|
--- |
|
language: |
|
- hi |
|
base_model: nurzhanit/whisper-enhanced-ml |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Hi - Sanchit Gandhi |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: default |
|
split: None |
|
args: 'config: hi, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Hi - Sanchit Gandhi |
|
|
|
This model is a fine-tuned version of [nurzhanit/whisper-enhanced-ml](https://huggingface.co/nurzhanit/whisper-enhanced-ml) on the Common Voice 11.0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Wer: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- training_steps: 4000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:--------:|:----:|:---------------:|:---:| |
|
| 0.0 | 16.6667 | 100 | 0.0000 | 0.0 | |
|
| 0.0 | 33.3333 | 200 | 0.0000 | 0.0 | |
|
| 0.0 | 50.0 | 300 | 0.0000 | 0.0 | |
|
| 0.0 | 66.6667 | 400 | 0.0000 | 0.0 | |
|
| 0.0 | 83.3333 | 500 | 0.0000 | 0.0 | |
|
| 0.0 | 100.0 | 600 | 0.0000 | 0.0 | |
|
| 0.0 | 116.6667 | 700 | 0.0000 | 0.0 | |
|
| 0.0 | 133.3333 | 800 | 0.0000 | 0.0 | |
|
| 0.0 | 150.0 | 900 | 0.0000 | 0.0 | |
|
| 0.0 | 166.6667 | 1000 | 0.0000 | 0.0 | |
|
| 0.0 | 183.3333 | 1100 | 0.0000 | 0.0 | |
|
| 0.0 | 200.0 | 1200 | 0.0000 | 0.0 | |
|
| 0.0 | 216.6667 | 1300 | 0.0000 | 0.0 | |
|
| 0.0 | 233.3333 | 1400 | 0.0000 | 0.0 | |
|
| 0.0 | 250.0 | 1500 | 0.0000 | 0.0 | |
|
| 0.0 | 266.6667 | 1600 | 0.0000 | 0.0 | |
|
| 0.0 | 283.3333 | 1700 | 0.0000 | 0.0 | |
|
| 0.0 | 300.0 | 1800 | 0.0000 | 0.0 | |
|
| 0.0 | 316.6667 | 1900 | 0.0000 | 0.0 | |
|
| 0.0 | 333.3333 | 2000 | 0.0000 | 0.0 | |
|
| 0.0 | 350.0 | 2100 | 0.0000 | 0.0 | |
|
| 0.0 | 366.6667 | 2200 | 0.0000 | 0.0 | |
|
| 0.0 | 383.3333 | 2300 | 0.0000 | 0.0 | |
|
| 0.0 | 400.0 | 2400 | 0.0000 | 0.0 | |
|
| 0.0 | 416.6667 | 2500 | 0.0000 | 0.0 | |
|
| 0.0 | 433.3333 | 2600 | 0.0000 | 0.0 | |
|
| 0.0 | 450.0 | 2700 | 0.0000 | 0.0 | |
|
| 0.0 | 466.6667 | 2800 | 0.0000 | 0.0 | |
|
| 0.0 | 483.3333 | 2900 | 0.0000 | 0.0 | |
|
| 0.0 | 500.0 | 3000 | 0.0000 | 0.0 | |
|
| 0.0 | 516.6667 | 3100 | 0.0000 | 0.0 | |
|
| 0.0 | 533.3333 | 3200 | 0.0000 | 0.0 | |
|
| 0.0 | 550.0 | 3300 | 0.0000 | 0.0 | |
|
| 0.0 | 566.6667 | 3400 | 0.0000 | 0.0 | |
|
| 0.0 | 583.3333 | 3500 | 0.0000 | 0.0 | |
|
| 0.0 | 600.0 | 3600 | 0.0000 | 0.0 | |
|
| 0.0 | 616.6667 | 3700 | 0.0000 | 0.0 | |
|
| 0.0 | 633.3333 | 3800 | 0.0000 | 0.0 | |
|
| 0.0 | 650.0 | 3900 | 0.0000 | 0.0 | |
|
| 0.0 | 666.6667 | 4000 | 0.0000 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.5.0+cu124 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.19.1 |
|
|