # decrunner = DECRunner(system, db, min1, min2, outstream=wnd.textEdit_writer) glutInit() wnd.show() from PyQt4.QtCore import QTimer def start(): wnd.start() QTimer.singleShot(10, start) sys.exit(app.exec_()) if __name__ == "__main__": test()
gpl-3.0
iiSeymour/pandashells
pandashells/lib/plot_lib.py
1
3883
#! /usr/bin/env python import sys import re from dateutil.parser import parse import matplotlib as mpl import pylab as pl import seaborn as sns import mpld3 def show(args): # if figure saving requested if hasattr(args, 'savefig') and args.savefig: # save html if requested rex_html = re.compile('.*?\.html$') if rex_html.match(args.savefig[0]): fig = pl.gcf() html = mpld3.fig_to_html(fig) with open(args.savefig[0], 'w') as outfile: outfile.write(html) return # save image types pl.savefig(args.savefig[0]) # otherwise show to screen else: pl.show() def set_plot_styling(args): # set up seaborn context sns.set(context=args.plot_context[0], style=args.plot_theme[0], palette=args.plot_palette[0]) # modify seaborn slightly to look good in interactive backends if 'white' not in args.plot_theme[0]: mpl.rcParams['figure.facecolor'] = 'white' mpl.rcParams['figure.edgecolor'] = 'white' def set_limits(args): if args.xlim: pl.gca().set_xlim(args.xlim) if args.ylim: pl.gca().set_ylim(args.ylim) def set_scale(args): if args.xlog: pl.gca().set_xscale('log') if args.ylog: pl.gca().set_yscale('log') def set_labels_title(args): if args.title: pl.title(args.title[0]) if args.xlabel: pl.xlabel(args.xlabel[0]) if args.ylabel: pl.ylabel(args.ylabel[0]) def set_legend(args): if args.legend: loc = args.legend[0] rex = re.compile(r'\d') m = rex.match(loc) if m: loc = int(loc) else: loc = 'best' pl.legend(loc=loc) def set_grid(args): if args.no_grid: pl.grid(False) else: pl.grid(True) def ensure_xy_args(args): x_is_none = args.x is None y_is_none = args.y is None if (x_is_none ^ y_is_none): msg = "\nIf either x or y is specified, both must be specified\n\n" sys.stderr.write(msg) sys.exit(1) def ensure_xy_omission_state(args, df): if (len(df.columns) != 2) and (args.x is None): msg = "\n\n x and y can be ommited only " msg += "for 2-column data-frames\n" sys.stderr.write(msg) sys.exit(1) def autofill_plot_fields_and_labels(args, df): # add labels for two column inputs if (args.x is None) and (len(df.columns) == 2): args.x = [df.columns[0]] args.y = [df.columns[1]] # if no xlabel, set it to the x field if args.xlabel is None: args.xlabel = args.x # if no ylabel, and only 1 trace being plotted, set ylabel to that field if (args.ylabel is None) and (len(args.y) == 1): args.ylabel = [args.y[0]] def str_to_date(x): try: basestring except NameError: basestring = str if isinstance(x.iloc[0], basestring): return [parse(e) for e in x] else: return x def draw_traces(args, df): y_field_list = args.y x = str_to_date(df[args.x[0]]) style_list = args.style alpha_list = args.alpha if len(style_list) != len(y_field_list): style_list = [style_list[0] for y_field in y_field_list] if len(alpha_list) != len(y_field_list): alpha_list = [alpha_list[0] for y_field in y_field_list] for y_field, style, alpha in zip(y_field_list, style_list, alpha_list): y = df[y_field] pl.plot(x, y, style, label=y_field, alpha=alpha) def refine_plot(args): set_limits(args) set_scale(args) set_labels_title(args) set_grid(args) set_legend(args) def draw_xy_plot(args, df): ensure_xy_args(args) ensure_xy_omission_state(args, df) autofill_plot_fields_and_labels(args, df) draw_traces(args, df) refine_plot(args) show(args)
bsd-2-clause
pypot/scikit-learn
sklearn/preprocessing/tests/test_imputation.py
213
11911
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn import grid_search from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): # Test imputation using the mean and median strategies, when # missing_values == 0. X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0]+1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: np.mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: np.median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = grid_search.GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): # Test for pickling imputers. import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): # Test imputation with copy X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_true(np.all(X == Xt)) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
bsd-3-clause
mraspaud/dask
dask/dataframe/tests/test_ufunc.py
5
9888
from __future__ import absolute_import, division, print_function import pytest pd = pytest.importorskip('pandas') import pandas.util.testing as tm import numpy as np import dask.array as da import dask.dataframe as dd from dask.dataframe.utils import assert_eq _BASE_UFUNCS = ['conj', 'exp', 'log', 'log2', 'log10', 'log1p', 'expm1', 'sqrt', 'square', 'sin', 'cos', 'tan', 'arcsin','arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'deg2rad', 'rad2deg', 'isfinite', 'isinf', 'isnan', 'signbit', 'degrees', 'radians', 'rint', 'fabs', 'sign', 'absolute', 'floor', 'ceil', 'trunc', 'logical_not'] @pytest.mark.parametrize('ufunc', _BASE_UFUNCS) def test_ufunc(ufunc): dafunc = getattr(da, ufunc) npfunc = getattr(np, ufunc) s = pd.Series(np.random.randint(1, 100, size=20)) ds = dd.from_pandas(s, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ds), dd.Series) assert_eq(dafunc(ds), npfunc(s)) # applying NumPy ufunc triggers computation assert isinstance(npfunc(ds), pd.Series) assert_eq(npfunc(ds), npfunc(s)) # applying Dask ufunc to normal Series triggers computation assert isinstance(dafunc(s), pd.Series) assert_eq(dafunc(s), npfunc(s)) s = pd.Series(np.abs(np.random.randn(100))) ds = dd.from_pandas(s, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ds), dd.Series) assert_eq(dafunc(ds), npfunc(s)) # applying NumPy ufunc triggers computation assert isinstance(npfunc(ds), pd.Series) assert_eq(npfunc(ds), npfunc(s)) # applying Dask ufunc to normal Series triggers computation assert isinstance(dafunc(s), pd.Series) assert_eq(dafunc(s), npfunc(s)) # DataFrame df = pd.DataFrame({'A': np.random.randint(1, 100, size=20), 'B': np.random.randint(1, 100, size=20), 'C': np.abs(np.random.randn(20))}) ddf = dd.from_pandas(df, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ddf), dd.DataFrame) assert_eq(dafunc(ddf), npfunc(df)) # applying NumPy ufunc triggers computation assert isinstance(npfunc(ddf), pd.DataFrame) assert_eq(npfunc(ddf), npfunc(df)) # applying Dask ufunc to normal Dataframe triggers computation assert isinstance(dafunc(df), pd.DataFrame) assert_eq(dafunc(df), npfunc(df)) # Index if ufunc in ('logical_not', 'signbit', 'isnan', 'isinf', 'isfinite'): return assert isinstance(dafunc(ddf.index), dd.Index) assert_eq(dafunc(ddf.index), npfunc(df.index)) # applying NumPy ufunc triggers computation assert isinstance(npfunc(ddf.index), pd.Index) assert_eq(npfunc(ddf.index), npfunc(df.index)) # applying Dask ufunc to normal Series triggers computation assert isinstance(dafunc(df.index), pd.Index) assert_eq(dafunc(df), npfunc(df)) @pytest.mark.parametrize('ufunc', _BASE_UFUNCS) def test_ufunc_with_index(ufunc): dafunc = getattr(da, ufunc) npfunc = getattr(np, ufunc) s = pd.Series(np.random.randint(1, 100, size=20), index=list('abcdefghijklmnopqrst')) ds = dd.from_pandas(s, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ds), dd.Series) assert_eq(dafunc(ds), npfunc(s)) # applying NumPy ufunc triggers computation assert isinstance(npfunc(ds), pd.Series) assert_eq(npfunc(ds), npfunc(s)) # applying Dask ufunc to normal Series triggers computation assert isinstance(dafunc(s), pd.Series) assert_eq(dafunc(s), npfunc(s)) s = pd.Series(np.abs(np.random.randn(20)), index=list('abcdefghijklmnopqrst')) ds = dd.from_pandas(s, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ds), dd.Series) assert_eq(dafunc(ds), npfunc(s)) # applying NumPy ufunc triggers computation assert isinstance(npfunc(ds), pd.Series) assert_eq(npfunc(ds), npfunc(s)) # applying Dask ufunc to normal Series triggers computation assert isinstance(dafunc(s), pd.Series) assert_eq(dafunc(s), npfunc(s)) df = pd.DataFrame({'A': np.random.randint(1, 100, size=20), 'B': np.random.randint(1, 100, size=20), 'C': np.abs(np.random.randn(20))}, index=list('abcdefghijklmnopqrst')) ddf = dd.from_pandas(df, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ddf), dd.DataFrame) assert_eq(dafunc(ddf), npfunc(df)) # applying NumPy ufunc triggers computation assert isinstance(npfunc(ddf), pd.DataFrame) assert_eq(npfunc(ddf), npfunc(df)) # applying Dask ufunc to normal DataFrame triggers computation assert isinstance(dafunc(df), pd.DataFrame) assert_eq(dafunc(df), npfunc(df)) @pytest.mark.parametrize('ufunc', ['isreal', 'iscomplex', 'real', 'imag', 'angle', 'fix']) def test_ufunc_array_wrap(ufunc): """ some np.ufuncs doesn't call __array_wrap__, it should work as below - da.ufunc(dd.Series) => dd.Series - da.ufunc(pd.Series) => np.ndarray - np.ufunc(dd.Series) => np.ndarray - np.ufunc(pd.Series) => np.ndarray """ dafunc = getattr(da, ufunc) npfunc = getattr(np, ufunc) s = pd.Series(np.random.randint(1, 100, size=20), index=list('abcdefghijklmnopqrst')) ds = dd.from_pandas(s, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ds), dd.Series) assert_eq(dafunc(ds), pd.Series(npfunc(s), index=s.index)) assert isinstance(npfunc(ds), np.ndarray) tm.assert_numpy_array_equal(npfunc(ds), npfunc(s)) assert isinstance(dafunc(s), np.ndarray) tm.assert_numpy_array_equal(dafunc(s), npfunc(s)) df = pd.DataFrame({'A': np.random.randint(1, 100, size=20), 'B': np.random.randint(1, 100, size=20), 'C': np.abs(np.random.randn(20))}, index=list('abcdefghijklmnopqrst')) ddf = dd.from_pandas(df, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ddf), dd.DataFrame) # result may be read-only ndarray exp = pd.DataFrame(npfunc(df).copy(), columns=df.columns, index=df.index) assert_eq(dafunc(ddf), exp) assert isinstance(npfunc(ddf), np.ndarray) tm.assert_numpy_array_equal(npfunc(ddf), npfunc(df)) assert isinstance(dafunc(df), np.ndarray) tm.assert_numpy_array_equal(dafunc(df), npfunc(df)) @pytest.mark.parametrize('ufunc', ['logaddexp', 'logaddexp2', 'arctan2', 'hypot', 'copysign', 'nextafter', 'ldexp', 'fmod', 'logical_and', 'logical_or', 'logical_xor', 'maximum', 'minimum', 'fmax', 'fmin']) def test_ufunc_with_2args(ufunc): dafunc = getattr(da, ufunc) npfunc = getattr(np, ufunc) s1 = pd.Series(np.random.randint(1, 100, size=20)) ds1 = dd.from_pandas(s1, 3) s2 = pd.Series(np.random.randint(1, 100, size=20)) ds2 = dd.from_pandas(s2, 4) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ds1, ds2), dd.Series) assert_eq(dafunc(ds1, ds2), npfunc(s1, s2)) # applying NumPy ufunc triggers computation assert isinstance(npfunc(ds1, ds2), pd.Series) assert_eq(npfunc(ds1, ds2), npfunc(s1, s2)) # applying Dask ufunc to normal Series triggers computation assert isinstance(dafunc(s1, s2), pd.Series) assert_eq(dafunc(s1, s2), npfunc(s1, s2)) df1 = pd.DataFrame(np.random.randint(1, 100, size=(20, 2)), columns=['A', 'B']) ddf1 = dd.from_pandas(df1, 3) df2 = pd.DataFrame(np.random.randint(1, 100, size=(20, 2)), columns=['A', 'B']) ddf2 = dd.from_pandas(df2, 4) # applying Dask ufunc doesn't trigger computation assert isinstance(dafunc(ddf1, ddf2), dd.DataFrame) assert_eq(dafunc(ddf1, ddf2), npfunc(df1, df2)) # applying NumPy ufunc triggers computation assert isinstance(npfunc(ddf1, ddf2), pd.DataFrame) assert_eq(npfunc(ddf1, ddf2), npfunc(df1, df2)) # applying Dask ufunc to normal DataFrame triggers computation assert isinstance(dafunc(df1, df2), pd.DataFrame) assert_eq(dafunc(df1, df2), npfunc(df1, df2)) def test_clip(): # clip internally calls dd.Series.clip s = pd.Series(np.random.randint(1, 100, size=20)) ds = dd.from_pandas(s, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(da.clip(ds, 5, 50), dd.Series) assert_eq(da.clip(ds, 5, 50), np.clip(s, 5, 50)) # applying Dask ufunc doesn't trigger computation assert isinstance(np.clip(ds, 5, 50), dd.Series) assert_eq(np.clip(ds, 5, 50), np.clip(s, 5, 50)) # applying Dask ufunc to normal Series triggers computation assert isinstance(da.clip(s, 5, 50), pd.Series) assert_eq(da.clip(s, 5, 50), np.clip(s, 5, 50)) df = pd.DataFrame(np.random.randint(1, 100, size=(20, 2)), columns=['A', 'B']) ddf = dd.from_pandas(df, 3) # applying Dask ufunc doesn't trigger computation assert isinstance(da.clip(ddf, 5.5, 40.5), dd.DataFrame) assert_eq(da.clip(ddf, 5.5, 40.5), np.clip(df, 5.5, 40.5)) # applying Dask ufunc doesn't trigger computation assert isinstance(np.clip(ddf, 5.5, 40.5), dd.DataFrame) assert_eq(np.clip(ddf, 5.5, 40.5), np.clip(df, 5.5, 40.5)) # applying Dask ufunc to normal DataFrame triggers computation assert isinstance(da.clip(df, 5.5, 40.5), pd.DataFrame) assert_eq(da.clip(df, 5.5, 40.5), np.clip(df, 5.5, 40.5))
bsd-3-clause
Jimmy-Morzaria/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
MSeifert04/numpy
numpy/lib/histograms.py
4
39639
""" Histogram-related functions """ from __future__ import division, absolute_import, print_function import contextlib import functools import operator import warnings import numpy as np from numpy.compat.py3k import basestring from numpy.core import overrides __all__ = ['histogram', 'histogramdd', 'histogram_bin_edges'] array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') # range is a keyword argument to many functions, so save the builtin so they can # use it. _range = range def _hist_bin_sqrt(x, range): """ Square root histogram bin estimator. Bin width is inversely proportional to the data size. Used by many programs for its simplicity. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / np.sqrt(x.size) def _hist_bin_sturges(x, range): """ Sturges histogram bin estimator. A very simplistic estimator based on the assumption of normality of the data. This estimator has poor performance for non-normal data, which becomes especially obvious for large data sets. The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / (np.log2(x.size) + 1.0) def _hist_bin_rice(x, range): """ Rice histogram bin estimator. Another simple estimator with no normality assumption. It has better performance for large data than Sturges, but tends to overestimate the number of bins. The number of bins is proportional to the cube root of data size (asymptotically optimal). The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / (2.0 * x.size ** (1.0 / 3)) def _hist_bin_scott(x, range): """ Scott histogram bin estimator. The binwidth is proportional to the standard deviation of the data and inversely proportional to the cube root of data size (asymptotically optimal). Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x) def _hist_bin_stone(x, range): """ Histogram bin estimator based on minimizing the estimated integrated squared error (ISE). The number of bins is chosen by minimizing the estimated ISE against the unknown true distribution. The ISE is estimated using cross-validation and can be regarded as a generalization of Scott's rule. https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule This paper by Stone appears to be the origination of this rule. http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. range : (float, float) The lower and upper range of the bins. Returns ------- h : An estimate of the optimal bin width for the given data. """ n = x.size ptp_x = np.ptp(x) if n <= 1 or ptp_x == 0: return 0 def jhat(nbins): hh = ptp_x / nbins p_k = np.histogram(x, bins=nbins, range=range)[0] / n return (2 - (n + 1) * p_k.dot(p_k)) / hh nbins_upper_bound = max(100, int(np.sqrt(n))) nbins = min(_range(1, nbins_upper_bound + 1), key=jhat) if nbins == nbins_upper_bound: warnings.warn("The number of bins estimated may be suboptimal.", RuntimeWarning, stacklevel=3) return ptp_x / nbins def _hist_bin_doane(x, range): """ Doane's histogram bin estimator. Improved version of Sturges' formula which works better for non-normal data. See stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused if x.size > 2: sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3))) sigma = np.std(x) if sigma > 0.0: # These three operations add up to # g1 = np.mean(((x - np.mean(x)) / sigma)**3) # but use only one temp array instead of three temp = x - np.mean(x) np.true_divide(temp, sigma, temp) np.power(temp, 3, temp) g1 = np.mean(temp) return x.ptp() / (1.0 + np.log2(x.size) + np.log2(1.0 + np.absolute(g1) / sg1)) return 0.0 def _hist_bin_fd(x, range): """ The Freedman-Diaconis histogram bin estimator. The Freedman-Diaconis rule uses interquartile range (IQR) to estimate binwidth. It is considered a variation of the Scott rule with more robustness as the IQR is less affected by outliers than the standard deviation. However, the IQR depends on fewer points than the standard deviation, so it is less accurate, especially for long tailed distributions. If the IQR is 0, this function returns 1 for the number of bins. Binwidth is inversely proportional to the cube root of data size (asymptotically optimal). Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused iqr = np.subtract(*np.percentile(x, [75, 25])) return 2.0 * iqr * x.size ** (-1.0 / 3.0) def _hist_bin_auto(x, range): """ Histogram bin estimator that uses the minimum width of the Freedman-Diaconis and Sturges estimators if the FD bandwidth is non zero and the Sturges estimator if the FD bandwidth is 0. The FD estimator is usually the most robust method, but its width estimate tends to be too large for small `x` and bad for data with limited variance. The Sturges estimator is quite good for small (<1000) datasets and is the default in the R language. This method gives good off the shelf behaviour. .. versionchanged:: 1.15.0 If there is limited variance the IQR can be 0, which results in the FD bin width being 0 too. This is not a valid bin width, so ``np.histogram_bin_edges`` chooses 1 bin instead, which may not be optimal. If the IQR is 0, it's unlikely any variance based estimators will be of use, so we revert to the sturges estimator, which only uses the size of the dataset in its calculation. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. See Also -------- _hist_bin_fd, _hist_bin_sturges """ fd_bw = _hist_bin_fd(x, range) sturges_bw = _hist_bin_sturges(x, range) del range # unused if fd_bw: return min(fd_bw, sturges_bw) else: # limited variance, so we return a len dependent bw estimator return sturges_bw # Private dict initialized at module load time _hist_bin_selectors = {'stone': _hist_bin_stone, 'auto': _hist_bin_auto, 'doane': _hist_bin_doane, 'fd': _hist_bin_fd, 'rice': _hist_bin_rice, 'scott': _hist_bin_scott, 'sqrt': _hist_bin_sqrt, 'sturges': _hist_bin_sturges} def _ravel_and_check_weights(a, weights): """ Check a and weights have matching shapes, and ravel both """ a = np.asarray(a) # Ensure that the array is a "subtractable" dtype if a.dtype == np.bool_: warnings.warn("Converting input from {} to {} for compatibility." .format(a.dtype, np.uint8), RuntimeWarning, stacklevel=3) a = a.astype(np.uint8) if weights is not None: weights = np.asarray(weights) if weights.shape != a.shape: raise ValueError( 'weights should have the same shape as a.') weights = weights.ravel() a = a.ravel() return a, weights def _get_outer_edges(a, range): """ Determine the outer bin edges to use, from either the data or the range argument """ if range is not None: first_edge, last_edge = range if first_edge > last_edge: raise ValueError( 'max must be larger than min in range parameter.') if not (np.isfinite(first_edge) and np.isfinite(last_edge)): raise ValueError( "supplied range of [{}, {}] is not finite".format(first_edge, last_edge)) elif a.size == 0: # handle empty arrays. Can't determine range, so use 0-1. first_edge, last_edge = 0, 1 else: first_edge, last_edge = a.min(), a.max() if not (np.isfinite(first_edge) and np.isfinite(last_edge)): raise ValueError( "autodetected range of [{}, {}] is not finite".format(first_edge, last_edge)) # expand empty range to avoid divide by zero if first_edge == last_edge: first_edge = first_edge - 0.5 last_edge = last_edge + 0.5 return first_edge, last_edge def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt) def _get_bin_edges(a, bins, range, weights): """ Computes the bins used internally by `histogram`. Parameters ========== a : ndarray Ravelled data array bins, range Forwarded arguments from `histogram`. weights : ndarray, optional Ravelled weights array, or None Returns ======= bin_edges : ndarray Array of bin edges uniform_bins : (Number, Number, int): The upper bound, lowerbound, and number of bins, used in the optimized implementation of `histogram` that works on uniform bins. """ # parse the overloaded bins argument n_equal_bins = None bin_edges = None if isinstance(bins, basestring): bin_name = bins # if `bins` is a string for an automatic method, # this will replace it with the number of bins calculated if bin_name not in _hist_bin_selectors: raise ValueError( "{!r} is not a valid estimator for `bins`".format(bin_name)) if weights is not None: raise TypeError("Automated estimation of the number of " "bins is not supported for weighted data") first_edge, last_edge = _get_outer_edges(a, range) # truncate the range if needed if range is not None: keep = (a >= first_edge) keep &= (a <= last_edge) if not np.logical_and.reduce(keep): a = a[keep] if a.size == 0: n_equal_bins = 1 else: # Do not call selectors on empty arrays width = _hist_bin_selectors[bin_name](a, (first_edge, last_edge)) if width: n_equal_bins = int(np.ceil(_unsigned_subtract(last_edge, first_edge) / width)) else: # Width can be zero for some estimators, e.g. FD when # the IQR of the data is zero. n_equal_bins = 1 elif np.ndim(bins) == 0: try: n_equal_bins = operator.index(bins) except TypeError: raise TypeError( '`bins` must be an integer, a string, or an array') if n_equal_bins < 1: raise ValueError('`bins` must be positive, when an integer') first_edge, last_edge = _get_outer_edges(a, range) elif np.ndim(bins) == 1: bin_edges = np.asarray(bins) if np.any(bin_edges[:-1] > bin_edges[1:]): raise ValueError( '`bins` must increase monotonically, when an array') else: raise ValueError('`bins` must be 1d, when an array') if n_equal_bins is not None: # gh-10322 means that type resolution rules are dependent on array # shapes. To avoid this causing problems, we pick a type now and stick # with it throughout. bin_type = np.result_type(first_edge, last_edge, a) if np.issubdtype(bin_type, np.integer): bin_type = np.result_type(bin_type, float) # bin edges must be computed bin_edges = np.linspace( first_edge, last_edge, n_equal_bins + 1, endpoint=True, dtype=bin_type) return bin_edges, (first_edge, last_edge, n_equal_bins) else: return bin_edges, None def _search_sorted_inclusive(a, v): """ Like `searchsorted`, but where the last item in `v` is placed on the right. In the context of a histogram, this makes the last bin edge inclusive """ return np.concatenate(( a.searchsorted(v[:-1], 'left'), a.searchsorted(v[-1:], 'right') )) def _histogram_bin_edges_dispatcher(a, bins=None, range=None, weights=None): return (a, bins, weights) @array_function_dispatch(_histogram_bin_edges_dispatcher) def histogram_bin_edges(a, bins=10, range=None, weights=None): r""" Function to calculate only the edges of the bins used by the `histogram` function. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars or str, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. If `bins` is a string from the list below, `histogram_bin_edges` will use the method chosen to calculate the optimal bin width and consequently the number of bins (see `Notes` for more detail on the estimators) from the data that falls within the requested range. While the bin width will be optimal for the actual data in the range, the number of bins will be computed to fill the entire range, including the empty portions. For visualisation, using the 'auto' option is suggested. Weighted data is not supported for automated bin size selection. 'auto' Maximum of the 'sturges' and 'fd' estimators. Provides good all around performance. 'fd' (Freedman Diaconis Estimator) Robust (resilient to outliers) estimator that takes into account data variability and data size. 'doane' An improved version of Sturges' estimator that works better with non-normal datasets. 'scott' Less robust estimator that that takes into account data variability and data size. 'stone' Estimator based on leave-one-out cross-validation estimate of the integrated squared error. Can be regarded as a generalization of Scott's rule. 'rice' Estimator does not take variability into account, only data size. Commonly overestimates number of bins required. 'sturges' R's default method, only accounts for data size. Only optimal for gaussian data and underestimates number of bins for large non-gaussian datasets. 'sqrt' Square root (of data size) estimator, used by Excel and other programs for its speed and simplicity. range : (float, float), optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. The first element of the range must be less than or equal to the second. `range` affects the automatic bin computation as well. While bin width is computed to be optimal based on the actual data within `range`, the bin count will fill the entire range including portions containing no data. weights : array_like, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). This is currently not used by any of the bin estimators, but may be in the future. Returns ------- bin_edges : array of dtype float The edges to pass into `histogram` See Also -------- histogram Notes ----- The methods to estimate the optimal number of bins are well founded in literature, and are inspired by the choices R provides for histogram visualisation. Note that having the number of bins proportional to :math:`n^{1/3}` is asymptotically optimal, which is why it appears in most estimators. These are simply plug-in methods that give good starting points for number of bins. In the equations below, :math:`h` is the binwidth and :math:`n_h` is the number of bins. All estimators that compute bin counts are recast to bin width using the `ptp` of the data. The final bin count is obtained from ``np.round(np.ceil(range / h))``. 'auto' (maximum of the 'sturges' and 'fd' estimators) A compromise to get a good value. For small datasets the Sturges value will usually be chosen, while larger datasets will usually default to FD. Avoids the overly conservative behaviour of FD and Sturges for small and large datasets respectively. Switchover point is usually :math:`a.size \approx 1000`. 'fd' (Freedman Diaconis Estimator) .. math:: h = 2 \frac{IQR}{n^{1/3}} The binwidth is proportional to the interquartile range (IQR) and inversely proportional to cube root of a.size. Can be too conservative for small datasets, but is quite good for large datasets. The IQR is very robust to outliers. 'scott' .. math:: h = \sigma \sqrt[3]{\frac{24 * \sqrt{\pi}}{n}} The binwidth is proportional to the standard deviation of the data and inversely proportional to cube root of ``x.size``. Can be too conservative for small datasets, but is quite good for large datasets. The standard deviation is not very robust to outliers. Values are very similar to the Freedman-Diaconis estimator in the absence of outliers. 'rice' .. math:: n_h = 2n^{1/3} The number of bins is only proportional to cube root of ``a.size``. It tends to overestimate the number of bins and it does not take into account data variability. 'sturges' .. math:: n_h = \log _{2}n+1 The number of bins is the base 2 log of ``a.size``. This estimator assumes normality of data and is too conservative for larger, non-normal datasets. This is the default method in R's ``hist`` method. 'doane' .. math:: n_h = 1 + \log_{2}(n) + \log_{2}(1 + \frac{|g_1|}{\sigma_{g_1}}) g_1 = mean[(\frac{x - \mu}{\sigma})^3] \sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}} An improved version of Sturges' formula that produces better estimates for non-normal datasets. This estimator attempts to account for the skew of the data. 'sqrt' .. math:: n_h = \sqrt n The simplest and fastest estimator. Only takes into account the data size. Examples -------- >>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5]) >>> np.histogram_bin_edges(arr, bins='auto', range=(0, 1)) array([0. , 0.25, 0.5 , 0.75, 1. ]) >>> np.histogram_bin_edges(arr, bins=2) array([0. , 2.5, 5. ]) For consistency with histogram, an array of pre-computed bins is passed through unmodified: >>> np.histogram_bin_edges(arr, [1, 2]) array([1, 2]) This function allows one set of bins to be computed, and reused across multiple histograms: >>> shared_bins = np.histogram_bin_edges(arr, bins='auto') >>> shared_bins array([0., 1., 2., 3., 4., 5.]) >>> group_id = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1]) >>> hist_0, _ = np.histogram(arr[group_id == 0], bins=shared_bins) >>> hist_1, _ = np.histogram(arr[group_id == 1], bins=shared_bins) >>> hist_0; hist_1 array([1, 1, 0, 1, 0]) array([2, 0, 1, 1, 2]) Which gives more easily comparable results than using separate bins for each histogram: >>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto') >>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto') >>> hist_0; hist_1 array([1, 1, 1]) array([2, 1, 1, 2]) >>> bins_0; bins_1 array([0., 1., 2., 3.]) array([0. , 1.25, 2.5 , 3.75, 5. ]) """ a, weights = _ravel_and_check_weights(a, weights) bin_edges, _ = _get_bin_edges(a, bins, range, weights) return bin_edges def _histogram_dispatcher( a, bins=None, range=None, normed=None, weights=None, density=None): return (a, bins, weights) @array_function_dispatch(_histogram_dispatcher) def histogram(a, bins=10, range=None, normed=None, weights=None, density=None): r""" Compute the histogram of a set of data. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars or str, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines a monotonically increasing array of bin edges, including the rightmost edge, allowing for non-uniform bin widths. .. versionadded:: 1.11.0 If `bins` is a string, it defines the method used to calculate the optimal bin width, as defined by `histogram_bin_edges`. range : (float, float), optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. The first element of the range must be less than or equal to the second. `range` affects the automatic bin computation as well. While bin width is computed to be optimal based on the actual data within `range`, the bin count will fill the entire range including portions containing no data. normed : bool, optional .. deprecated:: 1.6.0 This is equivalent to the `density` argument, but produces incorrect results for unequal bin widths. It should not be used. .. versionchanged:: 1.15.0 DeprecationWarnings are actually emitted. weights : array_like, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). If `density` is True, the weights are normalized, so that the integral of the density over the range remains 1. density : bool, optional If ``False``, the result will contain the number of samples in each bin. If ``True``, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that the sum of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not a probability *mass* function. Overrides the ``normed`` keyword if given. Returns ------- hist : array The values of the histogram. See `density` and `weights` for a description of the possible semantics. bin_edges : array of dtype float Return the bin edges ``(length(hist)+1)``. See Also -------- histogramdd, bincount, searchsorted, digitize, histogram_bin_edges Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is:: [1, 2, 3, 4] then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. Examples -------- >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) (array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = np.arange(5) >>> hist, bin_edges = np.histogram(a, density=True) >>> hist array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() 2.4999999999999996 >>> np.sum(hist * np.diff(bin_edges)) 1.0 .. versionadded:: 1.11.0 Automated Bin Selection Methods example, using 2 peak random data with 2000 points: >>> import matplotlib.pyplot as plt >>> rng = np.random.RandomState(10) # deterministic random data >>> a = np.hstack((rng.normal(size=1000), ... rng.normal(loc=5, scale=2, size=1000))) >>> _ = plt.hist(a, bins='auto') # arguments are passed to np.histogram >>> plt.title("Histogram with 'auto' bins") Text(0.5, 1.0, "Histogram with 'auto' bins") >>> plt.show() """ a, weights = _ravel_and_check_weights(a, weights) bin_edges, uniform_bins = _get_bin_edges(a, bins, range, weights) # Histogram is an integer or a float array depending on the weights. if weights is None: ntype = np.dtype(np.intp) else: ntype = weights.dtype # We set a block size, as this allows us to iterate over chunks when # computing histograms, to minimize memory usage. BLOCK = 65536 # The fast path uses bincount, but that only works for certain types # of weight simple_weights = ( weights is None or np.can_cast(weights.dtype, np.double) or np.can_cast(weights.dtype, complex) ) if uniform_bins is not None and simple_weights: # Fast algorithm for equal bins # We now convert values of a to bin indices, under the assumption of # equal bin widths (which is valid here). first_edge, last_edge, n_equal_bins = uniform_bins # Initialize empty histogram n = np.zeros(n_equal_bins, ntype) # Pre-compute histogram scaling factor norm = n_equal_bins / _unsigned_subtract(last_edge, first_edge) # We iterate over blocks here for two reasons: the first is that for # large arrays, it is actually faster (for example for a 10^8 array it # is 2x as fast) and it results in a memory footprint 3x lower in the # limit of large arrays. for i in _range(0, len(a), BLOCK): tmp_a = a[i:i+BLOCK] if weights is None: tmp_w = None else: tmp_w = weights[i:i + BLOCK] # Only include values in the right range keep = (tmp_a >= first_edge) keep &= (tmp_a <= last_edge) if not np.logical_and.reduce(keep): tmp_a = tmp_a[keep] if tmp_w is not None: tmp_w = tmp_w[keep] # This cast ensures no type promotions occur below, which gh-10322 # make unpredictable. Getting it wrong leads to precision errors # like gh-8123. tmp_a = tmp_a.astype(bin_edges.dtype, copy=False) # Compute the bin indices, and for values that lie exactly on # last_edge we need to subtract one f_indices = _unsigned_subtract(tmp_a, first_edge) * norm indices = f_indices.astype(np.intp) indices[indices == n_equal_bins] -= 1 # The index computation is not guaranteed to give exactly # consistent results within ~1 ULP of the bin edges. decrement = tmp_a < bin_edges[indices] indices[decrement] -= 1 # The last bin includes the right edge. The other bins do not. increment = ((tmp_a >= bin_edges[indices + 1]) & (indices != n_equal_bins - 1)) indices[increment] += 1 # We now compute the histogram using bincount if ntype.kind == 'c': n.real += np.bincount(indices, weights=tmp_w.real, minlength=n_equal_bins) n.imag += np.bincount(indices, weights=tmp_w.imag, minlength=n_equal_bins) else: n += np.bincount(indices, weights=tmp_w, minlength=n_equal_bins).astype(ntype) else: # Compute via cumulative histogram cum_n = np.zeros(bin_edges.shape, ntype) if weights is None: for i in _range(0, len(a), BLOCK): sa = np.sort(a[i:i+BLOCK]) cum_n += _search_sorted_inclusive(sa, bin_edges) else: zero = np.zeros(1, dtype=ntype) for i in _range(0, len(a), BLOCK): tmp_a = a[i:i+BLOCK] tmp_w = weights[i:i+BLOCK] sorting_index = np.argsort(tmp_a) sa = tmp_a[sorting_index] sw = tmp_w[sorting_index] cw = np.concatenate((zero, sw.cumsum())) bin_index = _search_sorted_inclusive(sa, bin_edges) cum_n += cw[bin_index] n = np.diff(cum_n) # density overrides the normed keyword if density is not None: if normed is not None: # 2018-06-13, numpy 1.15.0 (this was not noisily deprecated in 1.6) warnings.warn( "The normed argument is ignored when density is provided. " "In future passing both will result in an error.", DeprecationWarning, stacklevel=3) normed = None if density: db = np.array(np.diff(bin_edges), float) return n/db/n.sum(), bin_edges elif normed: # 2018-06-13, numpy 1.15.0 (this was not noisily deprecated in 1.6) warnings.warn( "Passing `normed=True` on non-uniform bins has always been " "broken, and computes neither the probability density " "function nor the probability mass function. " "The result is only correct if the bins are uniform, when " "density=True will produce the same result anyway. " "The argument will be removed in a future version of " "numpy.", np.VisibleDeprecationWarning, stacklevel=3) # this normalization is incorrect, but db = np.array(np.diff(bin_edges), float) return n/(n*db).sum(), bin_edges else: if normed is not None: # 2018-06-13, numpy 1.15.0 (this was not noisily deprecated in 1.6) warnings.warn( "Passing normed=False is deprecated, and has no effect. " "Consider passing the density argument instead.", DeprecationWarning, stacklevel=3) return n, bin_edges def _histogramdd_dispatcher(sample, bins=None, range=None, normed=None, weights=None, density=None): if hasattr(sample, 'shape'): # same condition as used in histogramdd yield sample else: yield from sample with contextlib.suppress(TypeError): yield from bins yield weights @array_function_dispatch(_histogramdd_dispatcher) def histogramdd(sample, bins=10, range=None, normed=None, weights=None, density=None): """ Compute the multidimensional histogram of some data. Parameters ---------- sample : (N, D) array, or (D, N) array_like The data to be histogrammed. Note the unusual interpretation of sample when an array_like: * When an array, each row is a coordinate in a D-dimensional space - such as ``histogramgramdd(np.array([p1, p2, p3]))``. * When an array_like, each element is the list of values for single coordinate - such as ``histogramgramdd((X, Y, Z))``. The first form should be preferred. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the monotonically increasing bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of length D, each an optional (lower, upper) tuple giving the outer bin edges to be used if the edges are not given explicitly in `bins`. An entry of None in the sequence results in the minimum and maximum values being used for the corresponding dimension. The default, None, is equivalent to passing a tuple of D None values. density : bool, optional If False, the default, returns the number of samples in each bin. If True, returns the probability *density* function at the bin, ``bin_count / sample_count / bin_volume``. normed : bool, optional An alias for the density argument that behaves identically. To avoid confusion with the broken normed argument to `histogram`, `density` should be preferred. weights : (N,) array_like, optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray The multidimensional histogram of sample x. See normed and weights for the different possible semantics. edges : list A list of D arrays describing the bin edges for each dimension. See Also -------- histogram: 1-D histogram histogram2d: 2-D histogram Examples -------- >>> r = np.random.randn(100,3) >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) >>> H.shape, edges[0].size, edges[1].size, edges[2].size ((5, 8, 4), 6, 9, 5) """ try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = np.atleast_2d(sample).T N, D = sample.shape nbin = np.empty(D, int) edges = D*[None] dedges = D*[None] if weights is not None: weights = np.asarray(weights) try: M = len(bins) if M != D: raise ValueError( 'The dimension of bins must be equal to the dimension of the ' ' sample x.') except TypeError: # bins is an integer bins = D*[bins] # normalize the range argument if range is None: range = (None,) * D elif len(range) != D: raise ValueError('range argument must have one entry per dimension') # Create edge arrays for i in _range(D): if np.ndim(bins[i]) == 0: if bins[i] < 1: raise ValueError( '`bins[{}]` must be positive, when an integer'.format(i)) smin, smax = _get_outer_edges(sample[:,i], range[i]) edges[i] = np.linspace(smin, smax, bins[i] + 1) elif np.ndim(bins[i]) == 1: edges[i] = np.asarray(bins[i]) if np.any(edges[i][:-1] > edges[i][1:]): raise ValueError( '`bins[{}]` must be monotonically increasing, when an array' .format(i)) else: raise ValueError( '`bins[{}]` must be a scalar or 1d array'.format(i)) nbin[i] = len(edges[i]) + 1 # includes an outlier on each end dedges[i] = np.diff(edges[i]) # Compute the bin number each sample falls into. Ncount = tuple( # avoid np.digitize to work around gh-11022 np.searchsorted(edges[i], sample[:, i], side='right') for i in _range(D) ) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right edge to be # counted in the last bin, and not as an outlier. for i in _range(D): # Find which points are on the rightmost edge. on_edge = (sample[:, i] == edges[i][-1]) # Shift these points one bin to the left. Ncount[i][on_edge] -= 1 # Compute the sample indices in the flattened histogram matrix. # This raises an error if the array is too large. xy = np.ravel_multi_index(Ncount, nbin) # Compute the number of repetitions in xy and assign it to the # flattened histmat. hist = np.bincount(xy, weights, minlength=nbin.prod()) # Shape into a proper matrix hist = hist.reshape(nbin) # This preserves the (bad) behavior observed in gh-7845, for now. hist = hist.astype(float, casting='safe') # Remove outliers (indices 0 and -1 for each dimension). core = D*(slice(1, -1),) hist = hist[core] # handle the aliasing normed argument if normed is None: if density is None: density = False elif density is None: # an explicit normed argument was passed, alias it to the new name density = normed else: raise TypeError("Cannot specify both 'normed' and 'density'") if density: # calculate the probability density function s = hist.sum() for i in _range(D): shape = np.ones(D, int) shape[i] = nbin[i] - 2 hist = hist / dedges[i].reshape(shape) hist /= s if (hist.shape != nbin - 2).any(): raise RuntimeError( "Internal Shape Error") return hist, edges
bsd-3-clause
alvarofierroclavero/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
yuanagain/seniorthesis
venv/lib/python2.7/site-packages/mpl_toolkits/axes_grid1/axes_rgb.py
4
7031
from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import numpy as np from .axes_divider import make_axes_locatable, Size, locatable_axes_factory import sys from .mpl_axes import Axes def make_rgb_axes(ax, pad=0.01, axes_class=None, add_all=True): """ pad : fraction of the axes height. """ divider = make_axes_locatable(ax) pad_size = Size.Fraction(pad, Size.AxesY(ax)) xsize = Size.Fraction((1.-2.*pad)/3., Size.AxesX(ax)) ysize = Size.Fraction((1.-2.*pad)/3., Size.AxesY(ax)) divider.set_horizontal([Size.AxesX(ax), pad_size, xsize]) divider.set_vertical([ysize, pad_size, ysize, pad_size, ysize]) ax.set_axes_locator(divider.new_locator(0, 0, ny1=-1)) ax_rgb = [] if axes_class is None: try: axes_class = locatable_axes_factory(ax._axes_class) except AttributeError: axes_class = locatable_axes_factory(type(ax)) for ny in [4, 2, 0]: ax1 = axes_class(ax.get_figure(), ax.get_position(original=True), sharex=ax, sharey=ax) locator = divider.new_locator(nx=2, ny=ny) ax1.set_axes_locator(locator) for t in ax1.yaxis.get_ticklabels() + ax1.xaxis.get_ticklabels(): t.set_visible(False) try: for axis in ax1.axis.values(): axis.major_ticklabels.set_visible(False) except AttributeError: pass ax_rgb.append(ax1) if add_all: fig = ax.get_figure() for ax1 in ax_rgb: fig.add_axes(ax1) return ax_rgb def imshow_rgb(ax, r, g, b, **kwargs): ny, nx = r.shape R = np.zeros([ny, nx, 3], dtype="d") R[:,:,0] = r G = np.zeros_like(R) G[:,:,1] = g B = np.zeros_like(R) B[:,:,2] = b RGB = R + G + B im_rgb = ax.imshow(RGB, **kwargs) return im_rgb class RGBAxesBase(object): """base class for a 4-panel imshow (RGB, R, G, B) Layout: +---------------+-----+ | | R | + +-----+ | RGB | G | + +-----+ | | B | +---------------+-----+ Attributes ---------- _defaultAxesClass : matplotlib.axes.Axes defaults to 'Axes' in RGBAxes child class. No default in abstract base class RGB : _defaultAxesClass The axes object for the three-channel imshow R : _defaultAxesClass The axes object for the red channel imshow G : _defaultAxesClass The axes object for the green channel imshow B : _defaultAxesClass The axes object for the blue channel imshow """ def __init__(self, *kl, **kwargs): """ Parameters ---------- pad : float fraction of the axes height to put as padding. defaults to 0.0 add_all : bool True: Add the {rgb, r, g, b} axes to the figure defaults to True. axes_class : matplotlib.axes.Axes kl : Unpacked into axes_class() init for RGB kwargs : Unpacked into axes_class() init for RGB, R, G, B axes """ pad = kwargs.pop("pad", 0.0) add_all = kwargs.pop("add_all", True) try: axes_class = kwargs.pop("axes_class", self._defaultAxesClass) except AttributeError: new_msg = ("A subclass of RGBAxesBase must have a " "_defaultAxesClass attribute. If you are not sure which " "axes class to use, consider using " "mpl_toolkits.axes_grid1.mpl_axes.Axes.") six.reraise(AttributeError, AttributeError(new_msg), sys.exc_info()[2]) ax = axes_class(*kl, **kwargs) divider = make_axes_locatable(ax) pad_size = Size.Fraction(pad, Size.AxesY(ax)) xsize = Size.Fraction((1.-2.*pad)/3., Size.AxesX(ax)) ysize = Size.Fraction((1.-2.*pad)/3., Size.AxesY(ax)) divider.set_horizontal([Size.AxesX(ax), pad_size, xsize]) divider.set_vertical([ysize, pad_size, ysize, pad_size, ysize]) ax.set_axes_locator(divider.new_locator(0, 0, ny1=-1)) ax_rgb = [] for ny in [4, 2, 0]: ax1 = axes_class(ax.get_figure(), ax.get_position(original=True), sharex=ax, sharey=ax, **kwargs) locator = divider.new_locator(nx=2, ny=ny) ax1.set_axes_locator(locator) ax1.axis[:].toggle(ticklabels=False) ax_rgb.append(ax1) self.RGB = ax self.R, self.G, self.B = ax_rgb if add_all: fig = ax.get_figure() fig.add_axes(ax) self.add_RGB_to_figure() self._config_axes() def _config_axes(self, line_color='w', marker_edge_color='w'): """Set the line color and ticks for the axes Parameters ---------- line_color : any matplotlib color marker_edge_color : any matplotlib color """ for ax1 in [self.RGB, self.R, self.G, self.B]: ax1.axis[:].line.set_color(line_color) ax1.axis[:].major_ticks.set_markeredgecolor(marker_edge_color) def add_RGB_to_figure(self): """Add the red, green and blue axes to the RGB composite's axes figure """ self.RGB.get_figure().add_axes(self.R) self.RGB.get_figure().add_axes(self.G) self.RGB.get_figure().add_axes(self.B) def imshow_rgb(self, r, g, b, **kwargs): """Create the four images {rgb, r, g, b} Parameters ---------- r : array-like The red array g : array-like The green array b : array-like The blue array kwargs : imshow kwargs kwargs get unpacked into the imshow calls for the four images Returns ------- rgb : matplotlib.image.AxesImage r : matplotlib.image.AxesImage g : matplotlib.image.AxesImage b : matplotlib.image.AxesImage """ ny, nx = r.shape if not ((nx, ny) == g.shape == b.shape): raise ValueError('Input shapes do not match.' '\nr.shape = {0}' '\ng.shape = {1}' '\nb.shape = {2}' ''.format(r.shape, g.shape, b.shape)) R = np.zeros([ny, nx, 3], dtype="d") R[:,:,0] = r G = np.zeros_like(R) G[:,:,1] = g B = np.zeros_like(R) B[:,:,2] = b RGB = R + G + B im_rgb = self.RGB.imshow(RGB, **kwargs) im_r = self.R.imshow(R, **kwargs) im_g = self.G.imshow(G, **kwargs) im_b = self.B.imshow(B, **kwargs) return im_rgb, im_r, im_g, im_b class RGBAxes(RGBAxesBase): _defaultAxesClass = Axes
mit
hbp-unibi/cypress
scripts/decode_function.py
2
2112
#!/usr/bin/env python # -*- coding: utf-8 -*- # Cypress -- C++ Spiking Neural Network Simulation Framework # Copyright (C) 2016 Andreas Stöckel # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import numpy as np from numpy.linalg import inv import math import matplotlib import matplotlib.pyplot as plt import sys if len(sys.argv) < 2: print "Usage: " + sys.argv[0] + " <TUNING CURVE INPUT>" sys.exit(1) def cm2inch(value): return value / 2.54 input_file = sys.argv[1] data = np.mat(np.loadtxt(input_file, delimiter=",")) # Fetch the design matrix Phi and the number of samples/functions Phi = data[:, 1:] n_samples = Phi.shape[0] n_func = Phi.shape[1] # Construct input and desired output vectors X = data[:, 0] Y = (np.sin(X * 2.0 * math.pi) + 1.0) * 0.5 # Target function # Calculate the Moore-Penrose pseudo inverse of Phi lambda_ = 0.2 PhiI = inv(Phi.T * Phi + lambda_ * np.eye(n_func)) * Phi.T # Calculate the weights w = PhiI * Y print("Maximum w: " + str(np.max(w))) print("Minimum w: " + str(np.min(w))) # Reconstruct the function YRec = Phi * w print(w) fig = plt.figure(figsize=(cm2inch(7), cm2inch(7 ))) ax = fig.gca() n_pop = data.shape[1] - 1 ax.plot(X, Y, ':', color=[0.25, 0.25, 0.25]) ax.plot(X, YRec, '-', color=[0.0, 0.0, 0.0]) ax.set_xlabel("Input value") ax.set_ylabel("Function value") ax.set_title("Decoding of $\\frac{1}2 \\cdot (\\sin(x * 2\\pi) + 1)$") ax.set_xlim(0.0, 1.0) fig.savefig("reconstructed_function.pdf", format='pdf', bbox_inches='tight')
gpl-3.0
wathen/PhD
MHD/FEniCS/MHD/Stabilised/SaddlePointForm/Test/GeneralisedEigen/NoBC/MHDallatonce.py
4
9242
import petsc4py import sys petsc4py.init(sys.argv) from petsc4py import PETSc import numpy as np from dolfin import tic, toc import HiptmairSetup import PETScIO as IO import scipy.sparse as sp import matplotlib.pylab as plt import MatrixOperations as MO class BaseMyPC(object): def setup(self, pc): pass def reset(self, pc): pass def apply(self, pc, x, y): raise NotImplementedError def applyT(self, pc, x, y): self.apply(pc, x, y) def applyS(self, pc, x, y): self.apply(pc, x, y) def applySL(self, pc, x, y): self.applyS(pc, x, y) def applySR(self, pc, x, y): self.applyS(pc, x, y) def applyRich(self, pc, x, y, w, tols): self.apply(pc, x, y) class InnerOuterWITHOUT2inverse(BaseMyPC): def __init__(self, W, kspF, kspA, kspQ,Fp,kspScalar, kspCGScalar, kspVector, G, P, A, Hiptmairtol,F): self.W = W self.kspF = kspF self.kspA = kspA self.kspQ = kspQ self.Fp = Fp self.kspScalar = kspScalar self.kspCGScalar = kspCGScalar self.kspVector = kspVector # self.Bt = Bt self.HiptmairIts = 0 self.CGits = 0 self.F = F # print range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim()) # ss self.P = P self.G = G self.AA = A self.tol = Hiptmairtol self.u_is = PETSc.IS().createGeneral(range(self.W[0].dim())) self.b_is = PETSc.IS().createGeneral(range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim())) self.p_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim())) self.r_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim()+self.W[2].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim()+self.W[3].dim())) def create(self, pc): print "Create" def setUp(self, pc): A, P = pc.getOperators() print A.size self.Ct = A.getSubMatrix(self.u_is,self.b_is) self.C = A.getSubMatrix(self.b_is,self.u_is) self.D = A.getSubMatrix(self.r_is,self.b_is) self.Bt = A.getSubMatrix(self.u_is,self.p_is) self.B = A.getSubMatrix(self.p_is,self.u_is) self.Dt = A.getSubMatrix(self.b_is,self.r_is) # print self.Ct.view() #CFC = sp.csr_matrix( (data,(row,column)), shape=(self.W[1].dim(),self.W[1].dim()) ) #print CFC.shape #CFC = PETSc.Mat().createAIJ(size=CFC.shape,csr=(CFC.indptr, CFC.indices, CFC.data)) #print CFC.size, self.AA.size #MX = self.AA+self.F MX = self.F # MO.StoreMatrix(B,"A") # print FC.todense() self.kspF.setType('preonly') self.kspF.getPC().setType('lu') self.kspF.setFromOptions() self.kspF.setPCSide(0) self.kspA.setType('preonly') self.kspA.getPC().setType('lu') self.kspA.setFromOptions() self.kspA.setPCSide(0) self.kspQ.setType('preonly') self.kspQ.getPC().setType('lu') self.kspQ.setFromOptions() self.kspQ.setPCSide(0) self.kspScalar.setType('preonly') self.kspScalar.getPC().setType('lu') self.kspScalar.setFromOptions() self.kspScalar.setPCSide(0) kspMX = PETSc.KSP() kspMX.create(comm=PETSc.COMM_WORLD) pcMX = kspMX.getPC() kspMX.setType('preonly') pcMX.setType('lu') kspMX.setOperators(MX,MX) OptDB = PETSc.Options() #OptDB["pc_factor_mat_ordering_type"] = "rcm" #OptDB["pc_factor_mat_solver_package"] = "mumps" kspMX.setFromOptions() self.kspMX = kspMX # self.kspCGScalar.setType('preonly') # self.kspCGScalar.getPC().setType('lu') # self.kspCGScalar.setFromOptions() # self.kspCGScalar.setPCSide(0) self.kspVector.setType('preonly') self.kspVector.getPC().setType('lu') self.kspVector.setFromOptions() self.kspVector.setPCSide(0) print "setup" def apply(self, pc, x, y): br = x.getSubVector(self.r_is) xr = br.duplicate() self.kspScalar.solve(br, xr) # print self.D.size x2 = x.getSubVector(self.p_is) y2 = x2.duplicate() y3 = x2.duplicate() xp = x2.duplicate() self.kspA.solve(x2,y2) self.Fp.mult(y2,y3) self.kspQ.solve(y3,xp) # self.kspF.solve(bu1-bu4-bu2,xu) bb = x.getSubVector(self.b_is) bb = bb - self.Dt*xr xb = bb.duplicate() self.kspMX.solve(bb,xb) bu1 = x.getSubVector(self.u_is) bu2 = self.Bt*xp bu4 = self.Ct*xb XX = bu1.duplicate() xu = XX.duplicate() self.kspF.solve(bu1-bu4-bu2,xu) #self.kspF.solve(bu1,xu) y.array = (np.concatenate([xu.array, xb.array,xp.array,xr.array])) def ITS(self): return self.CGits, self.HiptmairIts , self.CGtime, self.HiptmairTime class InnerOuterMAGNETICinverse(BaseMyPC): def __init__(self, W, kspF, kspA, kspQ,Fp,kspScalar, kspCGScalar, kspVector, G, P, A, Hiptmairtol,F): self.W = W self.kspF = kspF self.kspA = kspA self.kspQ = kspQ self.Fp = Fp self.kspScalar = kspScalar self.kspCGScalar = kspCGScalar self.kspVector = kspVector # self.Bt = Bt self.HiptmairIts = 0 self.CGits = 0 self.F = F # print range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim()) # ss self.P = P self.G = G self.AA = A self.tol = Hiptmairtol self.u_is = PETSc.IS().createGeneral(range(self.W[0].dim())) self.b_is = PETSc.IS().createGeneral(range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim())) self.p_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim())) self.r_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim()+self.W[2].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim()+self.W[3].dim())) def create(self, pc): print "Create" def setUp(self, pc): A, P = pc.getOperators() print A.size self.Ct = A.getSubMatrix(self.u_is,self.b_is) self.C = A.getSubMatrix(self.b_is,self.u_is) self.D = A.getSubMatrix(self.r_is,self.b_is) self.Bt = A.getSubMatrix(self.u_is,self.p_is) self.B = A.getSubMatrix(self.p_is,self.u_is) self.Dt = A.getSubMatrix(self.b_is,self.r_is) # print self.Ct.view() #CFC = sp.csr_matrix( (data,(row,column)), shape=(self.W[1].dim(),self.W[1].dim()) ) #print CFC.shape #CFC = PETSc.Mat().createAIJ(size=CFC.shape,csr=(CFC.indptr, CFC.indices, CFC.data)) #print CFC.size, self.AA.size FF = self.F # MO.StoreMatrix(B,"A") # print FC.todense() self.kspF.setOperators(FF,FF) self.kspF.setType('preonly') self.kspF.getPC().setType('lu') self.kspF.setFromOptions() self.kspF.setPCSide(0) self.kspA.setType('preonly') self.kspA.getPC().setType('lu') self.kspA.setFromOptions() self.kspA.setPCSide(0) self.kspQ.setType('preonly') self.kspQ.getPC().setType('lu') self.kspQ.setFromOptions() self.kspQ.setPCSide(0) self.kspScalar.setType('preonly') self.kspScalar.getPC().setType('lu') self.kspScalar.setFromOptions() self.kspScalar.setPCSide(0) kspMX = PETSc.KSP() kspMX.create(comm=PETSc.COMM_WORLD) pcMX = kspMX.getPC() kspMX.setType('preonly') pcMX.setType('lu') OptDB = PETSc.Options() kspMX.setOperators(self.AA,self.AA) self.kspMX = kspMX # self.kspCGScalar.setType('preonly') # self.kspCGScalar.getPC().setType('lu') # self.kspCGScalar.setFromOptions() # self.kspCGScalar.setPCSide(0) self.kspVector.setType('preonly') self.kspVector.getPC().setType('lu') self.kspVector.setFromOptions() self.kspVector.setPCSide(0) print "setup" def apply(self, pc, x, y): br = x.getSubVector(self.r_is) xr = br.duplicate() self.kspScalar.solve(br, xr) # print self.D.size x2 = x.getSubVector(self.p_is) y2 = x2.duplicate() y3 = x2.duplicate() xp = x2.duplicate() self.kspA.solve(x2,y2) self.Fp.mult(y2,y3) self.kspQ.solve(y3,xp) # self.kspF.solve(bu1-bu4-bu2,xu) bb = x.getSubVector(self.b_is) bb = bb - self.Dt*xr xb = bb.duplicate() self.kspMX.solve(bb,xb) bu1 = x.getSubVector(self.u_is) bu2 = self.Bt*xp bu4 = self.Ct*xb XX = bu1.duplicate() xu = XX.duplicate() self.kspF.solve(bu1-bu4-bu2,xu) #self.kspF.solve(bu1,xu) y.array = (np.concatenate([xu.array, xb.array,xp.array,xr.array])) def ITS(self): return self.CGits, self.HiptmairIts , self.CGtime, self.HiptmairTime
mit
pschella/scipy
doc/source/tutorial/examples/normdiscr_plot1.py
84
1547
import numpy as np import matplotlib.pyplot as plt from scipy import stats npoints = 20 # number of integer support points of the distribution minus 1 npointsh = npoints / 2 npointsf = float(npoints) nbound = 4 #bounds for the truncated normal normbound = (1 + 1 / npointsf) * nbound #actual bounds of truncated normal grid = np.arange(-npointsh, npointsh+2, 1) #integer grid gridlimitsnorm = (grid-0.5) / npointsh * nbound #bin limits for the truncnorm gridlimits = grid - 0.5 grid = grid[:-1] probs = np.diff(stats.truncnorm.cdf(gridlimitsnorm, -normbound, normbound)) gridint = grid normdiscrete = stats.rv_discrete( values=(gridint, np.round(probs, decimals=7)), name='normdiscrete') n_sample = 500 np.random.seed(87655678) #fix the seed for replicability rvs = normdiscrete.rvs(size=n_sample) rvsnd=rvs f,l = np.histogram(rvs, bins=gridlimits) sfreq = np.vstack([gridint, f, probs*n_sample]).T fs = sfreq[:,1] / float(n_sample) ft = sfreq[:,2] / float(n_sample) nd_std = np.sqrt(normdiscrete.stats(moments='v')) ind = gridint # the x locations for the groups width = 0.35 # the width of the bars plt.subplot(111) rects1 = plt.bar(ind, ft, width, color='b') rects2 = plt.bar(ind+width, fs, width, color='r') normline = plt.plot(ind+width/2.0, stats.norm.pdf(ind, scale=nd_std), color='b') plt.ylabel('Frequency') plt.title('Frequency and Probability of normdiscrete') plt.xticks(ind+width, ind) plt.legend((rects1[0], rects2[0]), ('true', 'sample')) plt.show()
bsd-3-clause
weissercn/MLTools
Dalitz_simplified/classifier_eval_simplified_example.py
1
4731
print(__doc__) import p_value_scoring_object import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.grid_search import GridSearchCV # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ############################################################################## # Load and prepare data set # # dataset for grid search iris = load_iris() X = iris.data y = iris.target # Dataset for decision function visualization: we only keep the first two # features in X and sub-sample the dataset to keep only 2 classes and # make it a binary classification problem. X_2d = X[:, :2] X_2d = X_2d[y > 0] y_2d = y[y > 0] y_2d -= 1 # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. scaler = StandardScaler() X = scaler.fit_transform(X) X_2d = scaler.fit_transform(X_2d) ############################################################################## # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. C_range = np.logspace(-2, 10, 13) gamma_range = np.logspace(-9, 3, 13) param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedShuffleSplit(y, n_iter=5, test_size=0.2, random_state=42) grid = GridSearchCV(SVC(probability=True), scoring=p_value_scoring_object.p_value_scoring_object ,param_grid=param_grid, cv=cv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1e-2, 1, 1e2] gamma_2d_range = [1e-1, 1, 1e1] classifiers = [] for C in C_2d_range: for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma) clf.fit(X_2d, y_2d) classifiers.append((C, gamma, clf)) ############################################################################## # visualization # # draw visualization of parameter effects plt.figure(figsize=(8, 6)) xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200)) for (k, (C, gamma, clf)) in enumerate(classifiers): # evaluate decision function in a grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # visualize decision function for these parameters plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1) plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)), size='medium') # visualize parameter's effect on decision function plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu) plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.axis('tight') plt.savefig('prediction_comparison.png') # plot the scores of the grid # grid_scores_ contains parameter settings and scores # We extract just the scores scores = [x[1] for x in grid.grid_scores_] scores = np.array(scores).reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=-1.0, midpoint=-0.0001)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') plt.savefig('Heat_map.png')
mit
s3h10r/avaon
django-avaon/acore/views/visualize.py
1
6406
""" statistics - heatmaps of impacts """ from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render_to_response, get_object_or_404 from django.template import loader,Context,RequestContext from django.conf import settings import logging logger = logging.getLogger(__name__) # --- if no x-server is available, comment this out #import matplotlib #matplotlib.use("Cairo") # cairo-backend, so we can create figures without x-server (PDF & PNG ...) # Cairo backend requires that pycairo is installed. # --- end no x-server def _calc_stats_heatmap(id=None): """ create a datstructure which gives us info about the density of impacts per weekday & hour returns data[weekday][hour] = nr. of impacts """ """ TODO: write a test for me """ import datetime as dt from acore.models import Impact, Thing if id: imps = Impact.objects.filter(thing = id) else: imps = Impact.objects.all() # --- init empty data[weekday][hour] # data = [[0] *24]*7 # data[weekday][hour] # BUG! try: data[0][1] && print data (reference?) data = [] for i in range(7): data.append([0]*24) # --- delta = dt.timedelta(seconds=60*60) for im in imps: #print im.t_from, "+", im.duration, "==", im.duration.seconds, 's' #print " "*4, im.t_from.weekday() travel_t = im.t_from dur = 0 while True: wd = travel_t.weekday() h = travel_t.hour data[wd][h] += 1 dur += delta.seconds travel_t += delta if ((im.t_to - travel_t) < delta) and (im.t_to.hour != travel_t.hour): break return data def _plot_heatmap(fig,ax,data,y_label="y_label",x_label="x_label",title="title"): """ """ import numpy as np from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt ax.set_title(title,fontstyle='italic') ax.set_ylabel(y_label) ax.set_xlabel(x_label) ticks_x=24 ticks_y=7 # we must turn our data into a numpy-array for using pcolor data = np.array(data) ax.pcolor(data, cmap=plt.cm.Blues) pc = ax.pcolor(data, cmap=plt.cm.Blues) fig.colorbar(pc, shrink=0.5) # Shift ticks to be at 0.5, 1.5, etc # http://stackoverflow.com/questions/24190858/matplotlib-move-ticklabels-between-ticks ax.yaxis.set(ticks=np.arange(0.5,ticks_y + 0.5),ticklabels=range(0,ticks_y)) ax.xaxis.set(ticks=np.arange(0.5,ticks_x + 0.5),ticklabels=range(0,ticks_x)) ax.set_xlim(0.0,ticks_x) ax.set_ylim(0.0,ticks_y) ax.xaxis.labelpad = 10 fig.gca().set_aspect('equal') fig.tight_layout()# not as good as savefig(bbox_inches="tight")? def heatmap(request,id=None): """ plot a "impact density heatmap" in format data[weekday][hour] for all available impacts or for Thing.id = id """ """ TODO: time-range param """ import numpy as np import random from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure data = _calc_stats_heatmap(id) fig=Figure(figsize=(10,8), dpi=100) ax=fig.add_subplot(111) if not id: _plot_heatmap(fig,ax,data,y_label="weekday", x_label="time", title="impact density #heatmap\n") else: from acore.models import Impact, Thing thing = Thing.objects.get(id=id) _plot_heatmap(fig,ax,data,y_label="weekday", x_label="time", title="'%s' - impact density #heatmap\n" % thing.name) # cool, Django's HttpResponse object supports file-like API :) # so we dunnot need StringIO response = HttpResponse(content_type="image/png") # bbox_inches 'tight' removes lot of unwanted whitespace around our plot fig.savefig(response, format="png",bbox_inches='tight') return response def demo_heatmap(request): """ returns matplotlib plot as selftest """ """ http://stackoverflow.com/questions/14391959/heatmap-in-matplotlib-with-pcolor http://stackoverflow.com/questions/15988413/python-pylab-pcolor-options-for-publication-quality-plots http://stackoverflow.com/questions/24190858/matplotlib-move-ticklabels-between-ticks http://matplotlib.org/faq/usage_faq.html#matplotlib-pylab-and-pyplot-how-are-they-related """ import django import numpy as np import random from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt fig=Figure(figsize=(10,8), dpi=100) ax=fig.add_subplot(111) ax.set_title("demo heatmap e.g. 'impact density'",fontstyle='italic') ax.set_ylabel("weekday") ax.set_xlabel("time in h") ticks_x=24 ticks_y=7 data = [] for i in range(ticks_y): y = [ random.randint(0,10) for i in range(ticks_x) ] data.append(y) data = np.array(data) pc = ax.pcolor(data, cmap=plt.cm.Blues) # http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps ax.yaxis.set_ticks(np.arange(0.5,ticks_y + 0.5),range(0,ticks_y)) ax.xaxis.set_ticks(np.arange(0.5,ticks_x + 0.5),range(0,ticks_x)) # http://stackoverflow.com/questions/12608788/changing-the-tick-frequency-on-x-or-y-axis-in-matplotlib import matplotlib.ticker as ticker #ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f')) loc = ticker.MultipleLocator(base=1) # this locator puts ticks at regular intervals ax.xaxis.set_major_locator(loc) ax.xaxis.set_minor_locator(ticker.NullLocator()) ax.set_xlim(0.0,ticks_x) ax.set_ylim(0.0,ticks_y) #ax.xaxis.labelpad = 20 fig.colorbar(pc, shrink=0.5) #plt.gca().invert_yaxis() fig.gca().set_aspect('equal') # tight_layout() & bbox_inches 'tight' removes lot of unwanted # whitespace around our plot fig.tight_layout()# not as good as savefig(bbox_inches="tight")? # cool, Django's HttpResponse object supports file-like API :) # so we dunnot need StringIO response=django.http.HttpResponse(content_type='image/png') fig.savefig(response, format="png",bbox_inches='tight') return response if __name__ == '__main__': print _calc_stats_heatmap()
