|
--- |
|
license: mit |
|
base_model: ai-forever/ruElectra-medium |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: rubert-electra-srl |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# rubert-electra-srl |
|
|
|
This model is a fine-tuned version of [ai-forever/ruElectra-medium](https://huggingface.co/ai-forever/ruElectra-medium) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0448 |
|
- Addressee Precision: 0.9583 |
|
- Addressee Recall: 1.0 |
|
- Addressee F1: 0.9787 |
|
- Addressee Number: 23 |
|
- Benefactive Precision: 0.0 |
|
- Benefactive Recall: 0.0 |
|
- Benefactive F1: 0.0 |
|
- Benefactive Number: 2 |
|
- Causator Precision: 0.9773 |
|
- Causator Recall: 0.9773 |
|
- Causator F1: 0.9773 |
|
- Causator Number: 44 |
|
- Cause Precision: 0.9259 |
|
- Cause Recall: 0.7143 |
|
- Cause F1: 0.8065 |
|
- Cause Number: 35 |
|
- Contrsubject Precision: 1.0 |
|
- Contrsubject Recall: 0.9429 |
|
- Contrsubject F1: 0.9706 |
|
- Contrsubject Number: 35 |
|
- Deliberative Precision: 0.9231 |
|
- Deliberative Recall: 1.0 |
|
- Deliberative F1: 0.9600 |
|
- Deliberative Number: 24 |
|
- Destinative Precision: 1.0 |
|
- Destinative Recall: 1.0 |
|
- Destinative F1: 1.0 |
|
- Destinative Number: 7 |
|
- Directivefinal Precision: 1.0 |
|
- Directivefinal Recall: 1.0 |
|
- Directivefinal F1: 1.0 |
|
- Directivefinal Number: 1 |
|
- Experiencer Precision: 0.9030 |
|
- Experiencer Recall: 0.9441 |
|
- Experiencer F1: 0.9231 |
|
- Experiencer Number: 286 |
|
- Instrument Precision: 0.9 |
|
- Instrument Recall: 0.9 |
|
- Instrument F1: 0.9 |
|
- Instrument Number: 10 |
|
- Object Precision: 0.9484 |
|
- Object Recall: 0.9519 |
|
- Object F1: 0.9502 |
|
- Object Number: 541 |
|
- Overall Precision: 0.9369 |
|
- Overall Recall: 0.9425 |
|
- Overall F1: 0.9397 |
|
- Overall Accuracy: 0.9883 |
|
- Limitative F1: 0.0 |
|
- Limitative Number: 0.0 |
|
- Limitative Precision: 0.0 |
|
- Limitative Recall: 0.0 |
|
- Directiveinitial F1: 0.0 |
|
- Directiveinitial Number: 0.0 |
|
- Directiveinitial Precision: 0.0 |
|
- Directiveinitial Recall: 0.0 |
|
- Mediative F1: 0.0 |
|
- Mediative Number: 0.0 |
|
- Mediative Precision: 0.0 |
|
- Mediative Recall: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00016666401556632117 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 708526 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.21 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Addressee Precision | Addressee Recall | Addressee F1 | Addressee Number | Benefactive Precision | Benefactive Recall | Benefactive F1 | Benefactive Number | Causator Precision | Causator Recall | Causator F1 | Causator Number | Cause Precision | Cause Recall | Cause F1 | Cause Number | Contrsubject Precision | Contrsubject Recall | Contrsubject F1 | Contrsubject Number | Deliberative Precision | Deliberative Recall | Deliberative F1 | Deliberative Number | Destinative Precision | Destinative Recall | Destinative F1 | Destinative Number | Directivefinal Precision | Directivefinal Recall | Directivefinal F1 | Directivefinal Number | Experiencer Precision | Experiencer Recall | Experiencer F1 | Experiencer Number | Instrument Precision | Instrument Recall | Instrument F1 | Instrument Number | Object Precision | Object Recall | Object F1 | Object Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Limitative F1 | Limitative Number | Limitative Precision | Limitative Recall | Directiveinitial F1 | Directiveinitial Number | Directiveinitial Precision | Directiveinitial Recall | Mediative F1 | Mediative Number | Mediative Precision | Mediative Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|:-------------:|:-----------------:|:--------------------:|:-----------------:|:-------------------:|:-----------------------:|:--------------------------:|:-----------------------:|:------------:|:----------------:|:-------------------:|:----------------:| |
|
| 0.1548 | 1.0 | 1471 | 0.1755 | 0.6667 | 0.5217 | 0.5854 | 23 | 0.0 | 0.0 | 0.0 | 2 | 0.5714 | 0.8182 | 0.6729 | 44 | 0.5217 | 0.3429 | 0.4138 | 35 | 0.4103 | 0.4571 | 0.4324 | 35 | 0.0 | 0.0 | 0.0 | 24 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 1 | 0.8645 | 0.8252 | 0.8444 | 286 | 0.0 | 0.0 | 0.0 | 10 | 0.7711 | 0.8965 | 0.8291 | 541 | 0.7627 | 0.7907 | 0.7764 | 0.9582 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.1209 | 2.0 | 2942 | 0.0797 | 0.9130 | 0.9130 | 0.9130 | 23 | 0.0 | 0.0 | 0.0 | 2 | 0.9348 | 0.9773 | 0.9556 | 44 | 0.8462 | 0.6286 | 0.7213 | 35 | 0.8889 | 0.9143 | 0.9014 | 35 | 0.75 | 0.875 | 0.8077 | 24 | 1.0 | 0.4286 | 0.6 | 7 | 0.0 | 0.0 | 0.0 | 1 | 0.8993 | 0.8741 | 0.8865 | 286 | 0.875 | 0.7 | 0.7778 | 10 | 0.9336 | 0.9094 | 0.9213 | 541 | 0.9138 | 0.8839 | 0.8986 | 0.9808 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.0559 | 3.0 | 4413 | 0.0448 | 0.9583 | 1.0 | 0.9787 | 23 | 0.0 | 0.0 | 0.0 | 2 | 0.9773 | 0.9773 | 0.9773 | 44 | 0.9259 | 0.7143 | 0.8065 | 35 | 1.0 | 0.9429 | 0.9706 | 35 | 0.9231 | 1.0 | 0.9600 | 24 | 1.0 | 1.0 | 1.0 | 7 | 1.0 | 1.0 | 1.0 | 1 | 0.9030 | 0.9441 | 0.9231 | 286 | 0.9 | 0.9 | 0.9 | 10 | 0.9484 | 0.9519 | 0.9502 | 541 | 0.9369 | 0.9425 | 0.9397 | 0.9883 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|