|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Check_Model_2 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice |
|
type: common_voice |
|
config: id |
|
split: test |
|
args: id |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.2728883087823979 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Check_Model_2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3499 |
|
- Wer: 0.2729 |
|
- Cer: 0.0673 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 3.8708 | 3.23 | 400 | 0.7345 | 0.7259 | 0.2034 | |
|
| 0.4247 | 6.45 | 800 | 0.4128 | 0.4268 | 0.1102 | |
|
| 0.2047 | 9.68 | 1200 | 0.3726 | 0.3795 | 0.0930 | |
|
| 0.1422 | 12.9 | 1600 | 0.3690 | 0.3514 | 0.0884 | |
|
| 0.1139 | 16.13 | 2000 | 0.3811 | 0.3160 | 0.0794 | |
|
| 0.089 | 19.35 | 2400 | 0.3650 | 0.2895 | 0.0731 | |
|
| 0.0709 | 22.58 | 2800 | 0.3629 | 0.2944 | 0.0727 | |
|
| 0.0594 | 25.81 | 3200 | 0.3538 | 0.2779 | 0.0692 | |
|
| 0.0478 | 29.03 | 3600 | 0.3499 | 0.2729 | 0.0673 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.13.3 |
|
|