gpl-2.0
ZenDevelopmentSystems/scikit-learn
examples/linear_model/plot_logistic.py
312
1426
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # this is our test set, it's just a straight line with some # Gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) plt.axhline(.5, color='.5') plt.ylabel('y') plt.xlabel('X') plt.xticks(()) plt.yticks(()) plt.ylim(-.25, 1.25) plt.xlim(-4, 10) plt.show()
bsd-3-clause
zorroblue/scikit-learn
sklearn/feature_selection/tests/test_feature_select.py
21
26665
""" Todo: cross-check the F-value with stats model """ from __future__ import division import itertools import warnings import numpy as np from scipy import stats, sparse from numpy.testing import run_module_suite from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils import safe_mask from sklearn.datasets.samples_generator import (make_classification, make_regression) from sklearn.feature_selection import ( chi2, f_classif, f_oneway, f_regression, mutual_info_classif, mutual_info_regression, SelectPercentile, SelectKBest, SelectFpr, SelectFdr, SelectFwe, GenericUnivariateSelect) ############################################################################## # Test the score functions def test_f_oneway_vs_scipy_stats(): # Test that our f_oneway gives the same result as scipy.stats rng = np.random.RandomState(0) X1 = rng.randn(10, 3) X2 = 1 + rng.randn(10, 3) f, pv = stats.f_oneway(X1, X2) f2, pv2 = f_oneway(X1, X2) assert_true(np.allclose(f, f2)) assert_true(np.allclose(pv, pv2)) def test_f_oneway_ints(): # Smoke test f_oneway on integers: that it does raise casting errors # with recent numpys rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 10)) y = np.arange(10) fint, pint = f_oneway(X, y) # test that is gives the same result as with float f, p = f_oneway(X.astype(np.float), y) assert_array_almost_equal(f, fint, decimal=4) assert_array_almost_equal(p, pint, decimal=4) def test_f_classif(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) F_sparse, pv_sparse = f_classif(sparse.csr_matrix(X), y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression(): # Test whether the F test yields meaningful results # on a simple simulated regression problem X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) F, pv = f_regression(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) # with centering, compare with sparse F, pv = f_regression(X, y, center=True) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=True) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) # again without centering, compare with sparse F, pv = f_regression(X, y, center=False) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=False) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression_input_dtype(): # Test whether f_regression returns the same value # for any numeric data_type rng = np.random.RandomState(0) X = rng.rand(10, 20) y = np.arange(10).astype(np.int) F1, pv1 = f_regression(X, y) F2, pv2 = f_regression(X, y.astype(np.float)) assert_array_almost_equal(F1, F2, 5) assert_array_almost_equal(pv1, pv2, 5) def test_f_regression_center(): # Test whether f_regression preserves dof according to 'center' argument # We use two centered variates so we have a simple relationship between # F-score with variates centering and F-score without variates centering. # Create toy example X = np.arange(-5, 6).reshape(-1, 1) # X has zero mean n_samples = X.size Y = np.ones(n_samples) Y[::2] *= -1. Y[0] = 0. # have Y mean being null F1, _ = f_regression(X, Y, center=True) F2, _ = f_regression(X, Y, center=False) assert_array_almost_equal(F1 * (n_samples - 1.) / (n_samples - 2.), F2) assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS def test_f_classif_multi_class(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) def test_select_percentile_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_percentile_classif_sparse(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) X = sparse.csr_matrix(X) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r.toarray(), X_r2.toarray()) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_r2inv = univariate_filter.inverse_transform(X_r2) assert_true(sparse.issparse(X_r2inv)) support_mask = safe_mask(X_r2inv, support) assert_equal(X_r2inv.shape, X.shape) assert_array_equal(X_r2inv[:, support_mask].toarray(), X_r.toarray()) # Check other columns are empty assert_equal(X_r2inv.getnnz(), X_r.getnnz()) ############################################################################## # Test univariate selection in classification settings def test_select_kbest_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the k best heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=5) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_classif, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_kbest_all(): # Test whether k="all" correctly returns all features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k='all') X_r = univariate_filter.fit(X, y).transform(X) assert_array_equal(X, X_r) def test_select_kbest_zero(): # Test whether k=0 correctly returns no features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=0) univariate_filter.fit(X, y) support = univariate_filter.get_support() gtruth = np.zeros(10, dtype=bool) assert_array_equal(support, gtruth) X_selected = assert_warns_message(UserWarning, 'No features were selected', univariate_filter.transform, X) assert_equal(X_selected.shape, (20, 0)) def test_select_heuristics_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the fdr, fwe and fpr heuristics X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_classif, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_classif, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_almost_equal(support, gtruth) ############################################################################## # Test univariate selection in regression settings def assert_best_scores_kept(score_filter): scores = score_filter.scores_ support = score_filter.get_support() assert_array_almost_equal(np.sort(scores[support]), np.sort(scores)[-support.sum():]) def test_select_percentile_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the percentile heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_2 = X.copy() X_2[:, np.logical_not(support)] = 0 assert_array_equal(X_2, univariate_filter.inverse_transform(X_r)) # Check inverse_transform respects dtype assert_array_equal(X_2.astype(bool), univariate_filter.inverse_transform(X_r.astype(bool))) def test_select_percentile_regression_full(): # Test whether the relative univariate feature selection # selects all features when '100%' is asked. X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=100) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=100).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.ones(20) assert_array_equal(support, gtruth) def test_invalid_percentile(): X, y = make_regression(n_samples=10, n_features=20, n_informative=2, shuffle=False, random_state=0) assert_raises(ValueError, SelectPercentile(percentile=-1).fit, X, y) assert_raises(ValueError, SelectPercentile(percentile=101).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=101).fit, X, y) def test_select_kbest_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the k best heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectKBest(f_regression, k=5) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_heuristics_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fpr, fdr or fwe heuristics X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectFpr(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_regression, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 3) def test_boundary_case_ch2(): # Test boundary case, and always aim to select 1 feature. X = np.array([[10, 20], [20, 20], [20, 30]]) y = np.array([[1], [0], [0]]) scores, pvalues = chi2(X, y) assert_array_almost_equal(scores, np.array([4., 0.71428571])) assert_array_almost_equal(pvalues, np.array([0.04550026, 0.39802472])) filter_fdr = SelectFdr(chi2, alpha=0.1) filter_fdr.fit(X, y) support_fdr = filter_fdr.get_support() assert_array_equal(support_fdr, np.array([True, False])) filter_kbest = SelectKBest(chi2, k=1) filter_kbest.fit(X, y) support_kbest = filter_kbest.get_support() assert_array_equal(support_kbest, np.array([True, False])) filter_percentile = SelectPercentile(chi2, percentile=50) filter_percentile.fit(X, y) support_percentile = filter_percentile.get_support() assert_array_equal(support_percentile, np.array([True, False])) filter_fpr = SelectFpr(chi2, alpha=0.1) filter_fpr.fit(X, y) support_fpr = filter_fpr.get_support() assert_array_equal(support_fpr, np.array([True, False])) filter_fwe = SelectFwe(chi2, alpha=0.1) filter_fwe.fit(X, y) support_fwe = filter_fwe.get_support() assert_array_equal(support_fwe, np.array([True, False])) def test_select_fdr_regression(): # Test that fdr heuristic actually has low FDR. def single_fdr(alpha, n_informative, random_state): X, y = make_regression(n_samples=150, n_features=20, n_informative=n_informative, shuffle=False, random_state=random_state, noise=10) with warnings.catch_warnings(record=True): # Warnings can be raised when no features are selected # (low alpha or very noisy data) univariate_filter = SelectFdr(f_regression, alpha=alpha) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fdr', param=alpha).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() num_false_positives = np.sum(support[n_informative:] == 1) num_true_positives = np.sum(support[:n_informative] == 1) if num_false_positives == 0: return 0. false_discovery_rate = (num_false_positives / (num_true_positives + num_false_positives)) return false_discovery_rate for alpha in [0.001, 0.01, 0.1]: for n_informative in [1, 5, 10]: # As per Benjamini-Hochberg, the expected false discovery rate # should be lower than alpha: # FDR = E(FP / (TP + FP)) <= alpha false_discovery_rate = np.mean([single_fdr(alpha, n_informative, random_state) for random_state in range(100)]) assert_greater_equal(alpha, false_discovery_rate) # Make sure that the empirical false discovery rate increases # with alpha: if false_discovery_rate != 0: assert_greater(false_discovery_rate, alpha / 10) def test_select_fwe_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fwe heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fwe', param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 2) def test_selectkbest_tiebreaking(): # Test whether SelectKBest actually selects k features in case of ties. # Prior to 0.11, SelectKBest would return more features than requested. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectKBest(dummy_score, k=1) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectKBest(dummy_score, k=2) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_selectpercentile_tiebreaking(): # Test if SelectPercentile selects the right n_features in case of ties. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectPercentile(dummy_score, percentile=34) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectPercentile(dummy_score, percentile=67) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_tied_pvalues(): # Test whether k-best and percentiles work with tied pvalues from chi2. # chi2 will return the same p-values for the following features, but it # will return different scores. X0 = np.array([[10000, 9999, 9998], [1, 1, 1]]) y = [0, 1] for perm in itertools.permutations((0, 1, 2)): X = X0[:, perm] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) def test_scorefunc_multilabel(): # Test whether k-best and percentiles works with multilabels with chi2. X = np.array([[10000, 9999, 0], [100, 9999, 0], [1000, 99, 0]]) y = [[1, 1], [0, 1], [1, 0]] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert_equal(Xt.shape, (3, 2)) assert_not_in(0, Xt) Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert_equal(Xt.shape, (3, 2)) assert_not_in(0, Xt) def test_tied_scores(): # Test for stable sorting in k-best with tied scores. X_train = np.array([[0, 0, 0], [1, 1, 1]]) y_train = [0, 1] for n_features in [1, 2, 3]: sel = SelectKBest(chi2, k=n_features).fit(X_train, y_train) X_test = sel.transform([[0, 1, 2]]) assert_array_equal(X_test[0], np.arange(3)[-n_features:]) def test_nans(): # Assert that SelectKBest and SelectPercentile can handle NaNs. # First feature has zero variance to confuse f_classif (ANOVA) and # make it return a NaN. X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for select in (SelectKBest(f_classif, 2), SelectPercentile(f_classif, percentile=67)): ignore_warnings(select.fit)(X, y) assert_array_equal(select.get_support(indices=True), np.array([1, 2])) def test_score_func_error(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for SelectFeatures in [SelectKBest, SelectPercentile, SelectFwe, SelectFdr, SelectFpr, GenericUnivariateSelect]: assert_raises(TypeError, SelectFeatures(score_func=10).fit, X, y) def test_invalid_k(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] assert_raises(ValueError, SelectKBest(k=-1).fit, X, y) assert_raises(ValueError, SelectKBest(k=4).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=4).fit, X, y) def test_f_classif_constant_feature(): # Test that f_classif warns if a feature is constant throughout. X, y = make_classification(n_samples=10, n_features=5) X[:, 0] = 2.0 assert_warns(UserWarning, f_classif, X, y) def test_no_feature_selected(): rng = np.random.RandomState(0) # Generate random uncorrelated data: a strict univariate test should # rejects all the features X = rng.rand(40, 10) y = rng.randint(0, 4, size=40) strict_selectors = [ SelectFwe(alpha=0.01).fit(X, y), SelectFdr(alpha=0.01).fit(X, y), SelectFpr(alpha=0.01).fit(X, y), SelectPercentile(percentile=0).fit(X, y), SelectKBest(k=0).fit(X, y), ] for selector in strict_selectors: assert_array_equal(selector.get_support(), np.zeros(10)) X_selected = assert_warns_message( UserWarning, 'No features were selected', selector.transform, X) assert_equal(X_selected.shape, (40, 0)) def test_mutual_info_classif(): X, y = make_classification(n_samples=100, n_features=5, n_informative=1, n_redundant=1, n_repeated=0, n_classes=2, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) # Test in KBest mode. univariate_filter = SelectKBest(mutual_info_classif, k=2) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( mutual_info_classif, mode='k_best', param=2).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(5) gtruth[:2] = 1 assert_array_equal(support, gtruth) # Test in Percentile mode. univariate_filter = SelectPercentile(mutual_info_classif, percentile=40) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( mutual_info_classif, mode='percentile', param=40).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(5) gtruth[:2] = 1 assert_array_equal(support, gtruth) def test_mutual_info_regression(): X, y = make_regression(n_samples=100, n_features=10, n_informative=2, shuffle=False, random_state=0, noise=10) # Test in KBest mode. univariate_filter = SelectKBest(mutual_info_regression, k=2) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( mutual_info_regression, mode='k_best', param=2).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(10) gtruth[:2] = 1 assert_array_equal(support, gtruth) # Test in Percentile mode. univariate_filter = SelectPercentile(mutual_info_regression, percentile=20) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(mutual_info_regression, mode='percentile', param=20).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(10) gtruth[:2] = 1 assert_array_equal(support, gtruth) if __name__ == '__main__': run_module_suite()
bsd-3-clause
LukeWoodSMU/Mushroom-Classification
visualizations/comparative_plots.py
1
1980
import sys import os import numpy as np import matplotlib.pyplot as plt sys.path.append(os.path.abspath('..')) from preprocessing import shroom_dealer def data(attribute): df = shroom_dealer.get_data_frame() attribute_values = shroom_dealer.get_attribute_dictionary()[attribute] poisonous_data = {} edible_data = {} for a in attribute_values.keys(): poisonous_data[a] = \ df[attribute][df['poisonous'] == 'p'][df[attribute] == a].count() edible_data[a] = \ df[attribute][df['poisonous'] == 'e'][df[attribute] == a].count() return {"poisonous": poisonous_data, "edible": edible_data} def plot_comparative_data(attribute, plot=True, save=False): edible_data = data(attribute)["edible"] poisonous_data = data(attribute)["poisonous"] labels = shroom_dealer.get_attribute_dictionary()[attribute] index = np.arange(len(edible_data)) bar_width = 0.35 opacity=0.4 fig, ax = plt.subplots() plt.bar(index, edible_data.values(), bar_width, align='center', color='b', label='edible', alpha=opacity) plt.bar(index + bar_width, poisonous_data.values(), bar_width, align='center', color='r', label='poisonous', alpha=opacity) plt.xlabel('Attributes') plt.ylabel('Frequency') plt.title('Frequency by attribute and edibility ({})'.format(attribute)) plt.xticks(index + bar_width / 2, [labels[key] for key in edible_data.keys()]) plt.legend() plt.tight_layout() if plot: plt.show() if save: plt.savefig('comparative_barcharts/{}.png'.format(attribute)) plt.close() def plot_all(): attributes = shroom_dealer.get_attribute_dictionary() for a in attributes.keys(): plot_comparative_data(a, plot=True) def save_all(): attributes = shroom_dealer.get_attribute_dictionary() for a in attributes.keys(): plot_comparative_data(a, plot=False, save=True)
gpl-3.0
erramuzpe/NeuroVault
neurovault/api/serializers.py
3
11559
import os import json import pandas as pd from django.contrib.auth.models import User from django.forms.utils import ErrorDict, ErrorList from django.utils.http import urlquote from rest_framework import serializers from rest_framework.relations import PrimaryKeyRelatedField, StringRelatedField from neurovault.apps.statmaps.forms import ( handle_update_ttl_urls, ImageValidationMixin, NIDMResultsValidationMixin, save_nidm_statmaps ) from neurovault.apps.statmaps.models import ( Atlas, BaseCollectionItem, CognitiveAtlasTask, CognitiveAtlasContrast, Collection, NIDMResults, NIDMResultStatisticMap, StatisticMap ) from neurovault.utils import strip, logical_xor from neurovault.apps.statmaps.utils import get_paper_properties class HyperlinkedFileField(serializers.FileField): def to_representation(self, value): if value: request = self.context.get('request', None) return request.build_absolute_uri(urlquote(value.url)) class HyperlinkedDownloadURL(serializers.RelatedField): def to_representation(self, value): if value: request = self.context.get('request', None) return request.build_absolute_uri(value + "download") class HyperlinkedRelatedURL(serializers.RelatedField): def to_representation(self, value): if value: request = self.context.get('request', None) return request.build_absolute_uri(value.get_absolute_url()) class HyperlinkedImageURL(serializers.CharField): def to_representation(self, value): if value: request = self.context.get('request', None) return request.build_absolute_uri(value) class SerializedContributors(serializers.CharField): def to_representation(self, value): if value: return ', '.join([v.username for v in value.all()]) class NIDMDescriptionSerializedField(serializers.CharField): def to_representation(self, value): if value and self.parent.instance is not None: parent = self.parent.instance.nidm_results.name fname = os.path.split(self.parent.instance.file.name)[-1] return 'NIDM Results: {0}.zip > {1}'.format(parent, fname) class UserSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = User fields = ('id', 'username', 'email', 'first_name', 'last_name') class ImageSerializer(serializers.HyperlinkedModelSerializer, ImageValidationMixin): id = serializers.ReadOnlyField() file = HyperlinkedFileField() collection = HyperlinkedRelatedURL(read_only=True) collection_id = serializers.ReadOnlyField() url = HyperlinkedImageURL(source='get_absolute_url', read_only=True) file_size = serializers.SerializerMethodField() class Meta: model = BaseCollectionItem exclude = ['polymorphic_ctype'] def __init__(self, *args, **kwargs): super(ImageSerializer, self).__init__(*args, **kwargs) initial_data = getattr(self, 'initial_data', None) if initial_data: self._metadata_dict = self.extract_metadata_fields( self.initial_data, self._writable_fields ) def get_file_size(self, obj): return obj.file.size def to_representation(self, obj): """ Because Image is Polymorphic """ if isinstance(obj, StatisticMap): serializer = StatisticMapSerializer image_type = 'statistic_map' elif isinstance(obj, Atlas): serializer = AtlasSerializer image_type = 'atlas' elif isinstance(obj, NIDMResultStatisticMap): serializer = NIDMResultStatisticMapSerializer image_type = 'NIDM results statistic map' elif isinstance(obj, NIDMResults): serializer = NIDMResultsSerializer image_type = 'NIDM Results' orderedDict = serializer(obj, context={ 'request': self.context['request']}).to_representation(obj) orderedDict['image_type'] = image_type for key, val in orderedDict.iteritems(): if pd.isnull(val): orderedDict[key] = None return orderedDict def extract_metadata_fields(self, initial_data, writable_fields): field_name_set = set(f.field_name for f in writable_fields) metadata_field_set = initial_data.viewkeys() - field_name_set return {key: initial_data[key] for key in metadata_field_set} def validate(self, data): self.afni_subbricks = [] self.afni_tmp = None self._errors = ErrorDict() self.error_class = ErrorList cleaned_data = self.clean_and_validate(data) if self.errors: raise serializers.ValidationError(self.errors) return cleaned_data def save(self, *args, **kwargs): metadata_dict = getattr(self, '_metadata_dict', None) if metadata_dict: data = self.instance.data.copy() data.update(self._metadata_dict) kwargs['data'] = data self.is_valid = True super(ImageSerializer, self).save(*args, **kwargs) class EditableStatisticMapSerializer(ImageSerializer): cognitive_paradigm_cogatlas = PrimaryKeyRelatedField( queryset=CognitiveAtlasTask.objects.all(), allow_null=True, required=False ) cognitive_contrast_cogatlas = PrimaryKeyRelatedField( queryset=CognitiveAtlasContrast.objects.all(), allow_null=True, required=False ) class Meta: model = StatisticMap read_only_fields = ('collection',) exclude = ['polymorphic_ctype', 'ignore_file_warning', 'data'] class StatisticMapSerializer(ImageSerializer): cognitive_paradigm_cogatlas = StringRelatedField(read_only=True) cognitive_paradigm_cogatlas_id = PrimaryKeyRelatedField( read_only=True, source="cognitive_paradigm_cogatlas") cognitive_contrast_cogatlas = StringRelatedField(read_only=True) cognitive_contrast_cogatlas_id = PrimaryKeyRelatedField( read_only=True, source="cognitive_contrast_cogatlas") map_type = serializers.SerializerMethodField() analysis_level = serializers.SerializerMethodField() def get_map_type(self, obj): return obj.get_map_type_display() def get_analysis_level(self, obj): return obj.get_analysis_level_display() class Meta: model = StatisticMap exclude = ['polymorphic_ctype', 'ignore_file_warning', 'data'] def value_to_python(self, value): if not value: return value try: return json.loads(value) except (TypeError, ValueError): return value def to_representation(self, obj): ret = super(ImageSerializer, self).to_representation(obj) for field_name, value in obj.data.items(): if field_name not in ret: ret[field_name] = self.value_to_python(value) return ret class NIDMResultStatisticMapSerializer(ImageSerializer): nidm_results = HyperlinkedRelatedURL(read_only=True) nidm_results_ttl = serializers.SerializerMethodField() description = NIDMDescriptionSerializedField(source='get_absolute_url') map_type = serializers.SerializerMethodField() analysis_level = serializers.SerializerMethodField() def get_map_type(self, obj): return obj.get_map_type_display() def get_analysis_level(self, obj): return obj.get_analysis_level_display() def get_nidm_results_ttl(self, obj): return self.context['request'].build_absolute_uri( obj.nidm_results.ttl_file.url ) class Meta: model = NIDMResultStatisticMap exclude = ['polymorphic_ctype'] def to_representation(self, obj): return super(ImageSerializer, self).to_representation(obj) class AtlasSerializer(ImageSerializer): label_description_file = HyperlinkedFileField() class Meta: model = Atlas exclude = ['polymorphic_ctype'] def to_representation(self, obj): return super(ImageSerializer, self).to_representation(obj) class EditableAtlasSerializer(ImageSerializer): class Meta: model = Atlas read_only_fields = ('collection',) class NIDMResultsSerializer(serializers.ModelSerializer, NIDMResultsValidationMixin): zip_file = HyperlinkedFileField() ttl_file = HyperlinkedFileField(required=False) statmaps = ImageSerializer(many=True, source='nidmresultstatisticmap_set') url = HyperlinkedImageURL(source='get_absolute_url', read_only=True) def validate(self, data): data['collection'] = self.instance.collection return self.clean_and_validate(data) def save(self): instance = super(NIDMResultsSerializer, self).save() nidm = getattr(self, 'nidm', False) if nidm: # Handle file upload save_nidm_statmaps(nidm, instance) handle_update_ttl_urls(instance) return instance class Meta: model = NIDMResults exclude = ['is_valid'] read_only_fields = ('collection',) class EditableNIDMResultsSerializer(serializers.ModelSerializer, NIDMResultsValidationMixin): url = HyperlinkedImageURL(source='get_absolute_url', read_only=True) def validate(self, data): data['collection'] = self.instance.collection return self.clean_and_validate(data) def save(self): instance = super(EditableNIDMResultsSerializer, self).save() save_nidm_statmaps(self.nidm, instance) handle_update_ttl_urls(instance) return instance class Meta: model = NIDMResults read_only_fields = ('collection',) exclude = ['is_valid'] class CollectionSerializer(serializers.ModelSerializer): url = HyperlinkedImageURL(source='get_absolute_url', read_only=True) download_url = HyperlinkedDownloadURL(source='get_absolute_url', read_only=True) owner = serializers.ReadOnlyField(source='owner.id') images = ImageSerializer(many=True, source='basecollectionitem_set') contributors = SerializedContributors(required=False) owner_name = serializers.SerializerMethodField() number_of_images = serializers.SerializerMethodField('num_im') def num_im(self, obj): return obj.basecollectionitem_set.count() def get_owner_name(self, obj): return obj.owner.username def validate(self, data): doi = strip(data.get('DOI')) name = strip(data.get('name')) if not self.instance: if not (logical_xor(doi, name)): raise serializers.ValidationError( 'Specify either "name" or "DOI"' ) if doi: try: (name, authors, paper_url, _, journal_name) = get_paper_properties(doi) data['name'] = name data['authors'] = authors data['paper_url'] = paper_url data['journal_name'] = journal_name except: raise serializers.ValidationError('Could not resolve DOI') return data class Meta: model = Collection exclude = ['private_token', 'images'] # Override `required` to allow name fetching by DOI extra_kwargs = {'name': {'required': False}}
mit
mschmidt87/nest-simulator
pynest/examples/hh_phaseplane.py
9
4973
# -*- coding: utf-8 -*- # # hh_phaseplane.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. ''' hh_phaseplane makes a numerical phase-plane analysis of the Hodgkin-Huxley neuron (iaf_psc_alpha). Dynamics is investigated in the V-n space (see remark below). A constant DC can be specified and its influence on the nullclines can be studied. REMARK To make the two-dimensional analysis possible, the (four-dimensional) Hodgkin-Huxley formalism needs to be artificially reduced to two dimensions, in this case by 'clamping' the two other variables, m an h, to constant values (m_eq and h_eq). ''' import nest from matplotlib import pyplot as plt amplitude = 100. # Set externally applied current amplitude in pA dt = 0.1 # simulation step length [ms] nest.ResetKernel() nest.set_verbosity('M_ERROR') nest.SetKernelStatus({'resolution': dt}) neuron = nest.Create('hh_psc_alpha') # Numerically obtain equilibrium state nest.Simulate(1000) m_eq = nest.GetStatus(neuron)[0]['Act_m'] h_eq = nest.GetStatus(neuron)[0]['Act_h'] nest.SetStatus(neuron, {'I_e': amplitude}) # Apply external current # Scan state space print('Scanning phase space') V_new_vec = [] n_new_vec = [] # x will contain the phase-plane data as a vector field x = [] count = 0 for V in range(-100, 42, 2): n_V = [] n_n = [] for n in range(10, 81): # Set V_m and n nest.SetStatus(neuron, {'V_m': V*1.0, 'Inact_n': n/100.0, 'Act_m': m_eq, 'Act_h': h_eq}) # Find state V_m = nest.GetStatus(neuron)[0]['V_m'] Inact_n = nest.GetStatus(neuron)[0]['Inact_n'] # Simulate a short while nest.Simulate(dt) # Find difference between new state and old state V_m_new = nest.GetStatus(neuron)[0]['V_m'] - V*1.0 Inact_n_new = nest.GetStatus(neuron)[0]['Inact_n'] - n/100.0 # Store in vector for later analysis n_V.append(abs(V_m_new)) n_n.append(abs(Inact_n_new)) x.append([V_m, Inact_n, V_m_new, Inact_n_new]) if count % 10 == 0: # Write updated state next to old state print('') print('Vm: \t', V_m) print('new Vm:\t', V_m_new) print('Inact_n:', Inact_n) print('new Inact_n:', Inact_n_new) count += 1 # Store in vector for later analysis V_new_vec.append(n_V) n_new_vec.append(n_n) # Set state for AP generation nest.SetStatus(neuron, {'V_m': -34., 'Inact_n': 0.2, 'Act_m': m_eq, 'Act_h': h_eq}) print('') print('AP-trajectory') # ap will contain the trace of a single action potential as one possible # numerical solution in the vector field ap = [] for i in range(1, 1001): # Find state V_m = nest.GetStatus(neuron)[0]['V_m'] Inact_n = nest.GetStatus(neuron)[0]['Inact_n'] if i % 10 == 0: # Write new state next to old state print('Vm: \t', V_m) print('Inact_n:', Inact_n) ap.append([V_m, Inact_n]) # Simulate again nest.SetStatus(neuron, {'Act_m': m_eq, 'Act_h': h_eq}) nest.Simulate(dt) # Make analysis print('') print('Plot analysis') V_matrix = [list(x) for x in zip(*V_new_vec)] n_matrix = [list(x) for x in zip(*n_new_vec)] n_vec = [x/100. for x in range(10, 81)] V_vec = [x*1. for x in range(-100, 42, 2)] nullcline_V = [] nullcline_n = [] print('Searching nullclines') for i in range(0, len(V_vec)): index = V_matrix[:][i].index(min(V_matrix[:][i])) if index != 0 and index != len(n_vec): nullcline_V.append([V_vec[i], n_vec[index]]) index = n_matrix[:][i].index(min(n_matrix[:][i])) if index != 0 and index != len(n_vec): nullcline_n.append([V_vec[i], n_vec[index]]) print('Plotting vector field') factor = 0.1 for i in range(0, count, 3): plt.plot([x[i][0], x[i][0] + factor*x[i][2]], [x[i][1], x[i][1] + factor*x[i][3]], color=[0.6, 0.6, 0.6]) plt.plot(nullcline_V[:][0], nullcline_V[:][1], linewidth=2.0) plt.plot(nullcline_n[:][0], nullcline_n[:][1], linewidth=2.0) plt.xlim([V_vec[0], V_vec[-1]]) plt.ylim([n_vec[0], n_vec[-1]]) plt.plot(ap[:][0], ap[:][1], color='black', linewidth=1.0) plt.xlabel('Membrane potential V [mV]') plt.ylabel('Inactivation variable n') plt.title('Phase space of the Hodgkin-Huxley Neuron') plt.show()
gpl-2.0
ryfeus/lambda-packs
LightGBM_sklearn_scipy_numpy/source/sklearn/manifold/t_sne.py
3
35089
# Author: Alexander Fabisch -- <[email protected]> # Author: Christopher Moody <[email protected]> # Author: Nick Travers <[email protected]> # License: BSD 3 clause (C) 2014 # This is the exact and Barnes-Hut t-SNE implementation. There are other # modifications of the algorithm: # * Fast Optimization for t-SNE: # http://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf from time import time import numpy as np from scipy import linalg import scipy.sparse as sp from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from scipy.sparse import csr_matrix from ..neighbors import NearestNeighbors from ..base import BaseEstimator from ..utils import check_array from ..utils import check_random_state from ..decomposition import PCA from ..metrics.pairwise import pairwise_distances from . import _utils from . import _barnes_hut_tsne from ..externals.six import string_types from ..utils import deprecated MACHINE_EPSILON = np.finfo(np.double).eps def _joint_probabilities(distances, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances. Parameters ---------- distances : array, shape (n_samples * (n_samples-1) / 2,) Distances of samples are stored as condensed matrices, i.e. we omit the diagonal and duplicate entries and store everything in a one-dimensional array. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. """ # Compute conditional probabilities such that they approximately match # the desired perplexity distances = distances.astype(np.float32, copy=False) conditional_P = _utils._binary_search_perplexity( distances, None, desired_perplexity, verbose) P = conditional_P + conditional_P.T sum_P = np.maximum(np.sum(P), MACHINE_EPSILON) P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON) return P def _joint_probabilities_nn(distances, neighbors, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances using just nearest neighbors. This method is approximately equal to _joint_probabilities. The latter is O(N), but limiting the joint probability to nearest neighbors improves this substantially to O(uN). Parameters ---------- distances : array, shape (n_samples, k) Distances of samples to its k nearest neighbors. neighbors : array, shape (n_samples, k) Indices of the k nearest-neighbors for each samples. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : csr sparse matrix, shape (n_samples, n_samples) Condensed joint probability matrix with only nearest neighbors. """ t0 = time() # Compute conditional probabilities such that they approximately match # the desired perplexity n_samples, k = neighbors.shape distances = distances.astype(np.float32, copy=False) neighbors = neighbors.astype(np.int64, copy=False) conditional_P = _utils._binary_search_perplexity( distances, neighbors, desired_perplexity, verbose) assert np.all(np.isfinite(conditional_P)), \ "All probabilities should be finite" # Symmetrize the joint probability distribution using sparse operations P = csr_matrix((conditional_P.ravel(), neighbors.ravel(), range(0, n_samples * k + 1, k)), shape=(n_samples, n_samples)) P = P + P.T # Normalize the joint probability distribution sum_P = np.maximum(P.sum(), MACHINE_EPSILON) P /= sum_P assert np.all(np.abs(P.data) <= 1.0) if verbose >= 2: duration = time() - t0 print("[t-SNE] Computed conditional probabilities in {:.3f}s" .format(duration)) return P def _kl_divergence(params, P, degrees_of_freedom, n_samples, n_components, skip_num_points=0): """t-SNE objective function: gradient of the KL divergence of p_ijs and q_ijs and the absolute error. Parameters ---------- params : array, shape (n_params,) Unraveled embedding. P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. degrees_of_freedom : float Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. skip_num_points : int (optional, default:0) This does not compute the gradient for points with indices below `skip_num_points`. This is useful when computing transforms of new data where you'd like to keep the old data fixed. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : array, shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ X_embedded = params.reshape(n_samples, n_components) # Q is a heavy-tailed distribution: Student's t-distribution dist = pdist(X_embedded, "sqeuclidean") dist /= degrees_of_freedom dist += 1. dist **= (degrees_of_freedom + 1.0) / -2.0 Q = np.maximum(dist / (2.0 * np.sum(dist)), MACHINE_EPSILON) # Optimization trick below: np.dot(x, y) is faster than # np.sum(x * y) because it calls BLAS # Objective: C (Kullback-Leibler divergence of P and Q) kl_divergence = 2.0 * np.dot(P, np.log(np.maximum(P, MACHINE_EPSILON) / Q)) # Gradient: dC/dY # pdist always returns double precision distances. Thus we need to take grad = np.ndarray((n_samples, n_components), dtype=params.dtype) PQd = squareform((P - Q) * dist) for i in range(skip_num_points, n_samples): grad[i] = np.dot(np.ravel(PQd[i], order='K'), X_embedded[i] - X_embedded) grad = grad.ravel() c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom grad *= c return kl_divergence, grad def _kl_divergence_bh(params, P, degrees_of_freedom, n_samples, n_components, angle=0.5, skip_num_points=0, verbose=False): """t-SNE objective function: KL divergence of p_ijs and q_ijs. Uses Barnes-Hut tree methods to calculate the gradient that runs in O(NlogN) instead of O(N^2) Parameters ---------- params : array, shape (n_params,) Unraveled embedding. P : csr sparse matrix, shape (n_samples, n_sample) Sparse approximate joint probability matrix, computed only for the k nearest-neighbors and symmetrized. degrees_of_freedom : float Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. angle : float (default: 0.5) This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. skip_num_points : int (optional, default:0) This does not compute the gradient for points with indices below `skip_num_points`. This is useful when computing transforms of new data where you'd like to keep the old data fixed. verbose : int Verbosity level. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : array, shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ params = params.astype(np.float32, copy=False) X_embedded = params.reshape(n_samples, n_components) val_P = P.data.astype(np.float32, copy=False) neighbors = P.indices.astype(np.int64, copy=False) indptr = P.indptr.astype(np.int64, copy=False) grad = np.zeros(X_embedded.shape, dtype=np.float32) error = _barnes_hut_tsne.gradient(val_P, X_embedded, neighbors, indptr, grad, angle, n_components, verbose, dof=degrees_of_freedom) c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom grad = grad.ravel() grad *= c return error, grad def _gradient_descent(objective, p0, it, n_iter, n_iter_check=1, n_iter_without_progress=300, momentum=0.8, learning_rate=200.0, min_gain=0.01, min_grad_norm=1e-7, verbose=0, args=None, kwargs=None): """Batch gradient descent with momentum and individual gains. Parameters ---------- objective : function or callable Should return a tuple of cost and gradient for a given parameter vector. When expensive to compute, the cost can optionally be None and can be computed every n_iter_check steps using the objective_error function. p0 : array-like, shape (n_params,) Initial parameter vector. it : int Current number of iterations (this function will be called more than once during the optimization). n_iter : int Maximum number of gradient descent iterations. n_iter_check : int Number of iterations before evaluating the global error. If the error is sufficiently low, we abort the optimization. n_iter_without_progress : int, optional (default: 300) Maximum number of iterations without progress before we abort the optimization. momentum : float, within (0.0, 1.0), optional (default: 0.8) The momentum generates a weight for previous gradients that decays exponentially. learning_rate : float, optional (default: 200.0) The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. min_gain : float, optional (default: 0.01) Minimum individual gain for each parameter. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be aborted. verbose : int, optional (default: 0) Verbosity level. args : sequence Arguments to pass to objective function. kwargs : dict Keyword arguments to pass to objective function. Returns ------- p : array, shape (n_params,) Optimum parameters. error : float Optimum. i : int Last iteration. """ if args is None: args = [] if kwargs is None: kwargs = {} p = p0.copy().ravel() update = np.zeros_like(p) gains = np.ones_like(p) error = np.finfo(np.float).max best_error = np.finfo(np.float).max best_iter = i = it tic = time() for i in range(it, n_iter): error, grad = objective(p, *args, **kwargs) grad_norm = linalg.norm(grad) inc = update * grad < 0.0 dec = np.invert(inc) gains[inc] += 0.2 gains[dec] *= 0.8 np.clip(gains, min_gain, np.inf, out=gains) grad *= gains update = momentum * update - learning_rate * grad p += update if (i + 1) % n_iter_check == 0: toc = time() duration = toc - tic tic = toc if verbose >= 2: print("[t-SNE] Iteration %d: error = %.7f," " gradient norm = %.7f" " (%s iterations in %0.3fs)" % (i + 1, error, grad_norm, n_iter_check, duration)) if error < best_error: best_error = error best_iter = i elif i - best_iter > n_iter_without_progress: if verbose >= 2: print("[t-SNE] Iteration %d: did not make any progress " "during the last %d episodes. Finished." % (i + 1, n_iter_without_progress)) break if grad_norm <= min_grad_norm: if verbose >= 2: print("[t-SNE] Iteration %d: gradient norm %f. Finished." % (i + 1, grad_norm)) break return p, error, i def trustworthiness(X, X_embedded, n_neighbors=5, precomputed=False): """Expresses to what extent the local structure is retained. The trustworthiness is within [0, 1]. It is defined as .. math:: T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1} \sum_{j \in U^{(k)}_i} (r(i, j) - k) where :math:`r(i, j)` is the rank of the embedded datapoint j according to the pairwise distances between the embedded datapoints, :math:`U^{(k)}_i` is the set of points that are in the k nearest neighbors in the embedded space but not in the original space. * "Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study" J. Venna, S. Kaski * "Learning a Parametric Embedding by Preserving Local Structure" L.J.P. van der Maaten Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. X_embedded : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. n_neighbors : int, optional (default: 5) Number of neighbors k that will be considered. precomputed : bool, optional (default: False) Set this flag if X is a precomputed square distance matrix. Returns ------- trustworthiness : float Trustworthiness of the low-dimensional embedding. """ if precomputed: dist_X = X else: dist_X = pairwise_distances(X, squared=True) dist_X_embedded = pairwise_distances(X_embedded, squared=True) ind_X = np.argsort(dist_X, axis=1) ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1] n_samples = X.shape[0] t = 0.0 ranks = np.zeros(n_neighbors) for i in range(n_samples): for j in range(n_neighbors): ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0] ranks -= n_neighbors t += np.sum(ranks[ranks > 0]) t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))) return t class TSNE(BaseEstimator): """t-distributed Stochastic Neighbor Embedding. t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different initializations we can get different results. It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples. For more tips see Laurens van der Maaten's FAQ [2]. Read more in the :ref:`User Guide <t_sne>`. Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. early_exaggeration : float, optional (default: 12.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 200.0) The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum increasing the learning rate may help. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 250. n_iter_without_progress : int, optional (default: 300) Maximum number of iterations without progress before we abort the optimization, used after 250 initial iterations with early exaggeration. Note that progress is only checked every 50 iterations so this value is rounded to the next multiple of 50. .. versionadded:: 0.17 parameter *n_iter_without_progress* to control stopping criteria. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be stopped. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string or numpy array, optional (default: "random") Initialization of embedding. Possible options are 'random', 'pca', and a numpy array of shape (n_samples, n_components). PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level. random_state : int, RandomState instance or None, optional (default: None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Note that different initializations might result in different local minima of the cost function. method : string (default: 'barnes_hut') By default the gradient calculation algorithm uses Barnes-Hut approximation running in O(NlogN) time. method='exact' will run on the slower, but exact, algorithm in O(N^2) time. The exact algorithm should be used when nearest-neighbor errors need to be better than 3%. However, the exact method cannot scale to millions of examples. .. versionadded:: 0.17 Approximate optimization *method* via the Barnes-Hut. angle : float (default: 0.5) Only used if method='barnes_hut' This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kl_divergence_ : float Kullback-Leibler divergence after optimization. n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> from sklearn.manifold import TSNE >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> X_embedded = TSNE(n_components=2).fit_transform(X) >>> X_embedded.shape (4, 2) References ---------- [1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008. [2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding http://homepage.tudelft.nl/19j49/t-SNE.html [3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning Research 15(Oct):3221-3245, 2014. http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf """ # Control the number of exploration iterations with early_exaggeration on _EXPLORATION_N_ITER = 250 # Control the number of iterations between progress checks _N_ITER_CHECK = 50 def __init__(self, n_components=2, perplexity=30.0, early_exaggeration=12.0, learning_rate=200.0, n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-7, metric="euclidean", init="random", verbose=0, random_state=None, method='barnes_hut', angle=0.5): self.n_components = n_components self.perplexity = perplexity self.early_exaggeration = early_exaggeration self.learning_rate = learning_rate self.n_iter = n_iter self.n_iter_without_progress = n_iter_without_progress self.min_grad_norm = min_grad_norm self.metric = metric self.init = init self.verbose = verbose self.random_state = random_state self.method = method self.angle = angle def _fit(self, X, skip_num_points=0): """Fit the model using X as training data. Note that sparse arrays can only be handled by method='exact'. It is recommended that you convert your sparse array to dense (e.g. `X.toarray()`) if it fits in memory, or otherwise using a dimensionality reduction technique (e.g. TruncatedSVD). Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. Note that this when method='barnes_hut', X cannot be a sparse array and if need be will be converted to a 32 bit float array. Method='exact' allows sparse arrays and 64bit floating point inputs. skip_num_points : int (optional, default:0) This does not compute the gradient for points with indices below `skip_num_points`. This is useful when computing transforms of new data where you'd like to keep the old data fixed. """ if self.method not in ['barnes_hut', 'exact']: raise ValueError("'method' must be 'barnes_hut' or 'exact'") if self.angle < 0.0 or self.angle > 1.0: raise ValueError("'angle' must be between 0.0 - 1.0") if self.metric == "precomputed": if isinstance(self.init, string_types) and self.init == 'pca': raise ValueError("The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".") if X.shape[0] != X.shape[1]: raise ValueError("X should be a square distance matrix") if np.any(X < 0): raise ValueError("All distances should be positive, the " "precomputed distances given as X is not " "correct") if self.method == 'barnes_hut' and sp.issparse(X): raise TypeError('A sparse matrix was passed, but dense ' 'data is required for method="barnes_hut". Use ' 'X.toarray() to convert to a dense numpy array if ' 'the array is small enough for it to fit in ' 'memory. Otherwise consider dimensionality ' 'reduction techniques (e.g. TruncatedSVD)') else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=[np.float32, np.float64]) if self.method == 'barnes_hut' and self.n_components > 3: raise ValueError("'n_components' should be inferior to 4 for the " "barnes_hut algorithm as it relies on " "quad-tree or oct-tree.") random_state = check_random_state(self.random_state) if self.early_exaggeration < 1.0: raise ValueError("early_exaggeration must be at least 1, but is {}" .format(self.early_exaggeration)) if self.n_iter < 250: raise ValueError("n_iter should be at least 250") n_samples = X.shape[0] neighbors_nn = None if self.method == "exact": # Retrieve the distance matrix, either using the precomputed one or # computing it. if self.metric == "precomputed": distances = X else: if self.verbose: print("[t-SNE] Computing pairwise distances...") if self.metric == "euclidean": distances = pairwise_distances(X, metric=self.metric, squared=True) else: distances = pairwise_distances(X, metric=self.metric) if np.any(distances < 0): raise ValueError("All distances should be positive, the " "metric given is not correct") # compute the joint probability distribution for the input space P = _joint_probabilities(distances, self.perplexity, self.verbose) assert np.all(np.isfinite(P)), "All probabilities should be finite" assert np.all(P >= 0), "All probabilities should be non-negative" assert np.all(P <= 1), ("All probabilities should be less " "or then equal to one") else: # Cpmpute the number of nearest neighbors to find. # LvdM uses 3 * perplexity as the number of neighbors. # In the event that we have very small # of points # set the neighbors to n - 1. k = min(n_samples - 1, int(3. * self.perplexity + 1)) if self.verbose: print("[t-SNE] Computing {} nearest neighbors...".format(k)) # Find the nearest neighbors for every point knn = NearestNeighbors(algorithm='auto', n_neighbors=k, metric=self.metric) t0 = time() knn.fit(X) duration = time() - t0 if self.verbose: print("[t-SNE] Indexed {} samples in {:.3f}s...".format( n_samples, duration)) t0 = time() distances_nn, neighbors_nn = knn.kneighbors( None, n_neighbors=k) duration = time() - t0 if self.verbose: print("[t-SNE] Computed neighbors for {} samples in {:.3f}s..." .format(n_samples, duration)) # Free the memory used by the ball_tree del knn if self.metric == "euclidean": # knn return the euclidean distance but we need it squared # to be consistent with the 'exact' method. Note that the # the method was derived using the euclidean method as in the # input space. Not sure of the implication of using a different # metric. distances_nn **= 2 # compute the joint probability distribution for the input space P = _joint_probabilities_nn(distances_nn, neighbors_nn, self.perplexity, self.verbose) if isinstance(self.init, np.ndarray): X_embedded = self.init elif self.init == 'pca': pca = PCA(n_components=self.n_components, svd_solver='randomized', random_state=random_state) X_embedded = pca.fit_transform(X).astype(np.float32, copy=False) elif self.init == 'random': # The embedding is initialized with iid samples from Gaussians with # standard deviation 1e-4. X_embedded = 1e-4 * random_state.randn( n_samples, self.n_components).astype(np.float32) else: raise ValueError("'init' must be 'pca', 'random', or " "a numpy array") # Degrees of freedom of the Student's t-distribution. The suggestion # degrees_of_freedom = n_components - 1 comes from # "Learning a Parametric Embedding by Preserving Local Structure" # Laurens van der Maaten, 2009. degrees_of_freedom = max(self.n_components - 1.0, 1) return self._tsne(P, degrees_of_freedom, n_samples, X_embedded=X_embedded, neighbors=neighbors_nn, skip_num_points=skip_num_points) @property @deprecated("Attribute n_iter_final was deprecated in version 0.19 and " "will be removed in 0.21. Use ``n_iter_`` instead") def n_iter_final(self): return self.n_iter_ def _tsne(self, P, degrees_of_freedom, n_samples, X_embedded, neighbors=None, skip_num_points=0): """Runs t-SNE.""" # t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P # and the Student's t-distributions Q. The optimization algorithm that # we use is batch gradient descent with two stages: # * initial optimization with early exaggeration and momentum at 0.5 # * final optimization with momentum at 0.8 params = X_embedded.ravel() opt_args = { "it": 0, "n_iter_check": self._N_ITER_CHECK, "min_grad_norm": self.min_grad_norm, "learning_rate": self.learning_rate, "verbose": self.verbose, "kwargs": dict(skip_num_points=skip_num_points), "args": [P, degrees_of_freedom, n_samples, self.n_components], "n_iter_without_progress": self._EXPLORATION_N_ITER, "n_iter": self._EXPLORATION_N_ITER, "momentum": 0.5, } if self.method == 'barnes_hut': obj_func = _kl_divergence_bh opt_args['kwargs']['angle'] = self.angle # Repeat verbose argument for _kl_divergence_bh opt_args['kwargs']['verbose'] = self.verbose else: obj_func = _kl_divergence # Learning schedule (part 1): do 250 iteration with lower momentum but # higher learning rate controlled via the early exageration parameter P *= self.early_exaggeration params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args) if self.verbose: print("[t-SNE] KL divergence after %d iterations with early " "exaggeration: %f" % (it + 1, kl_divergence)) # Learning schedule (part 2): disable early exaggeration and finish # optimization with a higher momentum at 0.8 P /= self.early_exaggeration remaining = self.n_iter - self._EXPLORATION_N_ITER if it < self._EXPLORATION_N_ITER or remaining > 0: opt_args['n_iter'] = self.n_iter opt_args['it'] = it + 1 opt_args['momentum'] = 0.8 opt_args['n_iter_without_progress'] = self.n_iter_without_progress params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args) # Save the final number of iterations self.n_iter_ = it if self.verbose: print("[t-SNE] Error after %d iterations: %f" % (it + 1, kl_divergence)) X_embedded = params.reshape(n_samples, self.n_components) self.kl_divergence_ = kl_divergence return X_embedded def fit_transform(self, X, y=None): """Fit X into an embedded space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. y : Ignored. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. """ embedding = self._fit(X) self.embedding_ = embedding return self.embedding_ def fit(self, X, y=None): """Fit X into an embedded space. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. y : Ignored. """ self.fit_transform(X) return self
mit
TsinghuaX/ease
ease/util_functions.py
3
16740
#Collection of misc functions needed to support essay_set.py and feature_extractor.py. #Requires aspell to be installed and added to the path from fisher import pvalue aspell_path = "aspell" import re import os from sklearn.feature_extraction.text import CountVectorizer import numpy from itertools import chain import math import nltk import pickle import logging import sys import tempfile log=logging.getLogger(__name__) base_path = os.path.dirname(__file__) sys.path.append(base_path) if not base_path.endswith("/"): base_path=base_path+"/" #Paths to needed data files ESSAY_CORPUS_PATH = base_path + "data/essaycorpus.txt" ESSAY_COR_TOKENS_PATH = base_path + "data/essay_cor_tokens.p" class AlgorithmTypes(object): """ Defines what types of algorithm can be used """ regression = "regression" classification = "classifiction" def create_model_path(model_path): """ Creates a path to model files model_path - string """ if not model_path.startswith("/") and not model_path.startswith("models/"): model_path="/" + model_path if not model_path.startswith("models"): model_path = "models" + model_path if not model_path.endswith(".p"): model_path+=".p" return model_path def sub_chars(string): """ Strips illegal characters from a string. Used to sanitize input essays. Removes all non-punctuation, digit, or letter characters. Returns sanitized string. string - string """ #Define replacement patterns sub_pat = r"[^A-Za-z\.\?!,';:]" char_pat = r"\." com_pat = r"," ques_pat = r"\?" excl_pat = r"!" sem_pat = r";" col_pat = r":" whitespace_pat = r"\s{1,}" #Replace text. Ordering is very important! nstring = re.sub(sub_pat, " ", string) nstring = re.sub(char_pat," .", nstring) nstring = re.sub(com_pat, " ,", nstring) nstring = re.sub(ques_pat, " ?", nstring) nstring = re.sub(excl_pat, " !", nstring) nstring = re.sub(sem_pat, " ;", nstring) nstring = re.sub(col_pat, " :", nstring) nstring = re.sub(whitespace_pat, " ", nstring) return nstring def spell_correct(string): """ Uses aspell to spell correct an input string. Requires aspell to be installed and added to the path. Returns the spell corrected string if aspell is found, original string if not. string - string """ # Create a temp file so that aspell could be used # By default, tempfile will delete this file when the file handle is closed. f = tempfile.NamedTemporaryFile(mode='w') f.write(string) f.flush() f_path = os.path.abspath(f.name) try: p = os.popen(aspell_path + " -a < " + f_path + " --sug-mode=ultra") # Aspell returns a list of incorrect words with the above flags incorrect = p.readlines() p.close() except Exception: log.exception("aspell process failed; could not spell check") # Return original string if aspell fails return string,0, string finally: f.close() incorrect_words = list() correct_spelling = list() for i in range(1, len(incorrect)): if(len(incorrect[i]) > 10): #Reformat aspell output to make sense match = re.search(":", incorrect[i]) if hasattr(match, "start"): begstring = incorrect[i][2:match.start()] begmatch = re.search(" ", begstring) begword = begstring[0:begmatch.start()] sugstring = incorrect[i][match.start() + 2:] sugmatch = re.search(",", sugstring) if hasattr(sugmatch, "start"): sug = sugstring[0:sugmatch.start()] incorrect_words.append(begword) correct_spelling.append(sug) #Create markup based on spelling errors newstring = string markup_string = string already_subbed=[] for i in range(0, len(incorrect_words)): sub_pat = r"\b" + incorrect_words[i] + r"\b" sub_comp = re.compile(sub_pat) newstring = re.sub(sub_comp, correct_spelling[i], newstring) if incorrect_words[i] not in already_subbed: markup_string=re.sub(sub_comp,'<bs>' + incorrect_words[i] + "</bs>", markup_string) already_subbed.append(incorrect_words[i]) return newstring,len(incorrect_words),markup_string def ngrams(tokens, min_n, max_n): """ Generates ngrams(word sequences of fixed length) from an input token sequence. tokens is a list of words. min_n is the minimum length of an ngram to return. max_n is the maximum length of an ngram to return. returns a list of ngrams (words separated by a space) """ all_ngrams = list() n_tokens = len(tokens) for i in xrange(n_tokens): for j in xrange(i + min_n, min(n_tokens, i + max_n) + 1): all_ngrams.append(" ".join(tokens[i:j])) return all_ngrams def f7(seq): """ Makes a list unique """ seen = set() seen_add = seen.add return [x for x in seq if x not in seen and not seen_add(x)] def count_list(the_list): """ Generates a count of the number of times each unique item appears in a list """ count = the_list.count result = [(item, count(item)) for item in set(the_list)] result.sort() return result def regenerate_good_tokens(string): """ Given an input string, part of speech tags the string, then generates a list of ngrams that appear in the string. Used to define grammatically correct part of speech tag sequences. Returns a list of part of speech tag sequences. """ toks = nltk.word_tokenize(string) pos_string = nltk.pos_tag(toks) pos_seq = [tag[1] for tag in pos_string] pos_ngrams = ngrams(pos_seq, 2, 4) sel_pos_ngrams = f7(pos_ngrams) return sel_pos_ngrams def get_vocab(text, score, max_feats=750, max_feats2=200): """ Uses a fisher test to find words that are significant in that they separate high scoring essays from low scoring essays. text is a list of input essays. score is a list of scores, with score[n] corresponding to text[n] max_feats is the maximum number of features to consider in the first pass max_feats2 is the maximum number of features to consider in the second (final) pass Returns a list of words that constitute the significant vocabulary """ dict = CountVectorizer(ngram_range=(1,2), max_features=max_feats) dict_mat = dict.fit_transform(text) set_score = numpy.asarray(score, dtype=numpy.int) med_score = numpy.median(set_score) new_score = set_score if(med_score == 0): med_score = 1 new_score[set_score < med_score] = 0 new_score[set_score >= med_score] = 1 fish_vals = [] for col_num in range(0, dict_mat.shape[1]): loop_vec = dict_mat.getcol(col_num).toarray() good_loop_vec = loop_vec[new_score == 1] bad_loop_vec = loop_vec[new_score == 0] good_loop_present = len(good_loop_vec[good_loop_vec > 0]) good_loop_missing = len(good_loop_vec[good_loop_vec == 0]) bad_loop_present = len(bad_loop_vec[bad_loop_vec > 0]) bad_loop_missing = len(bad_loop_vec[bad_loop_vec == 0]) fish_val = pvalue(good_loop_present, bad_loop_present, good_loop_missing, bad_loop_missing).two_tail fish_vals.append(fish_val) cutoff = 1 if(len(fish_vals) > max_feats2): cutoff = sorted(fish_vals)[max_feats2] good_cols = numpy.asarray([num for num in range(0, dict_mat.shape[1]) if fish_vals[num] <= cutoff]) getVar = lambda searchList, ind: [searchList[i] for i in ind] vocab = getVar(dict.get_feature_names(), good_cols) return vocab def edit_distance(s1, s2): """ Calculates string edit distance between string 1 and string 2. Deletion, insertion, substitution, and transposition all increase edit distance. """ d = {} lenstr1 = len(s1) lenstr2 = len(s2) for i in xrange(-1, lenstr1 + 1): d[(i, -1)] = i + 1 for j in xrange(-1, lenstr2 + 1): d[(-1, j)] = j + 1 for i in xrange(lenstr1): for j in xrange(lenstr2): if s1[i] == s2[j]: cost = 0 else: cost = 1 d[(i, j)] = min( d[(i - 1, j)] + 1, # deletion d[(i, j - 1)] + 1, # insertion d[(i - 1, j - 1)] + cost, # substitution ) if i and j and s1[i] == s2[j - 1] and s1[i - 1] == s2[j]: d[(i, j)] = min(d[(i, j)], d[i - 2, j - 2] + cost) # transposition return d[lenstr1 - 1, lenstr2 - 1] class Error(Exception): pass class InputError(Error): def __init__(self, expr, msg): self.expr = expr self.msg = msg def gen_cv_preds(clf, arr, sel_score, num_chunks=3): """ Generates cross validated predictions using an input classifier and data. clf is a classifier that implements that implements the fit and predict methods. arr is the input data array (X) sel_score is the target list (y). y[n] corresponds to X[n,:] num_chunks is the number of cross validation folds to use Returns an array of the predictions where prediction[n] corresponds to X[n,:] """ cv_len = int(math.floor(len(sel_score) / num_chunks)) chunks = [] for i in range(0, num_chunks): range_min = i * cv_len range_max = ((i + 1) * cv_len) if i == num_chunks - 1: range_max = len(sel_score) chunks.append(range(range_min, range_max)) preds = [] set_score = numpy.asarray(sel_score, dtype=numpy.int) chunk_vec = numpy.asarray(range(0, len(chunks))) for i in xrange(0, len(chunks)): loop_inds = list( chain.from_iterable([chunks[int(z)] for z, m in enumerate(range(0, len(chunks))) if int(z) != i])) sim_fit = clf.fit(arr[loop_inds], set_score[loop_inds]) preds.append(list(sim_fit.predict(arr[chunks[i]]))) all_preds = list(chain(*preds)) return(all_preds) def gen_model(clf, arr, sel_score): """ Fits a classifier to data and a target score clf is an input classifier that implements the fit method. arr is a data array(X) sel_score is the target list (y) where y[n] corresponds to X[n,:] sim_fit is not a useful return value. Instead the clf is the useful output. """ set_score = numpy.asarray(sel_score, dtype=numpy.int) sim_fit = clf.fit(arr, set_score) return(sim_fit) def gen_preds(clf, arr): """ Generates predictions on a novel data array using a fit classifier clf is a classifier that has already been fit arr is a data array identical in dimension to the array clf was trained on Returns the array of predictions. """ if(hasattr(clf, "predict_proba")): ret = clf.predict(arr) # pred_score=preds.argmax(1)+min(x._score) else: ret = clf.predict(arr) return ret def calc_list_average(l): """ Calculates the average value of a list of numbers Returns a float """ total = 0.0 for value in l: total += value return total / len(l) stdev = lambda d: (sum((x - 1. * sum(d) / len(d)) ** 2 for x in d) / (1. * (len(d) - 1))) ** .5 def quadratic_weighted_kappa(rater_a, rater_b, min_rating=None, max_rating=None): """ Calculates kappa correlation between rater_a and rater_b. Kappa measures how well 2 quantities vary together. rater_a is a list of rater a scores rater_b is a list of rater b scores min_rating is an optional argument describing the minimum rating possible on the data set max_rating is an optional argument describing the maximum rating possible on the data set Returns a float corresponding to the kappa correlation """ assert(len(rater_a) == len(rater_b)) rater_a = [int(a) for a in rater_a] rater_b = [int(b) for b in rater_b] if min_rating is None: min_rating = min(rater_a + rater_b) if max_rating is None: max_rating = max(rater_a + rater_b) conf_mat = confusion_matrix(rater_a, rater_b, min_rating, max_rating) num_ratings = len(conf_mat) num_scored_items = float(len(rater_a)) hist_rater_a = histogram(rater_a, min_rating, max_rating) hist_rater_b = histogram(rater_b, min_rating, max_rating) numerator = 0.0 denominator = 0.0 if(num_ratings > 1): for i in range(num_ratings): for j in range(num_ratings): expected_count = (hist_rater_a[i] * hist_rater_b[j] / num_scored_items) d = pow(i - j, 2.0) / pow(num_ratings - 1, 2.0) numerator += d * conf_mat[i][j] / num_scored_items denominator += d * expected_count / num_scored_items return 1.0 - numerator / denominator else: return 1.0 def confusion_matrix(rater_a, rater_b, min_rating=None, max_rating=None): """ Generates a confusion matrix between rater_a and rater_b A confusion matrix shows how often 2 values agree and disagree See quadratic_weighted_kappa for argument descriptions """ assert(len(rater_a) == len(rater_b)) rater_a = [int(a) for a in rater_a] rater_b = [int(b) for b in rater_b] min_rating = int(min_rating) max_rating = int(max_rating) if min_rating is None: min_rating = min(rater_a) if max_rating is None: max_rating = max(rater_a) num_ratings = int(max_rating - min_rating + 1) conf_mat = [[0 for i in range(num_ratings)] for j in range(num_ratings)] for a, b in zip(rater_a, rater_b): conf_mat[int(a - min_rating)][int(b - min_rating)] += 1 return conf_mat def histogram(ratings, min_rating=None, max_rating=None): """ Generates a frequency count of each rating on the scale ratings is a list of scores Returns a list of frequencies """ ratings = [int(r) for r in ratings] if min_rating is None: min_rating = min(ratings) if max_rating is None: max_rating = max(ratings) num_ratings = int(max_rating - min_rating + 1) hist_ratings = [0 for x in range(num_ratings)] for r in ratings: hist_ratings[r - min_rating] += 1 return hist_ratings def get_wordnet_syns(word): """ Utilize wordnet (installed with nltk) to get synonyms for words word is the input word returns a list of unique synonyms """ synonyms = [] regex = r"_" pat = re.compile(regex) synset = nltk.wordnet.wordnet.synsets(word) for ss in synset: for swords in ss.lemma_names: synonyms.append(pat.sub(" ", swords.lower())) synonyms = f7(synonyms) return synonyms def get_separator_words(toks1): """ Finds the words that separate a list of tokens from a background corpus Basically this generates a list of informative/interesting words in a set toks1 is a list of words Returns a list of separator words """ tab_toks1 = nltk.FreqDist(word.lower() for word in toks1) if(os.path.isfile(ESSAY_COR_TOKENS_PATH)): toks2 = pickle.load(open(ESSAY_COR_TOKENS_PATH, 'rb')) else: essay_corpus = open(ESSAY_CORPUS_PATH).read() essay_corpus = sub_chars(essay_corpus) toks2 = nltk.FreqDist(word.lower() for word in nltk.word_tokenize(essay_corpus)) pickle.dump(toks2, open(ESSAY_COR_TOKENS_PATH, 'wb')) sep_words = [] for word in tab_toks1.keys(): tok1_present = tab_toks1[word] if(tok1_present > 2): tok1_total = tab_toks1._N tok2_present = toks2[word] tok2_total = toks2._N fish_val = pvalue(tok1_present, tok2_present, tok1_total, tok2_total).two_tail if(fish_val < .001 and tok1_present / float(tok1_total) > (tok2_present / float(tok2_total)) * 2): sep_words.append(word) sep_words = [w for w in sep_words if not w in nltk.corpus.stopwords.words("english") and len(w) > 5] return sep_words def encode_plus(s): """ Literally encodes the plus sign input is a string returns the string with plus signs encoded """ regex = r"\+" pat = re.compile(regex) return pat.sub("%2B", s) def getMedian(numericValues): """ Gets the median of a list of values Returns a float/int """ theValues = sorted(numericValues) if len(theValues) % 2 == 1: return theValues[(len(theValues) + 1) / 2 - 1] else: lower = theValues[len(theValues) / 2 - 1] upper = theValues[len(theValues) / 2] return (float(lower + upper)) / 2
