|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- un_multi |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: un_multi |
|
type: un_multi |
|
args: ar-en |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 53.0137 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1873 |
|
- Bleu: 53.0137 |
|
- Meteor: 0.5005 |
|
- Gen Len: 25.845 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 11 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| |
|
| 0.6585 | 0.5 | 100 | 0.2085 | 52.5874 | 0.4969 | 25.485 | |
|
| 0.1802 | 1.0 | 200 | 0.1788 | 52.9434 | 0.4982 | 25.1725 | |
|
| 0.1501 | 1.5 | 300 | 0.1683 | 53.6994 | 0.5033 | 25.625 | |
|
| 0.1454 | 2.0 | 400 | 0.1706 | 53.3946 | 0.5005 | 25.6675 | |
|
| 0.1193 | 2.5 | 500 | 0.1774 | 53.2011 | 0.4982 | 25.58 | |
|
| 0.1194 | 3.0 | 600 | 0.1741 | 53.8651 | 0.5026 | 25.5775 | |
|
| 0.1002 | 3.5 | 700 | 0.1878 | 53.1332 | 0.5005 | 25.8975 | |
|
| 0.0979 | 4.0 | 800 | 0.1881 | 52.5989 | 0.4974 | 25.485 | |
|
| 0.0807 | 4.5 | 900 | 0.1873 | 53.0137 | 0.5005 | 25.845 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|