|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: DanSumT5-largeV_38143V_15157V_96478 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# DanSumT5-largeV_38143V_15157V_96478 |
|
|
|
This model is a fine-tuned version of [emilstabil/DanSumT5-largeV_38143V_15157](https://huggingface.co/emilstabil/DanSumT5-largeV_38143V_15157) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9819 |
|
- Rouge1: 35.982 |
|
- Rouge2: 12.5438 |
|
- Rougel: 22.7137 |
|
- Rougelsum: 33.5334 |
|
- Gen Len: 124.173 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 11 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| |
|
| No log | 0.99 | 118 | 1.9875 | 35.6378 | 12.3785 | 22.4666 | 33.224 | 123.1814 | |
|
| No log | 2.0 | 237 | 1.9991 | 35.9161 | 12.5761 | 22.7594 | 33.6048 | 123.5865 | |
|
| No log | 3.0 | 356 | 1.9994 | 36.0651 | 12.7545 | 22.9642 | 33.6968 | 123.6203 | |
|
| No log | 4.0 | 475 | 1.9980 | 35.9273 | 12.6691 | 22.818 | 33.609 | 123.4515 | |
|
| 1.4198 | 4.99 | 593 | 2.0076 | 35.5438 | 12.2242 | 22.5019 | 33.237 | 123.7257 | |
|
| 1.4198 | 6.0 | 712 | 2.0032 | 36.0019 | 12.7386 | 22.9014 | 33.7588 | 124.5443 | |
|
| 1.4198 | 7.0 | 831 | 2.0001 | 35.8585 | 12.7149 | 22.8298 | 33.6196 | 124.4008 | |
|
| 1.4198 | 8.0 | 950 | 1.9945 | 35.6975 | 12.4727 | 22.6524 | 33.3949 | 124.5316 | |
|
| 1.4397 | 8.99 | 1068 | 1.9898 | 35.944 | 12.6829 | 22.9022 | 33.5212 | 124.1181 | |
|
| 1.4397 | 10.0 | 1187 | 1.9843 | 36.0341 | 12.5681 | 22.7855 | 33.5415 | 124.0084 | |
|
| 1.4397 | 10.93 | 1298 | 1.9819 | 35.982 | 12.5438 | 22.7137 | 33.5334 | 124.173 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 1.12.1+git7548e2f |
|
- Datasets 2.13.2 |
|
- Tokenizers 0.13.3 |
|
|