agpl-3.0
trichter/sito
bin/console/plotspec.py
1
2764
#!/usr/bin/env python # by TR import argparse from obspy.core import UTCDateTime as UTC import logging from obspy.core.utcdatetime import UTCDateTime logging.basicConfig() parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('file_station', help='file to plot or station to plot') parser.add_argument('date', nargs='?', default=None, type=UTC, help='if first argument is station: date') parser.add_argument('-a', '--absolute-scale', type=float, default=0.0005, help='display with different scale, default: 0.0005') parser.add_argument('-r', '--relative-scale', type=float, help='display with different relative scale - ' 'overwrites ABSOLUTE_SCALE') parser.add_argument('-s', '--save', help='save plot to this file instead of showing') parser.add_argument('-x', '--xcorr-append', help='dont plot raw data and pass this argument to Data object') parser.add_argument('-c', '--component', default='Z', help='component to plot, default: Z') parser.add_argument('-d', '--downsample', default=1, help='downsample to this sampling rate, default: 1') parser.add_argument('-o', '--options', help='dictionary with kwargs passed to plotday') args = parser.parse_args() if args.relative_scale is not None: args.absolute_scale = None if args.options is None: kwargs = {} else: kwargs = eval('dict(%s)' % args.options) kwargs.update(dict(absolutescale=args.absolute_scale, scale=args.relative_scale, downsample=args.downsample, save=args.save, show=args.save is None)) print kwargs if args.date is None: from sito import read from sito.imaging import plotTrace stream = read(args.file_station) plotTrace(stream, **kwargs) else: from sito.imaging import plotTrace2 station = args.file_station if station.startswith('PB') or station == 'LVC': from sito.data import IPOC data = IPOC(xcorr_append=args.xcorr_append) elif station == 'PKD': from sito.data import Parkfield data = Parkfield(xcorr_append=args.xcorr_append) else: raise argparse.ArgumentError('Not a valid station name') day = UTCDateTime(args.date) if args.xcorr_append is None: stream = data.getRawStream(day, station, component=args.component) else: stream = data.getStream(day, station, component=args.component) if stream[0].stats.is_fft: stream.ifft() plotTrace(stream, component=args.component, **kwargs) if args.save is None: from matplotlib.pyplot import show show()
mit
rollend/trading-with-python
lib/qtpandas.py
77
7937
''' Easy integration of DataFrame into pyqt framework Copyright: Jev Kuznetsov Licence: BSD ''' from PyQt4.QtCore import (QAbstractTableModel,Qt,QVariant,QModelIndex,SIGNAL) from PyQt4.QtGui import (QApplication,QDialog,QVBoxLayout, QHBoxLayout, QTableView, QPushButton, QWidget,QTableWidget, QHeaderView, QFont,QMenu,QAbstractItemView) from pandas import DataFrame, Index class DataFrameModel(QAbstractTableModel): ''' data model for a DataFrame class ''' def __init__(self,parent=None): super(DataFrameModel,self).__init__(parent) self.df = DataFrame() self.columnFormat = {} # format columns def setFormat(self,fmt): """ set string formatting for the output example : format = {'close':"%.2f"} """ self.columnFormat = fmt def setDataFrame(self,dataFrame): self.df = dataFrame self.signalUpdate() def signalUpdate(self): ''' tell viewers to update their data (this is full update, not efficient)''' self.layoutChanged.emit() def __repr__(self): return str(self.df) def setData(self,index,value, role=Qt.EditRole): if index.isValid(): row,column = index.row(), index.column() dtype = self.df.dtypes.tolist()[column] # get column dtype if np.issubdtype(dtype,np.float): val,ok = value.toFloat() elif np.issubdtype(dtype,np.int): val,ok = value.toInt() else: val = value.toString() ok = True if ok: self.df.iloc[row,column] = val return True return False def flags(self, index): if not index.isValid(): return Qt.ItemIsEnabled return Qt.ItemFlags( QAbstractTableModel.flags(self, index)| Qt.ItemIsEditable) def appendRow(self, index, data=0): self.df.loc[index,:] = data self.signalUpdate() def deleteRow(self, index): idx = self.df.index[index] #self.beginRemoveRows(QModelIndex(), index,index) #self.df = self.df.drop(idx,axis=0) #self.endRemoveRows() #self.signalUpdate() #------------- table display functions ----------------- def headerData(self,section,orientation,role=Qt.DisplayRole): if role != Qt.DisplayRole: return QVariant() if orientation == Qt.Horizontal: try: return self.df.columns.tolist()[section] except (IndexError, ): return QVariant() elif orientation == Qt.Vertical: try: #return self.df.index.tolist() return str(self.df.index.tolist()[section]) except (IndexError, ): return QVariant() def data(self, index, role=Qt.DisplayRole): if role != Qt.DisplayRole: return QVariant() if not index.isValid(): return QVariant() col = self.df.ix[:,index.column()] # get a column slice first to get the right data type elm = col[index.row()] #elm = self.df.ix[index.row(),index.column()] if self.df.columns[index.column()] in self.columnFormat.keys(): return QVariant(self.columnFormat[self.df.columns[index.column()]] % elm ) else: return QVariant(str(elm)) def sort(self,nCol,order): self.layoutAboutToBeChanged.emit() if order == Qt.AscendingOrder: self.df = self.df.sort(columns=self.df.columns[nCol], ascending=True) elif order == Qt.DescendingOrder: self.df = self.df.sort(columns=self.df.columns[nCol], ascending=False) self.layoutChanged.emit() def rowCount(self, index=QModelIndex()): return self.df.shape[0] def columnCount(self, index=QModelIndex()): return self.df.shape[1] class TableView(QTableView): """ extended table view """ def __init__(self,name='TableView1', parent=None): super(TableView,self).__init__(parent) self.name = name self.setSelectionBehavior(QAbstractItemView.SelectRows) def contextMenuEvent(self, event): menu = QMenu(self) Action = menu.addAction("delete row") Action.triggered.connect(self.deleteRow) menu.exec_(event.globalPos()) def deleteRow(self): print "Action triggered from " + self.name print 'Selected rows:' for idx in self.selectionModel().selectedRows(): print idx.row() # self.model.deleteRow(idx.row()) class DataFrameWidget(QWidget): ''' a simple widget for using DataFrames in a gui ''' def __init__(self,name='DataFrameTable1', parent=None): super(DataFrameWidget,self).__init__(parent) self.name = name self.dataModel = DataFrameModel() self.dataModel.setDataFrame(DataFrame()) self.dataTable = QTableView() #self.dataTable.setSelectionBehavior(QAbstractItemView.SelectRows) self.dataTable.setSortingEnabled(True) self.dataTable.setModel(self.dataModel) self.dataModel.signalUpdate() #self.dataTable.setFont(QFont("Courier New", 8)) layout = QVBoxLayout() layout.addWidget(self.dataTable) self.setLayout(layout) def setFormat(self,fmt): """ set non-default string formatting for a column """ for colName, f in fmt.iteritems(): self.dataModel.columnFormat[colName]=f def fitColumns(self): self.dataTable.horizontalHeader().setResizeMode(QHeaderView.Stretch) def setDataFrame(self,df): self.dataModel.setDataFrame(df) def resizeColumnsToContents(self): self.dataTable.resizeColumnsToContents() def insertRow(self,index, data=None): self.dataModel.appendRow(index,data) #-----------------stand alone test code def testDf(): ''' creates test dataframe ''' data = {'int':[1,2,3],'float':[1./3,2.5,3.5],'string':['a','b','c'],'nan':[np.nan,np.nan,np.nan]} return DataFrame(data, index=Index(['AAA','BBB','CCC']))[['int','float','string','nan']] class Form(QDialog): def __init__(self,parent=None): super(Form,self).__init__(parent) df = testDf() # make up some data self.table = DataFrameWidget(parent=self) self.table.setDataFrame(df) #self.table.resizeColumnsToContents() self.table.fitColumns() self.table.setFormat({'float': '%.2f'}) #buttons #but_add = QPushButton('Add') but_test = QPushButton('Test') but_test.clicked.connect(self.testFcn) hbox = QHBoxLayout() #hbox.addself.table(but_add) hbox.addWidget(but_test) layout = QVBoxLayout() layout.addWidget(self.table) layout.addLayout(hbox) self.setLayout(layout) def testFcn(self): print 'test function' self.table.insertRow('foo') if __name__=='__main__': import sys import numpy as np app = QApplication(sys.argv) form = Form() form.show() app.exec_()
bsd-3-clause
srinathv/bokeh
examples/plotting/server/boxplot.py
42
2372
# The plot server must be running # Go to http://localhost:5006/bokeh to view this plot import numpy as np import pandas as pd from bokeh.plotting import figure, show, output_server # Generate some synthetic time series for six different categories cats = list("abcdef") data = np.random.randn(2000) g = np.random.choice(cats, 2000) for i, l in enumerate(cats): data[g == l] += i // 2 df = pd.DataFrame(dict(score=data, group=g)) # Find the quartiles and IQR foor each category groups = df.groupby('group') q1 = groups.quantile(q=0.25) q2 = groups.quantile(q=0.5) q3 = groups.quantile(q=0.75) iqr = q3 - q1 upper = q3 + 1.5*iqr lower = q1 - 1.5*iqr # find the outliers for each category def outliers(group): cat = group.name return group[(group.score > upper.loc[cat][0]) | (group.score < lower.loc[cat][0])]['score'] out = groups.apply(outliers).dropna() # Prepare outlier data for plotting, we need coordinate for every outlier. outx = [] outy = [] for cat in cats: # only add outliers if they exist if not out.loc[cat].empty: for value in out[cat]: outx.append(cat) outy.append(value) output_server('boxplot') p = figure(tools="previewsave", background_fill="#EFE8E2", title="", x_range=cats) # If no outliers, shrink lengths of stems to be no longer than the minimums or maximums qmin = groups.quantile(q=0.00) qmax = groups.quantile(q=1.00) upper.score = [min([x,y]) for (x,y) in zip(list(qmax.iloc[:,0]),upper.score) ] lower.score = [max([x,y]) for (x,y) in zip(list(qmin.iloc[:,0]),lower.score) ] # stems p.segment(cats, upper.score, cats, q3.score, line_width=2, line_color="black") p.segment(cats, lower.score, cats, q1.score, line_width=2, line_color="black") # boxes p.rect(cats, (q3.score+q2.score)/2, 0.7, q3.score-q2.score, fill_color="#E08E79", line_width=2, line_color="black") p.rect(cats, (q2.score+q1.score)/2, 0.7, q2.score-q1.score, fill_color="#3B8686", line_width=2, line_color="black") # whisters (almost-0 height rects simpler than segments) p.rect(cats, lower.score, 0.2, 0.01, line_color="black") p.rect(cats, upper.score, 0.2, 0.01, line_color="black") # outliers p.circle(outx, outy, size=6, color="#F38630", fill_alpha=0.6) p.xgrid.grid_line_color = None p.ygrid.grid_line_color = "white" p.ygrid.grid_line_width = 2 p.xaxis.major_label_text_font_size="12pt" show(p)
bsd-3-clause
oscarlazoarjona/quantum_memories
examples/hyperfine_orca/doppler_dephasing/plot_data_rb.py
1
14036
# -*- coding: utf-8 -*- # Copyright (C) 2017 Oscar Gerardo Lazo Arjona # mailto: [email protected] r"""This is a template.""" import numpy as np from scipy.optimize import curve_fit import pandas as pd from matplotlib import pyplot as plt from scipy.constants import physical_constants from tabulate import tabulate from fast import State, Transition, Integer from fast import all_atoms from math import pi, sqrt def gaussian_formula(t, amp, sigma): """Return points on a gaussian with the given amplitude and dephasing.""" return amp*np.exp(-(t/sigma)**2) def simple_formula(t, amp, gamma, sigma, Delta): """Return points on the modeled simple efficiency.""" return amp*np.exp(-gamma*t - (Delta*sigma*t)**2) def hyperfine_formula(t, amp, gamma, sigma, Delta, omega87, omega97, omega107, A, B, C, D, phib, phic, phid): """Return points on the modeled hyperfine efficiency.""" eta = amp*np.exp(-gamma*t - (Delta*sigma*t)**2) eta = eta*abs(A + B*np.exp(1j*omega87*t+1j*phib) + C*np.exp(1j*omega97*t+1j*phic) + D*np.exp(1j*omega107*t+1j*phid))**2 # eta = eta/abs(A+B*np.exp(1j*phib)+C*np.exp(1j*phic))**2 return eta def get_model(gamma, sigma, Delta, omega87, omega97, omega107, fit_gamma=None): r"""Get a model to fit.""" def f(t, amp, A, B, C, D, phib, phic, phid): return hyperfine_formula(t, amp, gamma, sigma, Delta, omega87, omega97, omega107, A, B, C, D, phib, phic, phid) def g(t, gamma): return hyperfine_formula(t, amp, gamma, sigma, Delta, omega87, omega97, A, B, C, phib, phic) if fit_gamma is not None: A, B, C, phib, phic = fit_gamma return g else: return f tdelay_exp = [5.1788101408450705e-09, 9.9592504225352128e-09, 1.5337245633802818e-08, 2.011768591549296e-08, 2.529649605633803e-08, 3.0276121126760566e-08, 3.5255746478873246e-08, 4.0434557746478886e-08, 4.52149971830986e-08, 5.0393808450704239e-08, 5.517424788732396e-08, 6.015387323943664e-08, 6.5315278873239461e-08, 7.0511492957746506e-08, 7.529193239436622e-08, 8.0072374647887346e-08, 8.5649554929577499e-08, 9.0629180281690165e-08, 9.5210433802816913e-08, 1.0019005915492959e-07, 1.0516968450704226e-07, 1.1054767887323945e-07, 1.1532812112676057e-07, 1.2050692957746481e-07, 1.2508818591549298e-07, 1.3026699718309861e-07, 1.3564499154929577e-07, 1.404254309859155e-07, 1.4580342535211266e-07, 1.5018549577464785e-07, 1.5516512112676056e-07, 1.6034393239436617e-07, 1.6532355774647887e-07, 1.7010399718309857e-07, 1.7528280845070421e-07, 1.8046161690140844e-07, 1.8544124225352112e-07, 1.904208676056338e-07, 1.9520130985915493e-07, 2.0018093521126761e-07] eta_exp = [0.20500400458756521, 0.06670728759622839, 0.030760132618571991, 0.053227104479607261, 0.10964417892068903, 0.16855758121498934, 0.20500400458756521, 0.16056932219972492, 0.045738113859262283, 0.021773329752779624, 0.055224170998595869, 0.089673534912872471, 0.10989380958780416, 0.10614931427763159, 0.074196285277262727, 0.03675132511484798, 0.011788032461283361, 0.023770375089700164, 0.045238845464342668, 0.049232978502319565, 0.038748384573147235, 0.022771852421239813, 0.0092916551832402938, 0.0037997805067081221, 0.0042990418409383779, 0.0097909165174705493, 0.012287293795513616, 0.010290248458592754, 0.0047983031751684729, -0.0006936421082558077, -0.0006936421082558077, -0.0016921647767161587, -0.0006936421082558077, 0.00030488056020454339, 0.00030488056020454339, -0.00019438077402571241, -0.00069364210825596827, -0.00069364210825596827, -0.00019438077402571241, -0.00019438077402571241] tdelay_hyp = np.linspace(5e-9, 200e-9, 40*5) eta_hyp = [6.49292859e-02, 5.07382837e-02, 3.72369196e-02, 2.53027370e-02, 1.55529475e-02, 8.30006291e-03, 3.55003301e-03, 1.04036579e-03, 3.10074579e-04, 7.89166056e-04, 1.89333699e-03, 3.10977792e-03, 4.06238220e-03, 4.54870105e-03, 4.54593917e-03, 4.18832154e-03, 3.72243106e-03, 3.44999435e-03, 3.66867785e-03, 4.62069832e-03, 6.45670720e-03, 9.21901639e-03, 1.28443964e-02, 1.71832101e-02, 2.20290340e-02, 2.71516926e-02, 3.23268102e-02, 3.73565539e-02, 4.20787257e-02, 4.63642798e-02, 5.01060320e-02, 5.32033427e-02, 5.55483620e-02, 5.70190292e-02, 5.74823940e-02, 5.68093679e-02, 5.48992035e-02, 5.17094189e-02, 4.72850647e-02, 4.17805480e-02, 3.54679462e-02, 2.87276684e-02, 2.20202379e-02, 1.58413587e-02, 1.06656516e-02, 6.88691070e-03, 4.76401366e-03, 4.38138522e-03, 5.63111059e-03, 8.22079292e-03, 1.17073629e-02, 1.55530074e-02, 1.91958079e-02, 2.21251704e-02, 2.39511342e-02, 2.44573284e-02, 2.36296432e-02, 2.16562276e-02, 1.88986884e-02, 1.58386209e-02, 1.30073039e-02, 1.09087957e-02, 9.94758243e-03, 1.03710851e-02, 1.22350238e-02, 1.53961088e-02, 1.95324368e-02, 2.41879746e-02, 2.88341175e-02, 3.29391083e-02, 3.60353805e-02, 3.77756391e-02, 3.79705464e-02, 3.66039907e-02, 3.38252781e-02, 2.99210201e-02, 2.52720957e-02, 2.03028565e-02, 1.54301327e-02, 1.10189900e-02, 7.35039491e-03, 4.60370389e-03, 2.85424203e-03, 2.08401199e-03, 2.20173021e-03, 3.06754052e-03, 4.51771176e-03, 6.38538753e-03, 8.51492118e-03, 1.07689175e-02, 1.30287872e-02, 1.51908811e-02, 1.71609059e-02, 1.88494323e-02, 2.01706591e-02, 2.10454367e-02, 2.14086698e-02, 2.12194420e-02, 2.04712494e-02, 1.92008297e-02, 1.74913992e-02, 1.54699917e-02, 1.32963217e-02, 1.11477068e-02, 9.19750740e-03, 7.59242269e-03, 6.43395894e-03, 5.76328135e-03, 5.55555984e-03, 5.72353213e-03, 6.13091440e-03, 6.61324900e-03, 7.00367668e-03, 7.15935278e-03, 6.98495574e-03, 6.44883567e-03, 5.58976788e-03, 4.51253655e-03, 3.37400509e-03, 2.36019286e-03, 1.65921138e-03, 1.43186721e-03, 1.78838297e-03, 2.76969271e-03, 4.33970213e-03, 6.38838984e-03, 8.74345561e-03, 1.11922786e-02, 1.35081129e-02, 1.54779625e-02, 1.69265503e-02, 1.77354298e-02, 1.78554245e-02, 1.73068547e-02, 1.61731057e-02, 1.45864330e-02, 1.27081045e-02, 1.07073932e-02, 8.74127105e-03, 6.94005568e-03, 5.39375909e-03, 4.14869024e-03, 3.21185551e-03, 2.55423908e-03, 2.12288703e-03, 1.85408537e-03, 1.68291960e-03, 1.55274907e-03, 1.42288155e-03, 1.26964567e-03, 1.08549464e-03, 8.77514561e-04, 6.60852869e-04, 4.54475130e-04, 2.77375984e-04, 1.44878833e-04, 6.81641395e-05, 5.43469430e-05, 1.07840697e-04, 2.32490793e-04, 4.32669142e-04, 7.14327428e-04, 1.08354963e-03, 1.54523025e-03, 2.10027580e-03, 2.74191594e-03, 3.45408943e-03, 4.20891200e-03, 4.96746908e-03, 5.68289904e-03, 6.30260816e-03, 6.77549352e-03, 7.05760016e-03, 7.11694071e-03, 6.93964817e-03, 6.53236487e-03, 5.92167971e-03, 5.15285733e-03, 4.28457926e-03, 3.38223460e-03, 2.51099788e-03, 1.72888114e-03, 1.08178247e-03, 5.93276280e-04, 2.72028526e-04, 1.06638665e-04, 7.04134086e-05, 1.26402824e-04, 2.33284988e-04, 3.51424036e-04, 4.48180762e-04, 5.01998112e-04, 5.09333495e-04, 4.63761824e-04, 3.84893007e-04, 2.94669021e-04, 2.18240891e-04, 1.79421482e-04, 1.96753482e-04, 2.80866472e-04] tdelay_exp = np.array(tdelay_exp) eta_exp = np.array(eta_exp) eta_hyp = np.array(eta_hyp)*eta_exp[0]/eta_hyp[0] ############################################################################### # We calculate the numbers for the lifetime formulas. Rb85 = all_atoms[0] Cs133 = all_atoms[2] mRb = Rb85.mass mCs = Cs133.mass kB = physical_constants["Boltzmann constant"][0] e1rb85 = State("Rb", 85, 5, 0, 1/Integer(2)) e2rb85 = State("Rb", 85, 5, 1, 3/Integer(2)) e3rb85 = State("Rb", 85, 5, 2, 5/Integer(2)) e1cs133 = State("Cs", 133, 6, 0, 1/Integer(2)) e2cs133 = State("Cs", 133, 6, 1, 3/Integer(2)) e3cs133 = State("Cs", 133, 6, 2, 5/Integer(2)) t1rb85 = Transition(e2rb85, e1rb85) t2rb85 = Transition(e3rb85, e2rb85) k1rb85 = 2*pi/t1rb85.wavelength k2rb85 = 2*pi/t2rb85.wavelength kmrb85 = abs(k2rb85-k1rb85) kmrb85 = 0.000001 t1cs133 = Transition(e2cs133, e1cs133) t2cs133 = Transition(e3cs133, e2cs133) k1cs133 = 2*pi/t1cs133.wavelength k2cs133 = 2*pi/t2cs133.wavelength kmcs133 = abs(k2cs133-k1cs133) # We calculate the Doppler and spontaneous decay lifetimes T = 273.15+90 sigmarb = sqrt(kB*T/mRb) sigmacs = sqrt(kB*T/mCs) gamma32cs = t2cs133.einsteinA gamma32rb = t2rb85.einsteinA taucs = (-gamma32cs+sqrt(4*(kmcs133*sigmacs)**2 + gamma32cs**2))/2/(kmcs133*sigmacs)**2 taurb = (-gamma32rb+sqrt(4*(kmrb85*sigmarb)**2 + gamma32rb**2))/2/(kmrb85*sigmarb)**2 print "A few properties of our alkalis:" table = [["85Rb", "133Cs"], ["m", mRb, mCs], ["Deltak", kmrb85, kmcs133], ["sigma_v", sigmarb, sigmacs], ["gamma_32", gamma32rb/2/pi*1e-6, gamma32cs/2/pi*1e-6], ["tau", taurb*1e9, taucs*1e9]] print tabulate(table, headers="firstrow") ############################################################################### # We make continous plots for the formulas tdelay_cont = np.linspace(0, tdelay_exp[-1]*1.05, 500) eta_simple_cont = simple_formula(tdelay_cont, 1.0, gamma32rb, sigmarb, kmrb85)*0.22 omega87 = 2*pi*28.8254e6 omega97 = omega87 + 2*pi*22.954e6 omega107 = omega97 + 2*pi*15.9384e6 # We fit the hyperfine formula to the experimental data. f = get_model(gamma32rb, sigmarb, kmrb85, omega87, omega97, omega107) p0 = [1.0, 1.0/3, 1.0/3, 1.0/3, 0.0, 0.0, 0.0, 0.0] res = curve_fit(f, tdelay_exp, eta_exp, p0=p0) p0 = res[0] amp, A, B, C, D, phib, phic, phid = p0 amp01 = amp*abs(A + B*np.exp(1j*phib) + C*np.exp(1j*phic)+D*np.exp(1j*phid))**2 eta_exp_cont = f(tdelay_cont, *p0)/amp01 # We fit the hyperfine formula to the hyperfine model. res = curve_fit(f, tdelay_hyp, eta_hyp, p0=p0) p0 = res[0] amp, A, B, C, D, phib, phic, phid = p0 print A, B, C, D amp02 = amp*abs(A + B*np.exp(1j*phib) + C*np.exp(1j*phic)+D*np.exp(1j*phid))**2 eta_hyp_cont = f(tdelay_cont, *p0)/amp02 ############################################################################### # We find the 1/e lifetime with pumping. tau_hfs = 0 eta_pump = eta_simple_cont/eta_simple_cont[0] tau_fs = 0 for i in range(len(eta_pump)): if eta_pump[i] < np.exp(-1.0): tau_fs = tdelay_cont[i] break print "The 1/e lifetime with pumping is", tau_fs*1e9, "ns." ####################################### # We find the 1/e lifetime without pumping. tau_hfs = 0 eta_no_pump = eta_hyp_cont for i in range(len(eta_pump)): if eta_no_pump[i] < np.exp(-1.0): tau_fs = tdelay_cont[i] break print "The 1/e lifetime without pumping is", tau_fs*1e9, "ns." # We make a plot including the ab-initio formulas: ############################################################################### plt.title(r"$^{87}\mathrm{Rb \ Memory \ Lifetime}$", fontsize=15) plt.plot(tdelay_hyp*1e9, eta_hyp/amp02, "rx-", label=r"$\mathrm{Hyperfine \ Theory}$", ms=5) plt.plot(tdelay_cont*1e9, eta_hyp_cont, "b-", label=r"$\eta_{\mathrm{hfs}} \ \mathrm{fit}$") plt.plot(tdelay_cont*1e9, eta_simple_cont/eta_simple_cont[0], "g-", label=r"$\mathrm{Simple \ Theory}$") plt.xlim([0, tdelay_cont[-1]*1e9]) plt.ylim([0, 1.02]) plt.xlabel(r"$\tau \ \mathrm{[ns]}$", fontsize=15) plt.ylabel(r"$\eta_\mathrm{N}$", fontsize=15) plt.legend(loc=1, fontsize=12) plt.savefig("doppler_dephasing_rb1.png", bbox_inches="tight") plt.savefig("doppler_dephasing_rb1.pdf", bbox_inches="tight") ############################################# # plt.plot(tdelay_exp*1e9, eta_exp/amp01, "x", color=(1, 0.5, 0), # label=r"$\mathrm{Experiment}$", ms=5) # plt.plot(tdelay_cont*1e9, eta_exp_cont, "-", color=(1, 0.5, 0), # label=r"$\eta_{\mathrm{hfs}} \ \mathrm{fit}$") # plt.legend(loc=1, fontsize=12) plt.savefig("doppler_dephasing_rb2.png", bbox_inches="tight") plt.savefig("doppler_dephasing_rb2.pdf", bbox_inches="tight") plt.close("all") ############################################# plt.title(r"$^{87}\mathrm{Rb \ Memory \ Lifetime}$", fontsize=15) plt.plot(tdelay_cont*1e9, eta_hyp_cont, "b-", label=r"$\mathrm{Theory \ (without \ pumping)}$") plt.plot(tdelay_cont*1e9, eta_simple_cont/eta_simple_cont[0], "g-", label=r"$\mathrm{Theory \ (with \ pumping)}$") # plt.xlim([0, tdelay_cont[-1]*1e9]) plt.ylim([0, 1.02]) plt.xlabel(r"$\tau \ \mathrm{[ns]}$", fontsize=15) plt.ylabel(r"$\eta_\mathrm{N}$", fontsize=15) plt.legend(loc=1, fontsize=12) plt.savefig("doppler_dephasing_rb3.png", bbox_inches="tight") plt.savefig("doppler_dephasing_rb3.pdf", bbox_inches="tight") plt.savefig("doppler_dephasing_rb3.svg", bbox_inches="tight") # We save all the data. ############################################################################### continous = np.asarray([tdelay_cont, eta_hyp_cont, eta_simple_cont/eta_simple_cont[0]]).T continous = pd.DataFrame(continous) continous.to_csv("eta_cont_rb.csv", header=["tdelay_cont", "etan_hyp", "etan_sim"]) maxwell_bloch = np.asarray([tdelay_hyp, eta_hyp/amp02]).T maxwell_bloch = pd.DataFrame(maxwell_bloch) maxwell_bloch.to_csv("eta_the_rb.csv", header=["tdelay_exp", "etan_hyp"])
gpl-3.0
doubaoatthu/UWRoutingSystem
server/dt.py
1
2276
from sklearn import tree from sklearn.externals.six import StringIO from IPython.display import Image from sklearn.neighbors import KNeighborsClassifier import os import pydot import numpy import math import random preference = [] label = [] with open("../data/survey.txt") as f: contents = f.readlines() for content in contents: content = content[1:-2] content = content.replace("\"","") labelarr = content.split(",") labelarr = labelarr[1:] intlabelarr = map(int,labelarr) preference.append(intlabelarr) with open("../data/path.txt") as f: contents = f.readlines() for content in contents: fstring = content.split("feature") if(len(fstring) > 1): features = fstring[1] features = features[3:-4] featarr = features.split(",") for i in range(0,len(featarr)): if(featarr[i] == "true"): featarr[i] = "1" if(featarr[i] == "false"): featarr[i] = "0" label.append(map(int,map(float,featarr))) for i in range(0,len(label)): if(label[i][7] < 1500): label[i][7] = 1 elif(label[i][7] < 2500): label[i][7] = 2 else: label[i][7] = 3 # print(preference) # print(label) # print(len(label)) x = numpy.array(label) y = x.T fname = ["sunny","cloudy","rainy/snowy","tired","coffee","bathroom","avoid crowd","curiousity","printer","campus event","hurry","fresh air","meet friend"] def drawDecisionTree(classIndex): clf = tree.DecisionTreeClassifier() clf = clf.fit(preference,y[classIndex]) # dot_data = StringIO() # # change it: class_names = cnames[classIndex] # tree.export_graphviz(clf,out_file=dot_data,feature_names= fname,filled=True, rounded=True,special_characters=True) # graph = pydot.graph_from_dot_data(dot_data.getvalue()) # filename = "decisionTree_" + str(classIndex) + ".pdf" # graph.write_pdf(filename) return clf toparse = [] for i in range(12): toparse.append(random.randint(1, 2)) trees = [] result = [] for i in range (1,9): result.append(drawDecisionTree(i).predict(toparse)[0]) ix = 0 choice = 0 max = 1000 for l in label: dis = 0 for i in range(0,len(l)-1): if(l[i] - result[i] == 0): dis = dis - 2 dis = dis + math.sqrt((l[i] - result[i])*(l[i] - result[i])) if(dis < max): max = dis choice = ix ix += 1 print(toparse) print(choice)
mit
rachel3834/mulens_modeler
trunk/scripts/gen_mag_error_relation.py
1
2082
# -*- coding: utf-8 -*- """ Created on Wed Apr 20 00:28:47 2016 @author: robouser """ import mulens_class from astropy.time import Time, TimeDelta import numpy as np from astropy import constants import matplotlib.pyplot as plt def generate_mag_err_relations(): """Function to generate datafiles of the magnitude error relations""" event = mulens_class.MicrolensingEvent() event.u_min = 0.0 event.u_offset = 0.001 event.t_E = TimeDelta((1.0 * 24.0 * 3600.0),format='sec') event.phi = ( 0.0 * np.pi ) / 180.0 event.rho = 0.001 event.M_L = constants.M_sun * 0.3 event.D_L = constants.pc * 3000.0 event.D_S = constants.pc * 8000.0 event.RA = '17:57:34.0' event.Dec = '-29:13:15.0' event.t_o = Time('2015-06-15T15:00:00', format='isot', scale='utc') event.get_earth_perihelion() exp_time = 200.0 output = open('/home/robouser/mag_err_relation.data','w') output.write('# Column 1: magnitude\n') output.write('# Column 2: magnitude uncertainty (1m telescope on Earth)\n') output.write('# Column 3: magnitude uncertainty (Swift)\n') mags = [] earth_merr = [] swift_merr = [] for mag in np.arange(12,18.0,0.01): event.mag_base = mag mags.append( mag ) earth_merr.append( event.sim_mag_error( exp_time, mag, precision_model='1m') ) swift_merr.append( event.sim_mag_error( exp_time, mag, precision_model='swift') ) output.write( str(mag) + ' ' + str(earth_merr[-1]) + ' ' + str(swift_merr[-1]) + '\n' ) output.close() mags = np.array(mags) earth_merr = np.array( earth_merr ) swift_merr = np.array( swift_merr ) fig = plt.figure(1,(12,12)) plt.plot( mags, earth_merr, 'r.', label='Earth 1m') plt.plot( mags, swift_merr, 'b+', label='Swift') plt.xlabel( 'Mag' ) plt.ylabel( 'Mag uncertainty' ) plt.yscale('log') plt.legend(loc='best',frameon=False) plt.grid() plt.savefig('/home/robouser/mag_err_relation.png') if __name__ == '__main__': generate_mag_err_relations()
gpl-2.0
joshbohde/scikit-learn
sklearn/linear_model/tests/test_ridge.py
2
7884
import numpy as np import scipy.sparse as sp from numpy.testing import assert_almost_equal, assert_array_almost_equal, \ assert_equal, assert_array_equal from sklearn import datasets from sklearn.metrics import mean_square_error from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.cross_validation import KFold diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) np.random.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target np.random.seed(0) DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): """Ridge regression convergence test using score TODO: for this test to be robust, we should use a dataset instead of np.random. """ alpha = 1.0 # With more samples than features n_samples, n_features = 6, 5 y = np.random.randn(n_samples) X = np.random.randn(n_samples, n_features) ridge = Ridge(alpha=alpha) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert ridge.score(X, y) > 0.5 ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert ridge.score(X, y) > 0.5 # With more features than samples n_samples, n_features = 5, 10 y = np.random.randn(n_samples) X = np.random.randn(n_samples, n_features) ridge = Ridge(alpha=alpha) ridge.fit(X, y) assert ridge.score(X, y) > .9 ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert ridge.score(X, y) > 0.9 def test_toy_ridge_object(): """Test BayesianRegression ridge classifier TODO: test also n_samples > n_features """ X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y,Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): """On alpha=0., Ridge and OLS yield the same solution.""" # we need more samples than features n_samples, n_features = 5, 4 np.random.seed(0) y = np.random.randn(n_samples) X = np.random.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit (X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit (X, y) assert_almost_equal(ridge.coef_, ols.coef_) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(fit_intercept=False) # generalized cross-validation (efficient leave-one-out) K, v, Q = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(v, Q, y_diabetes, 1.0) values, c = ridge_gcv._values(K, v, Q, y_diabetes, 1.0) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) best_alpha = ridge_gcv.best_alpha ret.append(best_alpha) # check that we get same best alpha with custom loss_func ridge_gcv2 = _RidgeGCV(fit_intercept=False, loss_func=mean_square_error) ridge_gcv2.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.best_alpha, best_alpha) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.best_alpha, best_alpha) # simulate several responses Y = np.vstack((y_diabetes,y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred,y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): n_samples = X_diabetes.shape[0] ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(n_samples, 5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes,y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred,y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert np.mean(y_iris == y_pred) >= 0.8 n_samples = X_iris.shape[0] cv = KFold(n_samples, 5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert np.mean(y_iris == y_pred) >= 0.8 def _test_tolerance(filter_): ridge = Ridge(tol=1e-5) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert score >= score2 def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense != None and ret_sparse != None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3)
bsd-3-clause
quheng/scikit-learn
examples/neighbors/plot_nearest_centroid.py
264
1804
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, 0.1]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
tkarna/cofs
test/pressure_grad/test_int_pg_mes.py
1
7608
""" Unit tests for computing the internal pressure gradient Runs MES convergence tests against a non-trivial analytical solution in a deformed geometry. P1DGxP2 space yields 1st order convergence. For second order convergence both the scalar fields and its gradient must be in P2DGxP2 space. """ from thetis import * from thetis.momentum_eq import InternalPressureGradientCalculator from scipy import stats import pytest def compute_l2_error(refinement=1, quadratic=False, no_exports=True): """ Computes pressure gradient in a setting where bathymetry, mesh surface elevation, and pressure are analytical, non-trivial functions. """ print_output(' ---- running refinement {:}'.format(refinement)) # create mesh rho_0 = 1000.0 physical_constants['rho0'] = rho_0 delta_x = 120e3/refinement lx = 360e3 ly = 360e3 nx = int(lx/delta_x) ny = int(ly/delta_x) mesh2d = RectangleMesh(nx, ny, lx, ly) layers = 3*refinement # bathymetry P1_2d = get_functionspace(mesh2d, 'CG', 1) bathymetry_2d = Function(P1_2d, name='Bathymetry') xy = SpatialCoordinate(mesh2d) depth = 3600. bath_expr = 0.5*(depth + depth)*(1 - 0.6*tanh(4*(xy[1]-ly/2)/ly)*sin(1.5*xy[0]/ly+0.2)) bathymetry_2d.project(bath_expr) mesh = extrude_mesh_sigma(mesh2d, layers, bathymetry_2d) bnd_len = compute_boundary_length(mesh2d) mesh2d.boundary_len = bnd_len mesh.boundary_len = bnd_len # make function spaces and fields p1 = get_functionspace(mesh, 'CG', 1) if quadratic: # NOTE for 3rd order convergence both the scalar and grad must be p2 fs_pg = get_functionspace(mesh, 'DG', 2, 'CG', 2, vector=True, dim=2) fs_scalar = get_functionspace(mesh, 'DG', 2, vfamily='CG', vdegree=2) else: # the default function spaces in Thetis fs_pg = get_functionspace(mesh, 'DG', 1, 'CG', 2, vector=True, dim=2) fs_scalar = get_functionspace(mesh, 'DG', 1, vfamily='CG', vdegree=2) density_3d = Function(fs_scalar, name='density') baroc_head_3d = Function(fs_scalar, name='baroclinic head') int_pg_3d = Function(fs_pg, name='pressure gradient') elev_3d = Function(p1, name='elevation') bathymetry_3d = Function(p1, name='elevation') ExpandFunctionTo3d(bathymetry_2d, bathymetry_3d).solve() # analytic expressions xyz = SpatialCoordinate(mesh) elev_expr = 2000.0*sin(0.3 + 1.5*xyz[1]/ly)*cos(2*xyz[0]/lx) density_expr = sin((xyz[1] - 0.3)/lx)*cos(2*xyz[2]/depth)*cos(2*xyz[0]/lx) baroc_head_expr = -depth*sin((2*xyz[2] - 4000.0*sin((0.3*ly + 1.5*xyz[1])/ly)*cos(2*xyz[0]/lx))/depth)*sin((xyz[1] - 0.3)/lx)*cos(2*xyz[0]/lx)/2 baroc_head_expr_dx = (depth*sin((2*xyz[2] - 4000.0*sin((0.3*ly + 1.5*xyz[1])/ly)*cos(2*xyz[0]/lx))/depth) - 4000.0*sin((0.3*ly + 1.5*xyz[1])/ly)*cos((2*xyz[2] - 4000.0*sin((0.3*ly + 1.5*xyz[1])/ly)*cos(2*xyz[0]/lx))/depth)*cos(2*xyz[0]/lx))*sin(2*xyz[0]/lx)*sin((xyz[1] - 0.3)/lx)/lx baroc_head_expr_dy = (-depth*ly*sin((2*xyz[2] - 4000.0*sin((0.3*ly + 1.5*xyz[1])/ly)*cos(2*xyz[0]/lx))/depth)*cos((xyz[1] - 0.3)/lx) + 6000.0*lx*sin((xyz[1] - 0.3)/lx)*cos((2*xyz[2] - 4000.0*sin((0.3*ly + 1.5*xyz[1])/ly)*cos(2*xyz[0]/lx))/depth)*cos(2*xyz[0]/lx)*cos((0.3*ly + 1.5*xyz[1])/ly))*cos(2*xyz[0]/lx)/(2*lx*ly) # deform mesh by elevation elev_3d.project(elev_expr) z_ref = mesh.coordinates.dat.data[:, 2] bath = bathymetry_3d.dat.data[:] eta = elev_3d.dat.data[:] new_z = eta*(z_ref + bath)/bath + z_ref mesh.coordinates.dat.data[:, 2] = new_z if not no_exports: out_density = File('density.pvd') out_bhead = File('baroc_head.pvd') out_pg = File('int_pg.pvd') # project initial scalar density_3d.project(density_expr) baroc_head_3d.project(baroc_head_expr) # compute int_pg fields = FieldDict() fields.baroc_head_3d = baroc_head_3d fields.int_pg_3d = int_pg_3d fields.bathymetry_3d = bathymetry_3d options = None bnd_functions = {} int_pg_solver = InternalPressureGradientCalculator( fields, options, bnd_functions, solver_parameters=None) int_pg_solver.solve() if not no_exports: out_density.write(density_3d) out_bhead.write(baroc_head_3d) out_pg.write(int_pg_3d) g_grav = physical_constants['g_grav'] ana_sol_expr = g_grav*as_vector(( baroc_head_expr_dx, baroc_head_expr_dy,)) volume = comp_volume_3d(mesh) l2_err = errornorm(ana_sol_expr, int_pg_3d, degree_rise=2)/np.sqrt(volume) print_output('L2 error {:}'.format(l2_err)) if not no_exports: out_density.write(density_3d) out_bhead.write(baroc_head_3d) out_pg.write(int_pg_3d.project(ana_sol_expr)) return l2_err def run_convergence(ref_list, save_plot=False, **options): """Runs test for a list of refinements and computes error convergence rate""" l2_err = [] for r in ref_list: l2_err.append(compute_l2_error(r, **options)) x_log = np.log10(np.array(ref_list, dtype=float)**-1) y_log = np.log10(np.array(l2_err)) setup_name = 'intpg' quadratic = options.get('quadratic', False) order = 2 if quadratic else 1 def check_convergence(x_log, y_log, expected_slope, field_str, save_plot): slope_rtol = 0.2 slope, intercept, r_value, p_value, std_err = stats.linregress(x_log, y_log) if save_plot: import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5)) # plot points ax.plot(x_log, y_log, 'k.') x_min = x_log.min() x_max = x_log.max() offset = 0.05*(x_max - x_min) n = 50 xx = np.linspace(x_min - offset, x_max + offset, n) yy = intercept + slope*xx # plot line ax.plot(xx, yy, linestyle='--', linewidth=0.5, color='k') ax.text(xx[int(2*n/3)], yy[int(2*n/3)], '{:4.2f}'.format(slope), verticalalignment='top', horizontalalignment='left') ax.set_xlabel('log10(dx)') ax.set_ylabel('log10(L2 error)') ax.set_title(field_str) ref_str = 'ref-' + '-'.join([str(r) for r in ref_list]) order_str = 'o{:}'.format(order) imgfile = '_'.join(['convergence', setup_name, field_str, ref_str, order_str]) imgfile += '.png' img_dir = create_directory('plots') imgfile = os.path.join(img_dir, imgfile) print_output('saving figure {:}'.format(imgfile)) plt.savefig(imgfile, dpi=200, bbox_inches='tight') if expected_slope is not None: err_msg = '{:}: Wrong convergence rate {:.4f}, expected {:.4f}'.format(setup_name, slope, expected_slope) assert abs(slope - expected_slope)/expected_slope < slope_rtol, err_msg print_output('{:}: convergence rate {:.4f} PASSED'.format(setup_name, slope)) else: print_output('{:}: {:} convergence rate {:.4f}'.format(setup_name, field_str, slope)) return slope check_convergence(x_log, y_log, order, 'intpg', save_plot) @pytest.mark.parametrize(('quadratic'), [True, False], ids=['quadratic', 'linear']) def test_int_pg(quadratic): run_convergence([1, 2, 3], quadratic=quadratic, save_plot=False, no_exports=True) if __name__ == '__main__': # compute_l2_error(refinement=3, quadratic=False, no_exports=False) run_convergence([1, 2, 3, 4, 6, 8], quadratic=False, save_plot=True, no_exports=True)
mit
michaelpacer/scikit-image
doc/examples/plot_multiblock_local_binary_pattern.py
22
2498
""" =========================================================== Multi-Block Local Binary Pattern for texture classification =========================================================== This example shows how to compute multi-block local binary pattern (MB-LBP) features as well as how to visualize them. The features are calculated similarly to local binary patterns (LBPs), except that summed blocks are used instead of individual pixel values. MB-LBP is an extension of LBP that can be computed on multiple scales in constant time using the integral image. 9 equally-sized rectangles are used to compute a feature. For each rectangle, the sum of the pixel intensities is computed. Comparisons of these sums to that of the central rectangle determine the feature, similarly to LBP (See `LBP <plot_local_binary_pattern.html>`_). First, we generate an image to illustrate the functioning of MB-LBP: consider a (9, 9) rectangle and divide it into (3, 3) block, upon which we then apply MB-LBP. """ from __future__ import print_function from skimage.feature import multiblock_lbp import numpy as np from numpy.testing import assert_equal from skimage.transform import integral_image # Create test matrix where first and fifth rectangles starting # from top left clockwise have greater value than the central one. test_img = np.zeros((9, 9), dtype='uint8') test_img[3:6, 3:6] = 1 test_img[:3, :3] = 50 test_img[6:, 6:] = 50 # First and fifth bits should be filled. This correct value will # be compared to the computed one. correct_answer = 0b10001000 int_img = integral_image(test_img) lbp_code = multiblock_lbp(int_img, 0, 0, 3, 3) assert_equal(correct_answer, lbp_code) """ Now let's apply the operator to a real image and see how the visualization works. """ from skimage import data from matplotlib import pyplot as plt from skimage.feature import draw_multiblock_lbp test_img = data.coins() int_img = integral_image(test_img) lbp_code = multiblock_lbp(int_img, 0, 0, 90, 90) img = draw_multiblock_lbp(test_img, 0, 0, 90, 90, lbp_code=lbp_code, alpha=0.5) plt.imshow(img, interpolation='nearest') plt.show() """ .. image:: PLOT2RST.current_figure On the above plot we see the result of computing a MB-LBP and visualization of the computed feature. The rectangles that have less intensities' sum than the central rectangle are marked in cyan. The ones that have higher intensity values are marked in white. The central rectangle is left untouched. """
bsd-3-clause
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/indexes/period/test_ops.py
2
13093
import numpy as np import pytest import pandas as pd from pandas import DatetimeIndex, Index, NaT, PeriodIndex, Series from pandas.core.arrays import PeriodArray from pandas.tests.test_base import Ops import pandas.util.testing as tm class TestPeriodIndexOps(Ops): def setup_method(self, method): super().setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, PeriodIndex) self.check_ops_properties(PeriodArray._field_ops, f) self.check_ops_properties(PeriodArray._object_ops, f) self.check_ops_properties(PeriodArray._bool_ops, f) def test_resolution(self): for freq, expected in zip( ["A", "Q", "M", "D", "H", "T", "S", "L", "U"], [ "day", "day", "day", "day", "hour", "minute", "second", "millisecond", "microsecond", ], ): idx = pd.period_range(start="2013-04-01", periods=30, freq=freq) assert idx.resolution == expected def test_value_counts_unique(self): # GH 7735 idx = pd.period_range("2011-01-01 09:00", freq="H", periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = PeriodIndex(np.repeat(idx._values, range(1, len(idx) + 1)), freq="H") exp_idx = PeriodIndex( [ "2011-01-01 18:00", "2011-01-01 17:00", "2011-01-01 16:00", "2011-01-01 15:00", "2011-01-01 14:00", "2011-01-01 13:00", "2011-01-01 12:00", "2011-01-01 11:00", "2011-01-01 10:00", "2011-01-01 09:00", ], freq="H", ) expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64") for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.period_range("2011-01-01 09:00", freq="H", periods=10) tm.assert_index_equal(idx.unique(), expected) idx = PeriodIndex( [ "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 08:00", "2013-01-01 08:00", NaT, ], freq="H", ) exp_idx = PeriodIndex(["2013-01-01 09:00", "2013-01-01 08:00"], freq="H") expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = PeriodIndex(["2013-01-01 09:00", "2013-01-01 08:00", NaT], freq="H") expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx.drop_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.append(idx) # freq will not be reset result = idx_dup.drop_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq def test_drop_duplicates(self): # to check Index/Series compat base = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx") idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep="last") exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep="last") tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_order_compat(self): def _check_freq(index, expected_index): if isinstance(index, PeriodIndex): assert index.freq == expected_index.freq pidx = PeriodIndex(["2011", "2012", "2013"], name="pidx", freq="A") # for compatibility check iidx = Index([2011, 2012, 2013], name="idx") for idx in [pidx, iidx]: ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) _check_freq(ordered, idx) ordered = idx.sort_values(ascending=False) tm.assert_index_equal(ordered, idx[::-1]) _check_freq(ordered, idx[::-1]) ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, idx[::-1]) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) _check_freq(ordered, idx[::-1]) pidx = PeriodIndex( ["2011", "2013", "2015", "2012", "2011"], name="pidx", freq="A" ) pexpected = PeriodIndex( ["2011", "2011", "2012", "2013", "2015"], name="pidx", freq="A" ) # for compatibility check iidx = Index([2011, 2013, 2015, 2012, 2011], name="idx") iexpected = Index([2011, 2011, 2012, 2013, 2015], name="idx") for idx, expected in [(pidx, pexpected), (iidx, iexpected)]: ordered = idx.sort_values() tm.assert_index_equal(ordered, expected) _check_freq(ordered, idx) ordered = idx.sort_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) _check_freq(ordered, idx) pidx = PeriodIndex(["2011", "2013", "NaT", "2011"], name="pidx", freq="D") result = pidx.sort_values() expected = PeriodIndex(["NaT", "2011", "2011", "2013"], name="pidx", freq="D") tm.assert_index_equal(result, expected) assert result.freq == "D" result = pidx.sort_values(ascending=False) expected = PeriodIndex(["2013", "2011", "2011", "NaT"], name="pidx", freq="D") tm.assert_index_equal(result, expected) assert result.freq == "D" def test_order(self): for freq in ["D", "2D", "4D"]: idx = PeriodIndex( ["2011-01-01", "2011-01-02", "2011-01-03"], freq=freq, name="idx" ) ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq == freq ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq assert ordered.freq == freq ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq == freq idx1 = PeriodIndex( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], freq="D", name="idx1", ) exp1 = PeriodIndex( ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], freq="D", name="idx1", ) idx2 = PeriodIndex( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], freq="D", name="idx2", ) exp2 = PeriodIndex( ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], freq="D", name="idx2", ) idx3 = PeriodIndex( [NaT, "2011-01-03", "2011-01-05", "2011-01-02", NaT], freq="D", name="idx3" ) exp3 = PeriodIndex( [NaT, NaT, "2011-01-02", "2011-01-03", "2011-01-05"], freq="D", name="idx3" ) for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() tm.assert_index_equal(ordered, expected) assert ordered.freq == "D" ordered = idx.sort_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq == "D" ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq == "D" ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq == "D" def test_shift(self): # This is tested in test_arithmetic pass def test_nat(self): assert pd.PeriodIndex._na_value is NaT assert pd.PeriodIndex([], freq="M")._na_value is NaT idx = pd.PeriodIndex(["2011-01-01", "2011-01-02"], freq="D") assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) assert idx.hasnans is False tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.PeriodIndex(["2011-01-01", "NaT"], freq="D") assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) assert idx.hasnans is True tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) @pytest.mark.parametrize("freq", ["D", "M"]) def test_equals(self, freq): # GH#13107 idx = pd.PeriodIndex(["2011-01-01", "2011-01-02", "NaT"], freq=freq) assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.astype(object)) assert idx.astype(object).equals(idx) assert idx.astype(object).equals(idx.astype(object)) assert not idx.equals(list(idx)) assert not idx.equals(pd.Series(idx)) idx2 = pd.PeriodIndex(["2011-01-01", "2011-01-02", "NaT"], freq="H") assert not idx.equals(idx2) assert not idx.equals(idx2.copy()) assert not idx.equals(idx2.astype(object)) assert not idx.astype(object).equals(idx2) assert not idx.equals(list(idx2)) assert not idx.equals(pd.Series(idx2)) # same internal, different tz idx3 = pd.PeriodIndex._simple_new( idx._values._simple_new(idx._values.asi8, freq="H") ) tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) assert not idx.equals(idx3) assert not idx.equals(idx3.copy()) assert not idx.equals(idx3.astype(object)) assert not idx.astype(object).equals(idx3) assert not idx.equals(list(idx3)) assert not idx.equals(pd.Series(idx3)) def test_freq_setter_deprecated(self): # GH 20678 idx = pd.period_range("2018Q1", periods=4, freq="Q") # no warning for getter with tm.assert_produces_warning(None): idx.freq # warning for setter with tm.assert_produces_warning(FutureWarning): idx.freq = pd.offsets.Day()
apache-2.0
joernhees/scikit-learn
sklearn/tests/test_metaestimators.py
52
4990
"""Common tests for metaestimators""" import functools import numpy as np from sklearn.base import BaseEstimator from sklearn.externals.six import iterkeys from sklearn.datasets import make_classification from sklearn.utils.testing import assert_true, assert_false, assert_raises from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.feature_selection import RFE, RFECV from sklearn.ensemble import BaggingClassifier class DelegatorData(object): def __init__(self, name, construct, skip_methods=(), fit_args=make_classification()): self.name = name self.construct = construct self.fit_args = fit_args self.skip_methods = skip_methods DELEGATING_METAESTIMATORS = [ DelegatorData('Pipeline', lambda est: Pipeline([('est', est)])), DelegatorData('GridSearchCV', lambda est: GridSearchCV( est, param_grid={'param': [5]}, cv=2), skip_methods=['score']), DelegatorData('RandomizedSearchCV', lambda est: RandomizedSearchCV( est, param_distributions={'param': [5]}, cv=2, n_iter=1), skip_methods=['score']), DelegatorData('RFE', RFE, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('RFECV', RFECV, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('BaggingClassifier', BaggingClassifier, skip_methods=['transform', 'inverse_transform', 'score', 'predict_proba', 'predict_log_proba', 'predict']) ] def test_metaestimator_delegation(): # Ensures specified metaestimators have methods iff subestimator does def hides(method): @property def wrapper(obj): if obj.hidden_method == method.__name__: raise AttributeError('%r is hidden' % obj.hidden_method) return functools.partial(method, obj) return wrapper class SubEstimator(BaseEstimator): def __init__(self, param=1, hidden_method=None): self.param = param self.hidden_method = hidden_method def fit(self, X, y=None, *args, **kwargs): self.coef_ = np.arange(X.shape[1]) return True def _check_fit(self): if not hasattr(self, 'coef_'): raise RuntimeError('Estimator is not fit') @hides def inverse_transform(self, X, *args, **kwargs): self._check_fit() return X @hides def transform(self, X, *args, **kwargs): self._check_fit() return X @hides def predict(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_log_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def decision_function(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def score(self, X, *args, **kwargs): self._check_fit() return 1.0 methods = [k for k in iterkeys(SubEstimator.__dict__) if not k.startswith('_') and not k.startswith('fit')] methods.sort() for delegator_data in DELEGATING_METAESTIMATORS: delegate = SubEstimator() delegator = delegator_data.construct(delegate) for method in methods: if method in delegator_data.skip_methods: continue assert_true(hasattr(delegate, method)) assert_true(hasattr(delegator, method), msg="%s does not have method %r when its delegate does" % (delegator_data.name, method)) # delegation before fit raises an exception assert_raises(Exception, getattr(delegator, method), delegator_data.fit_args[0]) delegator.fit(*delegator_data.fit_args) for method in methods: if method in delegator_data.skip_methods: continue # smoke test delegation getattr(delegator, method)(delegator_data.fit_args[0]) for method in methods: if method in delegator_data.skip_methods: continue delegate = SubEstimator(hidden_method=method) delegator = delegator_data.construct(delegate) assert_false(hasattr(delegate, method)) assert_false(hasattr(delegator, method), msg="%s has method %r when its delegate does not" % (delegator_data.name, method))
bsd-3-clause
Caranarq/01_Dmine
01_Agua/P0106/P0106.py
1
2761
# -*- coding: utf-8 -*- """ Started on wed, thu 17th, 2018 @author: carlos.arana """ # Librerias utilizadas import pandas as pd import sys module_path = r'D:\PCCS\01_Dmine\Scripts' if module_path not in sys.path: sys.path.append(module_path) from VarInt.VarInt import VarInt from classes.Meta import Meta from Compilador.Compilador import compilar """ Las librerias locales utilizadas renglones arriba se encuentran disponibles en las siguientes direcciones: SCRIPT: | DISPONIBLE EN: ------ | ------------------------------------------------------------------------------------ VarInt | https://github.com/INECC-PCCS/01_Dmine/tree/master/Scripts/VarInt Meta | https://github.com/INECC-PCCS/01_Dmine/tree/master/Scripts/Classes Compilador | https://github.com/INECC-PCCS/01_Dmine/tree/master/Scripts/Compilador """ # Documentacion del Parametro --------------------------------------------------------------------------------------- # Descripciones del Parametro M = Meta M.ClaveParametro = 'P0106' M.NombreParametro = 'Demanda Bioquimica de Oxigeno' M.DescParam = 'Demanda Bioquimica de Oxigeno medida a 5 días' M.UnidadesParam = 'mg/l' M.TituloParametro = 'DBO5' # Para nombrar la columna del parametro M.PeriodoParam = '2017' M.TipoInt = 1 # 1: Binaria; 2: Multivariable, 3: Integral # Handlings M.ParDtype = 'float' M.TipoVar = 'C' # (Tipos de Variable: [C]ontinua, [D]iscreta [O]rdinal, [B]inaria o [N]ominal) M.array = [] M.TipoAgr = 'mean' # Descripciones del proceso de Minería M.nomarchivodataset = 'P0106' M.extarchivodataset = 'xlsx' M.ContenidoHojaDatos = 'Estaciones de monitoreo y datos de Demanda Bioquimica de Oxigeno a 5 días' M.ClaveDataset = 'CONAGUA' M.ActDatos = '2017' M.Agregacion = 'Se prometió el valor de DBO para las estaciones de monitorieo que existen en los municipios ' \ 'que componen cada ciudad del SUN' # Descripciones generadas desde la clave del parámetro M.getmetafromds = 1 Meta.fillmeta(M) # Construccion del Parámetro ----------------------------------------------------------------------------------------- # Cargar dataset inicial dataset = pd.read_excel(M.DirFuente + '\\' + M.ArchivoDataset, sheetname='DATOS', dtype={'CVE_MUN': 'str'}) dataset.set_index('CVE_MUN', inplace=True) dataset = dataset.rename_axis('CVE_MUN') dataset.head(2) list(dataset) # Generar dataset para parámetro y Variable de Integridad var1 = 'dbo' par_dataset = dataset[var1] par_dataset = par_dataset.to_frame(name = M.ClaveParametro) par_dataset, variables_dataset = VarInt(par_dataset, dataset, tipo=M.TipoInt) # Compilacion compilar(M, dataset, par_dataset, variables_dataset)
gpl-3.0
toobaz/pandas
pandas/tests/series/test_analytics.py
1
56686
