|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: attraction-classifier |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8021680216802168 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# attraction-classifier |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5632 |
|
- Accuracy: 0.8022 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 69 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6613 | 0.48 | 100 | 0.6067 | 0.6477 | |
|
| 0.6115 | 0.97 | 200 | 0.5579 | 0.6992 | |
|
| 0.5542 | 1.45 | 300 | 0.5501 | 0.7182 | |
|
| 0.4758 | 1.93 | 400 | 0.5108 | 0.7534 | |
|
| 0.5219 | 2.42 | 500 | 0.5122 | 0.7561 | |
|
| 0.4631 | 2.9 | 600 | 0.4842 | 0.7832 | |
|
| 0.3866 | 3.38 | 700 | 0.5298 | 0.7480 | |
|
| 0.3704 | 3.86 | 800 | 0.4963 | 0.7453 | |
|
| 0.4222 | 4.35 | 900 | 0.4832 | 0.7561 | |
|
| 0.3162 | 4.83 | 1000 | 0.4807 | 0.7778 | |
|
| 0.2686 | 5.31 | 1100 | 0.4949 | 0.7859 | |
|
| 0.304 | 5.8 | 1200 | 0.4719 | 0.7751 | |
|
| 0.2246 | 6.28 | 1300 | 0.5014 | 0.8157 | |
|
| 0.2503 | 6.76 | 1400 | 0.5077 | 0.8103 | |
|
| 0.169 | 7.25 | 1500 | 0.4630 | 0.8238 | |
|
| 0.2248 | 7.73 | 1600 | 0.5329 | 0.7832 | |
|
| 0.164 | 8.21 | 1700 | 0.5608 | 0.7859 | |
|
| 0.208 | 8.7 | 1800 | 0.5632 | 0.8022 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|