Check_Model_2 / README.md
rossevine's picture
update model card README.md
2275ea5
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: Check_Model_2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 0.2728883087823979

Check_Model_2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3499
  • Wer: 0.2729
  • Cer: 0.0673

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.8708 3.23 400 0.7345 0.7259 0.2034
0.4247 6.45 800 0.4128 0.4268 0.1102
0.2047 9.68 1200 0.3726 0.3795 0.0930
0.1422 12.9 1600 0.3690 0.3514 0.0884
0.1139 16.13 2000 0.3811 0.3160 0.0794
0.089 19.35 2400 0.3650 0.2895 0.0731
0.0709 22.58 2800 0.3629 0.2944 0.0727
0.0594 25.81 3200 0.3538 0.2779 0.0692
0.0478 29.03 3600 0.3499 0.2729 0.0673

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 1.18.3
  • Tokenizers 0.13.3