from itertools import product import operator import numpy as np from numpy import nan import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, Series, date_range, isna, notna, ) from pandas.api.types import is_scalar from pandas.core.index import MultiIndex from pandas.core.indexes.datetimes import Timestamp import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_index_equal, assert_series_equal, ) class TestSeriesAnalytics: def test_describe(self): s = Series([0, 1, 2, 3, 4], name="int_data") result = s.describe() expected = Series( [5, 2, s.std(), 0, 1, 2, 3, 4], name="int_data", index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_series_equal(result, expected) s = Series([True, True, False, False, False], name="bool_data") result = s.describe() expected = Series( [5, 2, False, 3], name="bool_data", index=["count", "unique", "top", "freq"] ) tm.assert_series_equal(result, expected) s = Series(["a", "a", "b", "c", "d"], name="str_data") result = s.describe() expected = Series( [5, 4, "a", 2], name="str_data", index=["count", "unique", "top", "freq"] ) tm.assert_series_equal(result, expected) def test_describe_empty_object(self): # https://github.com/pandas-dev/pandas/issues/27183 s = pd.Series([None, None], dtype=object) result = s.describe() expected = pd.Series( [0, 0, np.nan, np.nan], dtype=object, index=["count", "unique", "top", "freq"], ) tm.assert_series_equal(result, expected) result = s[:0].describe() tm.assert_series_equal(result, expected) # ensure NaN, not None assert np.isnan(result.iloc[2]) assert np.isnan(result.iloc[3]) def test_describe_with_tz(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture name = str(tz_naive_fixture) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s = Series(date_range(start, end, tz=tz), name=name) result = s.describe() expected = Series( [ 5, 5, s.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), ], name=name, index=["count", "unique", "top", "freq", "first", "last"], ) tm.assert_series_equal(result, expected) def test_argsort(self, datetime_series): self._check_accum_op("argsort", datetime_series, check_dtype=False) argsorted = datetime_series.argsort() assert issubclass(argsorted.dtype.type, np.integer) # GH 2967 (introduced bug in 0.11-dev I think) s = Series([Timestamp("201301{i:02d}".format(i=i)) for i in range(1, 6)]) assert s.dtype == "datetime64[ns]" shifted = s.shift(-1) assert shifted.dtype == "datetime64[ns]" assert isna(shifted[4]) result = s.argsort() expected = Series(range(5), dtype="int64") assert_series_equal(result, expected) result = shifted.argsort() expected = Series(list(range(4)) + [-1], dtype="int64") assert_series_equal(result, expected) def test_argsort_stable(self): s = Series(np.random.randint(0, 100, size=10000)) mindexer = s.argsort(kind="mergesort") qindexer = s.argsort() mexpected = np.argsort(s.values, kind="mergesort") qexpected = np.argsort(s.values, kind="quicksort") tm.assert_series_equal(mindexer, Series(mexpected), check_dtype=False) tm.assert_series_equal(qindexer, Series(qexpected), check_dtype=False) msg = ( r"ndarray Expected type <class 'numpy\.ndarray'>," r" found <class 'pandas\.core\.series\.Series'> instead" ) with pytest.raises(AssertionError, match=msg): tm.assert_numpy_array_equal(qindexer, mindexer) def test_cumsum(self, datetime_series): self._check_accum_op("cumsum", datetime_series) def test_cumprod(self, datetime_series): self._check_accum_op("cumprod", datetime_series) def test_cummin(self, datetime_series): tm.assert_numpy_array_equal( datetime_series.cummin().values, np.minimum.accumulate(np.array(datetime_series)), ) ts = datetime_series.copy() ts[::2] = np.NaN result = ts.cummin()[1::2] expected = np.minimum.accumulate(ts.dropna()) tm.assert_series_equal(result, expected) def test_cummax(self, datetime_series): tm.assert_numpy_array_equal( datetime_series.cummax().values, np.maximum.accumulate(np.array(datetime_series)), ) ts = datetime_series.copy() ts[::2] = np.NaN result = ts.cummax()[1::2] expected = np.maximum.accumulate(ts.dropna()) tm.assert_series_equal(result, expected) def test_cummin_datetime64(self): s = pd.Series( pd.to_datetime(["NaT", "2000-1-2", "NaT", "2000-1-1", "NaT", "2000-1-3"]) ) expected = pd.Series( pd.to_datetime(["NaT", "2000-1-2", "NaT", "2000-1-1", "NaT", "2000-1-1"]) ) result = s.cummin(skipna=True) tm.assert_series_equal(expected, result) expected = pd.Series( pd.to_datetime( ["NaT", "2000-1-2", "2000-1-2", "2000-1-1", "2000-1-1", "2000-1-1"] ) ) result = s.cummin(skipna=False) tm.assert_series_equal(expected, result) def test_cummax_datetime64(self): s = pd.Series( pd.to_datetime(["NaT", "2000-1-2", "NaT", "2000-1-1", "NaT", "2000-1-3"]) ) expected = pd.Series( pd.to_datetime(["NaT", "2000-1-2", "NaT", "2000-1-2", "NaT", "2000-1-3"]) ) result = s.cummax(skipna=True) tm.assert_series_equal(expected, result) expected = pd.Series( pd.to_datetime( ["NaT", "2000-1-2", "2000-1-2", "2000-1-2", "2000-1-2", "2000-1-3"] ) ) result = s.cummax(skipna=False) tm.assert_series_equal(expected, result) def test_cummin_timedelta64(self): s = pd.Series(pd.to_timedelta(["NaT", "2 min", "NaT", "1 min", "NaT", "3 min"])) expected = pd.Series( pd.to_timedelta(["NaT", "2 min", "NaT", "1 min", "NaT", "1 min"]) ) result = s.cummin(skipna=True) tm.assert_series_equal(expected, result) expected = pd.Series( pd.to_timedelta(["NaT", "2 min", "2 min", "1 min", "1 min", "1 min"]) ) result = s.cummin(skipna=False) tm.assert_series_equal(expected, result) def test_cummax_timedelta64(self): s = pd.Series(pd.to_timedelta(["NaT", "2 min", "NaT", "1 min", "NaT", "3 min"])) expected = pd.Series( pd.to_timedelta(["NaT", "2 min", "NaT", "2 min", "NaT", "3 min"]) ) result = s.cummax(skipna=True) tm.assert_series_equal(expected, result) expected = pd.Series( pd.to_timedelta(["NaT", "2 min", "2 min", "2 min", "2 min", "3 min"]) ) result = s.cummax(skipna=False) tm.assert_series_equal(expected, result) def test_npdiff(self): pytest.skip("skipping due to Series no longer being an ndarray") # no longer works as the return type of np.diff is now nd.array s = Series(np.arange(5)) r = np.diff(s) assert_series_equal(Series([nan, 0, 0, 0, nan]), r) def _check_accum_op(self, name, datetime_series_, check_dtype=True): func = getattr(np, name) tm.assert_numpy_array_equal( func(datetime_series_).values, func(np.array(datetime_series_)), check_dtype=check_dtype, ) # with missing values ts = datetime_series_.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.dropna())) tm.assert_numpy_array_equal(result.values, expected, check_dtype=False) def test_compress(self): cond = [True, False, True, False, False] s = Series([1, -1, 5, 8, 7], index=list("abcde"), name="foo") expected = Series(s.values.compress(cond), index=list("ac"), name="foo") with tm.assert_produces_warning(FutureWarning): result = s.compress(cond) tm.assert_series_equal(result, expected) def test_numpy_compress(self): cond = [True, False, True, False, False] s = Series([1, -1, 5, 8, 7], index=list("abcde"), name="foo") expected = Series(s.values.compress(cond), index=list("ac"), name="foo") with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): tm.assert_series_equal(np.compress(cond, s), expected) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.compress(cond, s, axis=1) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.compress(cond, s, out=s) def test_round(self, datetime_series): datetime_series.index.name = "index_name" result = datetime_series.round(2) expected = Series( np.round(datetime_series.values, 2), index=datetime_series.index, name="ts" ) assert_series_equal(result, expected) assert result.name == datetime_series.name def test_numpy_round(self): # See gh-12600 s = Series([1.53, 1.36, 0.06]) out = np.round(s, decimals=0) expected = Series([2.0, 1.0, 0.0]) assert_series_equal(out, expected) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.round(s, decimals=0, out=s) def test_numpy_round_nan(self): # See gh-14197 s = Series([1.53, np.nan, 0.06]) with tm.assert_produces_warning(None): result = s.round() expected = Series([2.0, np.nan, 0.0]) assert_series_equal(result, expected) def test_built_in_round(self): s = Series([1.123, 2.123, 3.123], index=range(3)) result = round(s) expected_rounded0 = Series([1.0, 2.0, 3.0], index=range(3)) tm.assert_series_equal(result, expected_rounded0) decimals = 2 expected_rounded = Series([1.12, 2.12, 3.12], index=range(3)) result = round(s, decimals) tm.assert_series_equal(result, expected_rounded) def test_prod_numpy16_bug(self): s = Series([1.0, 1.0, 1.0], index=range(3)) result = s.prod() assert not isinstance(result, Series) @td.skip_if_no_scipy def test_corr(self, datetime_series): import scipy.stats as stats # full overlap tm.assert_almost_equal(datetime_series.corr(datetime_series), 1) # partial overlap tm.assert_almost_equal(datetime_series[:15].corr(datetime_series[5:]), 1) assert isna(datetime_series[:15].corr(datetime_series[5:], min_periods=12)) ts1 = datetime_series[:15].reindex(datetime_series.index) ts2 = datetime_series[5:].reindex(datetime_series.index) assert isna(ts1.corr(ts2, min_periods=12)) # No overlap assert np.isnan(datetime_series[::2].corr(datetime_series[1::2])) # all NA cp = datetime_series[:10].copy() cp[:] = np.nan assert isna(cp.corr(cp)) A = tm.makeTimeSeries() B = tm.makeTimeSeries() result = A.corr(B) expected, _ = stats.pearsonr(A, B) tm.assert_almost_equal(result, expected) @td.skip_if_no_scipy def test_corr_rank(self): import scipy.stats as stats # kendall and spearman A = tm.makeTimeSeries() B = tm.makeTimeSeries() A[-5:] = A[:5] result = A.corr(B, method="kendall") expected = stats.kendalltau(A, B)[0] tm.assert_almost_equal(result, expected) result = A.corr(B, method="spearman") expected = stats.spearmanr(A, B)[0] tm.assert_almost_equal(result, expected) # results from R A = Series( [ -0.89926396, 0.94209606, -1.03289164, -0.95445587, 0.76910310, -0.06430576, -2.09704447, 0.40660407, -0.89926396, 0.94209606, ] ) B = Series( [ -1.01270225, -0.62210117, -1.56895827, 0.59592943, -0.01680292, 1.17258718, -1.06009347, -0.10222060, -0.89076239, 0.89372375, ] ) kexp = 0.4319297 sexp = 0.5853767 tm.assert_almost_equal(A.corr(B, method="kendall"), kexp) tm.assert_almost_equal(A.corr(B, method="spearman"), sexp) def test_corr_invalid_method(self): # GH PR #22298 s1 = pd.Series(np.random.randn(10)) s2 = pd.Series(np.random.randn(10)) msg = "method must be either 'pearson', 'spearman', 'kendall', or a callable, " with pytest.raises(ValueError, match=msg): s1.corr(s2, method="____") def test_corr_callable_method(self, datetime_series): # simple correlation example # returns 1 if exact equality, 0 otherwise my_corr = lambda a, b: 1.0 if (a == b).all() else 0.0 # simple example s1 = Series([1, 2, 3, 4, 5]) s2 = Series([5, 4, 3, 2, 1]) expected = 0 tm.assert_almost_equal(s1.corr(s2, method=my_corr), expected) # full overlap tm.assert_almost_equal( datetime_series.corr(datetime_series, method=my_corr), 1.0 ) # partial overlap tm.assert_almost_equal( datetime_series[:15].corr(datetime_series[5:], method=my_corr), 1.0 ) # No overlap assert np.isnan( datetime_series[::2].corr(datetime_series[1::2], method=my_corr) ) # dataframe example df = pd.DataFrame([s1, s2]) expected = pd.DataFrame([{0: 1.0, 1: 0}, {0: 0, 1: 1.0}]) tm.assert_almost_equal(df.transpose().corr(method=my_corr), expected) def test_cov(self, datetime_series): # full overlap tm.assert_almost_equal( datetime_series.cov(datetime_series), datetime_series.std() ** 2 ) # partial overlap tm.assert_almost_equal( datetime_series[:15].cov(datetime_series[5:]), datetime_series[5:15].std() ** 2, ) # No overlap assert np.isnan(datetime_series[::2].cov(datetime_series[1::2])) # all NA cp = datetime_series[:10].copy() cp[:] = np.nan assert isna(cp.cov(cp)) # min_periods assert isna(datetime_series[:15].cov(datetime_series[5:], min_periods=12)) ts1 = datetime_series[:15].reindex(datetime_series.index) ts2 = datetime_series[5:].reindex(datetime_series.index) assert isna(ts1.cov(ts2, min_periods=12)) def test_count(self, datetime_series): assert datetime_series.count() == len(datetime_series) datetime_series[::2] = np.NaN assert datetime_series.count() == np.isfinite(datetime_series).sum() mi = MultiIndex.from_arrays([list("aabbcc"), [1, 2, 2, nan, 1, 2]]) ts = Series(np.arange(len(mi)), index=mi) left = ts.count(level=1) right = Series([2, 3, 1], index=[1, 2, nan]) assert_series_equal(left, right) ts.iloc[[0, 3, 5]] = nan assert_series_equal(ts.count(level=1), right - 1) def test_dot(self): a = Series(np.random.randn(4), index=["p", "q", "r", "s"]) b = DataFrame( np.random.randn(3, 4), index=["1", "2", "3"], columns=["p", "q", "r", "s"] ).T result = a.dot(b) expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"]) assert_series_equal(result, expected) # Check index alignment b2 = b.reindex(index=reversed(b.index)) result = a.dot(b) assert_series_equal(result, expected) # Check ndarray argument result = a.dot(b.values) assert np.all(result == expected.values) assert_almost_equal(a.dot(b["2"].values), expected["2"]) # Check series argument assert_almost_equal(a.dot(b["1"]), expected["1"]) assert_almost_equal(a.dot(b2["1"]), expected["1"]) msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)" # exception raised is of type Exception with pytest.raises(Exception, match=msg): a.dot(a.values[:3]) msg = "matrices are not aligned" with pytest.raises(ValueError, match=msg): a.dot(b.T) def test_matmul(self): # matmul test is for GH #10259 a = Series(np.random.randn(4), index=["p", "q", "r", "s"]) b = DataFrame( np.random.randn(3, 4), index=["1", "2", "3"], columns=["p", "q", "r", "s"] ).T # Series @ DataFrame -> Series result = operator.matmul(a, b) expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"]) assert_series_equal(result, expected) # DataFrame @ Series -> Series result = operator.matmul(b.T, a) expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"]) assert_series_equal(result, expected) # Series @ Series -> scalar result = operator.matmul(a, a) expected = np.dot(a.values, a.values) assert_almost_equal(result, expected) # GH 21530 # vector (1D np.array) @ Series (__rmatmul__) result = operator.matmul(a.values, a) expected = np.dot(a.values, a.values) assert_almost_equal(result, expected) # GH 21530 # vector (1D list) @ Series (__rmatmul__) result = operator.matmul(a.values.tolist(), a) expected = np.dot(a.values, a.values) assert_almost_equal(result, expected) # GH 21530 # matrix (2D np.array) @ Series (__rmatmul__) result = operator.matmul(b.T.values, a) expected = np.dot(b.T.values, a.values) assert_almost_equal(result, expected) # GH 21530 # matrix (2D nested lists) @ Series (__rmatmul__) result = operator.matmul(b.T.values.tolist(), a) expected = np.dot(b.T.values, a.values) assert_almost_equal(result, expected) # mixed dtype DataFrame @ Series a["p"] = int(a.p) result = operator.matmul(b.T, a) expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"]) assert_series_equal(result, expected) # different dtypes DataFrame @ Series a = a.astype(int) result = operator.matmul(b.T, a) expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"]) assert_series_equal(result, expected) msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)" # exception raised is of type Exception with pytest.raises(Exception, match=msg): a.dot(a.values[:3]) msg = "matrices are not aligned" with pytest.raises(ValueError, match=msg): a.dot(b.T) def test_clip(self, datetime_series): val = datetime_series.median() with tm.assert_produces_warning(FutureWarning): assert datetime_series.clip_lower(val).min() == val with tm.assert_produces_warning(FutureWarning): assert datetime_series.clip_upper(val).max() == val assert datetime_series.clip(lower=val).min() == val assert datetime_series.clip(upper=val).max() == val result = datetime_series.clip(-0.5, 0.5) expected = np.clip(datetime_series, -0.5, 0.5) assert_series_equal(result, expected) assert isinstance(expected, Series) def test_clip_types_and_nulls(self): sers = [ Series([np.nan, 1.0, 2.0, 3.0]), Series([None, "a", "b", "c"]), Series(pd.to_datetime([np.nan, 1, 2, 3], unit="D")), ] for s in sers: thresh = s[2] with tm.assert_produces_warning(FutureWarning): lower = s.clip_lower(thresh) with tm.assert_produces_warning(FutureWarning): upper = s.clip_upper(thresh) assert lower[notna(lower)].min() == thresh assert upper[notna(upper)].max() == thresh assert list(isna(s)) == list(isna(lower)) assert list(isna(s)) == list(isna(upper)) def test_clip_with_na_args(self): """Should process np.nan argument as None """ # GH # 17276 s = Series([1, 2, 3]) assert_series_equal(s.clip(np.nan), Series([1, 2, 3])) assert_series_equal(s.clip(upper=np.nan, lower=np.nan), Series([1, 2, 3])) # GH #19992 assert_series_equal(s.clip(lower=[0, 4, np.nan]), Series([1, 4, np.nan])) assert_series_equal(s.clip(upper=[1, np.nan, 1]), Series([1, np.nan, 1])) def test_clip_against_series(self): # GH #6966 s = Series([1.0, 1.0, 4.0]) threshold = Series([1.0, 2.0, 3.0]) with tm.assert_produces_warning(FutureWarning): assert_series_equal(s.clip_lower(threshold), Series([1.0, 2.0, 4.0])) with tm.assert_produces_warning(FutureWarning): assert_series_equal(s.clip_upper(threshold), Series([1.0, 1.0, 3.0])) lower = Series([1.0, 2.0, 3.0]) upper = Series([1.5, 2.5, 3.5]) assert_series_equal(s.clip(lower, upper), Series([1.0, 2.0, 3.5])) assert_series_equal(s.clip(1.5, upper), Series([1.5, 1.5, 3.5])) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("upper", [[1, 2, 3], np.asarray([1, 2, 3])]) def test_clip_against_list_like(self, inplace, upper): # GH #15390 original = pd.Series([5, 6, 7]) result = original.clip(upper=upper, inplace=inplace) expected = pd.Series([1, 2, 3]) if inplace: result = original tm.assert_series_equal(result, expected, check_exact=True) def test_clip_with_datetimes(self): # GH 11838 # naive and tz-aware datetimes t = Timestamp("2015-12-01 09:30:30") s = Series([Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:31:00")]) result = s.clip(upper=t) expected = Series( [Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:30:30")] ) assert_series_equal(result, expected) t = Timestamp("2015-12-01 09:30:30", tz="US/Eastern") s = Series( [ Timestamp("2015-12-01 09:30:00", tz="US/Eastern"), Timestamp("2015-12-01 09:31:00", tz="US/Eastern"), ] ) result = s.clip(upper=t) expected = Series( [ Timestamp("2015-12-01 09:30:00", tz="US/Eastern"), Timestamp("2015-12-01 09:30:30", tz="US/Eastern"), ] ) assert_series_equal(result, expected) def test_cummethods_bool(self): # GH 6270 a = pd.Series([False, False, False, True, True, False, False]) b = ~a c = pd.Series([False] * len(b)) d = ~c methods = { "cumsum": np.cumsum, "cumprod": np.cumprod, "cummin": np.minimum.accumulate, "cummax": np.maximum.accumulate, } args = product((a, b, c, d), methods) for s, method in args: expected = Series(methods[method](s.values)) result = getattr(s, method)() assert_series_equal(result, expected) e = pd.Series([False, True, nan, False]) cse = pd.Series([0, 1, nan, 1], dtype=object) cpe = pd.Series([False, 0, nan, 0]) cmin = pd.Series([False, False, nan, False]) cmax = pd.Series([False, True, nan, True]) expecteds = {"cumsum": cse, "cumprod": cpe, "cummin": cmin, "cummax": cmax} for method in methods: res = getattr(e, method)() assert_series_equal(res, expecteds[method]) def test_isin(self): s = Series(["A", "B", "C", "a", "B", "B", "A", "C"]) result = s.isin(["A", "C"]) expected = Series([True, False, True, False, False, False, True, True]) assert_series_equal(result, expected) # GH: 16012 # This specific issue has to have a series over 1e6 in len, but the # comparison array (in_list) must be large enough so that numpy doesn't # do a manual masking trick that will avoid this issue altogether s = Series(list("abcdefghijk" * 10 ** 5)) # If numpy doesn't do the manual comparison/mask, these # unorderable mixed types are what cause the exception in numpy in_list = [-1, "a", "b", "G", "Y", "Z", "E", "K", "E", "S", "I", "R", "R"] * 6 assert s.isin(in_list).sum() == 200000 def test_isin_with_string_scalar(self): # GH4763 s = Series(["A", "B", "C", "a", "B", "B", "A", "C"]) msg = ( r"only list-like objects are allowed to be passed to isin\(\)," r" you passed a \[str\]" ) with pytest.raises(TypeError, match=msg): s.isin("a") s = Series(["aaa", "b", "c"]) with pytest.raises(TypeError, match=msg): s.isin("aaa") def test_isin_with_i8(self): # GH 5021 expected = Series([True, True, False, False, False]) expected2 = Series([False, True, False, False, False]) # datetime64[ns] s = Series(date_range("jan-01-2013", "jan-05-2013")) result = s.isin(s[0:2]) assert_series_equal(result, expected) result = s.isin(s[0:2].values) assert_series_equal(result, expected) # fails on dtype conversion in the first place result = s.isin(s[0:2].values.astype("datetime64[D]")) assert_series_equal(result, expected) result = s.isin([s[1]]) assert_series_equal(result, expected2) result = s.isin([np.datetime64(s[1])]) assert_series_equal(result, expected2) result = s.isin(set(s[0:2])) assert_series_equal(result, expected) # timedelta64[ns] s = Series(pd.to_timedelta(range(5), unit="d")) result = s.isin(s[0:2]) assert_series_equal(result, expected) @pytest.mark.parametrize("empty", [[], Series(), np.array([])]) def test_isin_empty(self, empty): # see gh-16991 s = Series(["a", "b"]) expected = Series([False, False]) result = s.isin(empty) tm.assert_series_equal(expected, result) def test_ptp(self): # GH21614 N = 1000 arr = np.random.randn(N) ser = Series(arr) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert np.ptp(ser) == np.ptp(arr) # GH11163 s = Series([3, 5, np.nan, -3, 10]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert s.ptp() == 13 assert pd.isna(s.ptp(skipna=False)) mi = pd.MultiIndex.from_product([["a", "b"], [1, 2, 3]]) s = pd.Series([1, np.nan, 7, 3, 5, np.nan], index=mi) expected = pd.Series([6, 2], index=["a", "b"], dtype=np.float64) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): tm.assert_series_equal(s.ptp(level=0), expected) expected = pd.Series([np.nan, np.nan], index=["a", "b"]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): tm.assert_series_equal(s.ptp(level=0, skipna=False), expected) msg = "No axis named 1 for object type <class 'pandas.core.series.Series'>" with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s.ptp(axis=1) s = pd.Series(["a", "b", "c", "d", "e"]) msg = r"unsupported operand type\(s\) for -: 'str' and 'str'" with pytest.raises(TypeError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s.ptp() msg = r"Series\.ptp does not implement numeric_only\." with pytest.raises(NotImplementedError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s.ptp(numeric_only=True) def test_repeat(self): s = Series(np.random.randn(3), index=["a", "b", "c"]) reps = s.repeat(5) exp = Series(s.values.repeat(5), index=s.index.values.repeat(5)) assert_series_equal(reps, exp) to_rep = [2, 3, 4] reps = s.repeat(to_rep) exp = Series(s.values.repeat(to_rep), index=s.index.values.repeat(to_rep)) assert_series_equal(reps, exp) def test_numpy_repeat(self): s = Series(np.arange(3), name="x") expected = Series(s.values.repeat(2), name="x", index=s.index.values.repeat(2)) assert_series_equal(np.repeat(s, 2), expected) msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.repeat(s, 2, axis=0) def test_searchsorted(self): s = Series([1, 2, 3]) result = s.searchsorted(1, side="left") assert is_scalar(result) assert result == 0 result = s.searchsorted(1, side="right") assert is_scalar(result) assert result == 1 def test_searchsorted_numeric_dtypes_scalar(self): s = Series([1, 2, 90, 1000, 3e9]) r = s.searchsorted(30) assert is_scalar(r) assert r == 2 r = s.searchsorted([30]) e = np.array([2], dtype=np.intp) tm.assert_numpy_array_equal(r, e) def test_searchsorted_numeric_dtypes_vector(self): s = Series([1, 2, 90, 1000, 3e9]) r = s.searchsorted([91, 2e6]) e = np.array([3, 4], dtype=np.intp) tm.assert_numpy_array_equal(r, e) def test_search_sorted_datetime64_scalar(self): s = Series(pd.date_range("20120101", periods=10, freq="2D")) v = pd.Timestamp("20120102") r = s.searchsorted(v) assert is_scalar(r) assert r == 1 def test_search_sorted_datetime64_list(self): s = Series(pd.date_range("20120101", periods=10, freq="2D")) v = [pd.Timestamp("20120102"), pd.Timestamp("20120104")] r = s.searchsorted(v) e = np.array([1, 2], dtype=np.intp) tm.assert_numpy_array_equal(r, e) def test_searchsorted_sorter(self): # GH8490 s = Series([3, 1, 2]) r = s.searchsorted([0, 3], sorter=np.argsort(s)) e = np.array([0, 2], dtype=np.intp) tm.assert_numpy_array_equal(r, e) def test_is_monotonic(self): s = Series(np.random.randint(0, 10, size=1000)) assert not s.is_monotonic s = Series(np.arange(1000)) assert s.is_monotonic is True assert s.is_monotonic_increasing is True s = Series(np.arange(1000, 0, -1)) assert s.is_monotonic_decreasing is True s = Series(pd.date_range("20130101", periods=10)) assert s.is_monotonic is True assert s.is_monotonic_increasing is True s = Series(list(reversed(s.tolist()))) assert s.is_monotonic is False assert s.is_monotonic_decreasing is True def test_sort_index_level(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC")) s = Series([1, 2], mi) backwards = s.iloc[[1, 0]] res = s.sort_index(level="A") assert_series_equal(backwards, res) res = s.sort_index(level=["A", "B"]) assert_series_equal(backwards, res) res = s.sort_index(level="A", sort_remaining=False) assert_series_equal(s, res) res = s.sort_index(level=["A", "B"], sort_remaining=False) assert_series_equal(s, res) def test_apply_categorical(self): values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True) s = pd.Series(values, name="XX", index=list("abcdefg")) result = s.apply(lambda x: x.lower()) # should be categorical dtype when the number of categories are # the same values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True) exp = pd.Series(values, name="XX", index=list("abcdefg")) tm.assert_series_equal(result, exp) tm.assert_categorical_equal(result.values, exp.values) result = s.apply(lambda x: "A") exp = pd.Series(["A"] * 7, name="XX", index=list("abcdefg")) tm.assert_series_equal(result, exp) assert result.dtype == np.object def test_shift_int(self, datetime_series): ts = datetime_series.astype(int) shifted = ts.shift(1) expected = ts.astype(float).shift(1) assert_series_equal(shifted, expected) def test_shift_categorical(self): # GH 9416 s = pd.Series(["a", "b", "c", "d"], dtype="category") assert_series_equal(s.iloc[:-1], s.shift(1).shift(-1).dropna()) sp1 = s.shift(1) assert_index_equal(s.index, sp1.index) assert np.all(sp1.values.codes[:1] == -1) assert np.all(s.values.codes[:-1] == sp1.values.codes[1:]) sn2 = s.shift(-2) assert_index_equal(s.index, sn2.index) assert np.all(sn2.values.codes[-2:] == -1) assert np.all(s.values.codes[2:] == sn2.values.codes[:-2]) assert_index_equal(s.values.categories, sp1.values.categories) assert_index_equal(s.values.categories, sn2.values.categories) def test_unstack(self): from numpy import nan index = MultiIndex( levels=[["bar", "foo"], ["one", "three", "two"]], codes=[[1, 1, 0, 0], [0, 1, 0, 2]], ) s = Series(np.arange(4.0), index=index) unstacked = s.unstack() expected = DataFrame( [[2.0, nan, 3.0], [0.0, 1.0, nan]], index=["bar", "foo"], columns=["one", "three", "two"], ) assert_frame_equal(unstacked, expected) unstacked = s.unstack(level=0) assert_frame_equal(unstacked, expected.T) index = MultiIndex( levels=[["bar"], ["one", "two", "three"], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], ) s = Series(np.random.randn(6), index=index) exp_index = MultiIndex( levels=[["one", "two", "three"], [0, 1]], codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], ) expected = DataFrame({"bar": s.values}, index=exp_index).sort_index(level=0) unstacked = s.unstack(0).sort_index() assert_frame_equal(unstacked, expected) # GH5873 idx = pd.MultiIndex.from_arrays([[101, 102], [3.5, np.nan]]) ts = pd.Series([1, 2], index=idx) left = ts.unstack() right = DataFrame([[nan, 1], [2, nan]], index=[101, 102], columns=[nan, 3.5]) assert_frame_equal(left, right) idx = pd.MultiIndex.from_arrays( [ ["cat", "cat", "cat", "dog", "dog"], ["a", "a", "b", "a", "b"], [1, 2, 1, 1, np.nan], ] ) ts = pd.Series([1.0, 1.1, 1.2, 1.3, 1.4], index=idx) right = DataFrame( [[1.0, 1.3], [1.1, nan], [nan, 1.4], [1.2, nan]], columns=["cat", "dog"] ) tpls = [("a", 1), ("a", 2), ("b", nan), ("b", 1)] right.index = pd.MultiIndex.from_tuples(tpls) assert_frame_equal(ts.unstack(level=0), right) def test_value_counts_datetime(self): # most dtypes are tested in test_base.py values = [ pd.Timestamp("2011-01-01 09:00"), pd.Timestamp("2011-01-01 10:00"), pd.Timestamp("2011-01-01 11:00"), pd.Timestamp("2011-01-01 09:00"), pd.Timestamp("2011-01-01 09:00"), pd.Timestamp("2011-01-01 11:00"), ] exp_idx = pd.DatetimeIndex( ["2011-01-01 09:00", "2011-01-01 11:00", "2011-01-01 10:00"] ) exp = pd.Series([3, 2, 1], index=exp_idx, name="xxx") s = pd.Series(values, name="xxx") tm.assert_series_equal(s.value_counts(), exp) # check DatetimeIndex outputs the same result idx = pd.DatetimeIndex(values, name="xxx") tm.assert_series_equal(idx.value_counts(), exp) # normalize exp = pd.Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="xxx") tm.assert_series_equal(s.value_counts(normalize=True), exp) tm.assert_series_equal(idx.value_counts(normalize=True), exp) def test_value_counts_datetime_tz(self): values = [ pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"), pd.Timestamp("2011-01-01 10:00", tz="US/Eastern"), pd.Timestamp("2011-01-01 11:00", tz="US/Eastern"), pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"), pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"), pd.Timestamp("2011-01-01 11:00", tz="US/Eastern"), ] exp_idx = pd.DatetimeIndex( ["2011-01-01 09:00", "2011-01-01 11:00", "2011-01-01 10:00"], tz="US/Eastern", ) exp = pd.Series([3, 2, 1], index=exp_idx, name="xxx") s = pd.Series(values, name="xxx") tm.assert_series_equal(s.value_counts(), exp) idx = pd.DatetimeIndex(values, name="xxx") tm.assert_series_equal(idx.value_counts(), exp) exp = pd.Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="xxx") tm.assert_series_equal(s.value_counts(normalize=True), exp) tm.assert_series_equal(idx.value_counts(normalize=True), exp) def test_value_counts_period(self): values = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), pd.Period("2011-01", freq="M"), pd.Period("2011-01", freq="M"), pd.Period("2011-03", freq="M"), ] exp_idx = pd.PeriodIndex(["2011-01", "2011-03", "2011-02"], freq="M") exp = pd.Series([3, 2, 1], index=exp_idx, name="xxx") s = pd.Series(values, name="xxx") tm.assert_series_equal(s.value_counts(), exp) # check DatetimeIndex outputs the same result idx = pd.PeriodIndex(values, name="xxx") tm.assert_series_equal(idx.value_counts(), exp) # normalize exp = pd.Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="xxx") tm.assert_series_equal(s.value_counts(normalize=True), exp) tm.assert_series_equal(idx.value_counts(normalize=True), exp) def test_value_counts_categorical_ordered(self): # most dtypes are tested in test_base.py values = pd.Categorical([1, 2, 3, 1, 1, 3], ordered=True) exp_idx = pd.CategoricalIndex([1, 3, 2], categories=[1, 2, 3], ordered=True) exp = pd.Series([3, 2, 1], index=exp_idx, name="xxx") s = pd.Series(values, name="xxx") tm.assert_series_equal(s.value_counts(), exp) # check CategoricalIndex outputs the same result idx = pd.CategoricalIndex(values, name="xxx") tm.assert_series_equal(idx.value_counts(), exp) # normalize exp = pd.Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="xxx") tm.assert_series_equal(s.value_counts(normalize=True), exp) tm.assert_series_equal(idx.value_counts(normalize=True), exp) def test_value_counts_categorical_not_ordered(self): values = pd.Categorical([1, 2, 3, 1, 1, 3], ordered=False) exp_idx = pd.CategoricalIndex([1, 3, 2], categories=[1, 2, 3], ordered=False) exp = pd.Series([3, 2, 1], index=exp_idx, name="xxx") s = pd.Series(values, name="xxx") tm.assert_series_equal(s.value_counts(), exp) # check CategoricalIndex outputs the same result idx = pd.CategoricalIndex(values, name="xxx") tm.assert_series_equal(idx.value_counts(), exp) # normalize exp = pd.Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="xxx") tm.assert_series_equal(s.value_counts(normalize=True), exp) tm.assert_series_equal(idx.value_counts(normalize=True), exp) @pytest.mark.parametrize("func", [np.any, np.all]) @pytest.mark.parametrize("kwargs", [dict(keepdims=True), dict(out=object())]) @td.skip_if_np_lt("1.15") def test_validate_any_all_out_keepdims_raises(self, kwargs, func): s = pd.Series([1, 2]) param = list(kwargs)[0] name = func.__name__ msg = ( r"the '{arg}' parameter is not " r"supported in the pandas " r"implementation of {fname}\(\)" ).format(arg=param, fname=name) with pytest.raises(ValueError, match=msg): func(s, **kwargs) @td.skip_if_np_lt("1.15") def test_validate_sum_initial(self): s = pd.Series([1, 2]) msg = ( r"the 'initial' parameter is not " r"supported in the pandas " r"implementation of sum\(\)" ) with pytest.raises(ValueError, match=msg): np.sum(s, initial=10) def test_validate_median_initial(self): s = pd.Series([1, 2]) msg = ( r"the 'overwrite_input' parameter is not " r"supported in the pandas " r"implementation of median\(\)" ) with pytest.raises(ValueError, match=msg): # It seems like np.median doesn't dispatch, so we use the # method instead of the ufunc. s.median(overwrite_input=True) @td.skip_if_np_lt("1.15") def test_validate_stat_keepdims(self): s = pd.Series([1, 2]) msg = ( r"the 'keepdims' parameter is not " r"supported in the pandas " r"implementation of sum\(\)" ) with pytest.raises(ValueError, match=msg): np.sum(s, keepdims=True) def test_compound_deprecated(self): s = Series([0.1, 0.2, 0.3, 0.4]) with tm.assert_produces_warning(FutureWarning): s.compound() df = pd.DataFrame({"s": s}) with tm.assert_produces_warning(FutureWarning): df.compound() main_dtypes = [ "datetime", "datetimetz", "timedelta", "int8", "int16", "int32", "int64", "float32", "float64", "uint8", "uint16", "uint32", "uint64", ] @pytest.fixture def s_main_dtypes(): """A DataFrame with many dtypes * datetime * datetimetz * timedelta * [u]int{8,16,32,64} * float{32,64} The columns are the name of the dtype. """ df = pd.DataFrame( { "datetime": pd.to_datetime(["2003", "2002", "2001", "2002", "2005"]), "datetimetz": pd.to_datetime( ["2003", "2002", "2001", "2002", "2005"] ).tz_localize("US/Eastern"), "timedelta": pd.to_timedelta(["3d", "2d", "1d", "2d", "5d"]), } ) for dtype in [ "int8", "int16", "int32", "int64", "float32", "float64", "uint8", "uint16", "uint32", "uint64", ]: df[dtype] = Series([3, 2, 1, 2, 5], dtype=dtype) return df @pytest.fixture(params=main_dtypes) def s_main_dtypes_split(request, s_main_dtypes): """Each series in s_main_dtypes.""" return s_main_dtypes[request.param] def assert_check_nselect_boundary(vals, dtype, method): # helper function for 'test_boundary_{dtype}' tests s = Series(vals, dtype=dtype) result = getattr(s, method)(3) expected_idxr = [0, 1, 2] if method == "nsmallest" else [3, 2, 1] expected = s.loc[expected_idxr] tm.assert_series_equal(result, expected) class TestNLargestNSmallest: @pytest.mark.parametrize( "r", [ Series([3.0, 2, 1, 2, "5"], dtype="object"), Series([3.0, 2, 1, 2, 5], dtype="object"), # not supported on some archs # Series([3., 2, 1, 2, 5], dtype='complex256'), Series([3.0, 2, 1, 2, 5], dtype="complex128"), Series(list("abcde")), Series(list("abcde"), dtype="category"), ], ) def test_error(self, r): dt = r.dtype msg = "Cannot use method 'n(larg|small)est' with dtype {dt}".format(dt=dt) args = 2, len(r), 0, -1 methods = r.nlargest, r.nsmallest for method, arg in product(methods, args): with pytest.raises(TypeError, match=msg): method(arg) def test_nsmallest_nlargest(self, s_main_dtypes_split): # float, int, datetime64 (use i8), timedelts64 (same), # object that are numbers, object that are strings s = s_main_dtypes_split assert_series_equal(s.nsmallest(2), s.iloc[[2, 1]]) assert_series_equal(s.nsmallest(2, keep="last"), s.iloc[[2, 3]]) empty = s.iloc[0:0] assert_series_equal(s.nsmallest(0), empty) assert_series_equal(s.nsmallest(-1), empty) assert_series_equal(s.nlargest(0), empty) assert_series_equal(s.nlargest(-1), empty) assert_series_equal(s.nsmallest(len(s)), s.sort_values()) assert_series_equal(s.nsmallest(len(s) + 1), s.sort_values()) assert_series_equal(s.nlargest(len(s)), s.iloc[[4, 0, 1, 3, 2]]) assert_series_equal(s.nlargest(len(s) + 1), s.iloc[[4, 0, 1, 3, 2]]) def test_misc(self): s = Series([3.0, np.nan, 1, 2, 5]) assert_series_equal(s.nlargest(), s.iloc[[4, 0, 3, 2]]) assert_series_equal(s.nsmallest(), s.iloc[[2, 3, 0, 4]]) msg = 'keep must be either "first", "last"' with pytest.raises(ValueError, match=msg): s.nsmallest(keep="invalid") with pytest.raises(ValueError, match=msg): s.nlargest(keep="invalid") # GH 15297 s = Series([1] * 5, index=[1, 2, 3, 4, 5]) expected_first = Series([1] * 3, index=[1, 2, 3]) expected_last = Series([1] * 3, index=[5, 4, 3]) result = s.nsmallest(3) assert_series_equal(result, expected_first) result = s.nsmallest(3, keep="last") assert_series_equal(result, expected_last) result = s.nlargest(3) assert_series_equal(result, expected_first) result = s.nlargest(3, keep="last") assert_series_equal(result, expected_last) @pytest.mark.parametrize("n", range(1, 5)) def test_n(self, n): # GH 13412 s = Series([1, 4, 3, 2], index=[0, 0, 1, 1]) result = s.nlargest(n) expected = s.sort_values(ascending=False).head(n) assert_series_equal(result, expected) result = s.nsmallest(n) expected = s.sort_values().head(n) assert_series_equal(result, expected) def test_boundary_integer(self, nselect_method, any_int_dtype): # GH 21426 dtype_info = np.iinfo(any_int_dtype) min_val, max_val = dtype_info.min, dtype_info.max vals = [min_val, min_val + 1, max_val - 1, max_val] assert_check_nselect_boundary(vals, any_int_dtype, nselect_method) def test_boundary_float(self, nselect_method, float_dtype): # GH 21426 dtype_info = np.finfo(float_dtype) min_val, max_val = dtype_info.min, dtype_info.max min_2nd, max_2nd = np.nextafter([min_val, max_val], 0, dtype=float_dtype) vals = [min_val, min_2nd, max_2nd, max_val] assert_check_nselect_boundary(vals, float_dtype, nselect_method) @pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"]) def test_boundary_datetimelike(self, nselect_method, dtype): # GH 21426 # use int64 bounds and +1 to min_val since true minimum is NaT # (include min_val/NaT at end to maintain same expected_idxr) dtype_info = np.iinfo("int64") min_val, max_val = dtype_info.min, dtype_info.max vals = [min_val + 1, min_val + 2, max_val - 1, max_val, min_val] assert_check_nselect_boundary(vals, dtype, nselect_method) def test_duplicate_keep_all_ties(self): # see gh-16818 s = Series([10, 9, 8, 7, 7, 7, 7, 6]) result = s.nlargest(4, keep="all") expected = Series([10, 9, 8, 7, 7, 7, 7]) assert_series_equal(result, expected) result = s.nsmallest(2, keep="all") expected = Series([6, 7, 7, 7, 7], index=[7, 3, 4, 5, 6]) assert_series_equal(result, expected) @pytest.mark.parametrize( "data,expected", [([True, False], [True]), ([True, False, True, True], [True])] ) def test_boolean(self, data, expected): # GH 26154 : ensure True > False s = Series(data) result = s.nlargest(1) expected = Series(expected) assert_series_equal(result, expected) class TestCategoricalSeriesAnalytics: def test_count(self): s = Series( Categorical( [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True ) ) result = s.count() assert result == 2 def test_value_counts(self): # GH 12835 cats = Categorical(list("abcccb"), categories=list("cabd")) s = Series(cats, name="xxx") res = s.value_counts(sort=False) exp_index = CategoricalIndex(list("cabd"), categories=cats.categories) exp = Series([3, 1, 2, 0], name="xxx", index=exp_index) tm.assert_series_equal(res, exp) res = s.value_counts(sort=True) exp_index = CategoricalIndex(list("cbad"), categories=cats.categories) exp = Series([3, 2, 1, 0], name="xxx", index=exp_index) tm.assert_series_equal(res, exp) # check object dtype handles the Series.name as the same # (tested in test_base.py) s = Series(["a", "b", "c", "c", "c", "b"], name="xxx") res = s.value_counts() exp = Series([3, 2, 1], name="xxx", index=["c", "b", "a"]) tm.assert_series_equal(res, exp) def test_value_counts_with_nan(self): # see gh-9443 # sanity check s = Series(["a", "b", "a"], dtype="category") exp = Series([2, 1], index=CategoricalIndex(["a", "b"])) res = s.value_counts(dropna=True) tm.assert_series_equal(res, exp) res = s.value_counts(dropna=True) tm.assert_series_equal(res, exp) # same Series via two different constructions --> same behaviour series = [ Series(["a", "b", None, "a", None, None], dtype="category"), Series( Categorical(["a", "b", None, "a", None, None], categories=["a", "b"]) ), ] for s in series: # None is a NaN value, so we exclude its count here exp = Series([2, 1], index=CategoricalIndex(["a", "b"])) res = s.value_counts(dropna=True) tm.assert_series_equal(res, exp) # we don't exclude the count of None and sort by counts exp = Series([3, 2, 1], index=CategoricalIndex([np.nan, "a", "b"])) res = s.value_counts(dropna=False) tm.assert_series_equal(res, exp) # When we aren't sorting by counts, and np.nan isn't a # category, it should be last. exp = Series([2, 1, 3], index=CategoricalIndex(["a", "b", np.nan])) res = s.value_counts(dropna=False, sort=False) tm.assert_series_equal(res, exp) @pytest.mark.parametrize( "dtype", [ "int_", "uint", "float_", "unicode_", "timedelta64[h]", pytest.param( "datetime64[D]", marks=pytest.mark.xfail(reason="GH#7996", strict=False) ), ], ) def test_drop_duplicates_categorical_non_bool(self, dtype, ordered_fixture): cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) # Test case 1 input1 = np.array([1, 2, 3, 3], dtype=np.dtype(dtype)) tc1 = Series(Categorical(input1, categories=cat_array, ordered=ordered_fixture)) expected = Series([False, False, False, True]) tm.assert_series_equal(tc1.duplicated(), expected) tm.assert_series_equal(tc1.drop_duplicates(), tc1[~expected]) sc = tc1.copy() sc.drop_duplicates(inplace=True) tm.assert_series_equal(sc, tc1[~expected]) expected = Series([False, False, True, False]) tm.assert_series_equal(tc1.duplicated(keep="last"), expected) tm.assert_series_equal(tc1.drop_duplicates(keep="last"), tc1[~expected]) sc = tc1.copy() sc.drop_duplicates(keep="last", inplace=True) tm.assert_series_equal(sc, tc1[~expected]) expected = Series([False, False, True, True]) tm.assert_series_equal(tc1.duplicated(keep=False), expected) tm.assert_series_equal(tc1.drop_duplicates(keep=False), tc1[~expected]) sc = tc1.copy() sc.drop_duplicates(keep=False, inplace=True) tm.assert_series_equal(sc, tc1[~expected]) # Test case 2 input2 = np.array([1, 2, 3, 5, 3, 2, 4], dtype=np.dtype(dtype)) tc2 = Series(Categorical(input2, categories=cat_array, ordered=ordered_fixture)) expected = Series([False, False, False, False, True, True, False]) tm.assert_series_equal(tc2.duplicated(), expected) tm.assert_series_equal(tc2.drop_duplicates(), tc2[~expected]) sc = tc2.copy() sc.drop_duplicates(inplace=True) tm.assert_series_equal(sc, tc2[~expected]) expected = Series([False, True, True, False, False, False, False]) tm.assert_series_equal(tc2.duplicated(keep="last"), expected) tm.assert_series_equal(tc2.drop_duplicates(keep="last"), tc2[~expected]) sc = tc2.copy() sc.drop_duplicates(keep="last", inplace=True) tm.assert_series_equal(sc, tc2[~expected]) expected = Series([False, True, True, False, True, True, False]) tm.assert_series_equal(tc2.duplicated(keep=False), expected) tm.assert_series_equal(tc2.drop_duplicates(keep=False), tc2[~expected]) sc = tc2.copy() sc.drop_duplicates(keep=False, inplace=True) tm.assert_series_equal(sc, tc2[~expected]) def test_drop_duplicates_categorical_bool(self, ordered_fixture): tc = Series( Categorical( [True, False, True, False], categories=[True, False], ordered=ordered_fixture, ) ) expected = Series([False, False, True, True]) tm.assert_series_equal(tc.duplicated(), expected) tm.assert_series_equal(tc.drop_duplicates(), tc[~expected]) sc = tc.copy() sc.drop_duplicates(inplace=True) tm.assert_series_equal(sc, tc[~expected]) expected = Series([True, True, False, False]) tm.assert_series_equal(tc.duplicated(keep="last"), expected) tm.assert_series_equal(tc.drop_duplicates(keep="last"), tc[~expected]) sc = tc.copy() sc.drop_duplicates(keep="last", inplace=True) tm.assert_series_equal(sc, tc[~expected]) expected = Series([True, True, True, True]) tm.assert_series_equal(tc.duplicated(keep=False), expected) tm.assert_series_equal(tc.drop_duplicates(keep=False), tc[~expected]) sc = tc.copy() sc.drop_duplicates(keep=False, inplace=True) tm.assert_series_equal(sc, tc[~expected])
bsd-3-clause
joelgrus/data-science-from-scratch
first-edition/code-python3/neural_networks.py
8
6417
from collections import Counter from functools import partial from linear_algebra import dot import math, random import matplotlib import matplotlib.pyplot as plt def step_function(x): return 1 if x >= 0 else 0 def perceptron_output(weights, bias, x): """returns 1 if the perceptron 'fires', 0 if not""" return step_function(dot(weights, x) + bias) def sigmoid(t): return 1 / (1 + math.exp(-t)) def neuron_output(weights, inputs): return sigmoid(dot(weights, inputs)) def feed_forward(neural_network, input_vector): """takes in a neural network (represented as a list of lists of lists of weights) and returns the output from forward-propagating the input""" outputs = [] for layer in neural_network: input_with_bias = input_vector + [1] # add a bias input output = [neuron_output(neuron, input_with_bias) # compute the output for neuron in layer] # for this layer outputs.append(output) # and remember it # the input to the next layer is the output of this one input_vector = output return outputs def backpropagate(network, input_vector, target): hidden_outputs, outputs = feed_forward(network, input_vector) # the output * (1 - output) is from the derivative of sigmoid output_deltas = [output * (1 - output) * (output - target[i]) for i, output in enumerate(outputs)] # adjust weights for output layer (network[-1]) for i, output_neuron in enumerate(network[-1]): for j, hidden_output in enumerate(hidden_outputs + [1]): output_neuron[j] -= output_deltas[i] * hidden_output # back-propagate errors to hidden layer hidden_deltas = [hidden_output * (1 - hidden_output) * dot(output_deltas, [n[i] for n in network[-1]]) for i, hidden_output in enumerate(hidden_outputs)] # adjust weights for hidden layer (network[0]) for i, hidden_neuron in enumerate(network[0]): for j, input in enumerate(input_vector + [1]): hidden_neuron[j] -= hidden_deltas[i] * input def patch(x, y, hatch, color): """return a matplotlib 'patch' object with the specified location, crosshatch pattern, and color""" return matplotlib.patches.Rectangle((x - 0.5, y - 0.5), 1, 1, hatch=hatch, fill=False, color=color) def show_weights(neuron_idx): weights = network[0][neuron_idx] abs_weights = [abs(weight) for weight in weights] grid = [abs_weights[row:(row+5)] # turn the weights into a 5x5 grid for row in range(0,25,5)] # [weights[0:5], ..., weights[20:25]] ax = plt.gca() # to use hatching, we'll need the axis ax.imshow(grid, # here same as plt.imshow cmap=matplotlib.cm.binary, # use white-black color scale interpolation='none') # plot blocks as blocks # cross-hatch the negative weights for i in range(5): # row for j in range(5): # column if weights[5*i + j] < 0: # row i, column j = weights[5*i + j] # add black and white hatches, so visible whether dark or light ax.add_patch(patch(j, i, '/', "white")) ax.add_patch(patch(j, i, '\\', "black")) plt.show() if __name__ == "__main__": raw_digits = [ """11111 1...1 1...1 1...1 11111""", """..1.. ..1.. ..1.. ..1.. ..1..""", """11111 ....1 11111 1.... 11111""", """11111 ....1 11111 ....1 11111""", """1...1 1...1 11111 ....1 ....1""", """11111 1.... 11111 ....1 11111""", """11111 1.... 11111 1...1 11111""", """11111 ....1 ....1 ....1 ....1""", """11111 1...1 11111 1...1 11111""", """11111 1...1 11111 ....1 11111"""] def make_digit(raw_digit): return [1 if c == '1' else 0 for row in raw_digit.split("\n") for c in row.strip()] inputs = list(map(make_digit, raw_digits)) targets = [[1 if i == j else 0 for i in range(10)] for j in range(10)] random.seed(0) # to get repeatable results input_size = 25 # each input is a vector of length 25 num_hidden = 5 # we'll have 5 neurons in the hidden layer output_size = 10 # we need 10 outputs for each input # each hidden neuron has one weight per input, plus a bias weight hidden_layer = [[random.random() for __ in range(input_size + 1)] for __ in range(num_hidden)] # each output neuron has one weight per hidden neuron, plus a bias weight output_layer = [[random.random() for __ in range(num_hidden + 1)] for __ in range(output_size)] # the network starts out with random weights network = [hidden_layer, output_layer] # 10,000 iterations seems enough to converge for __ in range(10000): for input_vector, target_vector in zip(inputs, targets): backpropagate(network, input_vector, target_vector) def predict(input): return feed_forward(network, input)[-1] for i, input in enumerate(inputs): outputs = predict(input) print(i, [round(p,2) for p in outputs]) print(""".@@@. ...@@ ..@@. ...@@ .@@@.""") print([round(x, 2) for x in predict( [0,1,1,1,0, # .@@@. 0,0,0,1,1, # ...@@ 0,0,1,1,0, # ..@@. 0,0,0,1,1, # ...@@ 0,1,1,1,0])]) # .@@@. print() print(""".@@@. @..@@ .@@@. @..@@ .@@@.""") print([round(x, 2) for x in predict( [0,1,1,1,0, # .@@@. 1,0,0,1,1, # @..@@ 0,1,1,1,0, # .@@@. 1,0,0,1,1, # @..@@ 0,1,1,1,0])]) # .@@@. print()
mit
deepchem/deepchem
contrib/DiabeticRetinopathy/model.py
5
8069
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Sep 10 06:12:10 2018 @author: zqwu """ import numpy as np import tensorflow as tf from deepchem.data import NumpyDataset, pad_features from deepchem.metrics import to_one_hot from deepchem.models.tensorgraph.layers import Layer, Dense, SoftMax, Reshape, \ SparseSoftMaxCrossEntropy, BatchNorm, Conv2D, MaxPool2D, WeightedError, \ Dropout, ReLU, Stack, Flatten, ReduceMax, WeightDecay from deepchem.models.tensorgraph.layers import L2Loss, Label, Weights, Feature from deepchem.models.tensorgraph.tensor_graph import TensorGraph from deepchem.trans import undo_transforms from deepchem.data.data_loader import ImageLoader from sklearn.metrics import confusion_matrix, accuracy_score class DRModel(TensorGraph): def __init__(self, n_tasks=1, image_size=512, n_downsample=6, n_init_kernel=16, n_fully_connected=[1024], n_classes=5, augment=False, **kwargs): """ Parameters ---------- n_tasks: int Number of tasks image_size: int Resolution of the input images(square) n_downsample: int Downsample ratio in power of 2 n_init_kernel: int Kernel size for the first convolutional layer n_fully_connected: list of int Shape of FC layers after convolutions n_classes: int Number of classes to predict (only used in classification mode) augment: bool If to use data augmentation """ self.n_tasks = n_tasks self.image_size = image_size self.n_downsample = n_downsample self.n_init_kernel = n_init_kernel self.n_fully_connected = n_fully_connected self.n_classes = n_classes self.augment = augment super(DRModel, self).__init__(**kwargs) self.build_graph() def build_graph(self): # inputs placeholder self.inputs = Feature( shape=(None, self.image_size, self.image_size, 3), dtype=tf.float32) # data preprocessing and augmentation in_layer = DRAugment( self.augment, self.batch_size, size=(self.image_size, self.image_size), in_layers=[self.inputs]) # first conv layer in_layer = Conv2D( self.n_init_kernel, kernel_size=7, activation_fn=None, in_layers=[in_layer]) in_layer = BatchNorm(in_layers=[in_layer]) in_layer = ReLU(in_layers=[in_layer]) # downsample by max pooling res_in = MaxPool2D( ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], in_layers=[in_layer]) for ct_module in range(self.n_downsample - 1): # each module is a residual convolutional block # followed by a convolutional downsample layer in_layer = Conv2D( self.n_init_kernel * 2**(ct_module - 1), kernel_size=1, activation_fn=None, in_layers=[res_in]) in_layer = BatchNorm(in_layers=[in_layer]) in_layer = ReLU(in_layers=[in_layer]) in_layer = Conv2D( self.n_init_kernel * 2**(ct_module - 1), kernel_size=3, activation_fn=None, in_layers=[in_layer]) in_layer = BatchNorm(in_layers=[in_layer]) in_layer = ReLU(in_layers=[in_layer]) in_layer = Conv2D( self.n_init_kernel * 2**ct_module, kernel_size=1, activation_fn=None, in_layers=[in_layer]) res_a = BatchNorm(in_layers=[in_layer]) res_out = res_in + res_a res_in = Conv2D( self.n_init_kernel * 2**(ct_module + 1), kernel_size=3, stride=2, in_layers=[res_out]) res_in = BatchNorm(in_layers=[res_in]) # max pooling over the final outcome in_layer = ReduceMax(axis=(1, 2), in_layers=[res_in]) for layer_size in self.n_fully_connected: # fully connected layers in_layer = Dense( layer_size, activation_fn=tf.nn.relu, in_layers=[in_layer]) # dropout for dense layers #in_layer = Dropout(0.25, in_layers=[in_layer]) logit_pred = Dense( self.n_tasks * self.n_classes, activation_fn=None, in_layers=[in_layer]) logit_pred = Reshape( shape=(None, self.n_tasks, self.n_classes), in_layers=[logit_pred]) weights = Weights(shape=(None, self.n_tasks)) labels = Label(shape=(None, self.n_tasks), dtype=tf.int32) output = SoftMax(logit_pred) self.add_output(output) loss = SparseSoftMaxCrossEntropy(in_layers=[labels, logit_pred]) weighted_loss = WeightedError(in_layers=[loss, weights]) # weight decay regularizer # weighted_loss = WeightDecay(0.1, 'l2', in_layers=[weighted_loss]) self.set_loss(weighted_loss) def DRAccuracy(y, y_pred): y_pred = np.argmax(y_pred, 1) return accuracy_score(y, y_pred) def DRSpecificity(y, y_pred): y_pred = (np.argmax(y_pred, 1) > 0) * 1 y = (y > 0) * 1 TN = sum((1 - y_pred) * (1 - y)) N = sum(1 - y) return float(TN) / N def DRSensitivity(y, y_pred): y_pred = (np.argmax(y_pred, 1) > 0) * 1 y = (y > 0) * 1 TP = sum(y_pred * y) P = sum(y) return float(TP) / P def ConfusionMatrix(y, y_pred): y_pred = np.argmax(y_pred, 1) return confusion_matrix(y, y_pred) def QuadWeightedKappa(y, y_pred): y_pred = np.argmax(y_pred, 1) cm = confusion_matrix(y, y_pred) classes_y, counts_y = np.unique(y, return_counts=True) classes_y_pred, counts_y_pred = np.unique(y_pred, return_counts=True) E = np.zeros((classes_y.shape[0], classes_y.shape[0])) for i, c1 in enumerate(classes_y): for j, c2 in enumerate(classes_y_pred): E[c1, c2] = counts_y[i] * counts_y_pred[j] E = E / np.sum(E) * np.sum(cm) w = np.zeros((classes_y.shape[0], classes_y.shape[0])) for i in range(classes_y.shape[0]): for j in range(classes_y.shape[0]): w[i, j] = float((i - j)**2) / (classes_y.shape[0] - 1)**2 re = 1 - np.sum(w * cm) / np.sum(w * E) return re class DRAugment(Layer): def __init__(self, augment, batch_size, distort_color=True, central_crop=True, size=(512, 512), **kwargs): """ Parameters ---------- augment: bool If to use data augmentation batch_size: int Number of images in the batch distort_color: bool If to apply random distortion on the color central_crop: bool If to randomly crop the sample around the center size: int Resolution of the input images(square) """ self.augment = augment self.batch_size = batch_size self.distort_color = distort_color self.central_crop = central_crop self.size = size super(DRAugment, self).__init__(**kwargs) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): inputs = self._get_input_tensors(in_layers) parent_tensor = inputs[0] training = kwargs['training'] if 'training' in kwargs else 1.0 parent_tensor = parent_tensor / 255.0 if not self.augment: out_tensor = parent_tensor else: def preprocess(img): img = tf.image.random_flip_left_right(img) img = tf.image.random_flip_up_down(img) img = tf.image.rot90(img, k=np.random.randint(0, 4)) if self.distort_color: img = tf.image.random_brightness(img, max_delta=32. / 255.) img = tf.image.random_saturation(img, lower=0.5, upper=1.5) img = tf.clip_by_value(img, 0.0, 1.0) if self.central_crop: # sample cut ratio from a clipped gaussian img = tf.image.central_crop(img, np.clip( np.random.normal(1., 0.06), 0.8, 1.)) img = tf.image.resize_bilinear( tf.expand_dims(img, 0), tf.convert_to_tensor(self.size))[0] return img outs = tf.map_fn(preprocess, parent_tensor) # train/valid differences out_tensor = training * outs + (1 - training) * parent_tensor if set_tensors: self.out_tensor = out_tensor return out_tensor
mit
thaole16/Boids
boids/boids.py
1
4866
""" A refactored implementation of Boids from a deliberately bad implementation of [Boids](http://dl.acm.org/citation.cfm?doid=37401.37406): an exercise for class. """ from matplotlib import pyplot as plt from matplotlib import animation import numpy as np class Boids(object): def __init__(self, boid_count=50, x_positions=[-450, 50.0], y_positions=[300.0, 600.0], x_velocities=[0, 10.0], y_velocities=[-20.0, 20.0], move_to_middle_strength=0.01, alert_distance=100, formation_flying_distance=10000, formation_flying_strength=0.125): self.boid_count = boid_count self.move_to_middle_strength = move_to_middle_strength self.alert_distance = alert_distance self.formation_flying_distance = formation_flying_distance self.formation_flying_strength = formation_flying_strength self.boids_x = np.random.uniform(size=boid_count, *x_positions) self.boids_y = np.random.uniform(size=boid_count, *y_positions) self.positions = np.stack((self.boids_x, self.boids_y)) self.boid_x_velocities = np.random.uniform(size=boid_count, *x_velocities) self.boid_y_velocities = np.random.uniform(size=boid_count, *y_velocities) self.velocities = np.stack((self.boid_x_velocities, self.boid_y_velocities)) self.boids = (self.positions, self.velocities) def fly_towards_the_middle(self, boids, move_to_middle_strength=0.01): (positions, velocities) = boids middle = np.mean(positions, 1) move_to_middle = (middle[:, np.newaxis] - positions) * move_to_middle_strength velocities += move_to_middle def separation(self, coords): separations = np.array(coords)[:, np.newaxis, :] - np.array(coords)[:, :, np.newaxis] separation_distance_squared = separations[0, :, :] ** 2 + separations[1, :, :] ** 2 return separations, separation_distance_squared def fly_away_from_nearby_boids(self, boids, alert_distance=100): (positions, velocities) = boids separations, separation_distance_squared = self.separation(positions) birds_outside_alert = separation_distance_squared > alert_distance close_separations = np.copy(separations) close_separations[0, :, :][birds_outside_alert] = 0 # x positions close_separations[1, :, :][birds_outside_alert] = 0 # y positions velocities += np.sum(close_separations, 1) def match_speed_with_nearby_boids(self, boids, formation_flying_distance=10000, formation_flying_strength=0.125): (positions, velocities) = boids separations, separation_distance_squared = self.separation(positions) birds_outside_formation = separation_distance_squared > formation_flying_distance velocity_difference = velocities[:, np.newaxis, :] - velocities[:, :, np.newaxis] close_formation = np.copy(velocity_difference) close_formation[0, :, :][birds_outside_formation] = 0 close_formation[1, :, :][birds_outside_formation] = 0 velocities += -1 * np.mean(close_formation, 1) * formation_flying_strength def update_boids(self, boids): (positions, velocities) = boids # Fly towards the middle self.fly_towards_the_middle(boids, self.move_to_middle_strength) # Fly away from nearby boids self.fly_away_from_nearby_boids(boids, self.alert_distance) # Try to match speed with nearby boids self.match_speed_with_nearby_boids(boids, self.formation_flying_distance, self.formation_flying_strength) # Update positions positions += velocities def _animate(self, frame): self.update_boids(self.boids) (positions, velocities) = self.boids self.scatter.set_offsets(np.transpose(positions)) def model(self, xlim=(-500, 1500), ylim=(-500, 1500), frames=50, interval=50, savefile=None): colors = np.random.rand(self.boid_count) boidsize = np.pi * (2 * np.random.rand(self.boid_count) + 2) ** 2 figure = plt.figure() axes = plt.axes(xlim=xlim, ylim=ylim) self.scatter = axes.scatter(self.boids_x, self.boids_y, s=boidsize, c=colors, alpha=0.5, edgecolors=None) anim = animation.FuncAnimation(figure, self._animate, frames=frames, interval=interval) plt.xlabel('x (arbitrary units)') plt.ylabel('y (arbitrary units)') plt.title("Boids a'Flocking") if savefile != None: anim.save(savefile) plt.show() if __name__ == "__main__": boidsobject = Boids() boidsobject.model()
mit
gregreen/bayestar
scripts/resample_los.py
1
19922
#!/usr/bin/env python # -*- coding: utf-8 -*- # # resample_los.py # # Copyright 2013 Greg Green <greg@greg-UX31A> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # import numpy as np import healpy as hp import h5py import hputils import maptools import model def gc_dist_all(l, b): l = np.pi / 180. * l b = np.pi / 180. * b l_0 = np.reshape(l, (1, l.size)) l_0 = np.repeat(l_0, l.size, axis=0) l_1 = np.reshape(l, (l.size, 1)) l_1 = np.repeat(l_1, l.size, axis=1) b_0 = np.reshape(b, (1, b.size)) b_0 = np.repeat(b_0, b.size, axis=0) b_1 = np.reshape(b, (b.size, 1)) b_1 = np.repeat(b_1, b.size, axis=1) #d = np.arccos(np.sin(b_0) * np.sin(b_1) + np.cos(b_0) * np.cos(b_1) * np.cos(l_1 - l_0)) d = np.arcsin(np.sqrt(np.sin(0.5*(b_1-b_0))**2 + np.cos(b_0) * np.cos(b_1) * np.sin(0.5*(l_1-l_0))**2)) return d def gc_dist(l_source, b_source, l_dest, b_dest): l_s = np.pi / 180. * l_source b_s = np.pi / 180. * b_source l_d = np.pi / 180. * l_dest b_d = np.pi / 180. * b_dest l_0 = np.reshape(l_s, (l_source.size, 1)) l_0 = np.repeat(l_0, l_dest.size, axis=1) l_1 = np.reshape(l_d, (1, l_dest.size)) l_1 = np.repeat(l_1, l_source.size, axis=0) b_0 = np.reshape(b_s, (b_source.size, 1)) b_0 = np.repeat(b_0, b_dest.size, axis=1) b_1 = np.reshape(b_d, (1, b_dest.size)) b_1 = np.repeat(b_1, b_source.size, axis=0) #d = np.arccos(np.sin(b_0) * np.sin(b_1) + np.cos(b_0) * np.cos(b_1) * np.cos(l_1 - l_0)) d = np.arcsin(np.sqrt(np.sin(0.5*(b_1-b_0))**2 + np.cos(b_0) * np.cos(b_1) * np.sin(0.5*(l_1-l_0))**2)) return d def find_neighbors_naive(nside, pix_idx, n_neighbors): ''' Find the neighbors of each pixel using a naive algorithm. Each pixel is defined by a HEALPix nside and pixel index (in nested order). Returns two arrays: neighbor_idx (n_pix, n_neighbors) Index of each neighbor in the nside and pix_idx arrays. neighbor_dist (n_pix, n_neighbors) Distance to each neighbor. ''' # Determine (l, b) of all pixels l = np.empty(pix_idx.size, dtype='f8') b = np.empty(pix_idx.size, dtype='f8') nside_unique = np.unique(nside) for n in nside_unique: idx = (nside == n) l[idx], b[idx] = hputils.pix2lb(n, pix_idx[idx], nest=True) # Determine distances between all pixel pairs dist = gc_dist_all(l, b) # Determine closest neighbors sort_idx = np.argsort(dist, axis=1) neighbor_idx = sort_idx[:, 1:n_neighbors+1] neighbor_dist = np.sort(dist, axis=1)[:, 1:n_neighbors+1] return neighbor_idx, neighbor_dist def find_neighbors(nside, pix_idx, n_neighbors): ''' Find the neighbors of each pixel. Each pixel is defined by a HEALPix nside and pixel index (in nested order). Returns two arrays: neighbor_idx (n_pix, n_neighbors) Index of each neighbor in the nside and pix_idx arrays. neighbor_dist (n_pix, n_neighbors) Distance to each neighbor. ''' # Determine (l, b) and which downsampled pixel # each (nside, pix_idx) combo belongs to nside_rough = np.min(nside) if nside_rough != 1: nside_rough /= 2 l = np.empty(pix_idx.size, dtype='f8') b = np.empty(pix_idx.size, dtype='f8') pix_idx_rough = np.empty(pix_idx.size, dtype='i8') nside_unique = np.unique(nside) for n in nside_unique: idx = (nside == n) factor = (n / nside_rough)**2 pix_idx_rough[idx] = pix_idx[idx] / factor l[idx], b[idx] = hputils.pix2lb(n, pix_idx[idx], nest=True) # For each downsampled pixel, determine nearest neighbors of all subpixels neighbor_idx = -np.ones((pix_idx.size, n_neighbors), dtype='i8') neighbor_dist = np.inf * np.ones((pix_idx.size, n_neighbors), dtype='f8') for i_rough in np.unique(pix_idx_rough): rough_neighbors = hp.get_all_neighbours(nside_rough, i_rough, nest=True) idx_centers = np.argwhere(pix_idx_rough == i_rough)[:,0] tmp = [np.argwhere(pix_idx_rough == i)[:,0] for i in rough_neighbors] tmp.append(idx_centers) idx_search = np.hstack(tmp) dist = gc_dist(l[idx_centers], b[idx_centers], l[idx_search], b[idx_search]) tmp = np.argsort(dist, axis=1)[:, 1:n_neighbors+1] fill = idx_search[tmp] neighbor_idx[idx_centers, :fill.shape[1]] = fill fill = np.sort(dist, axis=1)[:, 1:n_neighbors+1] neighbor_dist[idx_centers, :fill.shape[1]] = fill return neighbor_idx, neighbor_dist def find_nearest_neighbors(nside, pix_idx): # TODO # Determine mapping of pixel indices at highest resolutions to index # in the array pix_idx nside_max = np.max(nside) pix_idx_highres = [] for n in np.unique(nside): idx = (nside == n) pix_idx l = np.empty(pix_idx.size, dtype='f8') b = np.empty(pix_idx.size, dtype='f8') neighbor_idx = np.empty((8, pix_idx.size), dtype='i8') neighbor_dist = np.empty((8, pix_idx.size), dtype='f8') for n in np.unique(nside): idx = (nside == n) l[idx], b[idx] = hputils.pix2lb(n, pix_idx[idx], nest=True) neighbor_idx[:, idx] = 1 def test_gc_dist(): l = np.array([0., 1., 2., 359.]) b = np.array([0., 30., 60., 90.]) d_0 = gc_dist_all(l, b) * 180. / np.pi d_1 = gc_dist(l, b, l, b) * 180. / np.pi print d_1 print d_0 idx = np.argsort(d_1, axis=0) print d_1 - d_0 def test_find_neighbors(): nside = 128 n_neighbors = 16 n_pix = hp.nside2npix(nside) pix_idx = np.arange(n_pix) nside_arr = np.ones(n_pix, dtype='i8') * nside #neighbor_idx, neighbor_dist = find_neighbors_naive(nside_arr, pix_idx, # n_neighbors) neighbor_idx, neighbor_dist = find_neighbors(nside_arr, pix_idx, n_neighbors) #print neighbor_idx #print neighbor_dist import matplotlib.pyplot as plt m = np.zeros(n_pix) idx = np.random.randint(n_pix) #idx = 1 print idx print neighbor_idx[idx, :] print neighbor_dist[idx, :] m[idx] = 2 m[neighbor_idx[idx, :]] = 1 hp.visufunc.mollview(m, nest=True) plt.show() def test_find_neighbors_adaptive_res(): n_neighbors = 36 n_disp = 5 processes = 4 bounds = [60., 80., -5., 5.] import glob fnames = glob.glob('/n/fink1/ggreen/bayestar/output/l70/l70.*.h5') los_coll = maptools.los_collection(fnames, bounds=bounds, processes=processes) nside, pix_idx = los_coll.nside, los_coll.pix_idx print 'Finding neighbors ...' neighbor_idx, neighbor_dist = find_neighbors(nside, pix_idx, n_neighbors) print 'Done.' # Highlight a couple of nearest-neighbor sections pix_val = np.zeros(pix_idx.size) l = 0.025 * np.pi / 180. print l for k in xrange(n_disp): idx = np.random.randint(pix_idx.size) pix_val[idx] = 2 pix_val[neighbor_idx[idx, :]] = 1 d = neighbor_dist[idx, :] print 'Center pixel: %d' % idx print d print np.exp(-(d/l)**2.) print '' nside_max, pix_idx_exp, pix_val_exp = maptools.reduce_to_single_res(pix_idx, nside, pix_val) size = (2000, 2000) img, bounds, xy_bounds = hputils.rasterize_map(pix_idx_exp, pix_val_exp, nside_max, size) # Plot nearest neighbors import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.imshow(img, extent=bounds, origin='lower', aspect='auto', interpolation='nearest') plt.show() def get_prior_ln_Delta_EBV(nside, pix_idx, n_regions=30): # Find (l, b) for each pixel l = np.empty(pix_idx.size, dtype='f8') b = np.empty(pix_idx.size, dtype='f8') for n in np.unique(nside): idx = (nside == n) l[idx], b[idx] = hputils.pix2lb(n, pix_idx[idx], nest=True) # Determine priors in each pixel gal_model = model.TGalacticModel() ln_Delta_EBV = np.empty((pix_idx.size, n_regions+1), dtype='f8') for i,(ll,bb) in enumerate(zip(l, b)): ret = gal_model.EBV_prior(ll, bb, n_regions=n_regions) ln_Delta_EBV[i, :] = ret[1] return ln_Delta_EBV class map_resampler: def __init__(self, fnames, bounds=None, processes=1, n_neighbors=32, corr_length_core=0.25, corr_length_tail=1., max_corr=1., tail_weight=0., dist_floor=0.1): self.n_neighbors = n_neighbors self.corr_length_core = corr_length_core self.corr_length_tail = corr_length_tail self.max_corr = max_corr self.tail_weight = tail_weight self.los_coll = maptools.los_collection(fnames, bounds=bounds, processes=processes) self.nside = self.los_coll.nside self.pix_idx = self.los_coll.pix_idx print 'Finding neighbors ...' self.neighbor_idx, self.neighbor_ang_dist = find_neighbors(self.nside, self.pix_idx, self.n_neighbors) # Determine difference from priors self.delta = np.log(self.los_coll.los_delta_EBV) self.n_pix, self.n_samples, self.n_slices = self.delta.shape print 'Calculating priors ...' ln_Delta_EBV_prior = get_prior_ln_Delta_EBV(self.nside, self.pix_idx, n_regions=self.n_slices-1) #print '' #print 'priors:' #print ln_Delta_EBV_prior[0, :] for n in xrange(self.n_samples): self.delta[:, n, :] -= ln_Delta_EBV_prior self.delta /= 1.5 # Standardize to units of the std. dev. on the priors #print '' #print 'delta:' #print self.delta # Distance in pc to each bin slice_dist = np.power(10., self.los_coll.los_mu_anchor/5. + 1.) slice_dist = np.hstack([[0.], slice_dist]) self.bin_dist = 0.5 * (slice_dist[:-1] + slice_dist[1:]) # Determine physical distance of each voxel to its neighbors # shape = (pix, neighbor, slice) print 'Determining neighbor correlation weights ...' self.neighbor_dist = np.einsum('ij,k->ijk', self.neighbor_ang_dist, self.bin_dist) self.neighbor_dist = np.sqrt(self.neighbor_dist * self.neighbor_dist + dist_floor * dist_floor) self.neighbor_corr = self.corr_of_dist(self.neighbor_dist) #self.neighbor_corr = self.hard_sphere_corr(self.neighbor_dist, self.corr_length_core) #print '' #print 'dist:' #print self.bin_dist #print '' #print 'corr:' #print self.neighbor_corr #print '' # Set initial state print 'Randomizing initial state ...' self.beta = 1. self.chain = [] self.randomize() self.log_state() self.update_order = np.arange(self.n_pix) def set_temperature(self, T): self.beta = 1. / T def corr_of_dist(self, d): core = np.exp(-0.5 * (d/self.corr_length_core)**2) tail = 1. / np.cosh(d / self.corr_length_core) return self.max_corr * ((1. - self.tail_weight) * core + self.tail_weight * tail) def hard_sphere_corr(self, d, d_max): return self.corr_max * (d < d_max) def randomize(self): self.sel_idx = np.random.randint(self.n_samples, size=self.n_pix) def update_pixel(self, idx): ''' Update one pixel, using a Gibbs step. ''' n_idx = self.neighbor_idx[idx, :] delta = self.delta[idx, :, :] # (sample, slice) n_delta = self.delta[n_idx, self.sel_idx[n_idx], :] # (neighbor, slice) n_corr = self.neighbor_corr[idx, :, :] # (neighbor, slice) #print delta.shape #print n_delta.shape #print n_corr.shape p = np.einsum('ij,nj->i', delta, n_delta * n_corr) p -= np.einsum('ij,nj->i', delta*delta, n_corr) p -= np.sum(n_delta*n_delta * n_corr) p = np.exp(0.5 * self.beta * p) #p = np.exp(0.5 * np.einsum('ij,nj->i', delta, n_delta * n_corr)) p /= np.sum(p) if idx == 0: #print delta #print n_delta print self.neighbor_dist[idx, :, :] print n_corr #print p_norm print np.min(p), np.percentile(p, 5.), np.median(p), np.percentile(p, 95.), np.max(p) P = np.cumsum(p) new_sample = np.sum(P < np.random.random()) self.sel_idx[idx] = new_sample def round_robin(self): ''' Update all pixels in a random order and add the resulting state to the chain. ''' np.random.shuffle(self.update_order) for n in self.update_order: self.update_pixel(n) self.log_state() print self.sel_idx[:5] print np.array(self.chain)[:,0] print '' def clear_chain(self): self.chain = [] def log_state(self): ''' Add the current state of the map to the chain. ''' self.chain.append(self.sel_idx.copy()) def save_resampled(self, fname, n_samples=None): ''' Save the resampled map to an HDF5 file, with one dataset containing the map samples, and another dataset containing the pixel locations. ''' n_chain = len(self.chain) if n_samples == None: n_samples = n_chain elif n_samples > n_chain: n_samples = n_chain # Pick a set of samples to return chain_idx = np.arange(n_chain) #np.random.shuffle(chain_idx) #chain_idx = chain_idx[:n_samples] print chain_idx.shape # Translate chain sample indices to pixel sample indices sample_idx = np.array(self.chain)[chain_idx] print sample_idx.shape # Create a data cube with the chosen samples # (sample, pixel, slice) data = np.empty((n_chain, self.n_pix, self.n_slices), dtype='f8') m = np.arange(self.n_pix) print data.shape print self.los_coll.los_delta_EBV.shape for n,idx in enumerate(sample_idx): data[n, :, :] = self.los_coll.los_delta_EBV[m, idx, :] # Store locations to a record array loc = np.empty(self.n_pix, dtype=[('nside', 'i4'), ('pix_idx', 'i8')]) loc['nside'][:] = self.nside loc['pix_idx'][:] = self.pix_idx # Write to file f = h5py.File(fname, 'w') dset = f.create_dataset('/Delta_EBV', data.shape, 'f4', chunks=(2, data.shape[1], data.shape[2]), compression='gzip', compression_opts=9) dset[:,:,:] = data[:,:,:] dset.attrs['DM_min'] = self.los_coll.DM_min dset.attrs['DM_max'] = self.los_coll.DM_max dset = f.create_dataset('/location', loc.shape, loc.dtype, compression='gzip', compression_opts=9) dset[:] = loc[:] f.close() def test_map_resampler(): n_steps = 1000 n_neighbors = 12 processes = 4 bounds = [60., 80., -5., 5.] import glob fnames = glob.glob('/n/fink1/ggreen/bayestar/output/l70/l70.*.h5') resampler = map_resampler(fnames, bounds=bounds, processes=processes, n_neighbors=n_neighbors) print 'Resampling map ...' for n in xrange(n_steps): print 'step %d' % n resampler.round_robin() outfname = '/n/home09/ggreen/projects/bayestar/output/resample_test_4.h5' resampler.save_resampled(outfname) def test_plot_resampled_map(): infname = '/n/home09/ggreen/projects/bayestar/output/resample_test_4.h5' plot_fname = '/nfs_pan1/www/ggreen/maps/l70/resampled_4' size = (2000, 2000) # Load in chain f = h5py.File(infname, 'r') loc = f['/location'][:] chain = f['/Delta_EBV'][:,:,:] # (sample, pixel, slice) DM_min = f['/Delta_EBV'].attrs['DM_min'] DM_max = f['/Delta_EBV'].attrs['DM_max'] f.close() nside = loc[:]['nside'] pix_idx = loc[:]['pix_idx'] # Rasterize each sample and plot import matplotlib.pyplot as plt for n,sample in enumerate(chain): print 'Plotting sample %d ...' % n pix_val = np.sum(sample[:, :12], axis=1) nside_max, pix_idx_exp, pix_val_exp = maptools.reduce_to_single_res(pix_idx, nside, pix_val) img, bounds, xy_bounds = hputils.rasterize_map(pix_idx_exp, pix_val_exp, nside_max, size) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.imshow(img.T, extent=bounds, origin='lower', aspect='auto', interpolation='nearest') fname = '%s.%.5d.png' % (plot_fname, n) fig.savefig(fname, dpi=300) plt.close(fig) del img print 'Done.' def main(): #test_gc_dist() #test_find_neighbors_adaptive_res() test_map_resampler() test_plot_resampled_map() return 0 if __name__ == '__main__': main()
