metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: attraction-classifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8021680216802168
attraction-classifier
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5632
- Accuracy: 0.8022
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 69
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6613 | 0.48 | 100 | 0.6067 | 0.6477 |
0.6115 | 0.97 | 200 | 0.5579 | 0.6992 |
0.5542 | 1.45 | 300 | 0.5501 | 0.7182 |
0.4758 | 1.93 | 400 | 0.5108 | 0.7534 |
0.5219 | 2.42 | 500 | 0.5122 | 0.7561 |
0.4631 | 2.9 | 600 | 0.4842 | 0.7832 |
0.3866 | 3.38 | 700 | 0.5298 | 0.7480 |
0.3704 | 3.86 | 800 | 0.4963 | 0.7453 |
0.4222 | 4.35 | 900 | 0.4832 | 0.7561 |
0.3162 | 4.83 | 1000 | 0.4807 | 0.7778 |
0.2686 | 5.31 | 1100 | 0.4949 | 0.7859 |
0.304 | 5.8 | 1200 | 0.4719 | 0.7751 |
0.2246 | 6.28 | 1300 | 0.5014 | 0.8157 |
0.2503 | 6.76 | 1400 | 0.5077 | 0.8103 |
0.169 | 7.25 | 1500 | 0.4630 | 0.8238 |
0.2248 | 7.73 | 1600 | 0.5329 | 0.7832 |
0.164 | 8.21 | 1700 | 0.5608 | 0.7859 |
0.208 | 8.7 | 1800 | 0.5632 | 0.8022 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0