|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: turcoins-classifier |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: hsyntemiz--turcoins |
|
split: test |
|
args: hsyntemiz--turcoins |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9548611111111112 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# turcoins-classifier |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1763 |
|
- Accuracy: 0.9549 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.9277 | 1.0 | 146 | 1.9660 | 0.7726 | |
|
| 1.6627 | 2.0 | 292 | 1.7154 | 0.7917 | |
|
| 1.4071 | 2.99 | 438 | 1.4120 | 0.8079 | |
|
| 1.09 | 4.0 | 585 | 1.1225 | 0.8362 | |
|
| 0.8086 | 5.0 | 731 | 0.8917 | 0.8675 | |
|
| 0.7636 | 6.0 | 877 | 0.7596 | 0.8709 | |
|
| 0.611 | 6.99 | 1023 | 0.6493 | 0.8883 | |
|
| 0.4605 | 8.0 | 1170 | 0.5899 | 0.8872 | |
|
| 0.37 | 9.0 | 1316 | 0.4978 | 0.9045 | |
|
| 0.3882 | 10.0 | 1462 | 0.4424 | 0.9132 | |
|
| 0.3139 | 10.99 | 1608 | 0.3969 | 0.9115 | |
|
| 0.3178 | 12.0 | 1755 | 0.3525 | 0.9294 | |
|
| 0.2796 | 13.0 | 1901 | 0.3552 | 0.9161 | |
|
| 0.2571 | 14.0 | 2047 | 0.3189 | 0.9265 | |
|
| 0.2481 | 14.99 | 2193 | 0.2945 | 0.9358 | |
|
| 0.1875 | 16.0 | 2340 | 0.2647 | 0.9392 | |
|
| 0.1861 | 17.0 | 2486 | 0.2404 | 0.9410 | |
|
| 0.1839 | 18.0 | 2632 | 0.2556 | 0.9421 | |
|
| 0.173 | 18.99 | 2778 | 0.2387 | 0.9462 | |
|
| 0.1837 | 20.0 | 2925 | 0.2049 | 0.9485 | |
|
| 0.1724 | 21.0 | 3071 | 0.2065 | 0.9525 | |
|
| 0.1399 | 22.0 | 3217 | 0.2089 | 0.9404 | |
|
| 0.1696 | 22.99 | 3363 | 0.1957 | 0.9497 | |
|
| 0.1405 | 24.0 | 3510 | 0.1848 | 0.9554 | |
|
| 0.1009 | 25.0 | 3656 | 0.1912 | 0.9520 | |
|
| 0.1126 | 26.0 | 3802 | 0.1717 | 0.9560 | |
|
| 0.1336 | 26.99 | 3948 | 0.1699 | 0.9589 | |
|
| 0.1046 | 28.0 | 4095 | 0.1600 | 0.9601 | |
|
| 0.126 | 29.0 | 4241 | 0.1839 | 0.9520 | |
|
| 0.0882 | 29.95 | 4380 | 0.1763 | 0.9549 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|