gpl-2.0
davidcdupuis/psf
DeepLearning/model-example-2/nn.py
1
11179
# coding: utf-8 # # San Francisco Crime prediction # # Based on 2 layer neural net and count featurizer # In[1]: import pandas as pd import numpy as np from datetime import datetime from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV import matplotlib.pylab as plt from sklearn.tree import DecisionTreeClassifier from sklearn import preprocessing from sklearn.metrics import log_loss from sklearn.metrics import make_scorer from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.linear_model import LogisticRegression from matplotlib.colors import LogNorm from sklearn.decomposition import PCA # from keras.layers.advanced_activations import PReLU # from keras.layers.core import Dense, Dropout, Activation # from keras.layers.normalization import BatchNormalization # from keras.models import Sequential # from keras.utils import np_utils from copy import deepcopy # %matplotlib inline # Import data # In[2]: trainDF=pd.read_csv("../input/train.csv") # Clean up wrong X and Y values (very few of them) # In[3]: xy_scaler=preprocessing.StandardScaler() xy_scaler.fit(trainDF[["X","Y"]]) trainDF[["X","Y"]]=xy_scaler.transform(trainDF[["X","Y"]]) trainDF=trainDF[abs(trainDF["Y"])<100] trainDF.index=range(len(trainDF)) # plt.plot(trainDF["X"],trainDF["Y"],'.') # plt.show() # Make plots for each crime label # In[4]: # NX=100 # NY=100 # groups = trainDF.groupby('Category') # ii=1 # plt.figure(figsize=(20, 20)) # for name, group in groups: # plt.subplot(8,5,ii) # histo, xedges, yedges = np.histogram2d(np.array(group.X),np.array(group.Y), bins=(NX,NY)) # myextent =[xedges[0],xedges[-1],yedges[0],yedges[-1]] # plt.imshow(histo.T,origin='low',extent=myextent,interpolation='nearest',aspect='auto',norm=LogNorm()) # plt.title(name) # # plt.figure(ii) # # plt.plot(group.X,group.Y,'.') # ii+=1 # del groups # # Now proceed as before # In[5]: def parse_time(x): DD=datetime.strptime(x,"%Y-%m-%d %H:%M:%S") time=DD.hour#*60+DD.minute day=DD.day month=DD.month year=DD.year return time,day,month,year def get_season(x): summer=0 fall=0 winter=0 spring=0 if (x in [5, 6, 7]): summer=1 if (x in [8, 9, 10]): fall=1 if (x in [11, 0, 1]): winter=1 if (x in [2, 3, 4]): spring=1 return summer, fall, winter, spring # In[6]: def parse_data(df,logodds,logoddsPA): feature_list=df.columns.tolist() if "Descript" in feature_list: feature_list.remove("Descript") if "Resolution" in feature_list: feature_list.remove("Resolution") if "Category" in feature_list: feature_list.remove("Category") if "Id" in feature_list: feature_list.remove("Id") cleanData=df[feature_list] cleanData.index=range(len(df)) print("Creating address features") address_features=cleanData["Address"].apply(lambda x: logodds[x]) address_features.columns=["logodds"+str(x) for x in range(len(address_features.columns))] print("Parsing dates") cleanData["Time"], cleanData["Day"], cleanData["Month"], cleanData["Year"]=zip(*cleanData["Dates"].apply(parse_time)) # dummy_ranks_DAY = pd.get_dummies(cleanData['DayOfWeek'], prefix='DAY') days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] # cleanData["DayOfWeek"]=cleanData["DayOfWeek"].apply(lambda x: days.index(x)/float(len(days))) print("Creating one-hot variables") dummy_ranks_PD = pd.get_dummies(cleanData['PdDistrict'], prefix='PD') dummy_ranks_DAY = pd.get_dummies(cleanData["DayOfWeek"], prefix='DAY') cleanData["IsInterection"]=cleanData["Address"].apply(lambda x: 1 if "/" in x else 0) cleanData["logoddsPA"]=cleanData["Address"].apply(lambda x: logoddsPA[x]) print("droping processed columns") cleanData=cleanData.drop("PdDistrict",axis=1) cleanData=cleanData.drop("DayOfWeek",axis=1) cleanData=cleanData.drop("Address",axis=1) cleanData=cleanData.drop("Dates",axis=1) feature_list=cleanData.columns.tolist() print("joining one-hot features") features = cleanData[feature_list].join(dummy_ranks_PD.ix[:,:]).join(dummy_ranks_DAY.ix[:,:]).join(address_features.ix[:,:]) print("creating new features") features["IsDup"]=pd.Series(features.duplicated()|features.duplicated(take_last=True)).apply(int) features["Awake"]=features["Time"].apply(lambda x: 1 if (x==0 or (x>=8 and x<=23)) else 0) features["Summer"], features["Fall"], features["Winter"], features["Spring"]=zip(*features["Month"].apply(get_season)) if "Category" in df.columns: labels = df["Category"].astype('category') # label_names=labels.unique() # labels=labels.cat.rename_categories(range(len(label_names))) else: labels=None return features,labels # This part is slower than it needs to be. # In[7]: addresses=sorted(trainDF["Address"].unique()) categories=sorted(trainDF["Category"].unique()) C_counts=trainDF.groupby(["Category"]).size() A_C_counts=trainDF.groupby(["Address","Category"]).size() A_counts=trainDF.groupby(["Address"]).size() logodds={} logoddsPA={} MIN_CAT_COUNTS=2 default_logodds=np.log(C_counts/len(trainDF))-np.log(1.0-C_counts/float(len(trainDF))) for addr in addresses: PA=A_counts[addr]/float(len(trainDF)) logoddsPA[addr]=np.log(PA)-np.log(1.-PA) logodds[addr]=deepcopy(default_logodds) for cat in A_C_counts[addr].keys(): if (A_C_counts[addr][cat]>MIN_CAT_COUNTS) and A_C_counts[addr][cat]<A_counts[addr]: PA=A_C_counts[addr][cat]/float(A_counts[addr]) logodds[addr][categories.index(cat)]=np.log(PA)-np.log(1.0-PA) logodds[addr]=pd.Series(logodds[addr]) logodds[addr].index=range(len(categories)) # In[8]: features, labels=parse_data(trainDF,logodds,logoddsPA) # In[9]: print(features.columns.tolist()) print(len(features.columns)) # In[10]: # num_feature_list=["Time","Day","Month","Year","DayOfWeek"] collist=features.columns.tolist() scaler = preprocessing.StandardScaler() scaler.fit(features) features[collist]=scaler.transform(features) # In[11]: new_PCA=PCA(n_components=60) new_PCA.fit(features) # plt.plot(new_PCA.explained_variance_ratio_) # plt.yscale('log') # plt.title("PCA explained ratio of features") print(new_PCA.explained_variance_ratio_) # In[12]: # plt.plot(new_PCA.explained_variance_ratio_.cumsum()) # plt.title("cumsum of PCA explained ratio") # PCA is interesting, here to play with it more # In[13]: # features=new_PCA.transform(features) # features=pd.DataFrame(features) # In[22]: sss = StratifiedShuffleSplit(labels, train_size=0.5) for train_index, test_index in sss: features_train,features_test=features.iloc[train_index],features.iloc[test_index] labels_train,labels_test=labels[train_index],labels[test_index] features_test.index=range(len(features_test)) features_train.index=range(len(features_train)) labels_train.index=range(len(labels_train)) labels_test.index=range(len(labels_test)) features.index=range(len(features)) labels.index=range(len(labels)) # In[15]: # def build_and_fit_model(X_train,y_train,X_test=None,y_test=None,hn=32,dp=0.5,layers=1,epochs=1,batches=64,verbose=0): # input_dim=X_train.shape[1] # output_dim=len(labels_train.unique()) # Y_train=np_utils.to_categorical(y_train.cat.rename_categories(range(len(y_train.unique())))) # # print output_dim # model = Sequential() # model.add(Dense(input_dim, hn, init='glorot_uniform')) # model.add(PReLU((hn,))) # model.add(Dropout(dp)) # for i in range(layers): # model.add(Dense(hn, hn, init='glorot_uniform')) # model.add(PReLU((hn,))) # model.add(BatchNormalization((hn,))) # model.add(Dropout(dp)) # model.add(Dense(hn, output_dim, init='glorot_uniform')) # model.add(Activation('softmax')) # model.compile(loss='categorical_crossentropy', optimizer='adam') # if X_test is not None: # Y_test=np_utils.to_categorical(y_test.cat.rename_categories(range(len(y_test.unique())))) # fitting=model.fit(X_train, Y_train, nb_epoch=epochs, batch_size=batches,verbose=verbose,validation_data=(X_test,Y_test)) # test_score = log_loss(y_test, model.predict_proba(X_test,verbose=0)) # else: # model.fit(X_train, Y_train, nb_epoch=epochs, batch_size=batches,verbose=verbose) # fitting=0 # test_score = 0 # return test_score, fitting, model # In[16]: len(features.columns) # In[17]: # N_EPOCHS=20 # N_HN=128 # N_LAYERS=1 # DP=0.5 # In[18]: # score, fitting, model = build_and_fit_model(features_train.as_matrix(),labels_train,X_test=features_test.as_matrix(),y_test=labels_test,hn=N_HN,layers=N_LAYERS,epochs=N_EPOCHS,verbose=2,dp=DP) model = LogisticRegression() model.fit(features_train,labels_train) # In[24]: print("all", log_loss(labels, model.predict_proba(features.as_matrix()))) print("train", log_loss(labels_train, model.predict_proba(features_train.as_matrix()))) print("test", log_loss(labels_test, model.predict_proba(features_test.as_matrix()))) # In[28]: # plt.plot(fitting.history['val_loss'],label="validation") # plt.plot(fitting.history['loss'],label="train") # # plt.xscale('log') # plt.legend() # Now train the final model # In[29]: # score, fitting, model = build_and_fit_model(features.as_matrix(),labels,hn=N_HN,layers=N_LAYERS,epochs=N_EPOCHS,verbose=2,dp=DP) model.fit(features,labels) # In[30]: print("all", log_loss(labels, model.predict_proba(features.as_matrix()))) print("train", log_loss(labels_train, model.predict_proba(features_train.as_matrix()))) print("test", log_loss(labels_test, model.predict_proba(features_test.as_matrix()))) # In[31]: testDF=pd.read_csv("../../test.csv") testDF[["X","Y"]]=xy_scaler.transform(testDF[["X","Y"]]) #set outliers to 0 testDF["X"]=testDF["X"].apply(lambda x: 0 if abs(x)>5 else x) testDF["Y"]=testDF["Y"].apply(lambda y: 0 if abs(y)>5 else y) # In[32]: new_addresses=sorted(testDF["Address"].unique()) new_A_counts=testDF.groupby("Address").size() only_new=set(new_addresses+addresses)-set(addresses) only_old=set(new_addresses+addresses)-set(new_addresses) in_both=set(new_addresses).intersection(addresses) for addr in only_new: PA=new_A_counts[addr]/float(len(testDF)+len(trainDF)) logoddsPA[addr]=np.log(PA)-np.log(1.-PA) logodds[addr]=deepcopy(default_logodds) logodds[addr].index=range(len(categories)) for addr in in_both: PA=(A_counts[addr]+new_A_counts[addr])/float(len(testDF)+len(trainDF)) logoddsPA[addr]=np.log(PA)-np.log(1.-PA) # In[33]: features_sub, _=parse_data(testDF,logodds,logoddsPA) # scaler.fit(features_test) # In[34]: collist=features_sub.columns.tolist() print(collist) # In[35]: features_sub[collist]=scaler.transform(features_sub[collist]) # In[36]: predDF=pd.DataFrame(model.predict_proba(features_sub.as_matrix()),columns=sorted(labels.unique())) # In[37]: predDF.head() # In[38]: import gzip with gzip.GzipFile('submission.csv.gz',mode='w',compresslevel=9) as gzfile: predDF.to_csv(gzfile,index_label="Id",na_rep="0")
apache-2.0
mwv/scikit-learn
sklearn/linear_model/tests/test_ridge.py
130
22974
import numpy as np import scipy.sparse as sp from scipy import linalg from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import _solve_cholesky from sklearn.linear_model.ridge import _solve_cholesky_kernel from sklearn.grid_search import GridSearchCV from sklearn.cross_validation import KFold diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): # Ridge regression convergence test using score # TODO: for this test to be robust, we should use a dataset instead # of np.random. rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "cholesky", "lsqr"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_primal_dual_relationship(): y = y_diabetes.reshape(-1, 1) coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2]) K = np.dot(X_diabetes, X_diabetes.T) dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2]) coef2 = np.dot(X_diabetes.T, dual_coef).T assert_array_almost_equal(coef, coef2) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples // 2) y = np.concatenate((y, y)) X = rng.randn(n_samples // 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_sample_weights(): rng = np.random.RandomState(0) for solver in ("cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): for alpha in (1.0, 1e-2): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha=alpha, sample_weight=sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss. coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha=alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) # Test for fit_intercept = True est = Ridge(alpha=alpha, solver=solver) est.fit(X, y, sample_weight=sample_weight) # Check using Newton's Method # Quadratic function should be solved in a single step. # Initialize sample_weight = np.sqrt(sample_weight) X_weighted = sample_weight[:, np.newaxis] * ( np.column_stack((np.ones(n_samples), X))) y_weighted = y * sample_weight # Gradient is (X*coef-y)*X + alpha*coef_[1:] # Remove coef since it is initialized to zero. grad = -np.dot(y_weighted, X_weighted) # Hessian is (X.T*X) + alpha*I except that the first # diagonal element should be zero, since there is no # penalization of intercept. diag = alpha * np.ones(n_features + 1) diag[0] = 0. hess = np.dot(X_weighted.T, X_weighted) hess.flat[::n_features + 2] += diag coef_ = - np.dot(linalg.inv(hess), grad) assert_almost_equal(coef_[0], est.intercept_) assert_array_almost_equal(coef_[1:], est.coef_) def test_ridge_shapes(): # Test shape of coef_ and intercept_ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): # Test intercept with multiple targets GH issue #708 rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): # Test BayesianRegression ridge classifier # TODO: test also n_samples > n_features X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y, Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): # On alpha=0., Ridge and OLS yield the same solution. rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): # Tests the ridge object using individual penalties rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-6).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:3]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(alpha=1.0, fit_intercept=False) # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes, y_diabetes) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings scoring = make_scorer(mean_squared_error, greater_is_better=False) ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) scoring = make_scorer(func) ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = get_scorer('mean_squared_error') ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): n_samples = X_diabetes.shape[0] ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(n_samples, 5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) n_samples = X_iris.shape[0] cv = KFold(n_samples, 5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_ridge_sparse_svd(): X = sp.csc_matrix(rng.rand(100, 10)) y = rng.rand(100) ridge = Ridge(solver='svd') assert_raises(TypeError, ridge.fit, X, y) def test_class_weights(): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = RidgeClassifier(class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) # check if class_weight = 'balanced' can handle negative labels. clf = RidgeClassifier(class_weight='balanced') clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # class_weight = 'balanced', and class_weight = None should return # same values when y has equal number of all labels X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]]) y = [1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) clfa = RidgeClassifier(class_weight='balanced') clfa.fit(X, y) assert_equal(len(clfa.classes_), 2) assert_array_almost_equal(clf.coef_, clfa.coef_) assert_array_almost_equal(clf.intercept_, clfa.intercept_) def test_class_weight_vs_sample_weight(): """Check class_weights resemble sample_weights behavior.""" for clf in (RidgeClassifier, RidgeClassifierCV): # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = clf() clf1.fit(iris.data, iris.target) clf2 = clf(class_weight='balanced') clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Check that sample_weight and class_weight are multiplicative clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.coef_, clf2.coef_) def test_class_weights_cv(): # Test class weights for cross validated ridge classifier. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) clf.fit(X, y) # we give a small weights to class 1 clf = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) clf.fit(X, y) assert_array_equal(clf.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): # Test _RidgeCV's store_cv_values attribute. rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas)) def test_ridgecv_sample_weight(): rng = np.random.RandomState(0) alphas = (0.1, 1.0, 10.0) # There are different algorithms for n_samples > n_features # and the opposite, so test them both. for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) cv = KFold(n_samples, 5) ridgecv = RidgeCV(alphas=alphas, cv=cv) ridgecv.fit(X, y, sample_weight=sample_weight) # Check using GridSearchCV directly parameters = {'alpha': alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(), parameters, fit_params=fit_params, cv=cv) gs.fit(X, y) assert_equal(ridgecv.alpha_, gs.best_estimator_.alpha) assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. sample_weights_not_OK = sample_weights_OK[:, np.newaxis] sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :] ridge = Ridge(alpha=1) # make sure the "OK" sample weights actually work ridge.fit(X, y, sample_weights_OK) ridge.fit(X, y, sample_weights_OK_1) ridge.fit(X, y, sample_weights_OK_2) def fit_ridge_not_ok(): ridge.fit(X, y, sample_weights_not_OK) def fit_ridge_not_ok_2(): ridge.fit(X, y, sample_weights_not_OK_2) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2) def test_sparse_design_with_sample_weights(): # Sample weights must work with sparse matrices n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) sparse_matrix_converters = [sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix, sp.dok_matrix ] sparse_ridge = Ridge(alpha=1., fit_intercept=False) dense_ridge = Ridge(alpha=1., fit_intercept=False) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights = rng.randn(n_samples) ** 2 + 1 for sparse_converter in sparse_matrix_converters: X_sparse = sparse_converter(X) sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights) dense_ridge.fit(X, y, sample_weight=sample_weights) assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6) def test_raises_value_error_if_solver_not_supported(): # Tests whether a ValueError is raised if a non-identified solver # is passed to ridge_regression wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)" exception = ValueError message = "Solver %s not understood" % wrong_solver def func(): X = np.eye(3) y = np.ones(3) ridge_regression(X, y, alpha=1., solver=wrong_solver) assert_raise_message(exception, message, func) def test_sparse_cg_max_iter(): reg = Ridge(solver="sparse_cg", max_iter=1) reg.fit(X_diabetes, y_diabetes) assert_equal(reg.coef_.shape[0], X_diabetes.shape[1])
bsd-3-clause
ugaliguy/Intro-to-NLP
Assignment3/A.py
1
2989
from main import replace_accented from sklearn import svm from sklearn import neighbors # don't change the window size window_size = 10 # A.1 def build_s(data): ''' Compute the context vector for each lexelt :param data: dic with the following structure: { lexelt: [(instance_id, left_context, head, right_context, sense_id), ...], ... } :return: dic s with the following structure: { lexelt: [w1,w2,w3, ...], ... } ''' s = {} # implement your code here return s # A.1 def vectorize(data, s): ''' :param data: list of instances for a given lexelt with the following structure: { [(instance_id, left_context, head, right_context, sense_id), ...] } :param s: list of words (features) for a given lexelt: [w1,w2,w3, ...] :return: vectors: A dictionary with the following structure { instance_id: [w_1 count, w_2 count, ...], ... } labels: A dictionary with the following structure { instance_id : sense_id } ''' vectors = {} labels = {} # implement your code here return vectors, labels # A.2 def classify(X_train, X_test, y_train): ''' Train two classifiers on (X_train, and y_train) then predict X_test labels :param X_train: A dictionary with the following structure { instance_id: [w_1 count, w_2 count, ...], ... } :param X_test: A dictionary with the following structure { instance_id: [w_1 count, w_2 count, ...], ... } :param y_train: A dictionary with the following structure { instance_id : sense_id } :return: svm_results: a list of tuples (instance_id, label) where labels are predicted by LinearSVC knn_results: a list of tuples (instance_id, label) where labels are predicted by KNeighborsClassifier ''' svm_results = [] knn_results = [] svm_clf = svm.LinearSVC() knn_clf = neighbors.KNeighborsClassifier() # implement your code here return svm_results, knn_results # A.3, A.4 output def print_results(results ,output_file): ''' :param results: A dictionary with key = lexelt and value = a list of tuples (instance_id, label) :param output_file: file to write output ''' # implement your code here # don't forget to remove the accent of characters using main.replace_accented(input_str) # you should sort results on instance_id before printing # run part A def run(train, test, language, knn_file, svm_file): s = build_s(train) svm_results = {} knn_results = {} for lexelt in s: X_train, y_train = vectorize(train[lexelt], s[lexelt]) X_test, _ = vectorize(test[lexelt], s[lexelt]) svm_results[lexelt], knn_results[lexelt] = classify(X_train, X_test, y_train) print_results(svm_results, svm_file) print_results(knn_results, knn_file)
mit
posterior/treecat
treecat/e2e_test.py
1
3047
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from warnings import warn import matplotlib import pytest from treecat.format import guess_schema from treecat.format import load_data from treecat.format import load_schema from treecat.serving import serve_model from treecat.tables import TY_MULTINOMIAL from treecat.tables import Table from treecat.testutil import TESTDATA from treecat.testutil import TINY_CONFIG from treecat.testutil import tempdir from treecat.training import train_ensemble from treecat.training import train_model # The Agg backend is required for headless testing. matplotlib.use('Agg') from treecat.plotting import plot_circular # noqa: E402 isort:skip @pytest.mark.parametrize('model_type', ['single', 'ensemble']) def test_e2e(model_type): with tempdir() as dirname: data_csv = os.path.join(TESTDATA, 'tiny_data.csv') config = TINY_CONFIG.copy() print('Guess schema.') types_csv = os.path.join(dirname, 'types.csv') values_csv = os.path.join(dirname, 'values.csv') guess_schema(data_csv, types_csv, values_csv) print('Load schema') groups_csv = os.path.join(TESTDATA, 'tiny_groups.csv') schema = load_schema(types_csv, values_csv, groups_csv) ragged_index = schema['ragged_index'] tree_prior = schema['tree_prior'] print('Load data') data = load_data(schema, data_csv) feature_types = [TY_MULTINOMIAL] * len(schema['feature_names']) table = Table(feature_types, ragged_index, data) dataset = { 'schema': schema, 'table': table, } print('Train model') if model_type == 'single': model = train_model(table, tree_prior, config) elif model_type == 'ensemble': model = train_ensemble(table, tree_prior, config) else: raise ValueError(model_type) print('Serve model') server = serve_model(dataset, model) print('Query model') evidence = {'genre': 'drama'} server.logprob([evidence]) samples = server.sample(100) server.logprob(samples) samples = server.sample(100, evidence) server.logprob(samples) try: median = server.median([evidence]) server.logprob(median) except NotImplementedError: warn('{} median not implemented'.format(model_type)) pass try: mode = server.mode([evidence]) server.logprob(mode) except NotImplementedError: warn('{} mode not implemented'.format(model_type)) pass print('Examine latent structure') server.feature_density() server.observed_perplexity() server.latent_perplexity() server.latent_correlation() server.estimate_tree() server.sample_tree(10) print('Plotting latent structure') plot_circular(server)
apache-2.0
laddng/LiPlate
modules/Plate.py
1
5432
import cv2; import numpy as np; import logging; import pytesseract as tes; from PIL import Image; from modules.TrainingCharacter import *; from matplotlib import pyplot as plt; from copy import deepcopy, copy; from logging.config import fileConfig; # logger setup fileConfig("logging_config.ini"); logger = logging.getLogger(); class Plate: """ Class for the license plates """ def __init__(self, image): ### Plate Class Vars ### self.original_image = image; # original image of analysis self.plate_located_image = deepcopy(image); # original image with plate hilighted self.plate_image = None; # license plate cropped self.plate_image_char = None; # license plate cropped, chars outlined self.gray_image = None; # original image - grayscale for analysis self.plate_number = ""; # plate number self.roi = []; # regions of interest for plates self.plate_characters = []; # cropped images of characters on plate logger.info("New plate created."); """ Converts original image to grayscale for analysis """ def grayImage(self, image): logger.info("Image converted to grayscale"); return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY); """ Algorithm to find plate and read characters """ def plateSearch(self, characters_array): self.findContour(); self.cropPlate(); if self.plate_image is not None: self.readPlateNumber(characters_array); self.showResults(); return True; """ Searches for a contour that looks like a license plate in the image of a car """ def findContour(self): self.gray_image = self.grayImage(deepcopy(self.original_image)); self.gray_image = cv2.medianBlur(self.gray_image, 5); self.gray_image = cv2.adaptiveThreshold(self.gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 43,2); _,contours,_ = cv2.findContours(self.gray_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE); w,h,x,y = 0,0,0,0; for contour in contours: area = cv2.contourArea(contour); # rough range of areas of a license plate if area > 6000 and area < 40000: [x,y,w,h] = cv2.boundingRect(contour); # rough dimensions of a license plate if w > 100 and w < 200 and h > 60 and h < 100: self.roi.append([x,y,w,h]); cv2.rectangle(self.plate_located_image, (x,y), (x+w, y+h), (0,255,0), 10); logger.info("%s potential plates found.", str(len(self.roi))); return True; """ If a license plate contour has been found, crop out the contour and create a new image """ def cropPlate(self): if len(self.roi) > 1: [x,y,w,h] = self.roi[0]; self.plate_image = self.original_image[y:y+h,x:x+w]; self.plate_image_char = deepcopy(self.plate_image); return True; """ Subalgorithm to read the license plate number using the cropped image of a license plate """ def readPlateNumber(self, characters_array): self.findCharacterContour(); self.tesseractCharacter(); return True; """ Crops individual characters out of a plate image and converts it to grayscale for comparison """ def cropCharacter(self, dimensions): [x,y,w,h] = dimensions; character = deepcopy(self.plate_image); character = deepcopy(character[y:y+h,x:x+w]); return character; """ Finds contours in the cropped image of a license plate that fit the dimension range of a letter or number """ def findCharacterContour(self): gray_plate = self.grayImage(deepcopy(self.plate_image)); gray_plate = cv2.GaussianBlur(gray_plate, (3,3), 0); _,threshold = cv2.threshold(gray_plate, 140, 255, 0); _,contours,_ = cv2.findContours(threshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE); w,h,x,y = 0,0,0,0; logger.info("%s contours found.", str(len(contours))); for contour in contours: area = cv2.contourArea(contour); # rough range of areas of a plate number if area > 120 and area < 2000: [x,y,w,h] = cv2.boundingRect(contour); # rough dimensions of a character if h > 20 and h < 90 and w > 10 and w < 50: character = self.cropCharacter([x,y,w,h]); self.plate_characters.append([x, character]); cv2.rectangle(self.plate_image_char, (x,y), (x+w, y+h), (0,0,255), 1); logger.info("%s plate characters found", str(len(self.plate_characters))); return True; """ Tesseract: reads the character using the Tesseract libary """ def tesseractCharacter(self): self.plate_characters = sorted(self.plate_characters, key=lambda x: x[0]); # sort contours left to right for character in self.plate_characters[:8]: # only first 8 contours char_image = Image.fromarray(character[1]); char = tes.image_to_string(char_image, config='-psm 10'); self.plate_number += char.upper(); return True; """ Subplot generator for images """ def plot(self, figure, subplot, image, title): figure.subplot(subplot); figure.imshow(image); figure.xlabel(title); figure.xticks([]); figure.yticks([]); return True; """ Show our results """ def showResults(self): plt.figure(self.plate_number); self.plot(plt, 321, self.original_image, "Original image"); self.plot(plt, 322, self.gray_image, "Threshold image"); self.plot(plt, 323, self.plate_located_image, "Plate located"); if self.plate_image is not None: self.plot(plt, 324, self.plate_image, "License plate"); self.plot(plt, 325, self.plate_image_char, "Characters outlined"); plt.subplot(326);plt.text(0,0,self.plate_number, fontsize=30);plt.xticks([]);plt.yticks([]); plt.tight_layout(); plt.show(); return True;
mit
h2educ/scikit-learn
sklearn/cluster/tests/test_birch.py
342
5603
""" Tests for the birch clustering algorithm. """ from scipy import sparse import numpy as np from sklearn.cluster.tests.common import generate_clustered_data from sklearn.cluster.birch import Birch from sklearn.cluster.hierarchical import AgglomerativeClustering from sklearn.datasets import make_blobs from sklearn.linear_model import ElasticNet from sklearn.metrics import pairwise_distances_argmin, v_measure_score from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns def test_n_samples_leaves_roots(): # Sanity check for the number of samples in leaves and roots X, y = make_blobs(n_samples=10) brc = Birch() brc.fit(X) n_samples_root = sum([sc.n_samples_ for sc in brc.root_.subclusters_]) n_samples_leaves = sum([sc.n_samples_ for leaf in brc._get_leaves() for sc in leaf.subclusters_]) assert_equal(n_samples_leaves, X.shape[0]) assert_equal(n_samples_root, X.shape[0]) def test_partial_fit(): # Test that fit is equivalent to calling partial_fit multiple times X, y = make_blobs(n_samples=100) brc = Birch(n_clusters=3) brc.fit(X) brc_partial = Birch(n_clusters=None) brc_partial.partial_fit(X[:50]) brc_partial.partial_fit(X[50:]) assert_array_equal(brc_partial.subcluster_centers_, brc.subcluster_centers_) # Test that same global labels are obtained after calling partial_fit # with None brc_partial.set_params(n_clusters=3) brc_partial.partial_fit(None) assert_array_equal(brc_partial.subcluster_labels_, brc.subcluster_labels_) def test_birch_predict(): # Test the predict method predicts the nearest centroid. rng = np.random.RandomState(0) X = generate_clustered_data(n_clusters=3, n_features=3, n_samples_per_cluster=10) # n_samples * n_samples_per_cluster shuffle_indices = np.arange(30) rng.shuffle(shuffle_indices) X_shuffle = X[shuffle_indices, :] brc = Birch(n_clusters=4, threshold=1.) brc.fit(X_shuffle) centroids = brc.subcluster_centers_ assert_array_equal(brc.labels_, brc.predict(X_shuffle)) nearest_centroid = pairwise_distances_argmin(X_shuffle, centroids) assert_almost_equal(v_measure_score(nearest_centroid, brc.labels_), 1.0) def test_n_clusters(): # Test that n_clusters param works properly X, y = make_blobs(n_samples=100, centers=10) brc1 = Birch(n_clusters=10) brc1.fit(X) assert_greater(len(brc1.subcluster_centers_), 10) assert_equal(len(np.unique(brc1.labels_)), 10) # Test that n_clusters = Agglomerative Clustering gives # the same results. gc = AgglomerativeClustering(n_clusters=10) brc2 = Birch(n_clusters=gc) brc2.fit(X) assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_) assert_array_equal(brc1.labels_, brc2.labels_) # Test that the wrong global clustering step raises an Error. clf = ElasticNet() brc3 = Birch(n_clusters=clf) assert_raises(ValueError, brc3.fit, X) # Test that a small number of clusters raises a warning. brc4 = Birch(threshold=10000.) assert_warns(UserWarning, brc4.fit, X) def test_sparse_X(): # Test that sparse and dense data give same results X, y = make_blobs(n_samples=100, centers=10) brc = Birch(n_clusters=10) brc.fit(X) csr = sparse.csr_matrix(X) brc_sparse = Birch(n_clusters=10) brc_sparse.fit(csr) assert_array_equal(brc.labels_, brc_sparse.labels_) assert_array_equal(brc.subcluster_centers_, brc_sparse.subcluster_centers_) def check_branching_factor(node, branching_factor): subclusters = node.subclusters_ assert_greater_equal(branching_factor, len(subclusters)) for cluster in subclusters: if cluster.child_: check_branching_factor(cluster.child_, branching_factor) def test_branching_factor(): # Test that nodes have at max branching_factor number of subclusters X, y = make_blobs() branching_factor = 9 # Purposefully set a low threshold to maximize the subclusters. brc = Birch(n_clusters=None, branching_factor=branching_factor, threshold=0.01) brc.fit(X) check_branching_factor(brc.root_, branching_factor) brc = Birch(n_clusters=3, branching_factor=branching_factor, threshold=0.01) brc.fit(X) check_branching_factor(brc.root_, branching_factor) # Raises error when branching_factor is set to one. brc = Birch(n_clusters=None, branching_factor=1, threshold=0.01) assert_raises(ValueError, brc.fit, X) def check_threshold(birch_instance, threshold): """Use the leaf linked list for traversal""" current_leaf = birch_instance.dummy_leaf_.next_leaf_ while current_leaf: subclusters = current_leaf.subclusters_ for sc in subclusters: assert_greater_equal(threshold, sc.radius) current_leaf = current_leaf.next_leaf_ def test_threshold(): # Test that the leaf subclusters have a threshold lesser than radius X, y = make_blobs(n_samples=80, centers=4) brc = Birch(threshold=0.5, n_clusters=None) brc.fit(X) check_threshold(brc, 0.5) brc = Birch(threshold=5.0, n_clusters=None) brc.fit(X) check_threshold(brc, 5.)
bsd-3-clause
michaelaye/scikit-image
doc/examples/plot_ssim.py
15
2238
""" =========================== Structural similarity index =========================== When comparing images, the mean squared error (MSE)--while simple to implement--is not highly indicative of perceived similarity. Structural similarity aims to address this shortcoming by taking texture into account [1]_, [2]_. The example shows two modifications of the input image, each with the same MSE, but with very different mean structural similarity indices. .. [1] Zhou Wang; Bovik, A.C.; ,"Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures," Signal Processing Magazine, IEEE, vol. 26, no. 1, pp. 98-117, Jan. 2009. .. [2] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004. """ import numpy as np import matplotlib import matplotlib.pyplot as plt from skimage import data, img_as_float from skimage.measure import structural_similarity as ssim matplotlib.rcParams['font.size'] = 9 img = img_as_float(data.camera()) rows, cols = img.shape noise = np.ones_like(img) * 0.2 * (img.max() - img.min()) noise[np.random.random(size=noise.shape) > 0.5] *= -1 def mse(x, y): return np.linalg.norm(x - y) img_noise = img + noise img_const = img + abs(noise) fig, (ax0, ax1, ax2) = plt.subplots(nrows=1, ncols=3, figsize=(8, 4)) mse_none = mse(img, img) ssim_none = ssim(img, img, dynamic_range=img.max() - img.min()) mse_noise = mse(img, img_noise) ssim_noise = ssim(img, img_noise, dynamic_range=img_const.max() - img_const.min()) mse_const = mse(img, img_const) ssim_const = ssim(img, img_const, dynamic_range=img_noise.max() - img_noise.min()) label = 'MSE: %2.f, SSIM: %.2f' ax0.imshow(img, cmap=plt.cm.gray, vmin=0, vmax=1) ax0.set_xlabel(label % (mse_none, ssim_none)) ax0.set_title('Original image') ax1.imshow(img_noise, cmap=plt.cm.gray, vmin=0, vmax=1) ax1.set_xlabel(label % (mse_noise, ssim_noise)) ax1.set_title('Image with noise') ax2.imshow(img_const, cmap=plt.cm.gray, vmin=0, vmax=1) ax2.set_xlabel(label % (mse_const, ssim_const)) ax2.set_title('Image plus constant') plt.show()
bsd-3-clause
terkkila/scikit-learn
sklearn/tree/tests/test_export.py
76
9318
""" Testing for export functions of decision trees (sklearn.tree.export). """ from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] y2 = [[-1, 1], [-1, 2], [-1, 3], [1, 1], [1, 2], [1, 3]] w = [1, 1, 1, .5, .5, .5] def test_graphviz_toy(): # Check correctness of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1, criterion="gini", random_state=2) clf.fit(X, y) # Test export code out = StringIO() export_graphviz(clf, out_file=out) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with feature_names out = StringIO() export_graphviz(clf, out_file=out, feature_names=["feature0", "feature1"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with class_names out = StringIO() export_graphviz(clf, out_file=out, class_names=["yes", "no"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = yes"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \ 'class = yes"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \ 'class = no"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test plot_options out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False, proportion=True, special_characters=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'edge [fontname=helvetica] ;\n' \ '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \ 'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \ '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \ 'fillcolor="#399de5ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, class_names=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = y[0]"] ;\n' \ '1 [label="(...)"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth with plot_options out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, filled=True, node_ids=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \ 'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \ '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test multi-output with weighted samples clf = DecisionTreeClassifier(max_depth=2, min_samples_split=1, criterion="gini", random_state=2) clf = clf.fit(X, y2, sample_weight=w) out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \ 'value = [[3.0, 1.5, 0.0]\\n' \ '[1.5, 1.5, 1.5]]", fillcolor="#e5813900"] ;\n' \ '1 [label="X[1] <= -1.5\\nsamples = 3\\n' \ 'value = [[3, 0, 0]\\n[1, 1, 1]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="samples = 1\\nvalue = [[1, 0, 0]\\n' \ '[0, 0, 1]]", fillcolor="#e58139ff"] ;\n' \ '1 -> 2 ;\n' \ '3 [label="samples = 2\\nvalue = [[2, 0, 0]\\n' \ '[1, 1, 0]]", fillcolor="#e581398c"] ;\n' \ '1 -> 3 ;\n' \ '4 [label="X[0] <= 1.5\\nsamples = 3\\n' \ 'value = [[0.0, 1.5, 0.0]\\n[0.5, 0.5, 0.5]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 4 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '5 [label="samples = 2\\nvalue = [[0.0, 1.0, 0.0]\\n' \ '[0.5, 0.5, 0.0]]", fillcolor="#e581398c"] ;\n' \ '4 -> 5 ;\n' \ '6 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \ '[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \ '4 -> 6 ;\n' \ '}' assert_equal(contents1, contents2) # Test regression output with plot_options clf = DecisionTreeRegressor(max_depth=3, min_samples_split=1, criterion="mse", random_state=2) clf.fit(X, y) out = StringIO() export_graphviz(clf, out_file=out, filled=True, leaves_parallel=True, rotate=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'graph [ranksep=equally, splines=polyline] ;\n' \ 'edge [fontname=helvetica] ;\n' \ 'rankdir=LR ;\n' \ '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \ 'value = 0.0", fillcolor="#e581397f"] ;\n' \ '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="True"] ;\n' \ '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="False"] ;\n' \ '{rank=same ; 0} ;\n' \ '{rank=same ; 1; 2} ;\n' \ '}' assert_equal(contents1, contents2) def test_graphviz_errors(): # Check for errors of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1) clf.fit(X, y) # Check feature_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) # Check class_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, class_names=[])
bsd-3-clause
ucloud/uai-sdk
examples/mxnet/insightface/train/code/train_softmax_dist.py
1
26097
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import math import random import logging import pickle import numpy as np from image_iter import FaceImageIter from image_iter import FaceImageIterList import mxnet as mx from mxnet import ndarray as nd import argparse import mxnet.optimizer as optimizer sys.path.append(os.path.join(os.path.dirname(__file__), 'common')) import face_image sys.path.append(os.path.join(os.path.dirname(__file__), 'eval')) sys.path.append(os.path.join(os.path.dirname(__file__), 'symbols')) import fresnet import finception_resnet_v2 import fmobilenet import fmobilenetv2 import fmobilefacenet import fxception import fdensenet import fdpn import fnasnet import spherenet import verification import sklearn #sys.path.append(os.path.join(os.path.dirname(__file__), 'losses')) #import center_loss logger = logging.getLogger() logger.setLevel(logging.INFO) args = None class AccMetric(mx.metric.EvalMetric): def __init__(self): self.axis = 1 super(AccMetric, self).__init__( 'acc', axis=self.axis, output_names=None, label_names=None) self.losses = [] self.count = 0 def update(self, labels, preds): self.count+=1 label = labels[0] pred_label = preds[1] if pred_label.shape != label.shape: pred_label = mx.ndarray.argmax(pred_label, axis=self.axis) pred_label = pred_label.asnumpy().astype('int32').flatten() label = label.asnumpy() if label.ndim==2: label = label[:,0] label = label.astype('int32').flatten() assert label.shape==pred_label.shape self.sum_metric += (pred_label.flat == label.flat).sum() self.num_inst += len(pred_label.flat) class LossValueMetric(mx.metric.EvalMetric): def __init__(self): self.axis = 1 super(LossValueMetric, self).__init__( 'lossvalue', axis=self.axis, output_names=None, label_names=None) self.losses = [] def update(self, labels, preds): loss = preds[-1].asnumpy()[0] self.sum_metric += loss self.num_inst += 1.0 gt_label = preds[-2].asnumpy() #print(gt_label) def parse_args(): parser = argparse.ArgumentParser(description='Train face network') # UAI Related parser.add_argument('--work_dir', type=str, default="/data", help='Default work path') parser.add_argument('--output_dir', type=str, default="/data/output", help="Default output path") parser.add_argument('--log_dir', type=str, default="/data/output", help="Default log path") parser.add_argument('--num_gpus', type=int, help="Num of avaliable gpus") parser.add_argument('--data_dir', default='/data/data/', help='training set directory') # Dist Train parser.add_argument('--kv-store', type=str, default='device', help='key-value store type') parser.add_argument('--gc-type', type=str, default='none', help='type of gradient compression to use, takes `2bit` or `none` for now') parser.add_argument('--optimizer', type=str, default='sgd', help='the optimizer type') # general parser.add_argument('--prefix', default='../model/model', help='directory to save model.') parser.add_argument('--pretrained', default='', help='pretrained model to load') parser.add_argument('--ckpt', type=int, default=1, help='checkpoint saving option. 0: discard saving. 1: save when necessary. 2: always save') parser.add_argument('--loss-type', type=int, default=4, help='loss type') parser.add_argument('--verbose', type=int, default=2000, help='do verification testing every verbose batches') parser.add_argument('--max-steps', type=int, default=0, help='max training batches') parser.add_argument('--end-epoch', type=int, default=100000, help='training epoch size.') parser.add_argument('--network', default='r50', help='specify network') parser.add_argument('--image-size', default='112,112', help='specify input image height and width') parser.add_argument('--version-se', type=int, default=0, help='whether to use se in network') parser.add_argument('--version-input', type=int, default=1, help='network input config') parser.add_argument('--version-output', type=str, default='E', help='network embedding output config') parser.add_argument('--version-unit', type=int, default=3, help='resnet unit config') parser.add_argument('--version-multiplier', type=float, default=1.0, help='filters multiplier') parser.add_argument('--version-act', type=str, default='prelu', help='network activation config') parser.add_argument('--use-deformable', type=int, default=0, help='use deformable cnn in network') parser.add_argument('--lr', type=float, default=0.1, help='start learning rate') parser.add_argument('--lr-steps', type=str, default='', help='steps of lr changing') parser.add_argument('--wd', type=float, default=0.0005, help='weight decay') parser.add_argument('--fc7-wd-mult', type=float, default=1.0, help='weight decay mult for fc7') parser.add_argument('--fc7-lr-mult', type=float, default=1.0, help='lr mult for fc7') parser.add_argument("--fc7-no-bias", default=False, action="store_true" , help="fc7 no bias flag") parser.add_argument('--bn-mom', type=float, default=0.9, help='bn mom') parser.add_argument('--mom', type=float, default=0.9, help='momentum') parser.add_argument('--emb-size', type=int, default=512, help='embedding length') parser.add_argument('--per-batch-size', type=int, default=128, help='batch size in each context') parser.add_argument('--margin-m', type=float, default=0.5, help='margin for loss') parser.add_argument('--margin-s', type=float, default=64.0, help='scale for feature') parser.add_argument('--margin-a', type=float, default=1.0, help='') parser.add_argument('--margin-b', type=float, default=0.0, help='') parser.add_argument('--easy-margin', type=int, default=0, help='') parser.add_argument('--margin', type=int, default=4, help='margin for sphere') parser.add_argument('--beta', type=float, default=1000., help='param for sphere') parser.add_argument('--beta-min', type=float, default=5., help='param for sphere') parser.add_argument('--power', type=float, default=1.0, help='param for sphere') parser.add_argument('--scale', type=float, default=0.9993, help='param for sphere') parser.add_argument('--rand-mirror', type=int, default=1, help='if do random mirror in training') parser.add_argument('--cutoff', type=int, default=0, help='cut off aug') parser.add_argument('--color', type=int, default=0, help='color jittering aug') parser.add_argument('--images-filter', type=int, default=0, help='minimum images per identity filter') parser.add_argument('--target', type=str, default='lfw,cfp_fp,agedb_30', help='verification targets') parser.add_argument('--ce-loss', default=False, action='store_true', help='if output ce loss') args = parser.parse_args() return args def get_symbol(args, arg_params, aux_params): data_shape = (args.image_channel,args.image_h,args.image_w) image_shape = ",".join([str(x) for x in data_shape]) margin_symbols = [] if args.network[0]=='d': embedding = fdensenet.get_symbol(args.emb_size, args.num_layers, version_se=args.version_se, version_input=args.version_input, version_output=args.version_output, version_unit=args.version_unit) elif args.network[0]=='m': print('init mobilenet', args.num_layers) if args.num_layers==1: embedding = fmobilenet.get_symbol(args.emb_size, version_input=args.version_input, version_output=args.version_output, version_multiplier = args.version_multiplier) else: embedding = fmobilenetv2.get_symbol(args.emb_size) elif args.network[0]=='i': print('init inception-resnet-v2', args.num_layers) embedding = finception_resnet_v2.get_symbol(args.emb_size, version_se=args.version_se, version_input=args.version_input, version_output=args.version_output, version_unit=args.version_unit) elif args.network[0]=='x': print('init xception', args.num_layers) embedding = fxception.get_symbol(args.emb_size, version_se=args.version_se, version_input=args.version_input, version_output=args.version_output, version_unit=args.version_unit) elif args.network[0]=='p': print('init dpn', args.num_layers) embedding = fdpn.get_symbol(args.emb_size, args.num_layers, version_se=args.version_se, version_input=args.version_input, version_output=args.version_output, version_unit=args.version_unit) elif args.network[0]=='n': print('init nasnet', args.num_layers) embedding = fnasnet.get_symbol(args.emb_size) elif args.network[0]=='s': print('init spherenet', args.num_layers) embedding = spherenet.get_symbol(args.emb_size, args.num_layers) elif args.network[0]=='y': print('init mobilefacenet', args.num_layers) embedding = fmobilefacenet.get_symbol(args.emb_size, bn_mom = args.bn_mom, version_output=args.version_output) else: print('init resnet', args.num_layers) embedding = fresnet.get_symbol(args.emb_size, args.num_layers, version_se=args.version_se, version_input=args.version_input, version_output=args.version_output, version_unit=args.version_unit, version_act=args.version_act) all_label = mx.symbol.Variable('softmax_label') gt_label = all_label extra_loss = None _weight = mx.symbol.Variable("fc7_weight", shape=(args.num_classes, args.emb_size), lr_mult=args.fc7_lr_mult, wd_mult=args.fc7_wd_mult) if args.loss_type==0: #softmax if args.fc7_no_bias: fc7 = mx.sym.FullyConnected(data=embedding, weight = _weight, no_bias = True, num_hidden=args.num_classes, name='fc7') else: _bias = mx.symbol.Variable('fc7_bias', lr_mult=2.0, wd_mult=0.0) fc7 = mx.sym.FullyConnected(data=embedding, weight = _weight, bias = _bias, num_hidden=args.num_classes, name='fc7') elif args.loss_type==1: #sphere not suitable for dist training, exit sys.exit(-1) ''' _weight = mx.symbol.L2Normalization(_weight, mode='instance') fc7 = mx.sym.LSoftmax(data=embedding, label=gt_label, num_hidden=args.num_classes, weight = _weight, beta=args.beta, margin=args.margin, scale=args.scale, beta_min=args.beta_min, verbose=1000, name='fc7') ''' elif args.loss_type==2: # CosineFace s = args.margin_s m = args.margin_m assert(s>0.0) assert(m>0.0) _weight = mx.symbol.L2Normalization(_weight, mode='instance') nembedding = mx.symbol.L2Normalization(embedding, mode='instance', name='fc1n')*s fc7 = mx.sym.FullyConnected(data=nembedding, weight = _weight, no_bias = True, num_hidden=args.num_classes, name='fc7') s_m = s*m gt_one_hot = mx.sym.one_hot(gt_label, depth = args.num_classes, on_value = s_m, off_value = 0.0) fc7 = fc7-gt_one_hot elif args.loss_type==4: # ArcFace s = args.margin_s m = args.margin_m assert s>0.0 assert m>=0.0 assert m<(math.pi/2) _weight = mx.symbol.L2Normalization(_weight, mode='instance') # L2Norm(w) ||w|| = 1 nembedding = mx.symbol.L2Normalization(embedding, mode='instance', name='fc1n')*s # L2Norm(embedding) ||embedding|| = 1 fc7 = mx.sym.FullyConnected(data=nembedding, weight = _weight, no_bias = True, num_hidden=args.num_classes, name='fc7') zy = mx.sym.pick(fc7, gt_label, axis=1) cos_t = zy/s cos_m = math.cos(m) sin_m = math.sin(m) mm = math.sin(math.pi-m)*m #threshold = 0.0 threshold = math.cos(math.pi-m) if args.easy_margin: cond = mx.symbol.Activation(data=cos_t, act_type='relu') else: cond_v = cos_t - threshold cond = mx.symbol.Activation(data=cond_v, act_type='relu') body = cos_t*cos_t body = 1.0-body sin_t = mx.sym.sqrt(body) new_zy = cos_t*cos_m b = sin_t*sin_m new_zy = new_zy - b new_zy = new_zy*s if args.easy_margin: zy_keep = zy else: zy_keep = zy - s*mm new_zy = mx.sym.where(cond, new_zy, zy_keep) diff = new_zy - zy diff = mx.sym.expand_dims(diff, 1) gt_one_hot = mx.sym.one_hot(gt_label, depth = args.num_classes, on_value = 1.0, off_value = 0.0) body = mx.sym.broadcast_mul(gt_one_hot, diff) fc7 = fc7+body elif args.loss_type==5: # Combined Margin s = args.margin_s m = args.margin_m assert s>0.0 _weight = mx.symbol.L2Normalization(_weight, mode='instance') nembedding = mx.symbol.L2Normalization(embedding, mode='instance', name='fc1n')*s fc7 = mx.sym.FullyConnected(data=nembedding, weight = _weight, no_bias = True, num_hidden=args.num_classes, name='fc7') if args.margin_a!=1.0 or args.margin_m!=0.0 or args.margin_b!=0.0: if args.margin_a==1.0 and args.margin_m==0.0: s_m = s*args.margin_b gt_one_hot = mx.sym.one_hot(gt_label, depth = args.num_classes, on_value = s_m, off_value = 0.0) fc7 = fc7-gt_one_hot else: zy = mx.sym.pick(fc7, gt_label, axis=1) cos_t = zy/s t = mx.sym.arccos(cos_t) if args.margin_a!=1.0: t = t*args.margin_a if args.margin_m>0.0: t = t+args.margin_m body = mx.sym.cos(t) if args.margin_b>0.0: body = body - args.margin_b new_zy = body*s diff = new_zy - zy diff = mx.sym.expand_dims(diff, 1) gt_one_hot = mx.sym.one_hot(gt_label, depth = args.num_classes, on_value = 1.0, off_value = 0.0) body = mx.sym.broadcast_mul(gt_one_hot, diff) fc7 = fc7+body elif args.loss_type==6: s = args.margin_s m = args.margin_m assert s>0.0 assert args.margin_b>0.0 _weight = mx.symbol.L2Normalization(_weight, mode='instance') nembedding = mx.symbol.L2Normalization(embedding, mode='instance', name='fc1n')*s fc7 = mx.sym.FullyConnected(data=nembedding, weight = _weight, no_bias = True, num_hidden=args.num_classes, name='fc7') zy = mx.sym.pick(fc7, gt_label, axis=1) cos_t = zy/s t = mx.sym.arccos(cos_t) intra_loss = t/np.pi intra_loss = mx.sym.mean(intra_loss) #intra_loss = mx.sym.exp(cos_t*-1.0) intra_loss = mx.sym.MakeLoss(intra_loss, name='intra_loss', grad_scale = args.margin_b) if m>0.0: t = t+m body = mx.sym.cos(t) new_zy = body*s diff = new_zy - zy diff = mx.sym.expand_dims(diff, 1) gt_one_hot = mx.sym.one_hot(gt_label, depth = args.num_classes, on_value = 1.0, off_value = 0.0) body = mx.sym.broadcast_mul(gt_one_hot, diff) fc7 = fc7+body elif args.loss_type==7: s = args.margin_s m = args.margin_m assert s>0.0 assert args.margin_b>0.0 assert args.margin_a>0.0 _weight = mx.symbol.L2Normalization(_weight, mode='instance') nembedding = mx.symbol.L2Normalization(embedding, mode='instance', name='fc1n')*s fc7 = mx.sym.FullyConnected(data=nembedding, weight = _weight, no_bias = True, num_hidden=args.num_classes, name='fc7') zy = mx.sym.pick(fc7, gt_label, axis=1) cos_t = zy/s t = mx.sym.arccos(cos_t) #counter_weight = mx.sym.take(_weight, gt_label, axis=1) #counter_cos = mx.sym.dot(counter_weight, _weight, transpose_a=True) counter_weight = mx.sym.take(_weight, gt_label, axis=0) counter_cos = mx.sym.dot(counter_weight, _weight, transpose_b=True) #counter_cos = mx.sym.minimum(counter_cos, 1.0) #counter_angle = mx.sym.arccos(counter_cos) #counter_angle = counter_angle * -1.0 #counter_angle = counter_angle/np.pi #[0,1] #inter_loss = mx.sym.exp(counter_angle) #counter_cos = mx.sym.dot(_weight, _weight, transpose_b=True) #counter_cos = mx.sym.minimum(counter_cos, 1.0) #counter_angle = mx.sym.arccos(counter_cos) #counter_angle = mx.sym.sort(counter_angle, axis=1) #counter_angle = mx.sym.slice_axis(counter_angle, axis=1, begin=0,end=int(args.margin_a)) #inter_loss = counter_angle*-1.0 # [-1,0] #inter_loss = inter_loss+1.0 # [0,1] inter_loss = counter_cos inter_loss = mx.sym.mean(inter_loss) inter_loss = mx.sym.MakeLoss(inter_loss, name='inter_loss', grad_scale = args.margin_b) if m>0.0: t = t+m body = mx.sym.cos(t) new_zy = body*s diff = new_zy - zy diff = mx.sym.expand_dims(diff, 1) gt_one_hot = mx.sym.one_hot(gt_label, depth = args.num_classes, on_value = 1.0, off_value = 0.0) body = mx.sym.broadcast_mul(gt_one_hot, diff) fc7 = fc7+body out_list = [mx.symbol.BlockGrad(embedding)] softmax = mx.symbol.SoftmaxOutput(data=fc7, label = gt_label, name='softmax', normalization='valid') out_list.append(softmax) if args.loss_type==6: out_list.append(intra_loss) if args.loss_type==7: out_list.append(inter_loss) #out_list.append(mx.sym.BlockGrad(counter_weight)) #out_list.append(intra_loss) if args.ce_loss: #ce_loss = mx.symbol.softmax_cross_entropy(data=fc7, label = gt_label, name='ce_loss')/args.per_batch_size body = mx.symbol.SoftmaxActivation(data=fc7) body = mx.symbol.log(body) _label = mx.sym.one_hot(gt_label, depth = args.num_classes, on_value = -1.0, off_value = 0.0) body = body*_label ce_loss = mx.symbol.sum(body)/args.per_batch_size out_list.append(mx.symbol.BlockGrad(ce_loss)) out = mx.symbol.Group(out_list) return (out, arg_params, aux_params) # lr scheduler for dist training def _get_lr_scheduler(args, kv, begin_epoch, num_samples): lr = args.lr if len(args.lr_steps)==0: lr_steps = [40000, 60000, 80000] if args.loss_type>=1 and args.loss_type<=7: lr_steps = [100000, 140000, 160000] p = 512.0/(args.batch_size * kv.num_workers) for l in xrange(len(lr_steps)): lr_steps[l] = int(lr_steps[l]*p) else: lr_steps = [int(x) for x in args.lr_steps.split(',')] print('lr_steps', lr_steps) begin_step = begin_epoch * num_samples for s in lr_steps: if begin_step >= s: lr *= 0.1 if lr != args.lr: logging.info('Adjust learning rate to %e for step %d' %(lr, begin_step)) return (lr, mx.lr_scheduler.MultiFactorScheduler(step=lr_steps, factor=0.1)) #save mode on each epoch def _save_model(args, rank=0): if args.prefix is None: return None #Add UAI output_dir path model_prefix = args.prefix dst_dir = os.path.dirname(model_prefix) if not os.path.isdir(dst_dir): os.mkdir(dst_dir) return mx.callback.do_checkpoint(model_prefix if rank == 0 else "%s-%d" % (model_prefix, rank)) def train_net(args): # Set up kvstore kv = mx.kvstore.create(args.kv_store) if args.gc_type != 'none': kv.set_gradient_compression({'type': args.gc_type, 'threshold': args.gc_threshold}) # logging head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s' logging.basicConfig(level=logging.DEBUG, format=head) logging.info('start with arguments %s', args) # Get ctx according to num_gpus, gpu id start from 0 ctx = [] ctx = [mx.cpu()] if args.num_gpus is None or args.num_gpus is 0 else [ mx.gpu(i) for i in range(args.num_gpus)] # model prefix, In UAI Platform, should be /data/output/xxx prefix = args.prefix prefix_dir = os.path.dirname(prefix) if not os.path.exists(prefix_dir): os.makedirs(prefix_dir) end_epoch = args.end_epoch args.ctx_num = len(ctx) args.num_layers = int(args.network[1:]) print('num_layers', args.num_layers) if args.per_batch_size==0: args.per_batch_size = 128 args.batch_size = args.per_batch_size*args.ctx_num args.rescale_threshold = 0 args.image_channel = 3 data_dir_list = args.data_dir.split(',') assert len(data_dir_list)==1 data_dir = data_dir_list[0] path_imgrec = None path_imglist = None prop = face_image.load_property(data_dir) args.num_classes = prop.num_classes #image_size = prop.image_size image_size = [int(x) for x in args.image_size.split(',')] assert len(image_size)==2 assert image_size[0]==image_size[1] args.image_h = image_size[0] args.image_w = image_size[1] print('image_size', image_size) assert(args.num_classes>0) print('num_classes', args.num_classes) path_imgrec = os.path.join(data_dir, "train.rec") path_imglist = os.path.join(data_dir, "train.lst") num_samples = 0 for line in open(path_imglist).xreadlines(): num_samples += 1 print('Called with argument:', args) data_shape = (args.image_channel,image_size[0],image_size[1]) mean = None begin_epoch = 0 base_lr = args.lr base_wd = args.wd base_mom = args.mom if len(args.pretrained)==0: arg_params = None aux_params = None sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params) if args.network[0]=='s': data_shape_dict = {'data' : (args.per_batch_size,)+data_shape} spherenet.init_weights(sym, data_shape_dict, args.num_layers) else: # Not the mode is saved each epoch, not NUM of steps as in train_softmax.py # args.pretrained be 'prefix,epoch' vec = args.pretrained.split(',') print('loading', vec) model_prefix = vec[0] if kv.rank > 0 and os.path.exists("%s-%d-symbol.json" % (model_prefix, kv.rank)): model_prefix += "-%d" % (kv.rank) logging.info('Loaded model %s_%d.params', model_prefix, int(vec[1])) _, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, int(vec[1])) begin_epoch = int(vec[1]) sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params) model = mx.mod.Module( context = ctx, symbol = sym, ) val_dataiter = None train_dataiter = FaceImageIter( batch_size = args.batch_size, data_shape = data_shape, path_imgrec = path_imgrec, shuffle = True, rand_mirror = args.rand_mirror, mean = mean, cutoff = args.cutoff, color_jittering = args.color, images_filter = args.images_filter, ) metric1 = AccMetric() eval_metrics = [mx.metric.create(metric1)] if args.ce_loss: metric2 = LossValueMetric() eval_metrics.append( mx.metric.create(metric2) ) if args.network[0]=='r' or args.network[0]=='y': initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style elif args.network[0]=='i' or args.network[0]=='x': initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2) #inception else: initializer = mx.init.Xavier(rnd_type='uniform', factor_type="in", magnitude=2) #initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style som = 20 _cb = mx.callback.Speedometer(args.batch_size, som) ver_list = [] ver_name_list = [] for name in args.target.split(','): path = os.path.join(data_dir,name+".bin") if os.path.exists(path): data_set = verification.load_bin(path, image_size) ver_list.append(data_set) ver_name_list.append(name) print('ver', name) def ver_test(nbatch): results = [] for i in xrange(len(ver_list)): acc1, std1, acc2, std2, xnorm, embeddings_list = verification.test(ver_list[i], model, args.batch_size, 10, None, None) print('[%s][%d]XNorm: %f' % (ver_name_list[i], nbatch, xnorm)) #print('[%s][%d]Accuracy: %1.5f+-%1.5f' % (ver_name_list[i], nbatch, acc1, std1)) print('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' % (ver_name_list[i], nbatch, acc2, std2)) results.append(acc2) return results highest_acc = [0.0, 0.0] #lfw and target #for i in xrange(len(ver_list)): # highest_acc.append(0.0) def _batch_callback(param): #global global_step mbatch = param.nbatch _cb(param) if mbatch%1000==0: print('lr-batch-epoch:',param.nbatch,param.epoch) if mbatch>=0 and mbatch%args.verbose==0: acc_list = ver_test(mbatch) is_highest = False if len(acc_list)>0: score = sum(acc_list) if acc_list[-1]>=highest_acc[-1]: if acc_list[-1]>highest_acc[-1]: is_highest = True else: if score>=highest_acc[0]: is_highest = True highest_acc[0] = score highest_acc[-1] = acc_list[-1] #if lfw_score>=0.99: # do_save = True print('[%d]Accuracy-Highest: %1.5f'%(mbatch, highest_acc[-1])) # save model checkpoint = _save_model(args, kv.rank) epoch_cb = checkpoint rescale = 1.0/args.ctx_num lr, lr_scheduler = _get_lr_scheduler(args, kv, begin_epoch, num_samples) # learning rate optimizer_params = { 'learning_rate': lr, 'wd' : args.wd, 'lr_scheduler': lr_scheduler, 'multi_precision': True, 'rescale_grad': rescale} # Only a limited number of optimizers have 'momentum' property has_momentum = {'sgd', 'dcasgd', 'nag'} if args.optimizer in has_momentum: optimizer_params['momentum'] = args.mom train_dataiter = mx.io.PrefetchingIter(train_dataiter) print('Start training') model.fit(train_dataiter, begin_epoch = begin_epoch, num_epoch = end_epoch, eval_data = val_dataiter, eval_metric = eval_metrics, kvstore = kv, optimizer = args.optimizer, optimizer_params = optimizer_params, initializer = initializer, arg_params = arg_params, aux_params = aux_params, allow_missing = True, batch_end_callback = _batch_callback, epoch_end_callback = epoch_cb ) def main(): #time.sleep(3600*6.5) os.environ['MXNET_CPU_WORKER_NTHREADS'] = "24" global args args = parse_args() train_net(args) if __name__ == '__main__': main()
apache-2.0
arjoly/scikit-learn
sklearn/linear_model/ridge.py
6
46528
