Spaces:
Sleeping
Sleeping
File size: 11,768 Bytes
f56cbc6 fc5872a 3c51859 fcc4b80 fc5872a 3c51859 74cfed2 3c51859 f56cbc6 2957fb3 f56cbc6 fc5872a 7f43658 de3c0e2 2957fb3 3a145aa e416837 2957fb3 587b403 2957fb3 de3c0e2 2957fb3 3c51859 de3c0e2 27720cf e416837 7150020 f2dfe81 ecffbb4 f2dfe81 2957fb3 ecffbb4 f56cbc6 2957fb3 f56cbc6 ecffbb4 fcc4b80 ef91d2c fc5872a de3c0e2 ef91d2c fc5872a 3c51859 fc5872a ef91d2c abecee2 fc5872a 3c51859 fc5872a 2957fb3 fc5872a f56cbc6 7f43658 c9fd992 fc5872a 7f43658 fc5872a 27720cf 2957fb3 7ece340 7f43658 fc5872a 27720cf fcc4b80 74cfed2 fc5872a 7f43658 3c51859 7f43658 fc5872a 116d7b7 7ece340 7f43658 de3c0e2 7f43658 7ece340 3c51859 7ece340 de3c0e2 7ece340 de3c0e2 7f43658 3c51859 de3c0e2 7f43658 fc5872a 7ece340 fc5872a 3c51859 fc5872a 7f43658 fc5872a 7f43658 fc5872a 7ece340 27720cf 7ece340 7f43658 fc5872a 7f43658 3c51859 7f43658 fc5872a 282a362 fc5872a 7ece340 27720cf 7ece340 972e5ee fc5872a f56cbc6 3c51859 7f43658 ef91d2c 7f43658 fc5872a 7f43658 fc5872a 7ece340 27720cf 7ece340 7f43658 fc5872a 7f43658 3c51859 7f43658 ef91d2c 3c51859 ef91d2c 7f43658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
from fastapi import FastAPI, HTTPException, Depends
from fastapi.responses import JSONResponse
from pydantic import BaseModel, field_validator, ValidationError
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StoppingCriteriaList, pipeline, StoppingCriteria
import boto3
import uvicorn
import soundfile as sf
import imageio
from typing import Dict, Optional, List
import torch # Import torch
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
if not all([AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION, S3_BUCKET_NAME]):
raise ValueError("Missing one or more AWS environment variables.")
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
app = FastAPI()
SPECIAL_TOKENS = {
"bos_token": "<|startoftext|>",
"eos_token": "<|endoftext|>",
"pad_token": "[PAD]",
"unk_token": "[UNK]",
}
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 10
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.1
num_return_sequences: int = 1
do_sample: bool = True
stop_sequences: List[str] = []
no_repeat_ngram_size: int = 2
continuation_id: Optional[str] = None
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
@field_validator("max_new_tokens")
def max_new_tokens_must_be_within_limit(cls, v):
if v > 500:
raise ValueError("max_new_tokens cannot be greater than 500.")
return v
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
async def load_model_and_tokenizer(self, model_name):
s3_uri = self._get_s3_uri(model_name)
try:
config = AutoConfig.from_pretrained(s3_uri, local_files_only=False)
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=False)
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=False)
tokenizer.add_special_tokens(SPECIAL_TOKENS)
model.resize_token_embeddings(len(tokenizer))
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
return model, tokenizer
except Exception as e:
logging.error(f"Error loading model from S3: {e}")
raise HTTPException(status_code=500, detail=f"Error loading model from S3: {e}")
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
active_generations: Dict[str, Dict] = {}
async def get_model_and_tokenizer(model_name: str):
try:
return await model_loader.load_model_and_tokenizer(model_name)
except Exception as e:
logging.error(f"Error loading model: {e}")
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
@app.post("/generate")
async def generate(request: GenerateRequest, model_resources: tuple = Depends(get_model_and_tokenizer)):
model, tokenizer = model_resources
try:
model_name = request.model_name
input_text = request.input_text
temperature = request.temperature
max_new_tokens = request.max_new_tokens
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
stop_sequences = request.stop_sequences
no_repeat_ngram_size = request.no_repeat_ngram_size
continuation_id = request.continuation_id
if continuation_id:
if continuation_id not in active_generations:
raise HTTPException(status_code=404, detail="Continuation ID not found.")
previous_data = active_generations[continuation_id]
if previous_data["model_name"] != model_name:
raise HTTPException(status_code=400, detail="Model mismatch for continuation.")
