DaMedSum-large / README.md
emilstabil's picture
update model card README.md
75568bd
|
raw
history blame
2.71 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: DanSumT5-largeV_38143V_15157V_96478
    results: []

DanSumT5-largeV_38143V_15157V_96478

This model is a fine-tuned version of emilstabil/DanSumT5-largeV_38143V_15157 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9819
  • Rouge1: 35.982
  • Rouge2: 12.5438
  • Rougel: 22.7137
  • Rougelsum: 33.5334
  • Gen Len: 124.173

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 11

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 0.99 118 1.9875 35.6378 12.3785 22.4666 33.224 123.1814
No log 2.0 237 1.9991 35.9161 12.5761 22.7594 33.6048 123.5865
No log 3.0 356 1.9994 36.0651 12.7545 22.9642 33.6968 123.6203
No log 4.0 475 1.9980 35.9273 12.6691 22.818 33.609 123.4515
1.4198 4.99 593 2.0076 35.5438 12.2242 22.5019 33.237 123.7257
1.4198 6.0 712 2.0032 36.0019 12.7386 22.9014 33.7588 124.5443
1.4198 7.0 831 2.0001 35.8585 12.7149 22.8298 33.6196 124.4008
1.4198 8.0 950 1.9945 35.6975 12.4727 22.6524 33.3949 124.5316
1.4397 8.99 1068 1.9898 35.944 12.6829 22.9022 33.5212 124.1181
1.4397 10.0 1187 1.9843 36.0341 12.5681 22.7855 33.5415 124.0084
1.4397 10.93 1298 1.9819 35.982 12.5438 22.7137 33.5334 124.173

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.12.1+git7548e2f
  • Datasets 2.13.2
  • Tokenizers 0.13.3