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # Michael Eickenberg <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel, _rescale_data from .sag import sag_solver from .sag_fast import get_max_squared_sum from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils import check_X_y from ..utils import check_array from ..utils import check_consistent_length from ..utils import compute_sample_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..grid_search import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter) coefs[i] = info[0] n_iter[i] = info[2] return coefs, n_iter def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) \ or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn("Singular matrix in solving dual problem. Using " "least-squares solution instead.") dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0, random_state=None, return_n_iter=False, return_intercept=False): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like The l_2 penalty to be used. If an array is passed, penalties are assumed to be specific to targets max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is not None and solver='auto', the solver will be set to 'cholesky'. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. return_n_iter : boolean, default False If True, the method also returns `n_iter`, the actual number of iteration performed by the solver. return_intercept : boolean, default False If True and if X is sparse, the method also returns the intercept, and the solver is automatically changed to 'sag'. This is only a temporary fix for fitting the intercept with sparse data. For dense data, use sklearn.linear_model.center_data before your regression. Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). n_iter : int, optional The actual number of iteration performed by the solver. Only returned if `return_n_iter` is True. intercept : float or array, shape = [n_targets] The intercept of the model. Only returned if `return_intercept` is True and if X is a scipy sparse array. Notes ----- This function won't compute the intercept. """ if return_intercept and sparse.issparse(X) and solver != 'sag': warnings.warn("In Ridge, only 'sag' solver can currently fit the " "intercept when X is sparse. Solver has been " "automatically changed into 'sag'.") solver = 'sag' # SAG needs X and y columns to be C-contiguous and np.float64 if solver == 'sag': X = check_array(X, accept_sparse=['csr'], dtype=np.float64, order='C') y = check_array(y, dtype=np.float64, ensure_2d=False, order='F') else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) y = check_array(y, dtype='numeric', ensure_2d=False) check_consistent_length(X, y) n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None if solver == 'auto': # cholesky if it's a dense array and cg in any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") if solver != 'sag': # SAG supports sample_weight directly. For other solvers, # we implement sample_weight via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag'): raise ValueError('Solver %s not understood' % solver) n_iter = None if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == 'lsqr': coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' elif solver == 'sag': # precompute max_squared_sum for all targets max_squared_sum = get_max_squared_sum(X) coef = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) intercept = np.zeros((y.shape[1], )) for i, (alpha_i, target) in enumerate(zip(alpha, y.T)): start = {'coef': np.zeros(n_features + int(return_intercept))} coef_, n_iter_, _ = sag_solver( X, target.ravel(), sample_weight, 'squared', alpha_i, max_iter, tol, verbose, random_state, False, max_squared_sum, start) if return_intercept: coef[i] = coef_[:-1] intercept[i] = coef_[-1] else: coef[i] = coef_ n_iter[i] = n_iter_ if intercept.shape[0] == 1: intercept = intercept[0] coef = np.asarray(coef) if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() if return_n_iter and return_intercept: return coef, n_iter, intercept elif return_intercept: return coef, intercept elif return_n_iter: return coef, n_iter else: return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver self.random_state = random_state def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64, multi_output=True, y_numeric=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) # temporary fix for fitting the intercept with sparse data using 'sag' if sparse.issparse(X) and self.fit_intercept: self.coef_, self.n_iter_, self.intercept_ = ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver, random_state=self.random_state, return_n_iter=True, return_intercept=True) self.intercept_ += y_mean else: self.coef_, self.n_iter_ = ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver, random_state=self.random_state, return_n_iter=True, return_intercept=False) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, array-like}, shape (n_targets) Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_targets, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. See also -------- RidgeClassifier, RidgeCV, KernelRidge Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is faster than other solvers when both n_samples and n_features are large. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto", random_state=None): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64, multi_output=True, y_numeric=True) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None for i, alpha in enumerate(self.alphas): weighted_alpha = (sample_weight * alpha if sample_weight is not None else alpha) if error: out, c = _errors(weighted_alpha, y, v, Q, QT_y) else: out, c = _values(weighted_alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used, else, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
desihub/desisim
py/desisim/scripts/quickgalaxies.py
1
13799
""" desisim.scripts.quickgalaxies ============================= """ from __future__ import absolute_import, division, print_function import healpy as hp import numpy as np import os from datetime import datetime from abc import abstractmethod, ABCMeta from argparse import Action, ArgumentParser from astropy.table import Table, vstack from desisim.templates import BGS from desisim.scripts.quickspectra import sim_spectra from desitarget.mock.mockmaker import BGSMaker from desitarget.cuts import isBGS_colors from desiutil.log import get_logger, DEBUG from yaml import load import matplotlib.pyplot as plt class SetDefaultFromFile(Action, metaclass=ABCMeta): """Abstract interface class to set command-line arguments from a file.""" def __call__(self, parser, namespace, values, option_string=None): config = self._get_config_from_file(values) for key, value in config.items(): setattr(namespace, key, value) @abstractmethod def _get_config_from_file(self, filename): raise NotImplementedError class SetDefaultFromYAMLFile(SetDefaultFromFile): """Concrete class that sets command-line arguments from a YAML file.""" def _get_config_from_file(self, filename): """Implementation of configuration reader. Parameters ---------- filename : string Name of configuration file to read. Returns ------- config : dictionary Configuration dictionary. """ with open(filename, 'r') as f: config = load(f) return config def _get_healpixels_in_footprint(nside=64): """Obtain a list of HEALPix pixels in the DESI footprint. Parameters ---------- nside : int HEALPix nside parameter (in form nside=2**k, k=[1,2,3,...]). Returns ------- healpixels : ndarray List of HEALPix pixels within the DESI footprint. """ from desimodel import footprint from desimodel.io import load_tiles # Load DESI tiles. tile_tab = load_tiles() npix = hp.nside2npix(nside) pix_ids = np.arange(npix) ra, dec = hp.pix2ang(nside, pix_ids, lonlat=True) # Get a list of pixel IDs inside the DESI footprint. in_desi = footprint.is_point_in_desi(tile_tab, ra, dec) healpixels = pix_ids[in_desi] return healpixels def _default_wave(wavemin=None, wavemax=None, dw=0.2): """Generate a default wavelength vector for the output spectra.""" from desimodel.io import load_throughput if wavemin is None: wavemin = load_throughput('b').wavemin - 10.0 if wavemax is None: wavemax = load_throughput('z').wavemax + 10.0 return np.arange(round(wavemin, 1), wavemax, dw) def bgs_write_simdata(sim, overwrite=False): """Create a metadata table with simulation inputs. Parameters ---------- sim : dict Simulation parameters from command line. overwrite : bool Overwrite simulation data file. Returns ------- simdata : Table Data table written to disk. """ from desispec.io.util import makepath from desispec.io.util import write_bintable simdatafile = os.path.join(sim.simdir, 'bgs_{}_simdata.fits'.format(sim.simid)) makepath(simdatafile) cols = [ ('SEED', 'S20'), ('NSPEC', 'i4'), ('EXPTIME', 'f4'), ('AIRMASS', 'f4'), ('SEEING', 'f4'), ('MOONFRAC', 'f4'), ('MOONSEP', 'f4'), ('MOONALT', 'f4')] simdata = Table(np.zeros(sim.nsim, dtype=cols)) simdata['EXPTIME'].unit = 's' simdata['SEEING'].unit = 'arcsec' simdata['MOONSEP'].unit = 'deg' simdata['MOONALT'].unit = 'deg' simdata['SEED'] = sim.seed simdata['NSPEC'] = sim.nspec simdata['AIRMASS'] = sim.airmass simdata['SEEING'] = sim.seeing simdata['MOONALT'] = sim.moonalt simdata['MOONSEP'] = sim.moonsep simdata['MOONFRAC'] = sim.moonfrac simdata['EXPTIME'] = sim.exptime if overwrite or not os.path.isfile(simdatafile): print('Writing {}'.format(simdatafile)) write_bintable(simdatafile, simdata, extname='SIMDATA', clobber=True) return simdata def simdata2obsconditions(sim): """Pack simdata observation conditions into a dictionary. Parameters ---------- simdata : Table Simulation data table. Returns ------- obs : dict Observation conditions dictionary. """ obs = dict(AIRMASS=sim.airmass, EXPTIME=sim.exptime, MOONALT=sim.moonalt, MOONFRAC=sim.moonfrac, MOONSEP=sim.moonsep, SEEING=sim.seeing) return obs def write_templates(filename, flux, wave, target, truth, objtruth): """Write galaxy templates to a FITS file. Parameters ---------- filename : str Path to output file. flux : ndarray Array of flux data for template spectra. wave : ndarray Array of wavelengths. target : Table Target information. truth : Table Template simulation truth. objtruth : Table Object-specific truth data. """ import astropy.units as u from astropy.io import fits hx = fits.HDUList() # Write the wavelength table. hdu_wave = fits.PrimaryHDU(wave) hdu_wave.header['EXTNAME'] = 'WAVE' hdu_wave.header['BUNIT'] = 'Angstrom' hdu_wave.header['AIRORVAC'] = ('vac', 'Vacuum wavelengths') hx.append(hdu_wave) # Write the flux table. fluxunits = 1e-17 * u.erg / (u.s * u.cm**2 * u.Angstrom) hdu_flux = fits.ImageHDU(flux) hdu_flux.header['EXTNAME'] = 'FLUX' hdu_flux.header['BUNIT'] = str(fluxunits) hx.append(hdu_flux) # Write targets table. hdu_targets = fits.table_to_hdu(target) hdu_targets.header['EXTNAME'] = 'TARGETS' hx.append(hdu_targets) # Write truth table. hdu_truth = fits.table_to_hdu(truth) hdu_truth.header['EXTNAME'] = 'TRUTH' hx.append(hdu_truth) # Write objtruth table. hdu_objtruth = fits.table_to_hdu(objtruth) hdu_objtruth.header['EXTNAME'] = 'OBJTRUTH' hx.append(hdu_objtruth) print('Writing {}'.format(filename)) hx.writeto(filename, overwrite=True) def parse(options=None): """Parse command-line options. """ parser = ArgumentParser(description='Fast galaxy simulator') parser.add_argument('--config', action=SetDefaultFromYAMLFile) # # Observational conditions. # cond = parser.add_argument_group('Observing conditions') cond.add_argument('--airmass', dest='airmass', type=float, default=1., help='Airmass [1..40].') cond.add_argument('--exptime', dest='exptime', type=int, default=300, help='Exposure time [s].') cond.add_argument('--seeing', dest='seeing', type=float, default=1.1, help='Seeing [arcsec].') cond.add_argument('--moonalt', dest='moonalt', type=float, default=-60., help='Moon altitude [deg].') cond.add_argument('--moonfrac', dest='moonfrac', type=float, default=0., help='Illuminated moon fraction [0..1].') cond.add_argument('--moonsep', dest='moonsep', type=float, default=180., help='Moon separation angle [deg].') # # Galaxy simulation settings. # mcset = parser.add_argument_group('Simulation settings') mcset.add_argument('--nside', dest='nside', type=int, default=64, help='HEALPix NSIDE parameter.') mcset.add_argument('--nspec', dest='nspec', type=int, default=100, help='Number of spectra per HEALPix pixel.') mcset.add_argument('--nsim', dest='nsim', type=int, default=10, help='Number of simulations (HEALPix pixels).') mcset.add_argument('--seed', dest='seed', type=int, default=None, help='Random number seed') mcset.add_argument('--addsnia', dest='addsnia', action='store_true', default=False, help='Add SNe Ia to host spectra.') mcset.add_argument('--addsniip', dest='addsniip', action='store_true', default=False, help='Add SNe IIp to host spectra.') mcset.add_argument('--snrmin', dest='snrmin', type=float, default=0.01, help='SN/host minimum flux ratio.') mcset.add_argument('--snrmax', dest='snrmax', type=float, default=1.00, help='SN/host maximum flux ratio.') # # Output settings. # output = parser.add_argument_group('Output settings') output.add_argument('--simid', dest='simid', default=datetime.now().strftime('%Y-%m-%d'), help='ID/name for simulations.') output.add_argument('--simdir', dest='simdir', default='', help='Simulation output directory absolute path.') # Parse command line options. if options is None: args = parser.parse_args() else: args = parser.parse_args(options) return args def main(args=None): log = get_logger() if isinstance(args, (list, tuple, type(None))): args = parse(args) # Save simulation output. rng = np.random.RandomState(args.seed) simdata = bgs_write_simdata(args) obs = simdata2obsconditions(args) # Generate list of HEALPix pixels to randomly sample from the mocks. healpixels = _get_healpixels_in_footprint(nside=args.nside) npix = np.minimum(10*args.nsim, len(healpixels)) pixels = rng.choice(healpixels, size=npix, replace=False) ipix = iter(pixels) # Set up the template generator. maker = BGSMaker(seed=args.seed) maker.template_maker = BGS(add_SNeIa=args.addsnia,add_SNeIIp=args.addsniip, wave=_default_wave()) for j in range(args.nsim): # Loop until finding a non-empty healpixel (one with mock galaxies). tdata = [] while len(tdata) == 0: pixel = next(ipix) tdata = maker.read(healpixels=pixel, nside=args.nside) # Add SN generation options. if args.addsnia or args.addsniip: tdata['SNE_FLUXRATIORANGE'] = (args.snrmin, args.snrmax) tdata['SNE_FILTER'] = 'decam2014-r' # Generate nspec spectral templates and write them to "truth" files. wave = None flux, targ, truth, obj = [], [], [], [] # Generate templates until we have enough to pass brightness cuts. ntosim = np.min((args.nspec, len(tdata['RA']))) ngood = 0 while ngood < args.nspec: idx = rng.choice(len(tdata['RA']), ntosim) tflux, twave, ttarg, ttruth, tobj = \ maker.make_spectra(tdata, indx=idx) # Apply color cuts. is_bright = isBGS_colors(gflux=ttruth['FLUX_G'], rflux=ttruth['FLUX_R'], zflux=ttruth['FLUX_Z'], w1flux=ttruth['FLUX_W1'], w2flux=ttruth['FLUX_W2'], targtype='bright') is_faint = isBGS_colors(gflux=ttruth['FLUX_G'], rflux=ttruth['FLUX_R'], zflux=ttruth['FLUX_Z'], w1flux=ttruth['FLUX_W1'], w2flux=ttruth['FLUX_W2'], targtype='faint') is_wise = isBGS_colors(gflux=ttruth['FLUX_G'], rflux=ttruth['FLUX_R'], zflux=ttruth['FLUX_Z'], w1flux=ttruth['FLUX_W1'], w2flux=ttruth['FLUX_W2'], targtype='wise') keep = np.logical_or(np.logical_or(is_bright, is_faint), is_wise) _ngood = np.count_nonzero(keep) if _ngood > 0: ngood += _ngood flux.append(tflux[keep, :]) targ.append(ttarg[keep]) truth.append(ttruth[keep]) obj.append(tobj[keep]) wave = maker.wave flux = np.vstack(flux)[:args.nspec, :] targ = vstack(targ)[:args.nspec] truth = vstack(truth)[:args.nspec] obj = vstack(obj)[:args.nspec] if args.addsnia or args.addsniip: # TARGETID in truth table is split in two; deal with it here. truth['TARGETID'] = truth['TARGETID_1'] # Set up and verify the TARGETID across all truth tables. n = len(truth) new_id = 10000000*pixel + 100000*j + np.arange(1, n+1) truth['TARGETID'][:] = new_id targ['TARGETID'][:] = new_id obj['TARGETID'][:] = new_id assert(len(truth) == args.nspec) assert(np.all(targ['TARGETID'] == truth['TARGETID'])) assert(len(truth) == len(np.unique(truth['TARGETID']))) assert(len(targ) == len(np.unique(targ['TARGETID']))) assert(len(obj) == len(np.unique(obj['TARGETID']))) truthfile = os.path.join(args.simdir, 'bgs_{}_{:03}_truth.fits'.format(args.simid, j)) write_templates(truthfile, flux, wave, targ, truth, obj) # Generate simulated spectra, given observing conditions. specfile = os.path.join(args.simdir, 'bgs_{}_{:03}_spectra.fits'.format(args.simid, j)) sim_spectra(wave, flux, 'bgs', specfile, obsconditions=obs, sourcetype='bgs', targetid=truth['TARGETID'], redshift=truth['TRUEZ'], seed=args.seed, expid=j)
bsd-3-clause
jrbitt/gamesresearch
tools/experimen1.py
1
4311
import numpy as np from scipy import stats import pandas as pd def loadSaveBase(loadfile,savefile): #Ler toda a base oficial #base = np.genfromtxt(loadfile,usecols=[0,1,2,3,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42],delimiter=",",skip_header=1, names= ['goid','code','year','platform','Strategy','Tactics','Action','Compilation','Adventure','Sports','Educational','Racing','Driving','Puzzle','Role-Playing(RPG)','DLC','Add-on','Simulation','SpecialEdition','Artgame','brightness','saturation','tamura_contrast','arousal','pleasure','dominance','hue_m','sat_m','val_m','black','blue','brown','green','gray','orange','pink','purple','red','white','yellow','entropy_r','entropy_g','entropy_b'],dtype= ['S100','S100','u4','S50','S10','S10','S10','S10','S10','S10','S10','S10','S10','S10','S10','S10','S10','S10','S10','S10','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4']) base = pd.read_csv(loadfile,usecols=[0,1,2,3,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42],delimiter="\t") #np.savetxt('exemplo.csv',base,delimiter='\t', fmt="%s %i %s %.5f %.5f") #np.savetxt('exemplo2.csv',base,delimiter='\t', fmt="%s %i %s %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f") #np.savetxt(savefile,base,delimiter='\t', fmt="%s %s %i %s %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f") base.to_csv(savefile,sep=';', index=False) #Adiciona a coluna do filename def addFilename(filename): arq = open(filename,'r') linhas = [] prim = True for l in arq: if prim: prim = False else: tks = l.split(';') tks[len(tks)-1] = tks[len(tks)-1][:-1] tks.append(tks[1]+".jpg") linhas.append(tks) arq.close() return linhas def addShapes(shapefile): arq2 = open(shapefile,'r') mapa = {} for l in arq2: tks = l.split('\t') tks[len(tks)-1] = tks[len(tks)-1][:-1] mapa[tks[0]] = tks[1:] arq2.close() return mapa def createBase(linhas, mapa,filename): arq = open(filename,'w') arq.write('goid\tcode\tyear\tplatform\tbrightness\tsaturation\ttamura_contrast\tarousal\tpleasure\tdominance\thue_m\tsat_m\tval_m\tblack\tblue\tbrown\tgreen\tgray\torange\tpink\tpurple\tred\twhite\tyellow\tentropy_r\tentropy_g\tentropy_b\tfilename\tcount\ttotal_area\tavg_size\tperc_area\tperimeter\tcirc\tsolidity\n') cont = 0 for l in linhas: if l[2] != '1900' and l[2] != '4444': #if int(l[2]) >= 2010 and int(l[2]) < 2020: #linhas originais com filename for t in l: arq.write(t+'\t') #novas colunas tk = mapa[l[len(l)-1]] for k in tk: arq.write(k+'\t') arq.write('\n') cont += 1 arq.close() print cont a = [] b = [] def pearson(ia,ib): arq = open('exemplo4_10.csv','r') a = [] b = [] cont = 0 for l in arq: if cont == 0: cont = 1 else: tks = l.split('\t') tks[len(tks)-1] = tks[len(tks)-1][:-1] a.append(float(tks[ia])) b.append(float(tks[ib])) arq.close() return a, b def calculatePearson(): for ai in range(4,36): for bi in range(4,36): if ai==27 or bi==27: continue else: a,b = pearson(ai,bi) res = stats.pearsonr(a,b) if res[0]>0.3 and ai != bi: print str(ai)+" "+str(bi) print res base = None linhas = None mapa = None loadSaveBase("base_oficial_final_v2.csv",'nova1_v2.csv') linhas = addFilename('nova1_v2.csv') mapa = addShapes('shapes40mil.csv') createBase(linhas,mapa,'nova3_v2.csv') #calculatePearson() ''' arq = open('exemplo4.csv','r') arq2 = open('Clusters_weka.txt','r') arq3 = open('exemplo4_clusters.csv','w') arq.readline() for l in arq: linha = arq2.readline() t = linha.split(',') nl = "" nl += l+'\t'+t[len(t)-1][:-1]+'\n' arq3.write(nl) arq.close() arq2.close() arq3.close() '''
apache-2.0
aitoralmeida/dl_activity_recognition
lstm/stateful-lstm.py
1
11443
# -*- coding: utf-8 -*- """ Created on Tue Oct 25 16:16:52 2016 @author: gazkune """ from collections import Counter import json import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pandas as pd from keras.models import Sequential from keras.models import model_from_json from keras.layers import Dense, Activation, Dropout from keras.layers import LSTM from keras.utils import np_utils from keras.preprocessing.sequence import pad_sequences import numpy as np # Directory of datasets DIR = '../sensor2vec/kasteren_dataset/' # Dataset with vectors but without the action timestamps DATASET_CSV = DIR + 'base_kasteren_reduced.csv' # List of unique activities in the dataset UNIQUE_ACTIVITIES = DIR + 'unique_activities.json' # List of unique actions in the dataset UNIQUE_ACTIONS = DIR + 'unique_actions.json' # Action vectors ACTION_VECTORS = DIR + 'actions_vectors.json' # Maximun number of actions in an activity ACTIVITY_MAX_LENGHT = 32 # Number of dimensions of an action vector ACTION_MAX_LENGHT = 50 def save_model(model): json_string = model.to_json() model_name = 'model_activity_lstm' open(model_name + '.json', 'w').write(json_string) model.save_weights(model_name + '.h5', overwrite=True) def load_model(model_file, weights_file): model = model_from_json(open(model_file).read()) model.load_weights(weights_file) def check_activity_distribution(y_np, unique_activities): activities = [] for activity_np in y_np: index = activity_np.tolist().index(1.0) activities.append(unique_activities[index]) print Counter(activities) """ Function to plot accurary and loss during training """ def plot_training_info(metrics, save, history): # summarize history for accuracy if 'accuracy' in metrics: plt.plot(history['acc']) plt.plot(history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') if save == True: plt.savefig('accuracy.png') plt.gcf().clear() else: plt.show() # summarize history for loss if 'loss' in metrics: plt.plot(history['loss']) plt.plot(history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') #plt.ylim(1e-3, 1e-2) plt.yscale("log") plt.legend(['train', 'test'], loc='upper left') if save == True: plt.savefig('loss.png') plt.gcf().clear() else: plt.show() """ Function to prepare the dataset with individual sequences (simple framing) """ def prepare_indiv_sequences(df, action_vectors, unique_activities, activity_to_int): print 'Preparing training set...' X = [] y = [] for index in df.index: action = df.loc[index, 'action'] X.append(np.array(action_vectors[action])) y.append(activity_to_int[df.loc[index, 'activity']]) y = np_utils.to_categorical(y) return X, y def prepare_variable_sequences(df, action_vectors, unique_activities, activity_to_int): # New data framing print 'Preparing training set...' X = [] y = [] current_activity = "" actions = [] aux_actions = [] for index in df.index: if current_activity == "": current_activity = df.loc[index, 'activity'] if current_activity != df.loc[index, 'activity']: y.append(activity_to_int[current_activity]) X.append(actions) #print current_activity, aux_actions current_activity = df.loc[index, 'activity'] # reset auxiliary variables actions = [] aux_actions = [] action = df.loc[index, 'action'] #print 'Current action: ', action actions.append(np.array(action_vectors[action])) aux_actions.append(action) # Append the last activity y.append(activity_to_int[current_activity]) X.append(actions) # Use sequence padding for training samples X = pad_sequences(X, maxlen=ACTIVITY_MAX_LENGHT, dtype='float32') # Tranform class labels to one-hot encoding y = np_utils.to_categorical(y) return X, y def main(argv): # Load dataset from csv file df_dataset = pd.read_csv(DATASET_CSV, parse_dates=[[0, 1]], header=None, index_col=0, sep=' ') df_dataset.columns = ['sensor', 'action', 'event', 'activity'] df_dataset.index.names = ["timestamp"] unique_activities = json.load(open(UNIQUE_ACTIVITIES, 'r')) total_activities = len(unique_activities) action_vectors = json.load(open(ACTION_VECTORS, 'r')) print 'Preparing training set...' # Generate the dict to transform activities to integer numbers activity_to_int = dict((c, i) for i, c in enumerate(unique_activities)) # Generate the dict to transform integer numbers to activities int_to_activity = dict((i, c) for i, c in enumerate(unique_activities)) # Test the simple problem framing #X, y = prepare_indiv_sequences(df_dataset, action_vectors, unique_activities, activity_to_int) #variable = False # Test the varaible sequence problem framing approach # Remember to change batch_input_size in consequence X, y = prepare_variable_sequences(df_dataset, action_vectors, unique_activities, activity_to_int) variable = True total_examples = len(X) test_per = 0.2 limit = int(test_per * total_examples) X_train = X[limit:] X_test = X[:limit] y_train = y[limit:] y_test = y[:limit] print 'Total examples:', total_examples print 'Train examples:', len(X_train), len(y_train) print 'Test examples:', len(X_test), len(y_test) sys.stdout.flush() X = np.array(X_train) y = np.array(y_train) print 'Activity distribution for training:' check_activity_distribution(y, unique_activities) X_test = np.array(X_test) y_test = np.array(y_test) print 'Activity distribution for testing:' check_activity_distribution(y_test, unique_activities) # Current shape of X and y print 'X:', X.shape print 'y:', y.shape # reshape X and X_test to be [samples, time steps, features] # In this test we will set timesteps to 1 even though we have padded sequences time_steps = 1 #X = X.reshape(X.shape[0], time_steps, ACTION_MAX_LENGHT) #X_test = X_test.reshape(X_test.shape[0], time_steps, ACTION_MAX_LENGHT) print 'Shape (X,y):' print X.shape print y.shape print 'Training set prepared' sys.stdout.flush() # Build the model print 'Building model...' sys.stdout.flush() batch_size = 1 model = Sequential() # Test with Stateful layers # I read that batch_input_size=(batch_size, None, features) can be used for variable length sequences model.add(LSTM(512, return_sequences=False, stateful=True, dropout_W=0.2, dropout_U=0.2, batch_input_shape=(batch_size, time_steps, X.shape[2]))) #model.add(LSTM(512, return_sequences=False, stateful=True, batch_input_shape=(batch_size, max_sequence_length, ACTION_MAX_LENGHT))) #model.add(Dropout(0.8)) #model.add(LSTM(512, return_sequences=False, dropout_W=0.2, dropout_U=0.2)) #model.add(Dropout(0.8)) model.add(Dense(total_activities, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy', 'mse', 'mae']) print 'Model built' print(model.summary()) sys.stdout.flush() print 'Training...' sys.stdout.flush() # Test manual training # we need a manual history dict with 'acc', 'val_acc', 'loss' and 'val_loss' keys manual_training = True history = {} history['acc'] = [] history['val_acc'] = [] history['loss'] = [] history['val_loss'] = [] """ for i in range(10): print 'epoch: ', i model.fit(X, y, nb_epoch=1, batch_size=batch_size, shuffle=False) hist = model.fit(X, y, nb_epoch=1, batch_size=batch_size, shuffle=False, validation_data=(X_test, y_test)) history['acc'].append(hist.history['acc']) history['val_acc'].append(hist.history['val_acc']) history['loss'].append(hist.history['loss']) history['val_loss'].append(hist.history['val_loss']) model.reset_states() print 'Saving model...' sys.stdout.flush() save_model(model) print 'Model saved' """ # Check data format visually print 'X train shape:', X.shape print X sample = np.expand_dims(np.expand_dims(X[0][0], axis=0), axis=0) print 'sample shape:', sample.shape print sample other = X[0][0] print 'other shape:', other.shape print other # This training process is to test variable length sequences representing an activity # for stateful LSTMs. We train and test batch per batch max_len = X.shape[1] print 'max length:', max_len epochs = 100 for epoch in range(epochs): print '***************' print 'Epoch', epoch, '/', epochs mean_tr_acc = [] mean_tr_loss = [] for i in range(len(X)): y_true = y[i] #print 'y_true:', np.array([y_true]), np.array([y_true]).shape for j in range(max_len): x = np.expand_dims(np.expand_dims(X[i][j], axis=0), axis=0) #tr_loss, tr_acc = model.train_on_batch(x, np.array([y_true])) hist = model.fit(x, np.array([y_true]), nb_epoch=1, batch_size=1, shuffle=False, verbose=0) mean_tr_acc.append(hist.history["acc"]) mean_tr_loss.append(hist.history["loss"]) model.reset_states() print('accuracy training = {}'.format(np.mean(mean_tr_acc))) print('loss training = {}'.format(np.mean(mean_tr_loss))) print('___________________________________') """ # Comment for now the testing step mean_te_acc = [] mean_te_loss = [] for i in range(len(X_test)): for j in range(max_len): te_loss, te_acc = model.test_on_batch(np.expand_dims(np.expand_dims(X_test[i][j], axis=0), axis=0), y_test[i]) mean_te_acc.append(te_acc) mean_te_loss.append(te_loss) model.reset_states() for j in range(max_len): y_pred = model.predict_on_batch(np.expand_dims(np.expand_dims(X_test[i][j], axis=0), axis=0)) model.reset_states() print('accuracy testing = {}'.format(np.mean(mean_te_acc))) print('loss testing = {}'.format(np.mean(mean_te_loss))) print('___________________________________') """ # summarize performance of the model testing the evaluate function #scores = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=0) #print("Model Accuracy: %.2f%%" % (scores[1]*100)) """ if manual_training == True: plot_training_info(['accuracy', 'loss'], True, history) else: plot_training_info(['accuracy', 'loss'], True, history.history) """ if __name__ == "__main__": main(sys.argv)
gpl-3.0
jameshensman/pymc3
pymc3/tests/test_plots.py
13
1721
import matplotlib matplotlib.use('Agg', warn=False) import numpy as np from .checks import close_to import pymc3.plots from pymc3.plots import * from pymc3 import Slice, Metropolis, find_hessian, sample def test_plots(): # Test single trace from pymc3.examples import arbitrary_stochastic as asmod with asmod.model as model: start = model.test_point h = find_hessian(start) step = Metropolis(model.vars, h) trace = sample(3000, step, start) traceplot(trace) forestplot(trace) autocorrplot(trace) def test_plots_multidimensional(): # Test single trace from .models import multidimensional_model start, model, _ = multidimensional_model() with model as model: h = np.diag(find_hessian(start)) step = Metropolis(model.vars, h) trace = sample(3000, step, start) traceplot(trace) #forestplot(trace) #autocorrplot(trace) def test_multichain_plots(): from pymc3.examples import disaster_model as dm with dm.model as model: # Run sampler step1 = Slice([dm.early_mean, dm.late_mean]) step2 = Metropolis([dm.switchpoint]) start = {'early_mean': 2., 'late_mean': 3., 'switchpoint': 50} ptrace = sample(1000, [step1, step2], start, njobs=2) forestplot(ptrace, vars=['early_mean', 'late_mean']) autocorrplot(ptrace, vars=['switchpoint']) def test_make_2d(): a = np.arange(4) close_to(pymc3.plots.make_2d(a), a[:,None], 0) n = 7 a = np.arange(n*4*5).reshape((n,4,5)) res = pymc3.plots.make_2d(a) assert res.shape == (n,20) close_to(a[:,0,0], res[:,0], 0) close_to(a[:,3,2], res[:,2*4+3], 0)
apache-2.0
gwaygenomics/pancancer
scripts/copy_burden_merge.py
1
1259
""" Gregory Way 2017 PanCancer Classifier scripts/copy_burden_merge.py Merge per sample classifier scores with segment based scores Usage: Run in command line with required command argument: python scripts/copy_burden_merge.py --classifier_folder classifier_folder is a string pointing to the location of the classifier data Output: .tsv file of classifier scores merged with segment based copy number scores """ import os import argparse import pandas as pd parser = argparse.ArgumentParser() parser.add_argument('-c', '--classifier_folder', help='string of the location of classifier data') args = parser.parse_args() # Load command arguments pred_fild = os.path.join(args.classifier_folder, 'classifier_decisions.tsv') burden_file = os.path.join('data', 'seg_based_scores.tsv') out_file = os.path.join(os.path.dirname(pred_fild), 'tables', 'copy_burden_predictions.tsv') # Load and process data copy_burden_df = pd.read_table(burden_file) classifier_df = pd.read_table(pred_fild, index_col=0) combined_df = classifier_df.merge(copy_burden_df, left_index=True, right_on='Sample') combined_df.index = combined_df['Sample'] combined_df.to_csv(out_file, sep='\t')
bsd-3-clause
waynenilsen/statsmodels
statsmodels/sandbox/nonparametric/tests/ex_gam_new.py
34
3845
# -*- coding: utf-8 -*- """Example for GAM with Poisson Model and PolynomialSmoother This example was written as a test case. The data generating process is chosen so the parameters are well identified and estimated. Created on Fri Nov 04 13:45:43 2011 Author: Josef Perktold """ from __future__ import print_function from statsmodels.compat.python import lrange, zip import time import numpy as np #import matplotlib.pyplot as plt np.seterr(all='raise') from scipy import stats from statsmodels.sandbox.gam import AdditiveModel from statsmodels.sandbox.gam import Model as GAM #? from statsmodels.genmod.families import family from statsmodels.genmod.generalized_linear_model import GLM np.random.seed(8765993) #seed is chosen for nice result, not randomly #other seeds are pretty off in the prediction or end in overflow #DGP: simple polynomial order = 3 sigma_noise = 0.1 nobs = 1000 #lb, ub = -0.75, 3#1.5#0.75 #2.5 lb, ub = -3.5, 3 x1 = np.linspace(lb, ub, nobs) x2 = np.sin(2*x1) x = np.column_stack((x1/x1.max()*1, 1.*x2)) exog = (x[:,:,None]**np.arange(order+1)[None, None, :]).reshape(nobs, -1) idx = lrange((order+1)*2) del idx[order+1] exog_reduced = exog[:,idx] #remove duplicate constant y_true = exog.sum(1) #/ 4. z = y_true #alias check d = x y = y_true + sigma_noise * np.random.randn(nobs) example = 3 if example == 2: print("binomial") f = family.Binomial() mu_true = f.link.inverse(z) #b = np.asarray([scipy.stats.bernoulli.rvs(p) for p in f.link.inverse(y)]) b = np.asarray([stats.bernoulli.rvs(p) for p in f.link.inverse(z)]) b.shape = y.shape m = GAM(b, d, family=f) toc = time.time() m.fit(b) tic = time.time() print(tic-toc) #for plotting yp = f.link.inverse(y) p = b if example == 3: print("Poisson") f = family.Poisson() #y = y/y.max() * 3 yp = f.link.inverse(z) #p = np.asarray([scipy.stats.poisson.rvs(p) for p in f.link.inverse(y)], float) p = np.asarray([stats.poisson.rvs(p) for p in f.link.inverse(z)], float) p.shape = y.shape m = GAM(p, d, family=f) toc = time.time() m.fit(p) tic = time.time() print(tic-toc) for ss in m.smoothers: print(ss.params) if example > 1: import matplotlib.pyplot as plt plt.figure() for i in np.array(m.history[2:15:3]): plt.plot(i.T) plt.figure() plt.plot(exog) #plt.plot(p, '.', lw=2) plt.plot(y_true, lw=2) y_pred = m.results.mu # + m.results.alpha #m.results.predict(d) plt.figure() plt.subplot(2,2,1) plt.plot(p, '.') plt.plot(yp, 'b-', label='true') plt.plot(y_pred, 'r-', label='GAM') plt.legend(loc='upper left') plt.title('gam.GAM Poisson') counter = 2 for ii, xx in zip(['z', 'x1', 'x2'], [z, x[:,0], x[:,1]]): sortidx = np.argsort(xx) #plt.figure() plt.subplot(2, 2, counter) plt.plot(xx[sortidx], p[sortidx], 'k.', alpha=0.5) plt.plot(xx[sortidx], yp[sortidx], 'b.', label='true') plt.plot(xx[sortidx], y_pred[sortidx], 'r.', label='GAM') plt.legend(loc='upper left') plt.title('gam.GAM Poisson ' + ii) counter += 1 res = GLM(p, exog_reduced, family=f).fit() #plot component, compared to true component x1 = x[:,0] x2 = x[:,1] f1 = exog[:,:order+1].sum(1) - 1 #take out constant f2 = exog[:,order+1:].sum(1) - 1 plt.figure() #Note: need to correct for constant which is indeterminatedly distributed #plt.plot(x1, m.smoothers[0](x1)-m.smoothers[0].params[0]+1, 'r') #better would be subtract f(0) m.smoothers[0](np.array([0])) plt.plot(x1, f1, linewidth=2) plt.plot(x1, m.smoothers[0](x1)-m.smoothers[0].params[0], 'r') plt.figure() plt.plot(x2, f2, linewidth=2) plt.plot(x2, m.smoothers[1](x2)-m.smoothers[1].params[0], 'r') plt.show()
bsd-3-clause
victorbergelin/scikit-learn
examples/svm/plot_separating_hyperplane.py
294
1273
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
louispotok/pandas
pandas/tests/series/test_rank.py
3
18837
# -*- coding: utf-8 -*- from pandas import compat, Timestamp import pytest from distutils.version import LooseVersion from numpy import nan import numpy as np from pandas import Series, date_range, NaT from pandas.api.types import CategoricalDtype from pandas.compat import product from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData from pandas._libs.tslib import iNaT from pandas._libs.algos import Infinity, NegInfinity from itertools import chain import pandas.util._test_decorators as td class TestSeriesRank(TestData): s = Series([1, 3, 4, 2, nan, 2, 1, 5, nan, 3]) results = { 'average': np.array([1.5, 5.5, 7.0, 3.5, nan, 3.5, 1.5, 8.0, nan, 5.5]), 'min': np.array([1, 5, 7, 3, nan, 3, 1, 8, nan, 5]), 'max': np.array([2, 6, 7, 4, nan, 4, 2, 8, nan, 6]), 'first': np.array([1, 5, 7, 3, nan, 4, 2, 8, nan, 6]), 'dense': np.array([1, 3, 4, 2, nan, 2, 1, 5, nan, 3]), } def test_rank(self): pytest.importorskip('scipy.stats.special') rankdata = pytest.importorskip('scipy.stats.rankdata') self.ts[::2] = np.nan self.ts[:10][::3] = 4. ranks = self.ts.rank() oranks = self.ts.astype('O').rank() assert_series_equal(ranks, oranks) mask = np.isnan(self.ts) filled = self.ts.fillna(np.inf) # rankdata returns a ndarray exp = Series(rankdata(filled), index=filled.index, name='ts') exp[mask] = np.nan tm.assert_series_equal(ranks, exp) iseries = Series(np.arange(5).repeat(2)) iranks = iseries.rank() exp = iseries.astype(float).rank() assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1.0 exp = iseries / 5.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.repeat(1, 100)) exp = Series(np.repeat(0.505, 100)) iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries[1] = np.nan exp = Series(np.repeat(50.0 / 99.0, 100)) exp[1] = np.nan iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1.0 iseries[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.repeat(np.nan, 100)) exp = iseries.copy() iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1 iseries[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) rng = date_range('1/1/1990', periods=5) iseries = Series(np.arange(5), rng) + 1 iseries.iloc[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20 + 1e-30, 1e-1]) exp = Series([2, 1, 3, 5, 4, 6.0]) iranks = iseries.rank() assert_series_equal(iranks, exp) # GH 5968 iseries = Series(['3 day', '1 day 10m', '-2 day', NaT], dtype='m8[ns]') exp = Series([3, 2, 1, np.nan]) iranks = iseries.rank() assert_series_equal(iranks, exp) values = np.array( [-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40 ], dtype='float64') random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(random_order + 1.0, dtype='float64') iranks = iseries.rank() assert_series_equal(iranks, exp) def test_rank_categorical(self): # GH issue #15420 rank incorrectly orders ordered categories # Test ascending/descending ranking for ordered categoricals exp = Series([1., 2., 3., 4., 5., 6.]) exp_desc = Series([6., 5., 4., 3., 2., 1.]) ordered = Series( ['first', 'second', 'third', 'fourth', 'fifth', 'sixth'] ).astype(CategoricalDtype(categories=['first', 'second', 'third', 'fourth', 'fifth', 'sixth'], ordered=True)) assert_series_equal(ordered.rank(), exp) assert_series_equal(ordered.rank(ascending=False), exp_desc) # Unordered categoricals should be ranked as objects unordered = Series(['first', 'second', 'third', 'fourth', 'fifth', 'sixth']).astype( CategoricalDtype(categories=['first', 'second', 'third', 'fourth', 'fifth', 'sixth'], ordered=False)) exp_unordered = Series([2., 4., 6., 3., 1., 5.]) res = unordered.rank() assert_series_equal(res, exp_unordered) unordered1 = Series( [1, 2, 3, 4, 5, 6], ).astype(CategoricalDtype([1, 2, 3, 4, 5, 6], False)) exp_unordered1 = Series([1., 2., 3., 4., 5., 6.]) res1 = unordered1.rank() assert_series_equal(res1, exp_unordered1) # Test na_option for rank data na_ser = Series( ['first', 'second', 'third', 'fourth', 'fifth', 'sixth', np.NaN] ).astype(CategoricalDtype(['first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh'], True)) exp_top = Series([2., 3., 4., 5., 6., 7., 1.]) exp_bot = Series([1., 2., 3., 4., 5., 6., 7.]) exp_keep = Series([1., 2., 3., 4., 5., 6., np.NaN]) assert_series_equal(na_ser.rank(na_option='top'), exp_top) assert_series_equal(na_ser.rank(na_option='bottom'), exp_bot) assert_series_equal(na_ser.rank(na_option='keep'), exp_keep) # Test na_option for rank data with ascending False exp_top = Series([7., 6., 5., 4., 3., 2., 1.]) exp_bot = Series([6., 5., 4., 3., 2., 1., 7.]) exp_keep = Series([6., 5., 4., 3., 2., 1., np.NaN]) assert_series_equal( na_ser.rank(na_option='top', ascending=False), exp_top ) assert_series_equal( na_ser.rank(na_option='bottom', ascending=False), exp_bot ) assert_series_equal( na_ser.rank(na_option='keep', ascending=False), exp_keep ) # Test with pct=True na_ser = Series(['first', 'second', 'third', 'fourth', np.NaN]).astype( CategoricalDtype(['first', 'second', 'third', 'fourth'], True)) exp_top = Series([0.4, 0.6, 0.8, 1., 0.2]) exp_bot = Series([0.2, 0.4, 0.6, 0.8, 1.]) exp_keep = Series([0.25, 0.5, 0.75, 1., np.NaN]) assert_series_equal(na_ser.rank(na_option='top', pct=True), exp_top) assert_series_equal(na_ser.rank(na_option='bottom', pct=True), exp_bot) assert_series_equal(na_ser.rank(na_option='keep', pct=True), exp_keep) def test_rank_signature(self): s = Series([0, 1]) s.rank(method='average') pytest.raises(ValueError, s.rank, 'average') @pytest.mark.parametrize('contents,dtype', [ ([-np.inf, -50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40, np.inf], 'float64'), ([-np.inf, -50, -1, -1e-20, -1e-25, -1e-45, 0, 1e-40, 1e-20, 1e-10, 2, 40, np.inf], 'float32'), ([np.iinfo(np.uint8).min, 1, 2, 100, np.iinfo(np.uint8).max], 'uint8'), pytest.param([np.iinfo(np.int64).min, -100, 0, 1, 9999, 100000, 1e10, np.iinfo(np.int64).max], 'int64', marks=pytest.mark.xfail( reason="iNaT is equivalent to minimum value of dtype" "int64 pending issue #16674")), ([NegInfinity(), '1', 'A', 'BA', 'Ba', 'C', Infinity()], 'object') ]) def test_rank_inf(self, contents, dtype): dtype_na_map = { 'float64': np.nan, 'float32': np.nan, 'int64': iNaT, 'object': None } # Insert nans at random positions if underlying dtype has missing # value. Then adjust the expected order by adding nans accordingly # This is for testing whether rank calculation is affected # when values are interwined with nan values. values = np.array(contents, dtype=dtype) exp_order = np.array(range(len(values)), dtype='float64') + 1.0 if dtype in dtype_na_map: na_value = dtype_na_map[dtype] nan_indices = np.random.choice(range(len(values)), 5) values = np.insert(values, nan_indices, na_value) exp_order = np.insert(exp_order, nan_indices, np.nan) # shuffle the testing array and expected results in the same way random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(exp_order[random_order], dtype='float64') iranks = iseries.rank() assert_series_equal(iranks, exp) def test_rank_tie_methods(self): s = self.s def _check(s, expected, method='average'): result = s.rank(method=method) tm.assert_series_equal(result, Series(expected)) dtypes = [None, object] disabled = set([(object, 'first')]) results = self.results for method, dtype in product(results, dtypes): if (dtype, method) in disabled: continue series = s if dtype is None else s.astype(dtype) _check(series, results[method], method=method) @td.skip_if_no_scipy @pytest.mark.parametrize('ascending', [True, False]) @pytest.mark.parametrize('method', ['average', 'min', 'max', 'first', 'dense']) @pytest.mark.parametrize('na_option', ['top', 'bottom', 'keep']) def test_rank_tie_methods_on_infs_nans(self, method, na_option, ascending): dtypes = [('object', None, Infinity(), NegInfinity()), ('float64', np.nan, np.inf, -np.inf)] chunk = 3 disabled = set([('object', 'first')]) def _check(s, method, na_option, ascending): exp_ranks = { 'average': ([2, 2, 2], [5, 5, 5], [8, 8, 8]), 'min': ([1, 1, 1], [4, 4, 4], [7, 7, 7]), 'max': ([3, 3, 3], [6, 6, 6], [9, 9, 9]), 'first': ([1, 2, 3], [4, 5, 6], [7, 8, 9]), 'dense': ([1, 1, 1], [2, 2, 2], [3, 3, 3]) } ranks = exp_ranks[method] if na_option == 'top': order = [ranks[1], ranks[0], ranks[2]] elif na_option == 'bottom': order = [ranks[0], ranks[2], ranks[1]] else: order = [ranks[0], [np.nan] * chunk, ranks[1]] expected = order if ascending else order[::-1] expected = list(chain.from_iterable(expected)) result = s.rank(method=method, na_option=na_option, ascending=ascending) tm.assert_series_equal(result, Series(expected, dtype='float64')) for dtype, na_value, pos_inf, neg_inf in dtypes: in_arr = [neg_inf] * chunk + [na_value] * chunk + [pos_inf] * chunk iseries = Series(in_arr, dtype=dtype) if (dtype, method) in disabled: continue _check(iseries, method, na_option, ascending) def test_rank_desc_mix_nans_infs(self): # GH 19538 # check descending ranking when mix nans and infs iseries = Series([1, np.nan, np.inf, -np.inf, 25]) result = iseries.rank(ascending=False) exp = Series([3, np.nan, 1, 4, 2], dtype='float64') tm.assert_series_equal(result, exp) def test_rank_methods_series(self): pytest.importorskip('scipy.stats.special') rankdata = pytest.importorskip('scipy.stats.rankdata') import scipy xs = np.random.randn(9) xs = np.concatenate([xs[i:] for i in range(0, 9, 2)]) # add duplicates np.random.shuffle(xs) index = [chr(ord('a') + i) for i in range(len(xs))] for vals in [xs, xs + 1e6, xs * 1e-6]: ts = Series(vals, index=index) for m in ['average', 'min', 'max', 'first', 'dense']: result = ts.rank(method=m) sprank = rankdata(vals, m if m != 'first' else 'ordinal') expected = Series(sprank, index=index) if LooseVersion(scipy.__version__) >= LooseVersion('0.17.0'): expected = expected.astype('float64') tm.assert_series_equal(result, expected) def test_rank_dense_method(self): dtypes = ['O', 'f8', 'i8'] in_out = [([1], [1]), ([2], [1]), ([0], [1]), ([2, 2], [1, 1]), ([1, 2, 3], [1, 2, 3]), ([4, 2, 1], [3, 2, 1],), ([1, 1, 5, 5, 3], [1, 1, 3, 3, 2]), ([-5, -4, -3, -2, -1], [1, 2, 3, 4, 5])] for ser, exp in in_out: for dtype in dtypes: s = Series(ser).astype(dtype) result = s.rank(method='dense') expected = Series(exp).astype(result.dtype) assert_series_equal(result, expected) def test_rank_descending(self): dtypes = ['O', 'f8', 'i8'] for dtype, method in product(dtypes, self.results): if 'i' in dtype: s = self.s.dropna() else: s = self.s.astype(dtype) res = s.rank(ascending=False) expected = (s.max() - s).rank() assert_series_equal(res, expected) if method == 'first' and dtype == 'O': continue expected = (s.max() - s).rank(method=method) res2 = s.rank(method=method, ascending=False) assert_series_equal(res2, expected) def test_rank_int(self): s = self.s.dropna().astype('i8') for method, res in compat.iteritems(self.results): result = s.rank(method=method) expected = Series(res).dropna() expected.index = result.index assert_series_equal(result, expected) def test_rank_object_bug(self): # GH 13445 # smoke tests Series([np.nan] * 32).astype(object).rank(ascending=True) Series([np.nan] * 32).astype(object).rank(ascending=False) def test_rank_modify_inplace(self): # GH 18521 # Check rank does not mutate series s = Series([Timestamp('2017-01-05 10:20:27.569000'), NaT]) expected = s.copy() s.rank() result = s assert_series_equal(result, expected) # GH15630, pct should be on 100% basis when method='dense' @pytest.mark.parametrize('dtype', ['O', 'f8', 'i8']) @pytest.mark.parametrize('ser, exp', [ ([1], [1.]), ([1, 2], [1. / 2, 2. / 2]), ([2, 2], [1., 1.]), ([1, 2, 3], [1. / 3, 2. / 3, 3. / 3]), ([1, 2, 2], [1. / 2, 2. / 2, 2. / 2]), ([4, 2, 1], [3. / 3, 2. / 3, 1. / 3],), ([1, 1, 5, 5, 3], [1. / 3, 1. / 3, 3. / 3, 3. / 3, 2. / 3]), ([1, 1, 3, 3, 5, 5], [1. / 3, 1. / 3, 2. / 3, 2. / 3, 3. / 3, 3. / 3]), ([-5, -4, -3, -2, -1], [1. / 5, 2. / 5, 3. / 5, 4. / 5, 5. / 5])]) def test_rank_dense_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method='dense', pct=True) expected = Series(exp).astype(result.dtype) assert_series_equal(result, expected) @pytest.mark.parametrize('dtype', ['O', 'f8', 'i8']) @pytest.mark.parametrize('ser, exp', [ ([1], [1.]), ([1, 2], [1. / 2, 2. / 2]), ([2, 2], [1. / 2, 1. / 2]), ([1, 2, 3], [1. / 3, 2. / 3, 3. / 3]), ([1, 2, 2], [1. / 3, 2. / 3, 2. / 3]), ([4, 2, 1], [3. / 3, 2. / 3, 1. / 3],), ([1, 1, 5, 5, 3], [1. / 5, 1. / 5, 4. / 5, 4. / 5, 3. / 5]), ([1, 1, 3, 3, 5, 5], [1. / 6, 1. / 6, 3. / 6, 3. / 6, 5. / 6, 5. / 6]), ([-5, -4, -3, -2, -1], [1. / 5, 2. / 5, 3. / 5, 4. / 5, 5. / 5])]) def test_rank_min_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method='min', pct=True) expected = Series(exp).astype(result.dtype) assert_series_equal(result, expected) @pytest.mark.parametrize('dtype', ['O', 'f8', 'i8']) @pytest.mark.parametrize('ser, exp', [ ([1], [1.]), ([1, 2], [1. / 2, 2. / 2]), ([2, 2], [1., 1.]), ([1, 2, 3], [1. / 3, 2. / 3, 3. / 3]), ([1, 2, 2], [1. / 3, 3. / 3, 3. / 3]), ([4, 2, 1], [3. / 3, 2. / 3, 1. / 3],), ([1, 1, 5, 5, 3], [2. / 5, 2. / 5, 5. / 5, 5. / 5, 3. / 5]), ([1, 1, 3, 3, 5, 5], [2. / 6, 2. / 6, 4. / 6, 4. / 6, 6. / 6, 6. / 6]), ([-5, -4, -3, -2, -1], [1. / 5, 2. / 5, 3. / 5, 4. / 5, 5. / 5])]) def test_rank_max_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method='max', pct=True) expected = Series(exp).astype(result.dtype) assert_series_equal(result, expected) @pytest.mark.parametrize('dtype', ['O', 'f8', 'i8']) @pytest.mark.parametrize('ser, exp', [ ([1], [1.]), ([1, 2], [1. / 2, 2. / 2]), ([2, 2], [1.5 / 2, 1.5 / 2]), ([1, 2, 3], [1. / 3, 2. / 3, 3. / 3]), ([1, 2, 2], [1. / 3, 2.5 / 3, 2.5 / 3]), ([4, 2, 1], [3. / 3, 2. / 3, 1. / 3],), ([1, 1, 5, 5, 3], [1.5 / 5, 1.5 / 5, 4.5 / 5, 4.5 / 5, 3. / 5]), ([1, 1, 3, 3, 5, 5], [1.5 / 6, 1.5 / 6, 3.5 / 6, 3.5 / 6, 5.5 / 6, 5.5 / 6]), ([-5, -4, -3, -2, -1], [1. / 5, 2. / 5, 3. / 5, 4. / 5, 5. / 5])]) def test_rank_average_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method='average', pct=True) expected = Series(exp).astype(result.dtype) assert_series_equal(result, expected) @pytest.mark.parametrize('dtype', ['f8', 'i8']) @pytest.mark.parametrize('ser, exp', [ ([1], [1.]), ([1, 2], [1. / 2, 2. / 2]), ([2, 2], [1. / 2, 2. / 2.]), ([1, 2, 3], [1. / 3, 2. / 3, 3. / 3]), ([1, 2, 2], [1. / 3, 2. / 3, 3. / 3]), ([4, 2, 1], [3. / 3, 2. / 3, 1. / 3],), ([1, 1, 5, 5, 3], [1. / 5, 2. / 5, 4. / 5, 5. / 5, 3. / 5]), ([1, 1, 3, 3, 5, 5], [1. / 6, 2. / 6, 3. / 6, 4. / 6, 5. / 6, 6. / 6]), ([-5, -4, -3, -2, -1], [1. / 5, 2. / 5, 3. / 5, 4. / 5, 5. / 5])]) def test_rank_first_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method='first', pct=True) expected = Series(exp).astype(result.dtype) assert_series_equal(result, expected)
bsd-3-clause
peterfpeterson/mantid
scripts/HFIR_4Circle_Reduction/mplgraphicsview3d.py
3
10025
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + #pylint: disable=R0901,R0902,R0904 import numpy as np import os from qtpy.QtWidgets import QSizePolicy from mantidqt.MPLwidgets import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from mpl_toolkits.mplot3d import Axes3D class MplPlot3dCanvas(FigureCanvas): """ Matplotlib 3D canvas class """ def __init__(self, parent=None): """ Initialization :return: """ # self._myParentWindow = parent # Initialize the figure self._myFigure = Figure() # Init canvas FigureCanvas.__init__(self, self._myFigure) FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) # Axes self._myAxes = Axes3D(self._myFigure) # Canvas figure must be created for mouse rotation self.format_coord_org = self._myAxes.format_coord self._myAxes.format_coord = self.report_pixel # color self._colorMap = [0.5, 0.5, 0.5] # Others self._dataKey = 0 self._dataDict = dict() # List of plots on canvas NOW self._currPlotList = list() self._currSurfaceList = list() # [{"xx":,"yy:","val:"}] return def clear_3d_plots(self): """ Clear all the figures from canvas :return: """ for plt in self._currPlotList: # del plt self._myAxes.collections.remove(plt) self._currPlotList = [] return def get_data(self, data_key): """ Get data by data key :param data_key: :return: """ assert data_key in self._dataDict, 'Data key %s does not exist in %s.' % (str(data_key), str(self._dataDict.keys())) return self._dataDict[data_key] def import_3d_data(self, points, intensities): """ :param points: :param intensities: :return: """ # check assert isinstance(points, np.ndarray) and points.shape[1] == 3, 'Shape is %s.' % str(points.shape) assert isinstance(intensities, np.ndarray) and len(points) == len(intensities) # set self._dataDict[self._dataKey] = (points, intensities) # update r_value = self._dataKey self._dataKey += 1 return r_value def import_data_from_file(self, file_name): """ File will have more than 4 columns, as X, Y, Z, Intensity, ... :param file_name: :return: """ # check assert isinstance(file_name, str) and os.path.exists(file_name) # parse data_file = open(file_name, 'r') raw_lines = data_file.readlines() data_file.close() # construct ND data array xyz_points = np.zeros((len(raw_lines), 3)) intensities = np.zeros((len(raw_lines), )) # parse for i in range(len(raw_lines)): line = raw_lines[i].strip() # skip empty line if len(line) == 0: continue # set value terms = line.split(',') for j in range(3): xyz_points[i][j] = float(terms[j]) intensities[i] = float(terms[3]) # END-FOR # Add to data structure for managing self._dataDict[self._dataKey] = (xyz_points, intensities) return_value = self._dataKey self._dataKey += 1 return return_value def plot_scatter(self, points, color_list): """ Plot points with colors in scatter mode :param points: :param color_list: :return: """ # check: [TO DO] need MORE! assert isinstance(points, np.ndarray) assert len(points) == len(color_list) assert points.shape[1] == 3, '3D data %s.' % str(points.shape) # # plot scatters plt = self._myAxes.scatter(points[:, 0], points[:, 1], points[:, 2], zdir='z', c=color_list) self._currPlotList.append(plt) self.draw() return def plot_scatter_auto(self, data_key, base_color=None): """ Plot data in scatter plot in an automatic mode :param data_key: key to locate the data stored to this class :param base_color: None or a list of 3 elements from 0 to 1 for RGB :return: """ # Check assert isinstance(data_key, int) and data_key >= 0 assert base_color is None or len(base_color) == 3 # get data and check points = self._dataDict[data_key][0] intensities = self._dataDict[data_key][1] assert isinstance(points, np.ndarray) assert isinstance(points.shape, tuple) assert points.shape[1] == 3, '3D data %s.' % str(points.shape) if len(points) > 1: # set x, y and z limit x_min = min(points[:, 0]) x_max = max(points[:, 0]) d_x = x_max - x_min # print(x_min, x_max) y_min = min(points[:, 1]) y_max = max(points[:, 1]) d_y = y_max - y_min # print(y_min, y_max) z_min = min(points[:, 2]) z_max = max(points[:, 2]) d_z = z_max - z_min print(z_min, z_max) # use default setup self._myAxes.set_xlim(x_min-d_x, x_max+d_x) self._myAxes.set_ylim(y_min-d_y, y_max+d_y) self._myAxes.set_zlim(z_min-d_z, z_max+d_z) # END-IF # color map for intensity color_list = list() if base_color is None: color_r = self._colorMap[0] color_g = self._colorMap[1] else: color_r = base_color[0] color_g = base_color[1] if len(intensities) > 1: min_intensity = min(intensities) max_intensity = max(intensities) diff = max_intensity - min_intensity b_list = intensities - min_intensity b_list = b_list/diff num_points = len(points[:, 2]) for index in range(num_points): color_tup = (color_r, color_g, b_list[index]) color_list.append(color_tup) else: color_list.append((color_r, color_g, 0.5)) # plot scatters self._myAxes.scatter(points[:, 0], points[:, 1], points[:, 2], zdir='z', c=color_list) self.draw() def plot_surface(self): """ Plot surface :return: """ print('Number of surf = ', len(self._currSurfaceList)) for surf in self._currSurfaceList: plt = self._myAxes.plot_surface(surf["xx"], surf["yy"], surf["val"], rstride=5, cstride=5, # color map??? cmap=cm.jet, linewidth=1, antialiased=True) self._currPlotList.append(plt) # END-FOR return def report_pixel(self, x_d, y_d): report = self.format_coord_org(x_d, y_d) report = report.replace(",", " ") return report def set_axes_labels(self, x_label, y_label, z_label): """ :return: """ if x_label is not None: self._myAxes.set_xlabel(x_label) if y_label is not None: self._myAxes.set_ylabel(y_label) if z_label is not None: self._myAxes.set_zlabel(z_label) return def set_color_map(self, color_r, color_g, color_b): """ Set the base line of color map :param color_r: :param color_g: :param color_b: :return: """ # Set color map assert isinstance(color_r, float), 0 <= color_r < 1. assert isinstance(color_g, float), 0 <= color_g < 1. assert isinstance(color_b, float), 0 <= color_b < 1. self._colorMap = [color_r, color_g, color_b] def set_title(self, title, font_size): """ Set super title :param title: :return: """ self._myFigure.suptitle(title, fontsize=font_size) return def set_xyz_limits(self, points, limits=None): """ Set XYZ axes limits :param points: :param limits: if None, then use default; otherwise, 3-tuple of 2-tuple :return: """ # check assert isinstance(points, np.ndarray) # get limit if limits is None: limits = get_auto_xyz_limit(points) # set limit to axes self._myAxes.set_xlim(limits[0][0], limits[0][1]) self._myAxes.set_ylim(limits[1][0], limits[1][1]) self._myAxes.set_zlim(limits[2][0], limits[2][1]) return def get_auto_xyz_limit(points): """ Get default limit on X, Y, Z Requirements: number of data points must be larger than 0. :param points: :return: 3-tuple of 2-tuple as (min, max) for X, Y and Z respectively """ # check assert isinstance(points, np.ndarray) dim = points.shape[1] assert dim == 3 # set x, y and z limit x_min = min(points[:, 0]) x_max = max(points[:, 0]) d_x = x_max - x_min # print(x_min, x_max) y_min = min(points[:, 1]) y_max = max(points[:, 1]) d_y = y_max - y_min # print(y_min, y_max) z_min = min(points[:, 2]) z_max = max(points[:, 2]) d_z = z_max - z_min print(z_min, z_max) # use default setup x_lim = (x_min-d_x, x_max+d_x) y_lim = (y_min-d_y, y_max+d_y) z_lim = (z_min-d_z, z_max+d_z) return x_lim, y_lim, z_lim
gpl-3.0
femtotrader/pyfolio
pyfolio/capacity.py
1
9548
from __future__ import division import pandas as pd import numpy as np from . import pos import empyrical def daily_txns_with_bar_data(transactions, market_data): """ Sums the absolute value of shares traded in each name on each day. Adds columns containing the closing price and total daily volume for each day-ticker combination. Parameters ---------- transactions : pd.DataFrame Prices and amounts of executed trades. One row per trade. - See full explanation in tears.create_full_tear_sheet market_data : pd.Panel Contains "volume" and "price" DataFrames for the tickers in the passed positions DataFrames Returns ------- txn_daily : pd.DataFrame Daily totals for transacted shares in each traded name. price and volume columns for close price and daily volume for the corresponding ticker, respectively. """ transactions.index.name = 'date' txn_daily = pd.DataFrame(transactions.assign( amount=abs(transactions.amount)).groupby( ['symbol', pd.TimeGrouper('D')]).sum()['amount']) txn_daily['price'] = market_data['price'].unstack() txn_daily['volume'] = market_data['volume'].unstack() txn_daily = txn_daily.reset_index().set_index('date') return txn_daily def days_to_liquidate_positions(positions, market_data, max_bar_consumption=0.2, capital_base=1e6, mean_volume_window=5): """ Compute the number of days that would have been required to fully liquidate each position on each day based on the trailing n day mean daily bar volume and a limit on the proportion of a daily bar that we are allowed to consume. This analysis uses portfolio allocations and a provided capital base rather than the dollar values in the positions DataFrame to remove the effect of compounding on days to liquidate. In other words, this function assumes that the net liquidation portfolio value will always remain constant at capital_base. Parameters ---------- positions: pd.DataFrame Contains daily position values including cash - See full explanation in tears.create_full_tear_sheet market_data : pd.Panel Panel with items axis of 'price' and 'volume' DataFrames. The major and minor axes should match those of the the passed positions DataFrame (same dates and symbols). max_bar_consumption : float Max proportion of a daily bar that can be consumed in the process of liquidating a position. capital_base : integer Capital base multiplied by portfolio allocation to compute position value that needs liquidating. mean_volume_window : float Trailing window to use in mean volume calculation. Returns ------- days_to_liquidate : pd.DataFrame Number of days required to fully liquidate daily positions. Datetime index, symbols as columns. """ DV = market_data['volume'] * market_data['price'] roll_mean_dv = DV.rolling(window=mean_volume_window, center=False).mean().shift() roll_mean_dv = roll_mean_dv.replace(0, np.nan) positions_alloc = pos.get_percent_alloc(positions) positions_alloc = positions_alloc.drop('cash', axis=1) days_to_liquidate = (positions_alloc * capital_base) / \ (max_bar_consumption * roll_mean_dv) return days_to_liquidate.iloc[mean_volume_window:] def get_max_days_to_liquidate_by_ticker(positions, market_data, max_bar_consumption=0.2, capital_base=1e6, mean_volume_window=5, last_n_days=None): """ Finds the longest estimated liquidation time for each traded name over the course of backtest (or last n days of the backtest). Parameters ---------- positions: pd.DataFrame Contains daily position values including cash - See full explanation in tears.create_full_tear_sheet market_data : pd.Panel Panel with items axis of 'price' and 'volume' DataFrames. The major and minor axes should match those of the the passed positions DataFrame (same dates and symbols). max_bar_consumption : float Max proportion of a daily bar that can be consumed in the process of liquidating a position. capital_base : integer Capital base multiplied by portfolio allocation to compute position value that needs liquidating. mean_volume_window : float Trailing window to use in mean volume calculation. last_n_days : integer Compute for only the last n days of the passed backtest data. Returns ------- days_to_liquidate : pd.DataFrame Max Number of days required to fully liquidate each traded name. Index of symbols. Columns for days_to_liquidate and the corresponding date and position_alloc on that day. """ dtlp = days_to_liquidate_positions(positions, market_data, max_bar_consumption=max_bar_consumption, capital_base=capital_base, mean_volume_window=mean_volume_window) if last_n_days is not None: dtlp = dtlp.loc[dtlp.index.max() - pd.Timedelta(days=last_n_days):] pos_alloc = pos.get_percent_alloc(positions) pos_alloc = pos_alloc.drop('cash', axis=1) liq_desc = pd.DataFrame() liq_desc['days_to_liquidate'] = dtlp.unstack() liq_desc['pos_alloc_pct'] = pos_alloc.unstack() * 100 liq_desc.index.levels[0].name = 'symbol' liq_desc.index.levels[1].name = 'date' worst_liq = liq_desc.reset_index().sort_values( 'days_to_liquidate', ascending=False).groupby('symbol').first() return worst_liq def get_low_liquidity_transactions(transactions, market_data, last_n_days=None): """ For each traded name, find the daily transaction total that consumed the greatest proportion of available daily bar volume. Parameters ---------- transactions : pd.DataFrame Prices and amounts of executed trades. One row per trade. - See full explanation in create_full_tear_sheet. market_data : pd.Panel Panel with items axis of 'price' and 'volume' DataFrames. The major and minor axes should match those of the the passed positions DataFrame (same dates and symbols). last_n_days : integer Compute for only the last n days of the passed backtest data. """ txn_daily_w_bar = daily_txns_with_bar_data(transactions, market_data) txn_daily_w_bar.index.name = 'date' txn_daily_w_bar = txn_daily_w_bar.reset_index() if last_n_days is not None: md = txn_daily_w_bar.date.max() - pd.Timedelta(days=last_n_days) txn_daily_w_bar = txn_daily_w_bar[txn_daily_w_bar.date > md] bar_consumption = txn_daily_w_bar.assign( max_pct_bar_consumed=( txn_daily_w_bar.amount/txn_daily_w_bar.volume)*100 ).sort_values('max_pct_bar_consumed', ascending=False) max_bar_consumption = bar_consumption.groupby('symbol').first() return max_bar_consumption[['date', 'max_pct_bar_consumed']] def apply_slippage_penalty(returns, txn_daily, simulate_starting_capital, backtest_starting_capital, impact=0.1): """ Applies quadratic volumeshare slippage model to daily returns based on the proportion of the observed historical daily bar dollar volume consumed by the strategy's trades. Scales the size of trades based on the ratio of the starting capital we wish to test to the starting capital of the passed backtest data. Parameters ---------- returns : pd.Series Time series of daily returns. txn_daily : pd.Series Daily transaciton totals, closing price, and daily volume for each traded name. See price_volume_daily_txns for more details. simulate_starting_capital : integer capital at which we want to test backtest_starting_capital: capital base at which backtest was origionally run. impact: See Zipline volumeshare slippage model impact : float Scales the size of the slippage penalty. Returns ------- adj_returns : pd.Series Slippage penalty adjusted daily returns. """ mult = simulate_starting_capital / backtest_starting_capital simulate_traded_shares = abs(mult * txn_daily.amount) simulate_traded_dollars = txn_daily.price * simulate_traded_shares simulate_pct_volume_used = simulate_traded_shares / txn_daily.volume penalties = simulate_pct_volume_used**2 \ * impact * simulate_traded_dollars daily_penalty = penalties.resample('D').sum() daily_penalty = daily_penalty.reindex(returns.index).fillna(0) # Since we are scaling the numerator of the penalties linearly # by capital base, it makes the most sense to scale the denominator # similarly. In other words, since we aren't applying compounding to # simulate_traded_shares, we shouldn't apply compounding to pv. portfolio_value = empyrical.cum_returns( returns, starting_value=backtest_starting_capital) * mult adj_returns = returns - (daily_penalty / portfolio_value) return adj_returns
apache-2.0
tudo-astroparticlephysics/pydisteval
disteval/visualization/comparison_plotter/functions/legend_entries.py
1
3779
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function import numpy as np from matplotlib import pyplot as plt import matplotlib.patches as mpatches class DataObject(object): def __init__(self, fc_t='w', ec_t='k', fc_c='w', ec_c='k', lw=1.): self.fc_t = fc_t self.ec_t = ec_t self.fc_c = fc_c self.ec_c = ec_c self.lw = lw class data_handler(object): def legend_artist(self, legend, orig_handle, fontsize, handlebox): scale = fontsize / 22 x0, y0 = handlebox.xdescent, handlebox.ydescent width, height = handlebox.width, handlebox.height radius = height / 2 * scale xt_0 = x0 + width - height / 2 xc_0 = x0 + height / 2 + radius yc_0 = y0 + height / 2 * (1 - scale) + radius patch_tri = mpatches.RegularPolygon( [xt_0, yc_0], 3, radius=radius * 1.5, orientation=np.pi, facecolor=orig_handle.fc_t, edgecolor=orig_handle.ec_t, transform=handlebox.get_transform(), linewidth=orig_handle.lw) patch_circ = mpatches.Circle([xc_0, yc_0], radius, facecolor=orig_handle.fc_c, edgecolor=orig_handle.ec_c, transform=handlebox.get_transform(), linewidth=orig_handle.lw) handlebox.add_artist(patch_tri) handlebox.add_artist(patch_circ) return patch_circ class UncertObject(object): def __init__(self, colors, linecolor): self.colors = colors self.linecolor = linecolor class uncert_handler(object): def legend_artist(self, legend, orig_handle, fontsize, handlebox): n_alphas = len(orig_handle.colors) x0, y0 = handlebox.xdescent, handlebox.ydescent x0 = x0 + 0.1 width, height = handlebox.width, handlebox.height y_mid = y0 + height / 2 step_size = (0.5 * height) / n_alphas for i, c in enumerate(orig_handle.colors[::-1]): j = n_alphas - i y0_i = y_mid - (j * step_size) height_i = j * 2 * step_size rec = mpatches.Rectangle([x0, y0_i], width, height_i, facecolor=c, edgecolor=c, transform=handlebox.get_transform(), zorder=10) handlebox.add_artist(rec) line = plt.Line2D([x0, x0 + width], [y_mid, y_mid], color=orig_handle.linecolor, linestyle='-', linewidth=1) handlebox.add_artist(line) return line class UncertObject_single(object): def __init__(self, color): self.color = color class uncert_handler_single(object): def legend_artist(self, legend, orig_handle, fontsize, handlebox): x0, y0 = handlebox.xdescent, handlebox.ydescent width, height = handlebox.width, handlebox.height x0 = x0 + 0.5 * width rec = mpatches.Rectangle([x0, y0], 0.5 * width, height, facecolor=orig_handle.color, edgecolor=orig_handle.color, transform=handlebox.get_transform(), zorder=10) handlebox.add_artist(rec) return rec handler_mapper = {DataObject: data_handler(), UncertObject: uncert_handler(), UncertObject_single: uncert_handler_single()}
mit
jguhlin/nn-replicon-identification
replicon_identification_cnn.py
1
17393
# Next step is to add filename processed to text summary import tensorflow as tf import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from scipy.sparse import csr_matrix from collections import Counter import collections import random from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import Bio from Bio import SeqIO import os import concurrent.futures import functools from functools import partial import math import threading import time import random from random import shuffle import pickle import ntpath import os.path import sys from tensorflow.python.summary import summary # k-mer size to use k = 9 # # NOTE!!!!!!!!!!!!!!!! # # We can reduce problem space if we get the reverse complement, and add a bit to indicate reversed or not... # Not really.... revcomp just doubles it back up again.... # # Also -- Build a recurrent network to predict sequences that come after a given kmer? # Look at word2vec, dna2vec, bag of words, skip-gram # # Problem space space = 5 ** k def partition(n, step, coll): for i in range(0, len(coll), step): if (i+n > len(coll)): break # raise StopIteration... yield coll[i:i+n] def get_kmers(k): return lambda sequence: partition(k, k, sequence) def convert_nt(c): return {"N": 0, "A": 1, "C": 2, "T": 3, "G": 4}.get(c, 0) def convert_nt_complement(c): return {"N": 0, "A": 3, "C": 4, "T": 1, "G": 2}.get(c, 0) def convert_kmer_to_int(kmer): return int(''.join(str(x) for x in (map(convert_nt, kmer))), 5) def convert_kmer_to_int_complement(kmer): return int(''.join(str(x) for x in reversed(list(map(convert_nt_complement, kmer)))), 5) def convert_base5(n): return {"0": "N", "1": "A", "2": "C", "3": "T", "4": "G"}.get(n,"N") def convert_to_kmer(kmer): return ''.join(map(convert_base5, str(np.base_repr(kmer, 5)))) # Not using sparse tensors anymore. tf.logging.set_verbosity(tf.logging.INFO) # Get all kmers, in order, with a sliding window of k (but sliding 1bp for each iteration up to k) # Also get RC for all.... def kmer_processor(seq,offset): return list(map(convert_kmer_to_int, get_kmers(k)(seq[offset:]))) def get_kmers_from_seq(sequence): kmers_from_seq = list() kp = functools.partial(kmer_processor, sequence) for i in map(kp, range(0,k)): kmers_from_seq.append(i) rev = sequence[::-1] kpr = functools.partial(kmer_processor, rev) for i in map(kpr, range(0,k)): kmers_from_seq.append(i) # for i in range(0,k): # kmers_from_seq.append(kmer_processor(sequence,i)) # for i in range(0,k): # kmers_from_seq.append(kmer_processor(rev, i)) return kmers_from_seq data = list() def load_fasta(filename): # tf.summary.text("File", tf.as_string(filename)) data = dict() file_base_name = ntpath.basename(filename) picklefilename = file_base_name + ".picklepickle" if os.path.isfile(picklefilename): print("Loading from pickle: " + filename) data = pickle.load(open(picklefilename, "rb")) else: print("File not found, generating new sequence: " + picklefilename) for seq_record in SeqIO.parse(filename, "fasta"): data.update({seq_record.id: get_kmers_from_seq(seq_record.seq.upper())}) pickle.dump(data, open(picklefilename, "wb")) sys.stdout.flush() return(data) def get_kmers_from_file(filename): kmer_list = list() for seq_record in SeqIO.parse(filename, "fasta"): kmer_list.extend(get_kmers_from_seq(seq_record.seq.upper())) return set([item for sublist in kmer_list for item in sublist]) all_kmers = set() # Very slow, should make this part concurrent... def find_all_kmers(directory): kmer_master_list = list() files = [directory + "/" + f for f in os.listdir(directory)] with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: for i in executor.map(get_kmers_from_file, files): kmer_master_list.extend(list(i)) kmer_master_list = list(set(kmer_master_list)) print("Total unique kmers: " + str(len(set(kmer_master_list)))) return set(kmer_master_list) def get_categories(directory): data = list() files = os.listdir(directory) for filename in files: for seq_record in SeqIO.parse(directory + "/" + filename, "fasta"): data.append(seq_record.id) data = sorted(list(set(data))) return(data) def training_file_generator(directory): files = [directory + "/" + f for f in os.listdir(directory)] random.shuffle(files) def gen(): nonlocal files if (len(files) == 0): files = [directory + "/" + f for f in os.listdir(directory)] random.shuffle(files) return(files.pop()) return gen def gen_random_training_data(input_data, window_size): rname = random.choice(list(input_data.keys())) rdata = random.choice(input_data[rname]) idx = random.randrange(window_size + 1, len(rdata) - window_size - 1) tdata = list(); for i in range(idx - window_size - 1, idx + window_size): if (i < 0): continue if (i >= len(rdata)): break if type(rdata[idx]) == list: break; if type(rdata[i]) == list: break tdata.append(kmer_dict[rdata[i]]) return tdata, rname # The current state is, each training batch is from a single FASTA file (strain, usually) # This can be ok, as long as training batch is a large number # Need to speed up reading of FASTA files though, maybe pyfaidx or something? # Define the one-hot dictionary... replicons_list = get_categories("training-files/") oh = dict() a = 0 for i in replicons_list: oh[i] = tf.one_hot(a, len(replicons_list)) a += 1 oh = dict() a = 0 for i in replicons_list: oh[i] = a a += 1 oh = dict() oh['Main'] = [1.0, 0.0, 0.0] oh['pSymA'] = [0.0, 1.0, 0.0] oh['pSymB'] = [0.0, 0.0, 1.0] def generate_training_batch(data, batch_size, window_size): training_batch_data = list(); while len(training_batch_data) < batch_size: training_batch_data.append(gen_random_training_data(data, window_size)) return training_batch_data batch_size = 1024 embedding_size = 128 window_size = 7 replicons_list = get_categories("training-files/") filegen = training_file_generator("training-files/") repdict = dict() a = 0 for i in replicons_list: repdict[i] = a a += 1 def test_input_fn(data): tbatch = generate_training_batch(data, 1, window_size) dat = {'x': tf.convert_to_tensor([tf.convert_to_tensor(get_kmer_embeddings(tbatch[0][0]))])} lab = tf.convert_to_tensor([repdict[tbatch[0][1]]]) return dat, lab def train_input_fn_raw(data): tbatch = generate_training_batch(data, 1, window_size) dat = {'x': (get_kmer_embeddings(tbatch[0][0]))} lab = [repdict[tbatch[0][1]]] return dat, lab # Because this was run at work on a smaller sample of files.... # with open("all_kmers_subset.txt", "w") as f: # for s in all_kmers: # f.write(str(s) +"\n") sess = tf.Session() # Because this was run at work on a smaller sample of files.... all_kmers = list() # with open("all_kmers_subset.txt", "r") as f: # for line in f: # all_kmers.append(int(line.strip())) all_kmers = pickle.load(open("all_kmers.p", "rb")) all_kmers = set(all_kmers) len(all_kmers) # len(data) # all_kmers = set([item for sublist in data for item in sublist]) unused_kmers = set(range(0, space)) - all_kmers kmer_dict = dict() reverse_kmer_dict = dict(); a = 0 for i in all_kmers: kmer_dict[i] = a reverse_kmer_dict[a] = i a += 1 kmer_count = len(all_kmers) [len(all_kmers), len(unused_kmers), space] # This fn now generates all possible combinations of training data.... def gen_training_data(input_data, window_size): total_data = list() for k in input_data.keys(): for kdata in input_data[k]: for i in range(window_size + 1, len(kdata) - window_size): kentry = list() for x in range(i - window_size - 1, i + window_size): kentry.append(kmer_dict[kdata[x]]) total_data.append([kentry, k]) return total_data feature_columns = [tf.feature_column.numeric_column("x", shape=[15,128])] embeddings = np.load("final_embeddings.npy") def get_kmer_embeddings(kmers): a = list() # numpy.empty(128 * 15) for k in kmers: a.append(embeddings[k]) return a #return np.hstack(a) def gen_training_data_generator(input_data, window_size, repdict): for k in input_data.keys(): for kdata in input_data[k]: for i in range(window_size + 1, len(kdata) - window_size): kentry = list() for x in range(i - window_size - 1, i + window_size): kentry.append(kmer_dict[kdata[x]]) yield(get_kmer_embeddings(kentry), [repdict[k]]) # Not infinite def kmer_generator(directory, window_size): files = [directory + "/" + f for f in os.listdir(directory)] random.shuffle(files) replicons_list = get_categories("training-files/") repdict = dict() a = 0 for i in replicons_list: repdict[i] = a a += 1 for f in files: yield from gen_training_data_generator(load_fasta(f), window_size, repdict) # Plan to use tf.data.Dataset.from_generator # ds = tf.contrib.data.Dataset.list_files("training-files/").map(tf_load_fasta) def my_input_fn(): kmer_gen = functools.partial(kmer_generator, "training-files/", window_size) ds = tf.data.Dataset.from_generator(kmer_gen, (tf.float32, tf.int64), (tf.TensorShape([15,128]), tf.TensorShape(None))) # Numbers reduced to run on my desktop ds = ds.repeat(2) ds = ds.prefetch(400000) ds = ds.shuffle(buffer_size=200000) ds = ds.batch(5000) # ds = ds.repeat(1) # ds = ds.prefetch(1000) # ds = ds.shuffle(buffer_size=500) # ds = ds.batch(250) def add_labels(arr, lab): return({"x": arr}, lab) ds = ds.map(add_labels) iterator = ds.make_one_shot_iterator() batch_features, batch_labels = iterator.get_next() return batch_features, batch_labels #next_batch = my_input_fn() # with tf.Session() as sess: # first_batch = sess.run(next_batch) # print(first_batch) # nn = tf.estimator.DNNClassifier(feature_columns=feature_columns, # hidden_units = [256, 128, len(replicons_list) + 10], # activation_fn=tf.nn.tanh, # dropout=0.1, # model_dir="classifier", # n_classes=len(replicons_list), # optimizer="Momentum") # Have to know the names of the tensors to do this level of logging.... # Custom estimator would allow it.... # tensors_to_log = {"probabilities": "softmax_tensor"} # logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=100) # nn.train(input_fn = my_input_fn) # Trained on l1 and l2 as 0.001 and learning_rate 0.1 # Changing learning rate to 0.2 for additional run # dnn = tf.estimator.DNNClassifier(feature_columns=feature_columns, # hidden_units = [256, 45], # activation_fn=tf.nn.relu, # dropout=0.05, # model_dir="classifier.relu.dropout0.05.proximaladagrad.lrecoli", # n_classes=len(replicons_list), # optimizer=tf.train.ProximalAdagradOptimizer( # learning_rate=0.2, # l1_regularization_strength=0.001, # l2_regularization_strength=0.001)) #acc = dnn.evaluate(input_fn = my_input_fn, steps=1000) #print("Accuracy: " + acc["accuracy"] + "\n"); #print("Loss: %s" % acc["loss"]) #print("Root Mean Squared Error: %s" % acc["rmse"]) # dnn.train(input_fn = my_input_fn) # CNN experiment for training # Based off of kmer embeddings def _add_layer_summary(value, tag): summary.scalar('%s/fraction_of_zero_values' % tag, tf.nn.zero_fraction(value)) summary.histogram('%s/activation' % tag, value) # Based off of: https://www.tensorflow.org/tutorials/layers def cnn_model_fn(features, labels, mode): """Model fn for CNN""" # Input layer # So inputs are 1920, or 15 * 128, and "1" deep (which is a float) input_layer = tf.reshape(features["x"], [-1, 15, 128, 1]) # filters * kernelsize[0] * kernel_size[1] must be > input_layer_size # So 1920 <= 32 * 5 * 12 # 32 dimensions, 5 x 12 sliding window over entire dataset conv1 = tf.layers.conv2d( inputs=input_layer, filters=32, kernel_size=[5,12], padding="same", activation=tf.nn.relu) #conv1_img = tf.unstack(conv1, axis=3) #tf.summary.image("Visualize_conv1", conv1_img) # Our input to pool1 is 5, 128, 32 now.... pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2, padding="same") # So output is.... # -1 8 x 64 x 32 # Convolutional Layer #2 and Pooling Layer #2 conv2 = tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # conv2_img = tf.expand_dims(tf.unstack(conv2, axis=3), axis=3) # tf.summary.image("Visualize_conv2", conv2_img) # SO output here is 4 x 60 x 64 # So now should be -1, 8, 64, 64 pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) # pool2 reduces by half again # So -1, 4, 32, 64 pool2_flat = tf.reshape(pool2, [-1, 4 * 32 * 64]) # 1,024 neurons dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu) _add_layer_summary(dense, "Dense") # Gonna try this but dropout is very high (was 0.4, now 0.3) dropout = tf.layers.dropout( inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN) # Must have len(replicons_list) neurons logits = tf.layers.dense(inputs=dropout, units=len(replicons_list)) _add_layer_summary(logits, "Logits") predictions = { "classes": tf.argmax(input=logits, axis=1), "probabilities": tf.nn.softmax(logits, name="softmax_tensor") } if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) # Calculate Loss (for both TRAIN and EVAL modes) onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=len(replicons_list)) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) correct_prediction = tf.equal(tf.argmax(logits, 1), labels) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) #f.summary.text("LogitsArgMax", tf.as_string(tf.argmax(logits, 1))) #tf.summary.text("Labels", tf.as_string(labels)) #tf.summary.text("Prediction", tf.as_string(tf.argmax(labels, 1))) # tf.summary.text("Onehot", tf.as_string(onehot_labels)) # tf.summary.text("Predictions", tf.as_string(correct_prediction)) tf.summary.scalar('Accuracy', accuracy) # Configure the Training Op (for TRAIN mode) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) train_op = optimizer.minimize( loss=loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) # Add evaluation metrics (for EVAL mode) eval_metric_ops = { "accuracy": tf.metrics.accuracy( labels=labels, predictions=predictions["classes"])} return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops, summary_op=tf.summary.merge_all()) def main(unused_argv): classifier = tf.estimator.Estimator( model_fn=cnn_model_fn, model_dir="classifier_cnn_firsttry", config=tf.contrib.learn.RunConfig( save_checkpoints_steps=1500, save_checkpoints_secs=None, save_summary_steps=300)) # tensors_to_log = {"probabilities": "softmax_tensor"} # logging_hook = tf.train.LoggingTensorHook( # tensors=tensors_to_log, every_n_iter=50) classifier.train(input_fn=my_input_fn) # steps=10000 #hooks=[logging_hook]) eval_results = classifier.evaluate(input_fn=my_input_fn, steps=1000) print(eval_results) if __name__ == "__main__": tf.app.run()
epl-1.0
dgasmith/EEX_scratch
tests/test_amber_reference.py
1
1942
""" Tests to compare EEX energies to reference energies computed by amber """ import os import eex import numpy as np import pandas as pd import pytest import eex_find_files import glob import eex_build_dl # Build out file list _test_directories = ["alkanes", "alcohols", "cyclic"] _test_systems = [] for test_dir in _test_directories: print(test_dir) test_dir = eex_find_files.get_example_filename("amber", test_dir) systems = glob.glob(test_dir + "/*.prmtop") for s in systems: path, file_name = os.path.split(s) # Grab test dir and system name _test_systems.append((path, file_name)) # List current energy tests _energy_types = {"two-body" : "bond", "three-body": "angle", "four-body": "dihedral"} def test_references(amber_references): test_dir, system_name = amber_references molecule = str(system_name.split("/")[-1]).split(".")[0] data, dl = eex_build_dl.build_dl("amber", test_dir, molecule) dl_energies = dl.evaluate(utype='kcal * mol ** -1') reference_file = eex_find_files.get_example_filename("amber", test_dir, "energies.csv") reference_energies = pd.read_csv(reference_file, header=0) reference = reference_energies.loc[reference_energies['molecule'] == molecule] for k in _energy_types: k_reference = reference[_energy_types[k]].get_values()[0] # Test against reference values in CSV -- absolute toloerance of 0.001 is used since amber only # outputs energies to third decimal place success = dl_energies[k] == pytest.approx(k_reference, abs=0.001) if not success: raise ValueError("AMBER Test failed, energy type %s.\n" " Test description: %s" % (k, molecule)) # Loop over amber test directories @pytest.fixture(scope="module", params=_test_systems) def amber_references(request): test_dir, test_system = request.param return (test_dir, test_system)
bsd-3-clause
hrjn/scikit-learn
sklearn/linear_model/ransac.py
16
19158
# coding: utf-8 # Author: Johannes Schönberger # # License: BSD 3 clause import numpy as np import warnings from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone from ..utils import check_random_state, check_array, check_consistent_length from ..utils.random import sample_without_replacement from ..utils.validation import check_is_fitted from .base import LinearRegression from ..utils.validation import has_fit_parameter _EPSILON = np.spacing(1) def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float('inf') return abs(float(np.ceil(np.log(nom) / np.log(denom)))) class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin): """RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. A detailed description of the algorithm can be found in the documentation of the ``linear_model`` sub-package. Read more in the :ref:`User Guide <ransac_regression>`. Parameters ---------- base_estimator : object, optional Base estimator object which implements the following methods: * `fit(X, y)`: Fit model to given training data and target values. * `score(X, y)`: Returns the mean accuracy on the given test data, which is used for the stop criterion defined by `stop_score`. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. If `base_estimator` is None, then ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for target values of dtype float. Note that the current implementation only supports regression estimators. min_samples : int (>= 1) or float ([0, 1]), optional Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min_samples >= 1`, treated as a relative number `ceil(min_samples * X.shape[0]`) for `min_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `base_estimator`. By default a ``sklearn.linear_model.LinearRegression()`` estimator is assumed and `min_samples` is chosen as ``X.shape[1] + 1``. residual_threshold : float, optional Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. is_data_valid : callable, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. is_model_valid : callable, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is_data_valid`. `is_model_valid` should therefore only be used if the estimated model is needed for making the rejection decision. max_trials : int, optional Maximum number of iterations for random sample selection. max_skips : int, optional Maximum number of iterations that can be skipped due to finding zero inliers or invalid data defined by ``is_data_valid`` or invalid models defined by ``is_model_valid``. .. versionadded:: 0.19 stop_n_inliers : int, optional Stop iteration if at least this number of inliers are found. stop_score : float, optional Stop iteration if score is greater equal than this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):: N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples. residual_metric : callable, optional Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target values ``y.shape[1] > 1``. By default the sum of absolute differences is used:: lambda dy: np.sum(np.abs(dy), axis=1) NOTE: residual_metric is deprecated from 0.18 and will be removed in 0.20 Use ``loss`` instead. loss : string, callable, optional, default "absolute_loss" String inputs, "absolute_loss" and "squared_loss" are supported which find the absolute loss and squared loss per sample respectively. If ``loss`` is a callable, then it should be a function that takes two arrays as inputs, the true and predicted value and returns a 1-D array with the ``i``th value of the array corresponding to the loss on `X[i]`. If the loss on a sample is greater than the ``residual_threshold``, then this sample is classified as an outlier. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- estimator_ : object Best fitted model (copy of the `base_estimator` object). n_trials_ : int Number of random selection trials until one of the stop criteria is met. It is always ``<= max_trials``. inlier_mask_ : bool array of shape [n_samples] Boolean mask of inliers classified as ``True``. n_skips_no_inliers_ : int Number of iterations skipped due to finding zero inliers. .. versionadded:: 0.19 n_skips_invalid_data_ : int Number of iterations skipped due to invalid data defined by ``is_data_valid``. .. versionadded:: 0.19 n_skips_invalid_model_ : int Number of iterations skipped due to an invalid model defined by ``is_model_valid``. .. versionadded:: 0.19 References ---------- .. [1] https://en.wikipedia.org/wiki/RANSAC .. [2] http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf """ def __init__(self, base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, max_skips=np.inf, stop_n_inliers=np.inf, stop_score=np.inf, stop_probability=0.99, residual_metric=None, loss='absolute_loss', random_state=None): self.base_estimator = base_estimator self.min_samples = min_samples self.residual_threshold = residual_threshold self.is_data_valid = is_data_valid self.is_model_valid = is_model_valid self.max_trials = max_trials self.max_skips = max_skips self.stop_n_inliers = stop_n_inliers self.stop_score = stop_score self.stop_probability = stop_probability self.residual_metric = residual_metric self.random_state = random_state self.loss = loss def fit(self, X, y, sample_weight=None): """Fit estimator using RANSAC algorithm. Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] Training data. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. sample_weight : array-like, shape = [n_samples] Individual weights for each sample raises error if sample_weight is passed and base_estimator fit method does not support it. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples ``X.shape[0]``.") if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.residual_metric is not None: warnings.warn( "'residual_metric' was deprecated in version 0.18 and " "will be removed in version 0.20. Use 'loss' instead.", DeprecationWarning) if self.loss == "absolute_loss": if y.ndim == 1: loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred) else: loss_function = lambda \ y_true, y_pred: np.sum(np.abs(y_true - y_pred), axis=1) elif self.loss == "squared_loss": if y.ndim == 1: loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2 else: loss_function = lambda \ y_true, y_pred: np.sum((y_true - y_pred) ** 2, axis=1) elif callable(self.loss): loss_function = self.loss else: raise ValueError( "loss should be 'absolute_loss', 'squared_loss' or a callable." "Got %s. " % self.loss) random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass estimator_fit_has_sample_weight = has_fit_parameter(base_estimator, "sample_weight") estimator_name = type(base_estimator).__name__ if (sample_weight is not None and not estimator_fit_has_sample_weight): raise ValueError("%s does not support sample_weight. Samples" " weights are only used for the calibration" " itself." % estimator_name) if sample_weight is not None: sample_weight = np.asarray(sample_weight) n_inliers_best = 1 score_best = -np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None self.n_skips_no_inliers_ = 0 self.n_skips_invalid_data_ = 0 self.n_skips_invalid_model_ = 0 # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape for self.n_trials_ in range(1, self.max_trials + 1): if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_) > self.max_skips: break # choose random sample set subset_idxs = sample_without_replacement(n_samples, min_samples, random_state=random_state) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): self.n_skips_invalid_data_ += 1 continue # fit model for current random sample set if sample_weight is None: base_estimator.fit(X_subset, y_subset) else: base_estimator.fit(X_subset, y_subset, sample_weight=sample_weight[subset_idxs]) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): self.n_skips_invalid_model_ += 1 continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) # XXX: Deprecation: Remove this if block in 0.20 if self.residual_metric is not None: diff = y_pred - y if diff.ndim == 1: diff = diff.reshape(-1, 1) residuals_subset = self.residual_metric(diff) else: residuals_subset = loss_function(y, y_pred) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: self.n_skips_no_inliers_ += 1 continue # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset # break if sufficient number of inliers or score is reached if (n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score or self.n_trials_ >= _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)): break # if none of the iterations met the required criteria if inlier_mask_best is None: if ((self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_) > self.max_skips): raise ValueError( "RANSAC skipped more iterations than `max_skips` without" " finding a valid consensus set. Iterations were skipped" " because each randomly chosen sub-sample failed the" " passing criteria. See estimator attributes for" " diagnostics (n_skips*).") else: raise ValueError( "RANSAC could not find a valid consensus set. All" " `max_trials` iterations were skipped because each" " randomly chosen sub-sample failed the passing criteria." " See estimator attributes for diagnostics (n_skips*).") else: if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_) > self.max_skips: warnings.warn("RANSAC found a valid consensus set but exited" " early due to skipping more iterations than" " `max_skips`. See estimator attributes for" " diagnostics (n_skips*).", UserWarning) # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self def predict(self, X): """Predict using the estimated model. This is a wrapper for `estimator_.predict(X)`. Parameters ---------- X : numpy array of shape [n_samples, n_features] Returns ------- y : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, 'estimator_') return self.estimator_.predict(X) def score(self, X, y): """Returns the score of the prediction. This is a wrapper for `estimator_.score(X, y)`. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples, n_features] Training data. y : array, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- z : float Score of the prediction. """ check_is_fitted(self, 'estimator_') return self.estimator_.score(X, y)
bsd-3-clause
vivekmishra1991/scikit-learn
examples/cluster/plot_affinity_propagation.py
349
2304
""" ================================================= Demo of affinity propagation clustering algorithm ================================================= Reference: Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007 """ print(__doc__) from sklearn.cluster import AffinityPropagation from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5, random_state=0) ############################################################################## # Compute Affinity Propagation af = AffinityPropagation(preference=-50).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels, metric='sqeuclidean')) ############################################################################## # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.close('all') plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.plot(X[class_members, 0], X[class_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) for x in X[class_members]: plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
CodeMonkeyJan/hyperspy
hyperspy/drawing/utils.py
1
47617
# -*- coding: utf-8 -*- # Copyright 2007-2016 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import copy import itertools import textwrap from traits import trait_base from mpl_toolkits.axes_grid1 import make_axes_locatable import warnings import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import hyperspy as hs from distutils.version import LooseVersion import logging from hyperspy.defaults_parser import preferences _logger = logging.getLogger(__name__) def contrast_stretching(data, saturated_pixels): """Calculate bounds that leaves out a given percentage of the data. Parameters ---------- data: numpy array saturated_pixels: scalar The percentage of pixels that are left out of the bounds. For example, the low and high bounds of a value of 1 are the 0.5% and 99.5% percentiles. It must be in the [0, 100] range. Returns ------- vmin, vmax: scalar The low and high bounds Raises ------ ValueError if the value of `saturated_pixels` is out of the valid range. """ # Sanity check if not 0 <= saturated_pixels <= 100: raise ValueError( "saturated_pixels must be a scalar in the range[0, 100]") nans = np.isnan(data) if nans.any(): data = data[~nans] vmin = np.percentile(data, saturated_pixels / 2.) vmax = np.percentile(data, 100 - saturated_pixels / 2.) return vmin, vmax MPL_DIVERGING_COLORMAPS = [ "BrBG", "bwr", "coolwarm", "PiYG", "PRGn", "PuOr", "RdBu", "RdGy", "RdYIBu", "RdYIGn", "seismic", "Spectral", ] # Add reversed colormaps MPL_DIVERGING_COLORMAPS += [cmap + "_r" for cmap in MPL_DIVERGING_COLORMAPS] def centre_colormap_values(vmin, vmax): """Calculate vmin and vmax to set the colormap midpoint to zero. Parameters ---------- vmin, vmax : scalar The range of data to display. Returns ------- cvmin, cvmax : scalar The values to obtain a centre colormap. """ absmax = max(abs(vmin), abs(vmax)) return -absmax, absmax def create_figure(window_title=None, _on_figure_window_close=None, **kwargs): """Create a matplotlib figure. This function adds the possibility to execute another function when the figure is closed and to easily set the window title. Any keyword argument is passed to the plt.figure function Parameters ---------- window_title : string _on_figure_window_close : function Returns ------- fig : plt.figure """ fig = plt.figure(**kwargs) if window_title is not None: fig.canvas.set_window_title(window_title) if _on_figure_window_close is not None: on_figure_window_close(fig, _on_figure_window_close) return fig def on_figure_window_close(figure, function): """Connects a close figure signal to a given function. Parameters ---------- figure : mpl figure instance function : function """ def function_wrapper(evt): function() figure.canvas.mpl_connect('close_event', function_wrapper) def plot_RGB_map(im_list, normalization='single', dont_plot=False): """Plot 2 or 3 maps in RGB. Parameters ---------- im_list : list of Signal2D instances normalization : {'single', 'global'} dont_plot : bool Returns ------- array: RGB matrix """ # from widgets import cursors height, width = im_list[0].data.shape[:2] rgb = np.zeros((height, width, 3)) rgb[:, :, 0] = im_list[0].data.squeeze() rgb[:, :, 1] = im_list[1].data.squeeze() if len(im_list) == 3: rgb[:, :, 2] = im_list[2].data.squeeze() if normalization == 'single': for i in range(len(im_list)): rgb[:, :, i] /= rgb[:, :, i].max() elif normalization == 'global': rgb /= rgb.max() rgb = rgb.clip(0, rgb.max()) if not dont_plot: figure = plt.figure() ax = figure.add_subplot(111) ax.frameon = False ax.set_axis_off() ax.imshow(rgb, interpolation='nearest') # cursors.set_mpl_ax(ax) figure.canvas.draw_idle() else: return rgb def subplot_parameters(fig): """Returns a list of the subplot parameters of a mpl figure. Parameters ---------- fig : mpl figure Returns ------- tuple : (left, bottom, right, top, wspace, hspace) """ wspace = fig.subplotpars.wspace hspace = fig.subplotpars.hspace left = fig.subplotpars.left right = fig.subplotpars.right top = fig.subplotpars.top bottom = fig.subplotpars.bottom return left, bottom, right, top, wspace, hspace class ColorCycle: _color_cycle = [mpl.colors.colorConverter.to_rgba(color) for color in ('b', 'g', 'r', 'c', 'm', 'y', 'k')] def __init__(self): self.color_cycle = copy.copy(self._color_cycle) def __call__(self): if not self.color_cycle: self.color_cycle = copy.copy(self._color_cycle) return self.color_cycle.pop(0) def plot_signals(signal_list, sync=True, navigator="auto", navigator_list=None, **kwargs): """Plot several signals at the same time. Parameters ---------- signal_list : list of BaseSignal instances If sync is set to True, the signals must have the same navigation shape, but not necessarily the same signal shape. sync : True or False, default "True" If True: the signals will share navigation, all the signals must have the same navigation shape for this to work, but not necessarily the same signal shape. navigator : {"auto", None, "spectrum", "slider", BaseSignal}, default "auto" See signal.plot docstring for full description navigator_list : {List of navigator arguments, None}, default None Set different navigator options for the signals. Must use valid navigator arguments: "auto", None, "spectrum", "slider", or a hyperspy Signal. The list must have the same size as signal_list. If None, the argument specified in navigator will be used. **kwargs Any extra keyword arguments are passed to each signal `plot` method. Example ------- >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> hs.plot.plot_signals([s_cl, s_ll]) Specifying the navigator: >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> hs.plot.plot_signals([s_cl, s_ll], navigator="slider") Specifying the navigator for each signal: >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> s_edx = hs.load("edx.dm3") >>> s_adf = hs.load("adf.dm3") >>> hs.plot.plot_signals( [s_cl, s_ll, s_edx], navigator_list=["slider",None,s_adf]) """ import hyperspy.signal if navigator_list: if not (len(signal_list) == len(navigator_list)): raise ValueError( "signal_list and navigator_list must" " have the same size") if sync: axes_manager_list = [] for signal in signal_list: axes_manager_list.append(signal.axes_manager) if not navigator_list: navigator_list = [] if navigator is None: navigator_list.extend([None] * len(signal_list)) elif navigator is "slider": navigator_list.append("slider") navigator_list.extend([None] * (len(signal_list) - 1)) elif isinstance(navigator, hyperspy.signal.BaseSignal): navigator_list.append(navigator) navigator_list.extend([None] * (len(signal_list) - 1)) elif navigator is "spectrum": navigator_list.extend(["spectrum"] * len(signal_list)) elif navigator is "auto": navigator_list.extend(["auto"] * len(signal_list)) else: raise ValueError( "navigator must be one of \"spectrum\",\"auto\"," " \"slider\", None, a Signal instance") # Check to see if the spectra have the same navigational shapes temp_shape_first = axes_manager_list[0].navigation_shape for i, axes_manager in enumerate(axes_manager_list): temp_shape = axes_manager.navigation_shape if not (temp_shape_first == temp_shape): raise ValueError( "The spectra does not have the same navigation shape") axes_manager_list[i] = axes_manager.deepcopy() if i > 0: for axis0, axisn in zip(axes_manager_list[0].navigation_axes, axes_manager_list[i].navigation_axes): axes_manager_list[i]._axes[axisn.index_in_array] = axis0 del axes_manager for signal, navigator, axes_manager in zip(signal_list, navigator_list, axes_manager_list): signal.plot(axes_manager=axes_manager, navigator=navigator, **kwargs) # If sync is False else: if not navigator_list: navigator_list = [] navigator_list.extend([navigator] * len(signal_list)) for signal, navigator in zip(signal_list, navigator_list): signal.plot(navigator=navigator, **kwargs) def _make_heatmap_subplot(spectra): from hyperspy._signals.signal2d import Signal2D im = Signal2D(spectra.data, axes=spectra.axes_manager._get_axes_dicts()) im.metadata.General.title = spectra.metadata.General.title im.plot() return im._plot.signal_plot.ax def _make_overlap_plot(spectra, ax, color="blue", line_style='-'): if isinstance(color, str): color = [color] * len(spectra) if isinstance(line_style, str): line_style = [line_style] * len(spectra) for spectrum_index, (spectrum, color, line_style) in enumerate( zip(spectra, color, line_style)): x_axis = spectrum.axes_manager.signal_axes[0] ax.plot(x_axis.axis, spectrum.data, color=color, ls=line_style) _set_spectrum_xlabel(spectra if isinstance(spectra, hs.signals.BaseSignal) else spectra[-1], ax) ax.set_ylabel('Intensity') ax.autoscale(tight=True) def _make_cascade_subplot( spectra, ax, color="blue", line_style='-', padding=1): max_value = 0 for spectrum in spectra: spectrum_yrange = (np.nanmax(spectrum.data) - np.nanmin(spectrum.data)) if spectrum_yrange > max_value: max_value = spectrum_yrange if isinstance(color, str): color = [color] * len(spectra) if isinstance(line_style, str): line_style = [line_style] * len(spectra) for spectrum_index, (spectrum, color, line_style) in enumerate( zip(spectra, color, line_style)): x_axis = spectrum.axes_manager.signal_axes[0] data_to_plot = ((spectrum.data - spectrum.data.min()) / float(max_value) + spectrum_index * padding) ax.plot(x_axis.axis, data_to_plot, color=color, ls=line_style) _set_spectrum_xlabel(spectra if isinstance(spectra, hs.signals.BaseSignal) else spectra[-1], ax) ax.set_yticks([]) ax.autoscale(tight=True) def _plot_spectrum(spectrum, ax, color="blue", line_style='-'): x_axis = spectrum.axes_manager.signal_axes[0] ax.plot(x_axis.axis, spectrum.data, color=color, ls=line_style) def _set_spectrum_xlabel(spectrum, ax): x_axis = spectrum.axes_manager.signal_axes[0] ax.set_xlabel("%s (%s)" % (x_axis.name, x_axis.units)) def plot_images(images, cmap=None, no_nans=False, per_row=3, label='auto', labelwrap=30, suptitle=None, suptitle_fontsize=18, colorbar='multi', centre_colormap="auto", saturated_pixels=0, scalebar=None, scalebar_color='white', axes_decor='all', padding=None, tight_layout=False, aspect='auto', min_asp=0.1, namefrac_thresh=0.4, fig=None, vmin=None, vmax=None, *args, **kwargs): """Plot multiple images as sub-images in one figure. Parameters ---------- images : list `images` should be a list of Signals (Images) to plot If any signal is not an image, a ValueError will be raised multi-dimensional images will have each plane plotted as a separate image cmap : matplotlib colormap, optional The colormap used for the images, by default read from pyplot no_nans : bool, optional If True, set nans to zero for plotting. per_row : int, optional The number of plots in each row label : None, str, or list of str, optional Control the title labeling of the plotted images. If None, no titles will be shown. If 'auto' (default), function will try to determine suitable titles using Signal2D titles, falling back to the 'titles' option if no good short titles are detected. Works best if all images to be plotted have the same beginning to their titles. If 'titles', the title from each image's metadata.General.title will be used. If any other single str, images will be labeled in sequence using that str as a prefix. If a list of str, the list elements will be used to determine the labels (repeated, if necessary). labelwrap : int, optional integer specifying the number of characters that will be used on one line If the function returns an unexpected blank figure, lower this value to reduce overlap of the labels between each figure suptitle : str, optional Title to use at the top of the figure. If called with label='auto', this parameter will override the automatically determined title. suptitle_fontsize : int, optional Font size to use for super title at top of figure colorbar : {'multi', None, 'single'} Controls the type of colorbars that are plotted. If None, no colorbar is plotted. If 'multi' (default), individual colorbars are plotted for each (non-RGB) image If 'single', all (non-RGB) images are plotted on the same scale, and one colorbar is shown for all centre_colormap : {"auto", True, False} If True the centre of the color scheme is set to zero. This is specially useful when using diverging color schemes. If "auto" (default), diverging color schemes are automatically centred. saturated_pixels: scalar The percentage of pixels that are left out of the bounds. For example, the low and high bounds of a value of 1 are the 0.5% and 99.5% percentiles. It must be in the [0, 100] range. scalebar : {None, 'all', list of ints}, optional If None (or False), no scalebars will be added to the images. If 'all', scalebars will be added to all images. If list of ints, scalebars will be added to each image specified. scalebar_color : str, optional A valid MPL color string; will be used as the scalebar color axes_decor : {'all', 'ticks', 'off', None}, optional Controls how the axes are displayed on each image; default is 'all' If 'all', both ticks and axis labels will be shown If 'ticks', no axis labels will be shown, but ticks/labels will If 'off', all decorations and frame will be disabled If None, no axis decorations will be shown, but ticks/frame will padding : None or dict, optional This parameter controls the spacing between images. If None, default options will be used Otherwise, supply a dictionary with the spacing options as keywords and desired values as values Values should be supplied as used in pyplot.subplots_adjust(), and can be: 'left', 'bottom', 'right', 'top', 'wspace' (width), and 'hspace' (height) tight_layout : bool, optional If true, hyperspy will attempt to improve image placement in figure using matplotlib's tight_layout If false, repositioning images inside the figure will be left as an exercise for the user. aspect : str or numeric, optional If 'auto', aspect ratio is auto determined, subject to min_asp. If 'square', image will be forced onto square display. If 'equal', aspect ratio of 1 will be enforced. If float (or int/long), given value will be used. min_asp : float, optional Minimum aspect ratio to be used when plotting images namefrac_thresh : float, optional Threshold to use for auto-labeling. This parameter controls how much of the titles must be the same for the auto-shortening of labels to activate. Can vary from 0 to 1. Smaller values encourage shortening of titles by auto-labeling, while larger values will require more overlap in titles before activing the auto-label code. fig : mpl figure, optional If set, the images will be plotted to an existing MPL figure vmin, vmax : scalar or list of scalar, optional, default: None If list of scalar, the length should match the number of images to show. A list of scalar is not compatible with a single colorbar. See vmin, vmax of matplotlib.imshow() for more details. *args, **kwargs, optional Additional arguments passed to matplotlib.imshow() Returns ------- axes_list : list a list of subplot axes that hold the images See Also -------- plot_spectra : Plotting of multiple spectra plot_signals : Plotting of multiple signals plot_histograms : Compare signal histograms Notes ----- `interpolation` is a useful parameter to provide as a keyword argument to control how the space between pixels is interpolated. A value of ``'nearest'`` will cause no interpolation between pixels. `tight_layout` is known to be quite brittle, so an option is provided to disable it. Turn this option off if output is not as expected, or try adjusting `label`, `labelwrap`, or `per_row` """ from hyperspy.drawing.widgets import ScaleBar from hyperspy.misc import rgb_tools from hyperspy.signal import BaseSignal if isinstance(images, BaseSignal) and len(images) is 1: images.plot() ax = plt.gca() return ax elif not isinstance(images, (list, tuple, BaseSignal)): raise ValueError("images must be a list of image signals or " "multi-dimensional signal." " " + repr(type(images)) + " was given.") # Get default colormap from pyplot: if cmap is None: cmap = plt.get_cmap().name elif isinstance(cmap, mpl.colors.Colormap): cmap = cmap.name if centre_colormap == "auto": if cmap in MPL_DIVERGING_COLORMAPS: centre_colormap = True else: centre_colormap = False # If input is >= 1D signal (e.g. for multi-dimensional plotting), # copy it and put it in a list so labeling works out as (x,y) when plotting if isinstance(images, BaseSignal) and images.axes_manager.navigation_dimension > 0: images = [images._deepcopy_with_new_data(images.data)] n = 0 for i, sig in enumerate(images): if sig.axes_manager.signal_dimension != 2: raise ValueError("This method only plots signals that are images. " "The signal dimension must be equal to 2. " "The signal at position " + repr(i) + " was " + repr(sig) + ".") # increment n by the navigation size, or by 1 if the navigation size is # <= 0 n += (sig.axes_manager.navigation_size if sig.axes_manager.navigation_size > 0 else 1) if isinstance(vmin, list): if len(vmin) != n: _logger.warning('The provided vmin values are ignored because the ' 'length of the list does not match the number of ' 'images') vmin = [None] * n else: vmin = [vmin] * n if isinstance(vmax, list): if len(vmax) != n: _logger.warning('The provided vmax values are ignored because the ' 'length of the list does not match the number of ' 'images') vmax = [None] * n else: vmax = [vmax] * n # Sort out the labeling: div_num = 0 all_match = False shared_titles = False user_labels = False if label is None: pass elif label is 'auto': # Use some heuristics to try to get base string of similar titles label_list = [x.metadata.General.title for x in images] # Find the shortest common string between the image titles # and pull that out as the base title for the sequence of images # array in which to store arrays res = np.zeros((len(label_list), len(label_list[0]) + 1)) res[:, 0] = 1 # j iterates the strings for j in range(len(label_list)): # i iterates length of substring test for i in range(1, len(label_list[0]) + 1): # stores whether or not characters in title match res[j, i] = label_list[0][:i] in label_list[j] # sum up the results (1 is True, 0 is False) and create # a substring based on the minimum value (this will be # the "smallest common string" between all the titles if res.all(): basename = label_list[0] div_num = len(label_list[0]) all_match = True else: div_num = int(min(np.sum(res, 1))) basename = label_list[0][:div_num - 1] all_match = False # trim off any '(' or ' ' characters at end of basename if div_num > 1: while True: if basename[len(basename) - 1] == '(': basename = basename[:-1] elif basename[len(basename) - 1] == ' ': basename = basename[:-1] else: break # namefrac is ratio of length of basename to the image name # if it is high (e.g. over 0.5), we can assume that all images # share the same base if len(label_list[0]) > 0: namefrac = float(len(basename)) / len(label_list[0]) else: # If label_list[0] is empty, it means there was probably no # title set originally, so nothing to share namefrac = 0 if namefrac > namefrac_thresh: # there was a significant overlap of label beginnings shared_titles = True # only use new suptitle if one isn't specified already if suptitle is None: suptitle = basename else: # there was not much overlap, so default back to 'titles' mode shared_titles = False label = 'titles' div_num = 0 elif label is 'titles': # Set label_list to each image's pre-defined title label_list = [x.metadata.General.title for x in images] elif isinstance(label, str): # Set label_list to an indexed list, based off of label label_list = [label + " " + repr(num) for num in range(n)] elif isinstance(label, list) and all( isinstance(x, str) for x in label): label_list = label user_labels = True # If list of labels is longer than the number of images, just use the # first n elements if len(label_list) > n: del label_list[n:] if len(label_list) < n: label_list *= (n // len(label_list)) + 1 del label_list[n:] else: raise ValueError("Did not understand input of labels.") # Determine appropriate number of images per row rows = int(np.ceil(n / float(per_row))) if n < per_row: per_row = n # Set overall figure size and define figure (if not pre-existing) if fig is None: k = max(plt.rcParams['figure.figsize']) / max(per_row, rows) f = plt.figure(figsize=(tuple(k * i for i in (per_row, rows)))) else: f = fig # Initialize list to hold subplot axes axes_list = [] # Initialize list of rgb tags isrgb = [False] * len(images) # Check to see if there are any rgb images in list # and tag them using the isrgb list for i, img in enumerate(images): if rgb_tools.is_rgbx(img.data): isrgb[i] = True # Determine how many non-rgb Images there are non_rgb = list(itertools.compress(images, [not j for j in isrgb])) if len(non_rgb) is 0 and colorbar is not None: colorbar = None warnings.warn("Sorry, colorbar is not implemented for RGB images.") # Find global min and max values of all the non-rgb images for use with # 'single' scalebar if colorbar is 'single': g_vmin, g_vmax = contrast_stretching(np.concatenate( [i.data.flatten() for i in non_rgb]), saturated_pixels) if isinstance(vmin, list): _logger.warning('vmin have to be a scalar to be compatible with a ' 'single colorbar') else: g_vmin = vmin if vmin is not None else g_vmin if isinstance(vmax, list): _logger.warning('vmax have to be a scalar to be compatible with a ' 'single colorbar') else: g_vmax = vmax if vmax is not None else g_vmax if centre_colormap: g_vmin, g_vmax = centre_colormap_values(g_vmin, g_vmax) # Check if we need to add a scalebar for some of the images if isinstance(scalebar, list) and all(isinstance(x, int) for x in scalebar): scalelist = True else: scalelist = False idx = 0 ax_im_list = [0] * len(isrgb) # Loop through each image, adding subplot for each one for i, ims in enumerate(images): # Get handles for the signal axes and axes_manager axes_manager = ims.axes_manager if axes_manager.navigation_dimension > 0: ims = ims._deepcopy_with_new_data(ims.data) for j, im in enumerate(ims): idx += 1 ax = f.add_subplot(rows, per_row, idx) axes_list.append(ax) data = im.data # Enable RGB plotting if rgb_tools.is_rgbx(data): data = rgb_tools.rgbx2regular_array(data, plot_friendly=True) l_vmin, l_vmax = None, None else: data = im.data # Find min and max for contrast l_vmin, l_vmax = contrast_stretching(data, saturated_pixels) l_vmin = vmin[idx - 1] if vmin[idx - 1] is not None else l_vmin l_vmax = vmax[idx - 1] if vmax[idx - 1] is not None else l_vmax if centre_colormap: l_vmin, l_vmax = centre_colormap_values(l_vmin, l_vmax) # Remove NaNs (if requested) if no_nans: data = np.nan_to_num(data) # Get handles for the signal axes and axes_manager axes_manager = im.axes_manager axes = axes_manager.signal_axes # Set dimensions of images xaxis = axes[0] yaxis = axes[1] extent = ( xaxis.low_value, xaxis.high_value, yaxis.high_value, yaxis.low_value, ) if not isinstance(aspect, (int, float)) and aspect not in [ 'auto', 'square', 'equal']: print('Did not understand aspect ratio input. ' 'Using \'auto\' as default.') aspect = 'auto' if aspect is 'auto': if float(yaxis.size) / xaxis.size < min_asp: factor = min_asp * float(xaxis.size) / yaxis.size elif float(yaxis.size) / xaxis.size > min_asp ** -1: factor = min_asp ** -1 * float(xaxis.size) / yaxis.size else: factor = 1 asp = np.abs(factor * float(xaxis.scale) / yaxis.scale) elif aspect is 'square': asp = abs(extent[1] - extent[0]) / abs(extent[3] - extent[2]) elif aspect is 'equal': asp = 1 elif isinstance(aspect, (int, float)): asp = aspect if 'interpolation' not in kwargs.keys(): kwargs['interpolation'] = 'nearest' # Plot image data, using vmin and vmax to set bounds, # or allowing them to be set automatically if using individual # colorbars if colorbar is 'single' and not isrgb[i]: axes_im = ax.imshow(data, cmap=cmap, extent=extent, vmin=g_vmin, vmax=g_vmax, aspect=asp, *args, **kwargs) ax_im_list[i] = axes_im else: axes_im = ax.imshow(data, cmap=cmap, extent=extent, vmin=l_vmin, vmax=l_vmax, aspect=asp, *args, **kwargs) ax_im_list[i] = axes_im # If an axis trait is undefined, shut off : if isinstance(xaxis.units, trait_base._Undefined) or \ isinstance(yaxis.units, trait_base._Undefined) or \ isinstance(xaxis.name, trait_base._Undefined) or \ isinstance(yaxis.name, trait_base._Undefined): if axes_decor is 'all': warnings.warn( 'Axes labels were requested, but one ' 'or both of the ' 'axes units and/or name are undefined. ' 'Axes decorations have been set to ' '\'ticks\' instead.') axes_decor = 'ticks' # If all traits are defined, set labels as appropriate: else: ax.set_xlabel(axes[0].name + " axis (" + axes[0].units + ")") ax.set_ylabel(axes[1].name + " axis (" + axes[1].units + ")") if label: if all_match: title = '' elif shared_titles: title = label_list[i][div_num - 1:] else: if len(ims) == n: # This is true if we are plotting just 1 # multi-dimensional Signal2D title = label_list[idx - 1] elif user_labels: title = label_list[idx - 1] else: title = label_list[i] if ims.axes_manager.navigation_size > 1 and not user_labels: title += " %s" % str(ims.axes_manager.indices) ax.set_title(textwrap.fill(title, labelwrap)) # Set axes decorations based on user input set_axes_decor(ax, axes_decor) # If using independent colorbars, add them if colorbar is 'multi' and not isrgb[i]: div = make_axes_locatable(ax) cax = div.append_axes("right", size="5%", pad=0.05) plt.colorbar(axes_im, cax=cax) # Add scalebars as necessary if (scalelist and idx - 1 in scalebar) or scalebar is 'all': ax.scalebar = ScaleBar( ax=ax, units=axes[0].units, color=scalebar_color, ) # If using a single colorbar, add it, and do tight_layout, ensuring that # a colorbar is only added based off of non-rgb Images: if colorbar is 'single': foundim = None for i in range(len(isrgb)): if (not isrgb[i]) and foundim is None: foundim = i if foundim is not None: f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.9, 0.1, 0.03, 0.8]) f.colorbar(ax_im_list[foundim], cax=cbar_ax) if tight_layout: # tight_layout, leaving room for the colorbar plt.tight_layout(rect=[0, 0, 0.9, 1]) elif tight_layout: plt.tight_layout() elif tight_layout: plt.tight_layout() # Set top bounds for shared titles and add suptitle if suptitle: f.subplots_adjust(top=0.85) f.suptitle(suptitle, fontsize=suptitle_fontsize) # If we want to plot scalebars, loop through the list of axes and add them if scalebar is None or scalebar is False: # Do nothing if no scalebars are called for pass elif scalebar is 'all': # scalebars were taken care of in the plotting loop pass elif scalelist: # scalebars were taken care of in the plotting loop pass else: raise ValueError("Did not understand scalebar input. Must be None, " "\'all\', or list of ints.") # Adjust subplot spacing according to user's specification if padding is not None: plt.subplots_adjust(**padding) return axes_list def set_axes_decor(ax, axes_decor): if axes_decor is 'off': ax.axis('off') elif axes_decor is 'ticks': ax.set_xlabel('') ax.set_ylabel('') elif axes_decor is 'all': pass elif axes_decor is None: ax.set_xlabel('') ax.set_ylabel('') ax.set_xticklabels([]) ax.set_yticklabels([]) def plot_spectra( spectra, style='overlap', color=None, line_style=None, padding=1., legend=None, legend_picking=True, legend_loc='upper right', fig=None, ax=None, **kwargs): """Plot several spectra in the same figure. Extra keyword arguments are passed to `matplotlib.figure`. Parameters ---------- spectra : iterable object Ordered spectra list to plot. If `style` is "cascade" or "mosaic" the spectra can have different size and axes. style : {'overlap', 'cascade', 'mosaic', 'heatmap'} The style of the plot. color : matplotlib color or a list of them or `None` Sets the color of the lines of the plots (no action on 'heatmap'). If a list, if its length is less than the number of spectra to plot, the colors will be cycled. If `None`, use default matplotlib color cycle. line_style: matplotlib line style or a list of them or `None` Sets the line style of the plots (no action on 'heatmap'). The main line style are '-','--','steps','-.',':'. If a list, if its length is less than the number of spectra to plot, line_style will be cycled. If If `None`, use continuous lines, eg: ('-','--','steps','-.',':') padding : float, optional, default 0.1 Option for "cascade". 1 guarantees that there is not overlapping. However, in many cases a value between 0 and 1 can produce a tighter plot without overlapping. Negative values have the same effect but reverse the order of the spectra without reversing the order of the colors. legend: None or list of str or 'auto' If list of string, legend for "cascade" or title for "mosaic" is displayed. If 'auto', the title of each spectra (metadata.General.title) is used. legend_picking: bool If true, a spectrum can be toggle on and off by clicking on the legended line. legend_loc : str or int This parameter controls where the legend is placed on the figure; see the pyplot.legend docstring for valid values fig : matplotlib figure or None If None, a default figure will be created. Specifying fig will not work for the 'heatmap' style. ax : matplotlib ax (subplot) or None If None, a default ax will be created. Will not work for 'mosaic' or 'heatmap' style. **kwargs remaining keyword arguments are passed to matplotlib.figure() or matplotlib.subplots(). Has no effect on 'heatmap' style. Example ------- >>> s = hs.load("some_spectra") >>> hs.plot.plot_spectra(s, style='cascade', color='red', padding=0.5) To save the plot as a png-file >>> hs.plot.plot_spectra(s).figure.savefig("test.png") Returns ------- ax: matplotlib axes or list of matplotlib axes An array is returned when `style` is "mosaic". """ import hyperspy.signal def _reverse_legend(ax_, legend_loc_): """ Reverse the ordering of a matplotlib legend (to be more consistent with the default ordering of plots in the 'cascade' and 'overlap' styles Parameters ---------- ax_: matplotlib axes legend_loc_: str or int This parameter controls where the legend is placed on the figure; see the pyplot.legend docstring for valid values """ l = ax_.get_legend() labels = [lb.get_text() for lb in list(l.get_texts())] handles = l.legendHandles ax_.legend(handles[::-1], labels[::-1], loc=legend_loc_) # Before v1.3 default would read the value from prefereces. if style == "default": style = "overlap" if color is not None: if isinstance(color, str): color = itertools.cycle([color]) elif hasattr(color, "__iter__"): color = itertools.cycle(color) else: raise ValueError("Color must be None, a valid matplotlib color " "string or a list of valid matplotlib colors.") else: if LooseVersion(mpl.__version__) >= "1.5.3": color = itertools.cycle( plt.rcParams['axes.prop_cycle'].by_key()["color"]) else: color = itertools.cycle(plt.rcParams['axes.color_cycle']) if line_style is not None: if isinstance(line_style, str): line_style = itertools.cycle([line_style]) elif hasattr(line_style, "__iter__"): line_style = itertools.cycle(line_style) else: raise ValueError("line_style must be None, a valid matplotlib" " line_style string or a list of valid matplotlib" " line_style.") else: line_style = ['-'] * len(spectra) if legend is not None: if isinstance(legend, str): if legend == 'auto': legend = [spec.metadata.General.title for spec in spectra] else: raise ValueError("legend must be None, 'auto' or a list of" " string") elif hasattr(legend, "__iter__"): legend = itertools.cycle(legend) if style == 'overlap': if fig is None: fig = plt.figure(**kwargs) if ax is None: ax = fig.add_subplot(111) _make_overlap_plot(spectra, ax, color=color, line_style=line_style,) if legend is not None: plt.legend(legend, loc=legend_loc) _reverse_legend(ax, legend_loc) if legend_picking is True: animate_legend(figure=fig) elif style == 'cascade': if fig is None: fig = plt.figure(**kwargs) if ax is None: ax = fig.add_subplot(111) _make_cascade_subplot(spectra, ax, color=color, line_style=line_style, padding=padding) if legend is not None: plt.legend(legend, loc=legend_loc) _reverse_legend(ax, legend_loc) elif style == 'mosaic': default_fsize = plt.rcParams["figure.figsize"] figsize = (default_fsize[0], default_fsize[1] * len(spectra)) fig, subplots = plt.subplots( len(spectra), 1, figsize=figsize, **kwargs) if legend is None: legend = [legend] * len(spectra) for spectrum, ax, color, line_style, legend in zip( spectra, subplots, color, line_style, legend): _plot_spectrum(spectrum, ax, color=color, line_style=line_style) ax.set_ylabel('Intensity') if legend is not None: ax.set_title(legend) if not isinstance(spectra, hyperspy.signal.BaseSignal): _set_spectrum_xlabel(spectrum, ax) if isinstance(spectra, hyperspy.signal.BaseSignal): _set_spectrum_xlabel(spectrum, ax) fig.tight_layout() elif style == 'heatmap': if not isinstance(spectra, hyperspy.signal.BaseSignal): import hyperspy.utils spectra = hyperspy.utils.stack(spectra) with spectra.unfolded(): ax = _make_heatmap_subplot(spectra) ax.set_ylabel('Spectra') ax = ax if style != "mosaic" else subplots return ax def animate_legend(figure='last'): """Animate the legend of a figure. A spectrum can be toggle on and off by clicking on the legended line. Parameters ---------- figure: 'last' | matplotlib.figure If 'last' pick the last figure Note ---- Code inspired from legend_picking.py in the matplotlib gallery """ if figure == 'last': figure = plt.gcf() ax = plt.gca() else: ax = figure.axes[0] lines = ax.lines lined = dict() leg = ax.get_legend() for legline, origline in zip(leg.get_lines(), lines): legline.set_picker(5) # 5 pts tolerance lined[legline] = origline def onpick(event): # on the pick event, find the orig line corresponding to the # legend proxy line, and toggle the visibility legline = event.artist origline = lined[legline] vis = not origline.get_visible() origline.set_visible(vis) # Change the alpha on the line in the legend so we can see what lines # have been toggled if vis: legline.set_alpha(1.0) else: legline.set_alpha(0.2) figure.canvas.draw_idle() figure.canvas.mpl_connect('pick_event', onpick) def plot_histograms(signal_list, bins='freedman', range_bins=None, color=None, line_style=None, legend='auto', fig=None, **kwargs): """Plot the histogram of every signal in the list in the same figure. This function creates a histogram for each signal and plot the list with the `utils.plot.plot_spectra` function. Parameters ---------- signal_list : iterable Ordered spectra list to plot. If `style` is "cascade" or "mosaic" the spectra can have different size and axes. bins : int or list or str, optional If bins is a string, then it must be one of: 'knuth' : use Knuth's rule to determine bins 'scotts' : use Scott's rule to determine bins 'freedman' : use the Freedman-diaconis rule to determine bins 'blocks' : use bayesian blocks for dynamic bin widths range_bins : tuple or None, optional. the minimum and maximum range for the histogram. If not specified, it will be (x.min(), x.max()) color : valid matplotlib color or a list of them or `None`, optional. Sets the color of the lines of the plots. If a list, if its length is less than the number of spectra to plot, the colors will be cycled. If If `None`, use default matplotlib color cycle. line_style: valid matplotlib line style or a list of them or `None`, optional. The main line style are '-','--','steps','-.',':'. If a list, if its length is less than the number of spectra to plot, line_style will be cycled. If If `None`, use continuous lines, eg: ('-','--','steps','-.',':') legend: None or list of str or 'auto', optional. Display a legend. If 'auto', the title of each spectra (metadata.General.title) is used. legend_picking: bool, optional. If true, a spectrum can be toggle on and off by clicking on the legended line. fig : matplotlib figure or None, optional. If None, a default figure will be created. **kwargs other keyword arguments (weight and density) are described in np.histogram(). Example ------- Histograms of two random chi-square distributions >>> img = hs.signals.Signal2D(np.random.chisquare(1,[10,10,100])) >>> img2 = hs.signals.Signal2D(np.random.chisquare(2,[10,10,100])) >>> hs.plot.plot_histograms([img,img2],legend=['hist1','hist2']) Returns ------- ax: matplotlib axes or list of matplotlib axes An array is returned when `style` is "mosaic". """ hists = [] for obj in signal_list: hists.append(obj.get_histogram(bins=bins, range_bins=range_bins, **kwargs)) if line_style is None: line_style = 'steps' return plot_spectra(hists, style='overlap', color=color, line_style=line_style, legend=legend, fig=fig)
gpl-3.0