input_text = previous_data["output"]
generation_config = GenerationConfig.from_pretrained(model_name) # Load default config and override
generation_config.temperature = temperature
generation_config.max_new_tokens = max_new_tokens
generation_config.top_p = top_p
generation_config.top_k = top_k
generation_config.repetition_penalty = repetition_penalty
generation_config.do_sample = do_sample
generation_config.num_return_sequences = num_return_sequences
generation_config.no_repeat_ngram_size = no_repeat_ngram_size
generation_config.pad_token_id = tokenizer.pad_token_id
generated_text = generate_text_internal(model, tokenizer, input_text, generation_config, stop_sequences)
new_continuation_id = continuation_id if continuation_id else os.urandom(16).hex()
active_generations[new_continuation_id] = {"model_name": model_name, "output": generated_text}
return JSONResponse({"text": generated_text, "continuation_id": new_continuation_id, "model_name": model_name})
except HTTPException as http_err:
raise http_err
except Exception as e:
logging.error(f"Internal server error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
def generate_text_internal(model, tokenizer, input_text, generation_config, stop_sequences):
max_model_length = model.config.max_position_embeddings
encoded_input = tokenizer(input_text, return_tensors="pt", max_length=max_model_length, truncation=True).to(model.device) # Ensure input is on the same device as the model
stopping_criteria = StoppingCriteriaList()
class CustomStoppingCriteria(StoppingCriteria): # Inherit directly from StoppingCriteria
def __init__(self, stop_sequences, tokenizer):
super().__init__() # call parent constructor
self.stop_sequences = stop_sequences
self.tokenizer = tokenizer
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
decoded_output = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
for stop in self.stop_sequences:
if decoded_output.endswith(stop):
return True
return False
if stop_sequences: # Only add if stop_sequences is not empty
stopping_criteria.append(CustomStoppingCriteria(stop_sequences, tokenizer))
outputs = model.generate(
encoded_input.input_ids,
generation_config=generation_config,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
async def load_pipeline_from_s3(task, model_name):
s3_uri = f"s3://{S3_BUCKET_NAME}/{model_name.replace('/', '-')}"
try:
return pipeline(task, model=s3_uri, token=HUGGINGFACE_HUB_TOKEN) # Include token if needed
except Exception as e:
logging.error(f"Error loading {task} model from S3: {e}")
raise HTTPException(status_code=500, detail=f"Error loading {task} model from S3: {e}")
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
if request.task_type != "text-to-image":
raise HTTPException(status_code=400, detail="Invalid task_type for this endpoint.")
image_generator = await load_pipeline_from_s3("text-to-image", request.model_name)
image = image_generator(request.input_text)[0]
image_path = f"generated_image_{os.urandom(8).hex()}.png" # Save image locally
image.save(image_path)
new_continuation_id = os.urandom(16).hex()
active_generations[new_continuation_id] = {"model_name": request.model_name, "output": f"Image saved to {image_path}"} # Return path or upload URL
return JSONResponse({"url": image_path, "continuation_id": new_continuation_id, "model_name": request.model_name})
except HTTPException as http_err:
raise http_err
except Exception as e:
logging.error(f"Internal server error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
if request.task_type != "text-to-speech":
raise HTTPException(status_code=400, detail="Invalid task_type for this endpoint.")
tts_pipeline = await load_pipeline_from_s3("text-to-speech", request.model_name)
audio_output = tts_pipeline(request.input_text)
audio_path = f"generated_audio_{os.urandom(8).hex()}.wav"
sf.write(audio_path, audio_output["sampling_rate"], audio_output["audio"])
new_continuation_id = os.urandom(16).hex()
active_generations[new_continuation_id] = {"model_name": request.model_name, "output": f"Audio saved to {audio_path}"}
return JSONResponse({"url": audio_path, "continuation_id": new_continuation_id, "model_name": request.model_name})
except HTTPException as http_err:
raise http_err
except Exception as e:
logging.error(f"Internal server error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
if request.task_type != "text-to-video":
raise HTTPException(status_code=400, detail="Invalid task_type for this endpoint.")
video_pipeline = await load_pipeline_from_s3("text-to-video", request.model_name)
video_frames = video_pipeline(request.input_text).frames
video_path = f"generated_video_{os.urandom(8).hex()}.mp4"
imageio.mimsave(video_path, video_frames, fps=30) # Adjust fps as needed
new_continuation_id = os.urandom(16).hex()
active_generations[new_continuation_id] = {"model_name": request.model_name, "output": f"Video saved to {video_path}"}
return JSONResponse({"url": video_path, "continuation_id": new_continuation_id, "model_name": request.model_name})
except HTTPException as http_err:
raise http_err
except Exception as e:
logging.error(f"Internal server error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# Adding exception handling for Pydantic validation
@app.exception_handler(ValidationError)
async def validation_exception_handler(request, exc):
logging.error(f"Validation Error: {exc}")
return JSONResponse({"detail": exc.errors()}, status_code=422)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |