ongkn's picture
End of training
dc0a4f1
|
raw
history blame
2.81 kB
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: attraction-classifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8021680216802168
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# attraction-classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5632
- Accuracy: 0.8022
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 69
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6613 | 0.48 | 100 | 0.6067 | 0.6477 |
| 0.6115 | 0.97 | 200 | 0.5579 | 0.6992 |
| 0.5542 | 1.45 | 300 | 0.5501 | 0.7182 |
| 0.4758 | 1.93 | 400 | 0.5108 | 0.7534 |
| 0.5219 | 2.42 | 500 | 0.5122 | 0.7561 |
| 0.4631 | 2.9 | 600 | 0.4842 | 0.7832 |
| 0.3866 | 3.38 | 700 | 0.5298 | 0.7480 |
| 0.3704 | 3.86 | 800 | 0.4963 | 0.7453 |
| 0.4222 | 4.35 | 900 | 0.4832 | 0.7561 |
| 0.3162 | 4.83 | 1000 | 0.4807 | 0.7778 |
| 0.2686 | 5.31 | 1100 | 0.4949 | 0.7859 |
| 0.304 | 5.8 | 1200 | 0.4719 | 0.7751 |
| 0.2246 | 6.28 | 1300 | 0.5014 | 0.8157 |
| 0.2503 | 6.76 | 1400 | 0.5077 | 0.8103 |
| 0.169 | 7.25 | 1500 | 0.4630 | 0.8238 |
| 0.2248 | 7.73 | 1600 | 0.5329 | 0.7832 |
| 0.164 | 8.21 | 1700 | 0.5608 | 0.7859 |
| 0.208 | 8.7 | 1800 | 0.5632 | 0.8022 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0