antiface/mne-python
examples/visualization/plot_topo_compare_conditions.py
7
2375
""" ================================================= Compare evoked responses for different conditions ================================================= In this example, an Epochs object for visual and auditory responses is created. Both conditions are then accessed by their respective names to create a sensor layout plot of the related evoked responses. """ # Authors: Denis Engemann <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.io import Raw from mne.viz import plot_topo from mne.datasets import sample print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' event_id = 1 tmin = -0.2 tmax = 0.5 # Setup for reading the raw data raw = Raw(raw_fname) events = mne.read_events(event_fname) # Set up pick list: MEG + STI 014 - bad channels (modify to your needs) include = [] # or stim channels ['STI 014'] # bad channels in raw.info['bads'] will be automatically excluded # Set up amplitude-peak rejection values for MEG channels reject = dict(grad=4000e-13, mag=4e-12) # pick MEG channels picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True, include=include, exclude='bads') # Create epochs including different events event_id = {'audio/left': 1, 'audio/right': 2, 'visual/left': 3, 'visual/right': 4} epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) # Generate list of evoked objects from conditions names evokeds = [epochs[name].average() for name in ('left', 'right')] ############################################################################### # Show topography for two different conditions colors = 'yellow', 'green' title = 'MNE sample data - left vs right (A/V combined)' plot_topo(evokeds, color=colors, title=title) conditions = [e.comment for e in evokeds] for cond, col, pos in zip(conditions, colors, (0.025, 0.07)): plt.figtext(0.99, pos, cond, color=col, fontsize=12, horizontalalignment='right') plt.show()
bsd-3-clause
nathancfox/autocatalytic-modeling
BurstBasicExperiment/BURST_Analysis.py
1
5129
import pandas as pd import matplotlib.pyplot as plt import matplotlib.lines as lines pathprefix = 'AnalysisFigures/' ts = pd.read_csv('BURST_testStatistics.csv', header=0) e_mean = plt.figure(figsize=(32,18)) em_ax = e_mean.add_subplot(111) em_ax.plot(ts['Burst'], ts['EMean'], 'ro', label='Enzyme Mean') em_ax.set_xlim([0, 52]) em_ax.set_ylim([35, 45]) em_ax.set_yticks([35, 37, 39, 41, 43, 45]) em_ax.set_title('Mean Enzyme Population by Burst Size') em_ax.set_xlabel('Burst Size') em_ax.set_ylabel('Mean Enzyme Population') em_ax.legend() em_ax.grid(b=True) e_mean.savefig(pathprefix + 'EMean.png', dpi=300) s_mean = plt.figure(figsize=(32,18)) sm_ax = s_mean.add_subplot(111) sm_ax.plot(ts['Burst'], ts['SMean'], 'bo', label='Substrate Mean') sm_ax.set_xlim([0, 52]) sm_ax.set_ylim([0, 15]) sm_ax.set_yticks([0, 3, 6, 9, 12, 15]) sm_ax.set_title('Mean Substrate Population by Burst Size') sm_ax.set_xlabel('Burst Size') sm_ax.set_ylabel('Mean Substrate Population') sm_ax.legend() sm_ax.grid(b=True) s_mean.savefig(pathprefix + 'SMean.png', dpi=300) c_mean = plt.figure(figsize=(32,18)) cm_ax = c_mean.add_subplot(111) cm_ax.plot(ts['Burst'], ts['CMean'], 'go', label='Complex Mean') cm_ax.set_xlim([0, 52]) cm_ax.set_ylim([15, 25]) cm_ax.set_yticks([15, 17, 19, 21, 23, 25]) cm_ax.set_title('Mean Complex Population by Burst Size') cm_ax.set_xlabel('Burst Size') cm_ax.set_ylabel('Mean Complex Population') cm_ax.legend() cm_ax.grid(b=True) c_mean.savefig(pathprefix + 'CMean.png', dpi=300) totale_mean = plt.figure(figsize=(32, 18)) totem_ax = totale_mean.add_subplot(111) totem_ax.plot(ts['Burst'], ts['EMean'] + ts['CMean'], 'ro', label='Total E (E + C)') totem_ax.set_xlim([0, 52]) totem_ax.set_ylim([50, 65]) totem_ax.set_yticks([50, 53, 56, 59, 62, 65]) totem_ax.set_title('Total Enzyme (Bound and Unbound)') totem_ax.set_xlabel('Burst Size') totem_ax.set_ylabel('Total Enzyme') totem_ax.legend() totem_ax.grid(b=True) totale_mean.savefig(pathprefix + 'TotalEMean.png', dpi=300) totals_mean = plt.figure(figsize=(32, 18)) totsm_ax = totals_mean.add_subplot(111) totsm_ax.plot(ts['Burst'], ts['SMean'] + ts['CMean'], 'bo', label='Total S (S + C)') totsm_ax.set_xlim([0, 52]) totsm_ax.set_ylim([20, 30]) totsm_ax.set_yticks([20, 22, 24, 26, 28, 30]) totsm_ax.set_title('Total Substrate (Bound and Unbound)') totsm_ax.set_xlabel('Burst Size') totsm_ax.set_ylabel('Total Substrate') totsm_ax.legend() totsm_ax.grid(b=True) totals_mean.savefig(pathprefix + 'TotalSMean.png', dpi=300) plt.close('all') ############################################################################## e_var = plt.figure(figsize=(32,18)) ev_ax = e_var.add_subplot(111) ev_ax.plot(ts['Burst'], ts['EVar'], 'r^', label='Enzyme Variance') ev_ax.set_xlim([0, 52]) ev_ax.set_ylim([0, 1000]) ev_ax.set_yticks([0, 200, 400, 600, 800, 1000]) ev_ax.set_title('Enzyme Population Variance by Burst Size') ev_ax.set_xlabel('Burst Size') ev_ax.set_ylabel('Enzyme Population Variance') ev_ax.legend() ev_ax.grid(b=True) e_var.savefig(pathprefix + 'EVariance.png', dpi=300) s_var = plt.figure(figsize=(32,18)) sv_ax = s_var.add_subplot(111) sv_ax.plot(ts['Burst'], ts['SVar'], 'b^', label='Substrate Variance') sv_ax.set_xlim([0, 52]) sv_ax.set_ylim([0, 600]) sv_ax.set_yticks([0, 100, 200, 300, 400, 500, 600]) sv_ax.set_title('Substrate Population Variance by Burst Size') sv_ax.set_xlabel('Burst Size') sv_ax.set_ylabel('Substrate Population Variance') sv_ax.legend() sv_ax.grid(b=True) s_var.savefig(pathprefix + 'SVariance.png', dpi=300) c_var = plt.figure(figsize=(32,18)) cv_ax = c_var.add_subplot(111) cv_ax.plot(ts['Burst'], ts['CVar'], 'g^', label='Complex Variance') cv_ax.set_xlim([0, 52]) cv_ax.set_ylim([0, 500]) cv_ax.set_yticks([0, 100, 200, 300, 400, 500]) cv_ax.set_title('Complex Population Variance by Burst Size') cv_ax.set_xlabel('Burst Size') cv_ax.set_ylabel('Complex Population Variance') cv_ax.legend() cv_ax.grid(b=True) c_var.savefig(pathprefix + 'CVariance.png', dpi=300) totale_var = plt.figure(figsize=(32, 18)) totev_ax = totale_var.add_subplot(111) totev_ax.plot(ts['Burst'], ts['EVar'] + ts['CVar'], 'r^', label='Total E (E + C) Variance') totev_ax.set_xlim([0, 52]) totev_ax.set_ylim([0, 1400]) totev_ax.set_yticks([0, 200, 400, 600, 800, 1000, 1200, 1400]) totev_ax.set_title('Total Enzyme Variance (Bound and Unbound)') totev_ax.set_xlabel('Burst Size') totev_ax.set_ylabel('Total Enzyme Variance') totev_ax.legend() totev_ax.grid(b=True) totale_var.savefig(pathprefix + 'TotalEVariance.png', dpi=300) totals_var = plt.figure(figsize=(32, 18)) totsv_ax = totals_var.add_subplot(111) totsv_ax.plot(ts['Burst'], ts['SVar'] + ts['CVar'], 'b^', label='Total S (S + C) Variance') totsv_ax.set_xlim([0, 52]) totsv_ax.set_ylim([0, 1000]) totsv_ax.set_yticks([0, 200, 400, 600, 800, 1000]) totsv_ax.set_title('Total Substrate (Bound and Unbound) Variance') totsv_ax.set_xlabel('Burst Size') totsv_ax.set_ylabel('Total Substrate Variance') totsv_ax.legend() totsv_ax.grid(b=True) totals_var.savefig(pathprefix + 'TotalSVariance.png', dpi=300) plt.close('all')
mit
yousrabk/mne-python
examples/preprocessing/plot_eog_artifact_histogram.py
11
1465
""" ======================== Show EOG artifact timing ======================== Compute the distribution of timing for EOG artifacts. """ # Authors: Eric Larson <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' # Setup for reading the raw data raw = io.Raw(raw_fname, preload=True) events = mne.find_events(raw, 'STI 014') eog_event_id = 512 eog_events = mne.preprocessing.find_eog_events(raw, eog_event_id) raw.add_events(eog_events, 'STI 014') # Read epochs picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=True, eog=False) tmin, tmax = -0.2, 0.5 event_ids = {'AudL': 1, 'AudR': 2, 'VisL': 3, 'VisR': 4} epochs = mne.Epochs(raw, events, event_ids, tmin, tmax, picks=picks) # Get the stim channel data pick_ch = mne.pick_channels(epochs.ch_names, ['STI 014'])[0] data = epochs.get_data()[:, pick_ch, :].astype(int) data = np.sum((data.astype(int) & 512) == 512, axis=0) ############################################################################### # Plot EOG artifact distribution plt.stem(1e3 * epochs.times, data) plt.xlabel('Times (ms)') plt.ylabel('Blink counts (from %s trials)' % len(epochs)) plt.show()
bsd-3-clause
tongwang01/tensorflow
tensorflow/contrib/learn/python/learn/estimators/classifier_test.py
16
5175
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Classifier.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib import learn from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.session_bundle import manifest_pb2 def iris_input_fn(num_epochs=None): iris = tf.contrib.learn.datasets.load_iris() features = tf.train.limit_epochs( tf.reshape(tf.constant(iris.data), [-1, 4]), num_epochs=num_epochs) labels = tf.reshape(tf.constant(iris.target), [-1]) return features, labels def logistic_model_fn(features, labels, unused_mode): labels = tf.one_hot(labels, 3, 1, 0) prediction, loss = tf.contrib.learn.models.logistic_regression_zero_init( features, labels) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def logistic_model_params_fn(features, labels, unused_mode, params): labels = tf.one_hot(labels, 3, 1, 0) prediction, loss = tf.contrib.learn.models.logistic_regression_zero_init( features, labels) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op class ClassifierTest(tf.test.TestCase): def testIrisAll(self): est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) self._runIrisAll(est) def testIrisAllWithParams(self): est = tf.contrib.learn.Classifier(model_fn=logistic_model_params_fn, n_classes=3, params={'learning_rate': 0.01}) self._runIrisAll(est) def testIrisInputFn(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) est.fit(input_fn=iris_input_fn, steps=100) est.evaluate(input_fn=iris_input_fn, steps=1, name='eval') predict_input_fn = functools.partial(iris_input_fn, num_epochs=1) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertEqual(len(predictions), iris.target.shape[0]) def _runIrisAll(self, est): iris = tf.contrib.learn.datasets.load_iris() est.fit(iris.data, iris.target, steps=100) scores = est.evaluate(x=iris.data, y=iris.target, name='eval') predictions = list(est.predict(x=iris.data)) predictions_proba = list(est.predict_proba(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) self.assertAllEqual(predictions, np.argmax(predictions_proba, axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions) self.assertAllClose(other_score, scores['accuracy']) def _get_default_signature(self, export_meta_filename): """Gets the default signature from the export.meta file.""" with tf.Session(): save = tf.train.import_meta_graph(export_meta_filename) meta_graph_def = save.export_meta_graph() collection_def = meta_graph_def.collection_def signatures_any = collection_def['serving_signatures'].any_list.value self.assertEquals(len(signatures_any), 1) signatures = manifest_pb2.Signatures() signatures_any[0].Unpack(signatures) default_signature = signatures.default_signature return default_signature # Disable this test case until b/31032996 is fixed. def _testExportMonitorRegressionSignature(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) export_dir = tempfile.mkdtemp() + 'export/' export_monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=export_dir, exports_to_keep=1, signature_fn=tf.contrib.learn.classifier.classification_signature_fn) est.fit(iris.data, iris.target, steps=2, monitors=[export_monitor]) self.assertTrue(tf.gfile.Exists(export_dir)) self.assertFalse(tf.gfile.Exists(export_dir + '00000000/export')) self.assertTrue(tf.gfile.Exists(export_dir + '00000002/export')) # Validate the signature signature = self._get_default_signature(export_dir + '00000002/export.meta') self.assertTrue(signature.HasField('classification_signature')) if __name__ == '__main__': tf.test.main()
apache-2.0
cbertinato/pandas
pandas/compat/numpy/function.py
1
14392
""" For compatibility with numpy libraries, pandas functions or methods have to accept '*args' and '**kwargs' parameters to accommodate numpy arguments that are not actually used or respected in the pandas implementation. To ensure that users do not abuse these parameters, validation is performed in 'validators.py' to make sure that any extra parameters passed correspond ONLY to those in the numpy signature. Part of that validation includes whether or not the user attempted to pass in non-default values for these extraneous parameters. As we want to discourage users from relying on these parameters when calling the pandas implementation, we want them only to pass in the default values for these parameters. This module provides a set of commonly used default arguments for functions and methods that are spread throughout the codebase. This module will make it easier to adjust to future upstream changes in the analogous numpy signatures. """ from collections import OrderedDict from distutils.version import LooseVersion from typing import Any, Dict, Optional, Union from numpy import __version__ as _np_version, ndarray from pandas._libs.lib import is_bool, is_integer from pandas.errors import UnsupportedFunctionCall from pandas.util._validators import ( validate_args, validate_args_and_kwargs, validate_kwargs) class CompatValidator: def __init__(self, defaults, fname=None, method=None, max_fname_arg_count=None): self.fname = fname self.method = method self.defaults = defaults self.max_fname_arg_count = max_fname_arg_count def __call__(self, args, kwargs, fname=None, max_fname_arg_count=None, method=None): if args or kwargs: fname = self.fname if fname is None else fname max_fname_arg_count = (self.max_fname_arg_count if max_fname_arg_count is None else max_fname_arg_count) method = self.method if method is None else method if method == 'args': validate_args(fname, args, max_fname_arg_count, self.defaults) elif method == 'kwargs': validate_kwargs(fname, kwargs, self.defaults) elif method == 'both': validate_args_and_kwargs(fname, args, kwargs, max_fname_arg_count, self.defaults) else: raise ValueError("invalid validation method " "'{method}'".format(method=method)) ARGMINMAX_DEFAULTS = dict(out=None) validate_argmin = CompatValidator(ARGMINMAX_DEFAULTS, fname='argmin', method='both', max_fname_arg_count=1) validate_argmax = CompatValidator(ARGMINMAX_DEFAULTS, fname='argmax', method='both', max_fname_arg_count=1) def process_skipna(skipna, args): if isinstance(skipna, ndarray) or skipna is None: args = (skipna,) + args skipna = True return skipna, args def validate_argmin_with_skipna(skipna, args, kwargs): """ If 'Series.argmin' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean """ skipna, args = process_skipna(skipna, args) validate_argmin(args, kwargs) return skipna def validate_argmax_with_skipna(skipna, args, kwargs): """ If 'Series.argmax' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean """ skipna, args = process_skipna(skipna, args) validate_argmax(args, kwargs) return skipna ARGSORT_DEFAULTS = OrderedDict() \ # type: OrderedDict[str, Optional[Union[int, str]]] ARGSORT_DEFAULTS['axis'] = -1 ARGSORT_DEFAULTS['kind'] = 'quicksort' ARGSORT_DEFAULTS['order'] = None if LooseVersion(_np_version) >= LooseVersion("1.17.0"): # GH-26361. NumPy added radix sort and changed default to None. ARGSORT_DEFAULTS['kind'] = None validate_argsort = CompatValidator(ARGSORT_DEFAULTS, fname='argsort', max_fname_arg_count=0, method='both') # two different signatures of argsort, this second validation # for when the `kind` param is supported ARGSORT_DEFAULTS_KIND = OrderedDict() \ # type: OrderedDict[str, Optional[int]] ARGSORT_DEFAULTS_KIND['axis'] = -1 ARGSORT_DEFAULTS_KIND['order'] = None validate_argsort_kind = CompatValidator(ARGSORT_DEFAULTS_KIND, fname='argsort', max_fname_arg_count=0, method='both') def validate_argsort_with_ascending(ascending, args, kwargs): """ If 'Categorical.argsort' is called via the 'numpy' library, the first parameter in its signature is 'axis', which takes either an integer or 'None', so check if the 'ascending' parameter has either integer type or is None, since 'ascending' itself should be a boolean """ if is_integer(ascending) or ascending is None: args = (ascending,) + args ascending = True validate_argsort_kind(args, kwargs, max_fname_arg_count=3) return ascending CLIP_DEFAULTS = dict(out=None) # type Dict[str, Any] validate_clip = CompatValidator(CLIP_DEFAULTS, fname='clip', method='both', max_fname_arg_count=3) def validate_clip_with_axis(axis, args, kwargs): """ If 'NDFrame.clip' is called via the numpy library, the third parameter in its signature is 'out', which can takes an ndarray, so check if the 'axis' parameter is an instance of ndarray, since 'axis' itself should either be an integer or None """ if isinstance(axis, ndarray): args = (axis,) + args axis = None validate_clip(args, kwargs) return axis COMPRESS_DEFAULTS = OrderedDict() # type: OrderedDict[str, Any] COMPRESS_DEFAULTS['axis'] = None COMPRESS_DEFAULTS['out'] = None validate_compress = CompatValidator(COMPRESS_DEFAULTS, fname='compress', method='both', max_fname_arg_count=1) CUM_FUNC_DEFAULTS = OrderedDict() # type: OrderedDict[str, Any] CUM_FUNC_DEFAULTS['dtype'] = None CUM_FUNC_DEFAULTS['out'] = None validate_cum_func = CompatValidator(CUM_FUNC_DEFAULTS, method='both', max_fname_arg_count=1) validate_cumsum = CompatValidator(CUM_FUNC_DEFAULTS, fname='cumsum', method='both', max_fname_arg_count=1) def validate_cum_func_with_skipna(skipna, args, kwargs, name): """ If this function is called via the 'numpy' library, the third parameter in its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so check if the 'skipna' parameter is a boolean or not """ if not is_bool(skipna): args = (skipna,) + args skipna = True validate_cum_func(args, kwargs, fname=name) return skipna ALLANY_DEFAULTS = OrderedDict() # type: OrderedDict[str, Optional[bool]] ALLANY_DEFAULTS['dtype'] = None ALLANY_DEFAULTS['out'] = None ALLANY_DEFAULTS['keepdims'] = False validate_all = CompatValidator(ALLANY_DEFAULTS, fname='all', method='both', max_fname_arg_count=1) validate_any = CompatValidator(ALLANY_DEFAULTS, fname='any', method='both', max_fname_arg_count=1) LOGICAL_FUNC_DEFAULTS = dict(out=None, keepdims=False) validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method='kwargs') MINMAX_DEFAULTS = dict(out=None, keepdims=False) validate_min = CompatValidator(MINMAX_DEFAULTS, fname='min', method='both', max_fname_arg_count=1) validate_max = CompatValidator(MINMAX_DEFAULTS, fname='max', method='both', max_fname_arg_count=1) RESHAPE_DEFAULTS = dict(order='C') # type: Dict[str, str] validate_reshape = CompatValidator(RESHAPE_DEFAULTS, fname='reshape', method='both', max_fname_arg_count=1) REPEAT_DEFAULTS = dict(axis=None) # type: Dict[str, Any] validate_repeat = CompatValidator(REPEAT_DEFAULTS, fname='repeat', method='both', max_fname_arg_count=1) ROUND_DEFAULTS = dict(out=None) # type: Dict[str, Any] validate_round = CompatValidator(ROUND_DEFAULTS, fname='round', method='both', max_fname_arg_count=1) SORT_DEFAULTS = OrderedDict() \ # type: OrderedDict[str, Optional[Union[int, str]]] SORT_DEFAULTS['axis'] = -1 SORT_DEFAULTS['kind'] = 'quicksort' SORT_DEFAULTS['order'] = None validate_sort = CompatValidator(SORT_DEFAULTS, fname='sort', method='kwargs') STAT_FUNC_DEFAULTS = OrderedDict() # type: OrderedDict[str, Optional[Any]] STAT_FUNC_DEFAULTS['dtype'] = None STAT_FUNC_DEFAULTS['out'] = None PROD_DEFAULTS = SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy() SUM_DEFAULTS['keepdims'] = False SUM_DEFAULTS['initial'] = None MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy() MEDIAN_DEFAULTS['overwrite_input'] = False MEDIAN_DEFAULTS['keepdims'] = False STAT_FUNC_DEFAULTS['keepdims'] = False validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method='kwargs') validate_sum = CompatValidator(SUM_DEFAULTS, fname='sum', method='both', max_fname_arg_count=1) validate_prod = CompatValidator(PROD_DEFAULTS, fname="prod", method="both", max_fname_arg_count=1) validate_mean = CompatValidator(STAT_FUNC_DEFAULTS, fname='mean', method='both', max_fname_arg_count=1) validate_median = CompatValidator(MEDIAN_DEFAULTS, fname='median', method='both', max_fname_arg_count=1) STAT_DDOF_FUNC_DEFAULTS = OrderedDict() \ # type: OrderedDict[str, Optional[bool]] STAT_DDOF_FUNC_DEFAULTS['dtype'] = None STAT_DDOF_FUNC_DEFAULTS['out'] = None STAT_DDOF_FUNC_DEFAULTS['keepdims'] = False validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method='kwargs') TAKE_DEFAULTS = OrderedDict() # type: OrderedDict[str, Optional[str]] TAKE_DEFAULTS['out'] = None TAKE_DEFAULTS['mode'] = 'raise' validate_take = CompatValidator(TAKE_DEFAULTS, fname='take', method='kwargs') def validate_take_with_convert(convert, args, kwargs): """ If this function is called via the 'numpy' library, the third parameter in its signature is 'axis', which takes either an ndarray or 'None', so check if the 'convert' parameter is either an instance of ndarray or is None """ if isinstance(convert, ndarray) or convert is None: args = (convert,) + args convert = True validate_take(args, kwargs, max_fname_arg_count=3, method='both') return convert TRANSPOSE_DEFAULTS = dict(axes=None) validate_transpose = CompatValidator(TRANSPOSE_DEFAULTS, fname='transpose', method='both', max_fname_arg_count=0) def validate_window_func(name, args, kwargs): numpy_args = ('axis', 'dtype', 'out') msg = ("numpy operations are not " "valid with window objects. " "Use .{func}() directly instead ".format(func=name)) if len(args) > 0: raise UnsupportedFunctionCall(msg) for arg in numpy_args: if arg in kwargs: raise UnsupportedFunctionCall(msg) def validate_rolling_func(name, args, kwargs): numpy_args = ('axis', 'dtype', 'out') msg = ("numpy operations are not " "valid with window objects. " "Use .rolling(...).{func}() instead ".format(func=name)) if len(args) > 0: raise UnsupportedFunctionCall(msg) for arg in numpy_args: if arg in kwargs: raise UnsupportedFunctionCall(msg) def validate_expanding_func(name, args, kwargs): numpy_args = ('axis', 'dtype', 'out') msg = ("numpy operations are not " "valid with window objects. " "Use .expanding(...).{func}() instead ".format(func=name)) if len(args) > 0: raise UnsupportedFunctionCall(msg) for arg in numpy_args: if arg in kwargs: raise UnsupportedFunctionCall(msg) def validate_groupby_func(name, args, kwargs, allowed=None): """ 'args' and 'kwargs' should be empty, except for allowed kwargs because all of their necessary parameters are explicitly listed in the function signature """ if allowed is None: allowed = [] kwargs = set(kwargs) - set(allowed) if len(args) + len(kwargs) > 0: raise UnsupportedFunctionCall(( "numpy operations are not valid " "with groupby. Use .groupby(...)." "{func}() instead".format(func=name))) RESAMPLER_NUMPY_OPS = ('min', 'max', 'sum', 'prod', 'mean', 'std', 'var') def validate_resampler_func(method, args, kwargs): """ 'args' and 'kwargs' should be empty because all of their necessary parameters are explicitly listed in the function signature """ if len(args) + len(kwargs) > 0: if method in RESAMPLER_NUMPY_OPS: raise UnsupportedFunctionCall(( "numpy operations are not valid " "with resample. Use .resample(...)." "{func}() instead".format(func=method))) else: raise TypeError("too many arguments passed in") def validate_minmax_axis(axis): """ Ensure that the axis argument passed to min, max, argmin, or argmax is zero or None, as otherwise it will be incorrectly ignored. Parameters ---------- axis : int or None Raises ------ ValueError """ ndim = 1 # hard-coded for Index if axis is None: return if axis >= ndim or (axis < 0 and ndim + axis < 0): raise ValueError("`axis` must be fewer than the number of " "dimensions ({ndim})".format(ndim=ndim))
bsd-3-clause
harish-garg/Machine-Learning
udacity/evaluation_metrics/evaluate_accuracy.py
1
1541
# # In this and the following exercises, you'll be adding train test splits to the data # to see how it changes the performance of each classifier # # The code provided will load the Titanic dataset like you did in project 0, then train # a decision tree (the method you used in your project) and a Bayesian classifier (as # discussed in the introduction videos). You don't need to worry about how these work for # now. # # What you do need to do is import a train/test split, train the classifiers on the # training data, and store the resulting accuracy scores in the dictionary provided. import numpy as np import pandas as pd # Load the dataset X = pd.read_csv('titanic_data.csv') # Limit to numeric data X = X._get_numeric_data() # Separate the labels y = X['Survived'] # Remove labels from the inputs, and age due to missing data del X['Age'], X['Survived'] from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.naive_bayes import GaussianNB # TODO: split the data into training and testing sets, # using the standard settings for train_test_split. # Then, train and test the classifiers with your newly split data instead of X and y. # The decision tree classifier clf1 = DecisionTreeClassifier() clf1.fit(X,y) print "Decision Tree has accuracy: ",accuracy_score(clf1.predict(X),y) # The naive Bayes classifier clf2 = GaussianNB() clf2.fit(X,y) print "GaussianNB has accuracy: ",accuracy_score(clf2.predict(X),y) answer = { "Naive Bayes Score": 0, "Decision Tree Score": 0 }
mit
prasadtalasila/MailingListParser
test/integration_test/lib/analysis/author/test_curve_fiting.py
1
5027
from lib.analysis.author.curve_fitting import * import unittest import mock def test_inv_func(): x = 5 a = 10 b = 25 c = 7 assert inv_func(x, a, b, c) == 10 def test_generate_crt_dist(): csv_filename = './test/integration_test/data/conversation_refresh_times.csv' req_re_times = ([106.01, 272.03000000000003, 438.05000000000007, 604.07, 770.09, 936.1100000000001, 1102.13, 1268.15, 1434.17, 1600.19, 1766.21, 1932.23, 2098.25, 2264.2700000000004, 2430.29, 2596.3100000000004, 2762.33, 2928.3500000000004, 3094.37, 3260.3900000000003, 3426.41, 3592.4300000000003, 3758.45, 3924.4700000000003, 4090.4900000000002, 4256.51, 4422.530000000001, 4588.55, 4754.57, 4920.59, 5086.610000000001, 5252.63, 5418.650000000001, 5584.67, 5750.6900000000005, 5916.710000000001, 6082.7300000000005, 6248.75, 6414.77, 6580.790000000001, 6746.81, 6912.83, 7078.85, 7244.870000000001, 7410.89, 7576.91, 7742.93, 7908.950000000001, 8074.970000000001, 8240.99], [0.375, 0.0, 0.0, 0.0, 0.125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.125]) generate_crt_dist(csv_filename) == req_re_times @mock.patch("matplotlib.pyplot.figure") @mock.patch("matplotlib.pyplot.plot") @mock.patch("matplotlib.pyplot.legend") @mock.patch("matplotlib.pyplot.ylabel") @mock.patch("matplotlib.pyplot.xlabel") @mock.patch("matplotlib.pyplot.savefig") def test_generate_crt_curve_fits(mock_figure, mock_plot, mock_legend, mock_ylabel, mock_xlabel, mock_savefig): foldername = './test/integration_test/data/curve_fitting/' generate_crt_curve_fits(foldername) def test_generate_cl_dist(): csv_filename = './test/integration_test/data/conversation_length.csv' req_lengths = ([7861.65, 22400.949999999997, 36940.25, 51479.549999999996, 66018.85, 80558.15, 95097.44999999998, 109636.75, 124176.05, 138715.35, 153254.65, 167793.94999999998, 182333.25, 196872.55, 211411.84999999998, 225951.15, 240490.44999999998, 255029.75, 269569.05000000005, 284108.35, 298647.65, 313186.94999999995, 327726.25, 342265.54999999993, 356804.85, 371344.15, 385883.44999999995, 400422.75, 414962.04999999993, 429501.35, 444040.65, 458579.94999999995, 473119.25, 487658.54999999993, 502197.85, 516737.15, 531276.45, 545815.75, 560355.05, 574894.35, 589433.6499999999, 603972.95, 618512.25, 633051.55, 647590.85, 662130.1499999999,676669.45, 691208.75, 705748.0499999999, 720287.35], [0.4444444444444444, 0.0, 0.0, 0.2222222222222222, 0.0, 0.0, 0.1111111111111111, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1111111111111111, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1111111111111111]) assert generate_cl_dist(csv_filename) == req_lengths @mock.patch("matplotlib.pyplot.figure") @mock.patch("matplotlib.pyplot.plot") @mock.patch("matplotlib.pyplot.legend") @mock.patch("matplotlib.pyplot.ylabel") @mock.patch("matplotlib.pyplot.xlabel") @mock.patch("matplotlib.pyplot.savefig") def test_generate_cl_curve_fits(mock_figure, mock_plot, mock_legend, mock_ylabel, mock_xlabel, mock_savefig): foldername = './test/integration_test/data/curve_fitting/' generate_cl_curve_fits(foldername) def test_generate_rt_dist(): csv_filename = './test/integration_test/data/response_time.csv' req_times = ([783.76, 1441.28, 2098.8, 2756.3199999999997, 3413.84, 4071.3599999999997, 4728.879999999999, 5386.4, 6043.92, 6701.4400000000005, 7358.959999999999, 8016.48, 8674.0, 9331.52, 9989.039999999999, 10646.56, 11304.08, 11961.6, 12619.119999999999, 13276.64, 13934.16, 14591.68, 15249.199999999999, 15906.72, 16564.239999999998, 17221.760000000002, 17879.28, 18536.8, 19194.32, 19851.839999999997, 20509.36, 21166.879999999997, 21824.4, 22481.92, 23139.440000000002, 23796.96, 24454.48, 25112.0, 25769.519999999997, 26427.04, 27084.559999999998, 27742.08, 28399.6, 29057.12, 29714.64, 30372.159999999996, 31029.68, 31687.199999999997, 32344.72, 33002.24], [0.1111111111111111, 0.2222222222222222, 0.2222222222222222, 0.0, 0.1111111111111111, 0.2222222222222222, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1111111111111111]) assert generate_rt_dist(csv_filename) == req_times @mock.patch("matplotlib.pyplot.figure") @mock.patch("matplotlib.pyplot.plot") @mock.patch("matplotlib.pyplot.legend") @mock.patch("matplotlib.pyplot.ylabel") @mock.patch("matplotlib.pyplot.xlabel") @mock.patch("matplotlib.pyplot.savefig") def test_generate_rt_curve_fits(mock_figure, mock_plot, mock_legend, mock_ylabel, mock_xlabel, mock_savefig): foldername = './test/integration_test/data/curve_fitting/' generate_rt_curve_fits(foldername)
gpl-3.0
kmike/scikit-learn
examples/covariance/plot_sparse_cov.py
4
5035
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweeked to improve readibility of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD Style # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import pylab as pl ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results pl.figure(figsize=(10, 6)) pl.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): pl.subplot(2, 4, i + 1) pl.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=pl.cm.RdBu_r) pl.xticks(()) pl.yticks(()) pl.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = pl.subplot(2, 4, i + 5) pl.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=pl.cm.RdBu_r) pl.xticks(()) pl.yticks(()) pl.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric pl.figure(figsize=(4, 3)) pl.axes([.2, .15, .75, .7]) pl.plot(model.cv_alphas_, np.mean(model.cv_scores, axis=1), 'o-') pl.axvline(model.alpha_, color='.5') pl.title('Model selection') pl.ylabel('Cross-validation score') pl.xlabel('alpha') pl.show()
bsd-3-clause
sureshthalamati/spark
examples/src/main/python/sql/arrow.py
13
3997
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A simple example demonstrating Arrow in Spark. Run with: ./bin/spark-submit examples/src/main/python/sql/arrow.py """ from __future__ import print_function from pyspark.sql import SparkSession from pyspark.sql.utils import require_minimum_pandas_version, require_minimum_pyarrow_version require_minimum_pandas_version() require_minimum_pyarrow_version() def dataframe_with_arrow_example(spark): # $example on:dataframe_with_arrow$ import numpy as np import pandas as pd # Enable Arrow-based columnar data transfers spark.conf.set("spark.sql.execution.arrow.enabled", "true") # Generate a Pandas DataFrame pdf = pd.DataFrame(np.random.rand(100, 3)) # Create a Spark DataFrame from a Pandas DataFrame using Arrow df = spark.createDataFrame(pdf) # Convert the Spark DataFrame back to a Pandas DataFrame using Arrow result_pdf = df.select("*").toPandas() # $example off:dataframe_with_arrow$ print("Pandas DataFrame result statistics:\n%s\n" % str(result_pdf.describe())) def scalar_pandas_udf_example(spark): # $example on:scalar_pandas_udf$ import pandas as pd from pyspark.sql.functions import col, pandas_udf from pyspark.sql.types import LongType # Declare the function and create the UDF def multiply_func(a, b): return a * b multiply = pandas_udf(multiply_func, returnType=LongType()) # The function for a pandas_udf should be able to execute with local Pandas data x = pd.Series([1, 2, 3]) print(multiply_func(x, x)) # 0 1 # 1 4 # 2 9 # dtype: int64 # Create a Spark DataFrame, 'spark' is an existing SparkSession df = spark.createDataFrame(pd.DataFrame(x, columns=["x"])) # Execute function as a Spark vectorized UDF df.select(multiply(col("x"), col("x"))).show() # +-------------------+ # |multiply_func(x, x)| # +-------------------+ # | 1| # | 4| # | 9| # +-------------------+ # $example off:scalar_pandas_udf$ def grouped_map_pandas_udf_example(spark): # $example on:grouped_map_pandas_udf$ from pyspark.sql.functions import pandas_udf, PandasUDFType df = spark.createDataFrame( [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ("id", "v")) @pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP) def substract_mean(pdf): # pdf is a pandas.DataFrame v = pdf.v return pdf.assign(v=v - v.mean()) df.groupby("id").apply(substract_mean).show() # +---+----+ # | id| v| # +---+----+ # | 1|-0.5| # | 1| 0.5| # | 2|-3.0| # | 2|-1.0| # | 2| 4.0| # +---+----+ # $example off:grouped_map_pandas_udf$ if __name__ == "__main__": spark = SparkSession \ .builder \ .appName("Python Arrow-in-Spark example") \ .getOrCreate() print("Running Pandas to/from conversion example") dataframe_with_arrow_example(spark) print("Running pandas_udf scalar example") scalar_pandas_udf_example(spark) print("Running pandas_udf grouped map example") grouped_map_pandas_udf_example(spark) spark.stop()
apache-2.0
telecombcn-dl/2017-cfis
sessions/utils.py
1
2978
import matplotlib.pyplot as plt import numpy as np import itertools import keras.backend as K def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') def plot_samples(X_train,N=5): ''' Plots N**2 randomly selected images from training data in a NxN grid ''' import random ps = random.sample(range(0,X_train.shape[0]), N**2) f, axarr = plt.subplots(N, N) p = 0 for i in range(N): for j in range(N): if len(X_train.shape) == 3: axarr[i,j].imshow(X_train[ps[p]],cmap='gray') else: im = X_train[ps[p]] axarr[i,j].imshow(im) axarr[i,j].axis('off') p+=1 def plot_curves(history,nb_epoch): """ Plots accuracy and loss curves given model history and number of epochs """ fig, ax1 = plt.subplots() t = np.arange(0, nb_epoch, 1) ax1.plot(t,history.history['acc'],'b-') ax1.plot(t,history.history['val_acc'],'b*') ax1.set_xlabel('epoch') ax1.set_ylabel('acc', color='b') ax1.tick_params('y', colors='b') plt.legend(['train_acc', 'test_acc'], loc='lower left') ax2 = ax1.twinx() ax2.plot(t, history.history['loss'], 'r-') ax2.plot(t, history.history['val_loss'], 'r*') ax2.set_ylabel('loss', color='r') ax2.tick_params('y', colors='r') plt.legend(['train_loss','test_loss'], loc='upper left') # util function to convert a tensor into a valid image def deprocess_image(x): # normalize tensor: center on 0., ensure std is 0.1 x -= x.mean() x /= (x.std() + 1e-5) x *= 0.1 # clip to [0, 1] x += 0.5 x = np.clip(x, 0, 1) # convert to RGB array x *= 255 if K.image_dim_ordering() == 'th': x = x.transpose((1, 2, 0)) x = np.clip(x, 0, 255).astype('uint8') return x def normalize(x): # utility function to normalize a tensor by its L2 norm return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)
mit
pyrrho314/recipesystem
trunk/gempy/scripts/zp_histogram.py
1
3432
#!/usr/bin/env python # This tool plots some useful plots for seeing what's going on with zeropoint # estimates from the QAP. # # This was developed as a quick analysis tool to asess QAP ZP and CC numbers # and to understand comparisons with certain people's skygazing results, but I'm sure # it would be useful for the DA/SOSs. # It can be run on any file with a sextractor style OBJCAT in it, for example # the _forStack files output by the QAP. If no REFCAT is present, it bails out as no refmags # # Paul Hirst 20120321 import math import sys from astrodata import AstroData import numpy as np import matplotlib.pyplot as plt from random import random filename = sys.argv[1] ad = AstroData(filename) objcat = ad['OBJCAT'] if (ad['REFCAT'] is None): print "No Reference Catalog in this file, thus no Zeropoints. Sorry" sys.exit(0) mag = objcat.data.field("MAG_AUTO") magerr = objcat.data.field("MAGERR_AUTO") refmag = objcat.data.field("REF_MAG") refmagerr = objcat.data.field("REF_MAG_ERR") sxflag = objcat.data.field("FLAGS") dqflag = objcat.data.field("IMAFLAGS_ISO") # set mag to None where we don't want to use the object mag = np.where((mag==-999), None, mag) mag = np.where((mag==99), None, mag) mag = np.where((refmag==-999), None, mag) mag = np.where((np.isnan(refmag)), None, mag) mag = np.where((sxflag==0), mag, None) mag = np.where((dqflag==0), mag, None) # Now ditch the values out of the arrays where mag is None # NB do mag last magerr = magerr[np.flatnonzero(mag)] refmag = refmag[np.flatnonzero(mag)] refmagerr = refmagerr[np.flatnonzero(mag)] mag = mag[np.flatnonzero(mag)] if(len(mag) == 0): print "No good sources to plot" sys.exit(1) # Now apply the exposure time and nom_at_ext corrections to mag et = float(ad.exposure_time()) if(ad.is_type('GMOS_NODANDSHUFFLE')): print "Imaging Nod-And-Shuffle. Photometry may be dubious" et /= 2.0 etmag = 2.5*math.log10(et) nom_at_ext = float(ad.nominal_atmospheric_extinction()) mag += etmag mag += nom_at_ext # Can now calculate the zp array zp = refmag - mag zperr = np.sqrt(refmagerr*refmagerr + magerr*magerr) # Trim values out of zp where the zeropoint error is > 0.1 zp_trim = np.where((zperr<0.1), zp, None) zperr_trim = zperr[np.flatnonzero(zp_trim)] refmag_trim = refmag[np.flatnonzero(zp_trim)] refmagerr_trim = refmagerr[np.flatnonzero(zp_trim)] zp_trim = zp[np.flatnonzero(zp_trim)] nzp = float(ad.nominal_photometric_zeropoint()) plt.figure(1) # Plot the mag-mag plot plt.subplot(2,2,1) plt.scatter(refmag, mag) plt.errorbar(refmag, mag, xerr=refmagerr, yerr=magerr, fmt=None) plt.xlabel('Reference Magnitude') plt.ylabel('Instrumental Magnitdute') # Plot the mag - zp plot plt.subplot(2,2,2) plt.scatter(refmag, zp) plt.errorbar(refmag, zp, xerr=refmagerr, yerr=zperr, fmt=None) plt.scatter(refmag_trim, zp_trim, color='g') plt.errorbar(refmag_trim, zp_trim, xerr=refmagerr_trim, yerr=zperr_trim, c='g', fmt=None) plt.axhline(y=nzp) plt.xlabel('Reference Magnitude') plt.ylabel('Zeropoint') # Plot the zp histogram plt.subplot(2,2,3) plt.hist(zp, bins=40) plt.hist(zp_trim, bins=40, range=(zp.min(), zp.max())) plt.axvline(x=nzp) plt.xlabel('Zeropoint') plt.ylabel('Number') # Now plot in CC extinction space zp -= nzp zp_trim -= nzp zp *=-1 zp_trim *= -1 plt.subplot(2,2,4) plt.hist(zp, bins=40) plt.hist(zp_trim, bins=40, range=(zp.min(), zp.max())) plt.xlabel('Cloud Extinction') plt.ylabel('Number') plt.show()
mpl-2.0
pprett/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
lmcinnes/hdbscan
hdbscan/plots.py
1
32608
# -*- coding: utf-8 -*- # Author: Leland McInnes <[email protected]> # # License: BSD 3 clause import numpy as np from scipy.cluster.hierarchy import dendrogram from sklearn.manifold import TSNE from sklearn.decomposition import PCA from sklearn.metrics import pairwise_distances from warnings import warn from ._hdbscan_tree import compute_stability, labelling_at_cut CB_LEFT = 0 CB_RIGHT = 1 CB_BOTTOM = 2 CB_TOP = 3 def _bfs_from_cluster_tree(tree, bfs_root): """ Perform a breadth first search on a tree in condensed tree format """ result = [] to_process = [bfs_root] while to_process: result.extend(to_process) to_process = tree['child'][np.in1d(tree['parent'], to_process)].tolist() return result def _recurse_leaf_dfs(cluster_tree, current_node): children = cluster_tree[cluster_tree['parent'] == current_node]['child'] if len(children) == 0: return [current_node,] else: return sum([_recurse_leaf_dfs(cluster_tree, child) for child in children], []) def _get_leaves(condensed_tree): cluster_tree = condensed_tree[condensed_tree['child_size'] > 1] root = cluster_tree['parent'].min() return _recurse_leaf_dfs(cluster_tree, root) class CondensedTree(object): """The condensed tree structure, which provides a simplified or smoothed version of the :class:`~hdbscan.plots.SingleLinkageTree`. Parameters ---------- condensed_tree_array : numpy recarray from :class:`~hdbscan.HDBSCAN` The raw numpy rec array version of the condensed tree as produced internally by hdbscan. cluster_selection_method : string, optional (default 'eom') The method of selecting clusters. One of 'eom' or 'leaf' """ def __init__(self, condensed_tree_array, cluster_selection_method='eom'): self._raw_tree = condensed_tree_array self.cluster_selection_method = cluster_selection_method def get_plot_data(self, leaf_separation=1, log_size=False, max_rectangle_per_icicle=20): """Generates data for use in plotting the 'icicle plot' or dendrogram plot of the condensed tree generated by HDBSCAN. Parameters ---------- leaf_separation : float, optional How far apart to space the final leaves of the dendrogram. (default 1) log_size : boolean, optional Use log scale for the 'size' of clusters (i.e. number of points in the cluster at a given lambda value). (default False) max_rectangles_per_icicle : int, optional To simplify the plot this method will only emit ``max_rectangles_per_icicle`` bars per branch of the dendrogram. This ensures that we don't suffer from massive overplotting in cases with a lot of data points. Returns ------- plot_data : dict Data associated to bars in a bar plot: `bar_centers` x coordinate centers for bars `bar_tops` heights of bars in lambda scale `bar_bottoms` y coordinate of bottoms of bars `bar_widths` widths of the bars (in x coord scale) `bar_bounds` a 4-tuple of [left, right, bottom, top] giving the bounds on a full set of cluster bars Data associates with cluster splits: `line_xs` x coordinates for horizontal dendrogram lines `line_ys` y coordinates for horizontal dendrogram lines """ leaves = _get_leaves(self._raw_tree) last_leaf = self._raw_tree['parent'].max() root = self._raw_tree['parent'].min() # We want to get the x and y coordinates for the start of each cluster # Initialize the leaves, since we know where they go, the iterate # through everything from the leaves back, setting coords as we go cluster_x_coords = dict(zip(leaves, [leaf_separation * x for x in range(len(leaves))])) cluster_y_coords = {root: 0.0} for cluster in range(last_leaf, root - 1, -1): split = self._raw_tree[['child', 'lambda_val']] split = split[(self._raw_tree['parent'] == cluster) & (self._raw_tree['child_size'] > 1)] if len(split['child']) > 1: left_child, right_child = split['child'] cluster_x_coords[cluster] = np.mean([cluster_x_coords[left_child], cluster_x_coords[right_child]]) cluster_y_coords[left_child] = split['lambda_val'][0] cluster_y_coords[right_child] = split['lambda_val'][1] # We use bars to plot the 'icicles', so we need to generate centers, tops, # bottoms and widths for each rectangle. We can go through each cluster # and do this for each in turn. bar_centers = [] bar_tops = [] bar_bottoms = [] bar_widths = [] cluster_bounds = {} scaling = np.sum(self._raw_tree[self._raw_tree['parent'] == root]['child_size']) if log_size: scaling = np.log(scaling) for c in range(last_leaf, root - 1, -1): cluster_bounds[c] = [0, 0, 0, 0] c_children = self._raw_tree[self._raw_tree['parent'] == c] current_size = np.sum(c_children['child_size']) current_lambda = cluster_y_coords[c] cluster_max_size = current_size cluster_max_lambda = c_children['lambda_val'].max() cluster_min_size = np.sum( c_children[c_children['lambda_val'] == cluster_max_lambda]['child_size']) if log_size: current_size = np.log(current_size) cluster_max_size = np.log(cluster_max_size) cluster_min_size = np.log(cluster_min_size) total_size_change = float(cluster_max_size - cluster_min_size) step_size_change = total_size_change / max_rectangle_per_icicle cluster_bounds[c][CB_LEFT] = cluster_x_coords[c] * scaling - (current_size / 2.0) cluster_bounds[c][CB_RIGHT] = cluster_x_coords[c] * scaling + (current_size / 2.0) cluster_bounds[c][CB_BOTTOM] = cluster_y_coords[c] cluster_bounds[c][CB_TOP] = np.max(c_children['lambda_val']) last_step_size = current_size last_step_lambda = current_lambda for i in np.argsort(c_children['lambda_val']): row = c_children[i] if row['lambda_val'] != current_lambda and \ (last_step_size - current_size > step_size_change or row['lambda_val'] == cluster_max_lambda): bar_centers.append(cluster_x_coords[c] * scaling) bar_tops.append(row['lambda_val'] - last_step_lambda) bar_bottoms.append(last_step_lambda) bar_widths.append(last_step_size) last_step_size = current_size last_step_lambda = current_lambda if log_size: exp_size = np.exp(current_size) - row['child_size'] # Ensure we don't try to take log of zero if exp_size > 0.01: current_size = np.log(np.exp(current_size) - row['child_size']) else: current_size = 0.0 else: current_size -= row['child_size'] current_lambda = row['lambda_val'] # Finally we need the horizontal lines that occur at cluster splits. line_xs = [] line_ys = [] for row in self._raw_tree[self._raw_tree['child_size'] > 1]: parent = row['parent'] child = row['child'] child_size = row['child_size'] if log_size: child_size = np.log(child_size) sign = np.sign(cluster_x_coords[child] - cluster_x_coords[parent]) line_xs.append([ cluster_x_coords[parent] * scaling, cluster_x_coords[child] * scaling + sign * (child_size / 2.0) ]) line_ys.append([ cluster_y_coords[child], cluster_y_coords[child] ]) return { 'bar_centers': bar_centers, 'bar_tops': bar_tops, 'bar_bottoms': bar_bottoms, 'bar_widths': bar_widths, 'line_xs': line_xs, 'line_ys': line_ys, 'cluster_bounds': cluster_bounds } def _select_clusters(self): if self.cluster_selection_method == 'eom': stability = compute_stability(self._raw_tree) node_list = sorted(stability.keys(), reverse=True)[:-1] cluster_tree = self._raw_tree[self._raw_tree['child_size'] > 1] is_cluster = {cluster: True for cluster in node_list} for node in node_list: child_selection = (cluster_tree['parent'] == node) subtree_stability = np.sum([stability[child] for child in cluster_tree['child'][child_selection]]) if subtree_stability > stability[node]: is_cluster[node] = False stability[node] = subtree_stability else: for sub_node in _bfs_from_cluster_tree(cluster_tree, node): if sub_node != node: is_cluster[sub_node] = False return [cluster for cluster in is_cluster if is_cluster[cluster]] elif self.cluster_selection_method == 'leaf': return _get_leaves(self._raw_tree) else: raise ValueError('Invalid Cluster Selection Method: %s\n' 'Should be one of: "eom", "leaf"\n') def plot(self, leaf_separation=1, cmap='viridis', select_clusters=False, label_clusters=False, selection_palette=None, axis=None, colorbar=True, log_size=False, max_rectangles_per_icicle=20): """Use matplotlib to plot an 'icicle plot' dendrogram of the condensed tree. Effectively this is a dendrogram where the width of each cluster bar is equal to the number of points (or log of the number of points) in the cluster at the given lambda value. Thus bars narrow as points progressively drop out of clusters. The make the effect more apparent the bars are also colored according the the number of points (or log of the number of points). Parameters ---------- leaf_separation : float, optional (default 1) How far apart to space the final leaves of the dendrogram. cmap : string or matplotlib colormap, optional (default viridis) The matplotlib colormap to use to color the cluster bars. select_clusters : boolean, optional (default False) Whether to draw ovals highlighting which cluster bar represent the clusters that were selected by HDBSCAN as the final clusters. label_clusters : boolean, optional (default False) If select_clusters is True then this determines whether to draw text labels on the clusters. selection_palette : list of colors, optional (default None) If not None, and at least as long as the number of clusters, draw ovals in colors iterating through this palette. This can aid in cluster identification when plotting. axis : matplotlib axis or None, optional (default None) The matplotlib axis to render to. If None then a new axis will be generated. The rendered axis will be returned. colorbar : boolean, optional (default True) Whether to draw a matplotlib colorbar displaying the range of cluster sizes as per the colormap. log_size : boolean, optional (default False) Use log scale for the 'size' of clusters (i.e. number of points in the cluster at a given lambda value). max_rectangles_per_icicle : int, optional (default 20) To simplify the plot this method will only emit ``max_rectangles_per_icicle`` bars per branch of the dendrogram. This ensures that we don't suffer from massive overplotting in cases with a lot of data points. Returns ------- axis : matplotlib axis The axis on which the 'icicle plot' has been rendered. """ try: import matplotlib.pyplot as plt except ImportError: raise ImportError( 'You must install the matplotlib library to plot the condensed tree.' 'Use get_plot_data to calculate the relevant data without plotting.') plot_data = self.get_plot_data(leaf_separation=leaf_separation, log_size=log_size, max_rectangle_per_icicle=max_rectangles_per_icicle) if cmap != 'none': sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(0, max(plot_data['bar_widths']))) sm.set_array(plot_data['bar_widths']) bar_colors = [sm.to_rgba(x) for x in plot_data['bar_widths']] else: bar_colors = 'black' if axis is None: axis = plt.gca() axis.bar( plot_data['bar_centers'], plot_data['bar_tops'], bottom=plot_data['bar_bottoms'], width=plot_data['bar_widths'], color=bar_colors, align='center', linewidth=0 ) for xs, ys in zip(plot_data['line_xs'], plot_data['line_ys']): axis.plot(xs, ys, color='black', linewidth=1) if select_clusters: try: from matplotlib.patches import Ellipse except ImportError: raise ImportError('You must have matplotlib.patches available to plot selected clusters.') chosen_clusters = self._select_clusters() for i, c in enumerate(chosen_clusters): c_bounds = plot_data['cluster_bounds'][c] width = (c_bounds[CB_RIGHT] - c_bounds[CB_LEFT]) height = (c_bounds[CB_TOP] - c_bounds[CB_BOTTOM]) center = ( np.mean([c_bounds[CB_LEFT], c_bounds[CB_RIGHT]]), np.mean([c_bounds[CB_TOP], c_bounds[CB_BOTTOM]]), ) if selection_palette is not None and \ len(selection_palette) >= len(chosen_clusters): oval_color = selection_palette[i] else: oval_color = 'r' box = Ellipse( center, 2.0 * width, 1.2 * height, facecolor='none', edgecolor=oval_color, linewidth=2 ) if label_clusters: axis.annotate(str(i), xy=center, xytext=(center[0] - 4.0 * width, center[1] + 0.65 * height), horizontalalignment='left', verticalalignment='bottom') axis.add_artist(box) if colorbar: cb = plt.colorbar(sm) if log_size: cb.ax.set_ylabel('log(Number of points)') else: cb.ax.set_ylabel('Number of points') axis.set_xticks([]) for side in ('right', 'top', 'bottom'): axis.spines[side].set_visible(False) axis.invert_yaxis() axis.set_ylabel('$\lambda$ value') return axis def to_numpy(self): """Return a numpy structured array representation of the condensed tree. """ return self._raw_tree.copy() def to_pandas(self): """Return a pandas dataframe representation of the condensed tree. Each row of the dataframe corresponds to an edge in the tree. The columns of the dataframe are `parent`, `child`, `lambda_val` and `child_size`. The `parent` and `child` are the ids of the parent and child nodes in the tree. Node ids less than the number of points in the original dataset represent individual points, while ids greater than the number of points are clusters. The `lambda_val` value is the value (1/distance) at which the `child` node leaves the cluster. The `child_size` is the number of points in the `child` node. """ try: from pandas import DataFrame, Series except ImportError: raise ImportError('You must have pandas installed to export pandas DataFrames') result = DataFrame(self._raw_tree) return result def to_networkx(self): """Return a NetworkX DiGraph object representing the condensed tree. Edge weights in the graph are the lamba values at which child nodes 'leave' the parent cluster. Nodes have a `size` attribute attached giving the number of points that are in the cluster (or 1 if it is a singleton point) at the point of cluster creation (fewer points may be in the cluster at larger lambda values). """ try: from networkx import DiGraph, set_node_attributes except ImportError: raise ImportError('You must have networkx installed to export networkx graphs') result = DiGraph() for row in self._raw_tree: result.add_edge(row['parent'], row['child'], weight=row['lambda_val']) set_node_attributes(result, 'size', dict(self._raw_tree[['child', 'child_size']])) return result def _line_width(y, linkage): if y == 0.0: return 1.0 else: return linkage[linkage.T[2] == y][0, 3] class SingleLinkageTree(object): """A single linkage format dendrogram tree, with plotting functionality and networkX support. Parameters ---------- linkage : ndarray (n_samples, 4) The numpy array that holds the tree structure. As output by scipy.cluster.hierarchy, hdbscan, of fastcluster. """ def __init__(self, linkage): self._linkage = linkage def plot(self, axis=None, truncate_mode=None, p=0, vary_line_width=True, cmap='viridis', colorbar=True): """Plot a dendrogram of the single linkage tree. Parameters ---------- truncate_mode : str, optional The dendrogram can be hard to read when the original observation matrix from which the linkage is derived is large. Truncation is used to condense the dendrogram. There are several modes: ``None/'none'`` No truncation is performed (Default). ``'lastp'`` The last p non-singleton formed in the linkage are the only non-leaf nodes in the linkage; they correspond to rows Z[n-p-2:end] in Z. All other non-singleton clusters are contracted into leaf nodes. ``'level'/'mtica'`` No more than p levels of the dendrogram tree are displayed. This corresponds to Mathematica(TM) behavior. p : int, optional The ``p`` parameter for ``truncate_mode``. vary_line_width : boolean, optional Draw downward branches of the dendrogram with line thickness that varies depending on the size of the cluster. cmap : string or matplotlib colormap, optional The matplotlib colormap to use to color the cluster bars. A value of 'none' will result in black bars. (default 'viridis') colorbar : boolean, optional Whether to draw a matplotlib colorbar displaying the range of cluster sizes as per the colormap. (default True) Returns ------- axis : matplotlib axis The axis on which the dendrogram plot has been rendered. """ dendrogram_data = dendrogram(self._linkage, p=p, truncate_mode=truncate_mode, no_plot=True) X = dendrogram_data['icoord'] Y = dendrogram_data['dcoord'] try: import matplotlib.pyplot as plt except ImportError: raise ImportError('You must install the matplotlib library to plot the single linkage tree.') if axis is None: axis = plt.gca() if vary_line_width: linewidths = [(_line_width(y[0], self._linkage), _line_width(y[1], self._linkage)) for y in Y] else: linewidths = [(1.0, 1.0)] * len(Y) if cmap != 'none': color_array = np.log2(np.array(linewidths).flatten()) sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(0, color_array.max())) sm.set_array(color_array) for x, y, lw in zip(X, Y, linewidths): left_x = x[:2] right_x = x[2:] left_y = y[:2] right_y = y[2:] horizontal_x = x[1:3] horizontal_y = y[1:3] if cmap != 'none': axis.plot(left_x, left_y, color=sm.to_rgba(np.log2(lw[0])), linewidth=np.log2(1 + lw[0]), solid_joinstyle='miter', solid_capstyle='butt') axis.plot(right_x, right_y, color=sm.to_rgba(np.log2(lw[1])), linewidth=np.log2(1 + lw[1]), solid_joinstyle='miter', solid_capstyle='butt') else: axis.plot(left_x, left_y, color='k', linewidth=np.log2(1 + lw[0]), solid_joinstyle='miter', solid_capstyle='butt') axis.plot(right_x, right_y, color='k', linewidth=np.log2(1 + lw[1]), solid_joinstyle='miter', solid_capstyle='butt') axis.plot(horizontal_x, horizontal_y, color='k', linewidth=1.0, solid_joinstyle='miter', solid_capstyle='butt') if colorbar: cb = plt.colorbar(sm) cb.ax.set_ylabel('log(Number of points)') axis.set_xticks([]) for side in ('right', 'top', 'bottom'): axis.spines[side].set_visible(False) axis.set_ylabel('distance') return axis def to_numpy(self): """Return a numpy array representation of the single linkage tree. This representation conforms to the scipy.cluster.hierarchy notion of a single linkage tree, and can be used with all the associated scipy tools. Please see the scipy documentation for more details on the format. """ return self._linkage.copy() def to_pandas(self): """Return a pandas dataframe representation of the single linkage tree. Each row of the dataframe corresponds to an edge in the tree. The columns of the dataframe are `parent`, `left_child`, `right_child`, `distance` and `size`. The `parent`, `left_child` and `right_child` are the ids of the parent and child nodes in the tree. Node ids less than the number of points in the original dataset represent individual points, while ids greater than the number of points are clusters. The `distance` value is the at which the child nodes merge to form the parent node. The `size` is the number of points in the `parent` node. """ try: from pandas import DataFrame, Series except ImportError: raise ImportError('You must have pandas installed to export pandas DataFrames') max_node = 2 * self._linkage.shape[0] num_points = max_node - (self._linkage.shape[0] - 1) parent_array = np.arange(num_points, max_node + 1) result = DataFrame({ 'parent': parent_array, 'left_child': self._linkage.T[0], 'right_child': self._linkage.T[1], 'distance': self._linkage.T[2], 'size': self._linkage.T[3] })[['parent', 'left_child', 'right_child', 'distance', 'size']] return result def to_networkx(self): """Return a NetworkX DiGraph object representing the single linkage tree. Edge weights in the graph are the distance values at which child nodes merge to form the parent cluster. Nodes have a `size` attribute attached giving the number of points that are in the cluster. """ try: from networkx import DiGraph, set_node_attributes except ImportError: raise ImportError('You must have networkx installed to export networkx graphs') max_node = 2 * self._linkage.shape[0] num_points = max_node - (self._linkage.shape[0] - 1) result = DiGraph() for parent, row in enumerate(self._linkage, num_points): result.add_edge(parent, row[0], weight=row[2]) result.add_edge(parent, row[1], weight=row[2]) size_dict = {parent: row[3] for parent, row in enumerate(self._linkage, num_points)} set_node_attributes(result, 'size', size_dict) return result def get_clusters(self, cut_distance, min_cluster_size=5): """Return a flat clustering from the single linkage hierarchy. This represents the result of selecting a cut value for robust single linkage clustering. The `min_cluster_size` allows the flat clustering to declare noise points (and cluster smaller than `min_cluster_size`). Parameters ---------- cut_distance : float The mutual reachability distance cut value to use to generate a flat clustering. min_cluster_size : int, optional Clusters smaller than this value with be called 'noise' and remain unclustered in the resulting flat clustering. Returns ------- labels : array [n_samples] An array of cluster labels, one per datapoint. Unclustered points are assigned the label -1. """ return labelling_at_cut(self._linkage, cut_distance, min_cluster_size) class MinimumSpanningTree(object): def __init__(self, mst, data): self._mst = mst self._data = data def plot(self, axis=None, node_size=40, node_color='k', node_alpha=0.8, edge_alpha=0.5, edge_cmap='viridis_r', edge_linewidth=2, vary_line_width=True, colorbar=True): """Plot the minimum spanning tree (as projected into 2D by t-SNE if required). Parameters ---------- axis : matplotlib axis, optional The axis to render the plot to node_size : int, optional The size of nodes in the plot (default 40). node_color : matplotlib color spec, optional The color to render nodes (default black). node_alpha : float, optional The alpha value (between 0 and 1) to render nodes with (default 0.8). edge_cmap : matplotlib colormap, optional The colormap to color edges by (varying color by edge weight/distance). Can be a cmap object or a string recognised by matplotlib. (default `viridis_r`) edge_alpha : float, optional The alpha value (between 0 and 1) to render edges with (default 0.5). edge_linewidth : float, optional The linewidth to use for rendering edges (default 2). vary_line_width : bool, optional Edge width is proportional to (log of) the inverse of the mutual reachability distance. (default True) colorbar : bool, optional Whether to draw a colorbar. (default True) Returns ------- axis : matplotlib axis The axis used the render the plot. """ try: import matplotlib.pyplot as plt from matplotlib.collections import LineCollection except ImportError: raise ImportError('You must install the matplotlib library to plot the minimum spanning tree.') if self._data.shape[0] > 32767: warn('Too many data points for safe rendering of an minimal spanning tree!') return None if axis is None: axis = plt.gca() if self._data.shape[1] > 2: # Get a 2D projection; if we have a lot of dimensions use PCA first if self._data.shape[1] > 32: # Use PCA to get down to 32 dimension data_for_projection = PCA(n_components=32).fit_transform(self._data) else: data_for_projection = self._data.copy() projection = TSNE().fit_transform(data_for_projection) else: projection = self._data.copy() if vary_line_width: line_width = edge_linewidth * (np.log(self._mst.T[2].max() / self._mst.T[2]) + 1.0) else: line_width = edge_linewidth line_coords = projection[self._mst[:, :2].astype(int)] line_collection = LineCollection(line_coords, linewidth=line_width, cmap=edge_cmap, alpha=edge_alpha) line_collection.set_array(self._mst[:, 2].T) axis.add_artist(line_collection) axis.scatter(projection.T[0], projection.T[1], c=node_color, alpha=node_alpha, s=node_size) axis.set_xticks([]) axis.set_yticks([]) if colorbar: cb = plt.colorbar(line_collection) cb.ax.set_ylabel('Mutual reachability distance') return axis def to_numpy(self): """Return a numpy array of weighted edges in the minimum spanning tree """ return self._mst.copy() def to_pandas(self): """Return a Pandas dataframe of the minimum spanning tree. Each row is an edge in the tree; the columns are `from`, `to`, and `distance` giving the two vertices of the edge which are indices into the dataset, and the distance between those datapoints. """ try: from pandas import DataFrame except ImportError: raise ImportError('You must have pandas installed to export pandas DataFrames') result = DataFrame({'from': self._mst.T[0].astype(int), 'to': self._mst.T[1].astype(int), 'distance': self._mst.T[2]}) return result def to_networkx(self): """Return a NetworkX Graph object representing the minimum spanning tree. Edge weights in the graph are the distance between the nodes they connect. Nodes have a `data` attribute attached giving the data vector of the associated point. """ try: from networkx import Graph, set_node_attributes except ImportError: raise ImportError('You must have networkx installed to export networkx graphs') result = Graph() for row in self._mst: result.add_edge(row[0], row[1], weight=row[2]) data_dict = {index: tuple(row) for index, row in enumerate(self._data)} set_node_attributes(result, 'data', data_dict) return result
bsd-3-clause
idekerlab/graph-services
services/ig_community/service/test/myservice.py
1
1621
import cxmate import logging import seaborn as sns from Adapter import IgraphAdapter from handlers import CommunityDetectionHandlers logging.basicConfig(level=logging.DEBUG) # Label for CXmate output OUTPUT_LABEL = 'out_net' # Community detection algorithm name ALGORITHM_TYPE = 'type' # Palette name PALETTE_NAME = 'palette' class IgCommunityDetectionService(cxmate.Service): """ CI service for detecting communities in the given network data """ def __init__(self): self.__handlers = CommunityDetectionHandlers() def process(self, params, input_stream): logging.debug(params) algorithm_type = params[ALGORITHM_TYPE] del params[ALGORITHM_TYPE] palette = params[PALETTE_NAME] del params[PALETTE_NAME] # Set color palette sns.set_palette(palette=palette) # Replace string None to Python None data type for k, v in params.items(): if v == str(None): params[k] = None # Convert to igraph objects ig_networks = IgraphAdapter.to_igraph(input_stream) for net in ig_networks: net['label'] = OUTPUT_LABEL # Get the community detection function by name of the algorithm handler = self.__handlers.get_handler(algorithm_type) # Call the function to detect community handler(net, **params) return IgraphAdapter.from_igraph(ig_networks) if __name__ == "__main__": analyzer = IgCommunityDetectionService() logging.info('Starting igraph community detection service...') analyzer.run()
mit