Spaces:
Sleeping
Sleeping
File size: 8,726 Bytes
f56cbc6 7f43658 ecffbb4 7f43658 de3c0e2 fcc4b80 7f43658 f56cbc6 2957fb3 f56cbc6 7f43658 de3c0e2 2957fb3 3a145aa e416837 2957fb3 587b403 2957fb3 de3c0e2 2957fb3 e416837 de3c0e2 e416837 7150020 f2dfe81 ecffbb4 f2dfe81 2957fb3 ecffbb4 f56cbc6 2957fb3 f56cbc6 ecffbb4 fcc4b80 ef91d2c 7f43658 de3c0e2 ef91d2c fcc4b80 e416837 de3c0e2 7f43658 de3c0e2 fcc4b80 ef91d2c abecee2 2957fb3 7f43658 f56cbc6 7f43658 c9fd992 7f43658 2957fb3 7f43658 de3c0e2 7f43658 de3c0e2 fcc4b80 7f43658 de3c0e2 116d7b7 7f43658 de3c0e2 7f43658 de3c0e2 7f43658 de3c0e2 7f43658 282a362 7f43658 282a362 7f43658 ecffbb4 7f43658 972e5ee f56cbc6 7f43658 ef91d2c 7f43658 ecffbb4 7f43658 ef91d2c 7f43658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, field_validator
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StoppingCriteriaList
import boto3
import uvicorn
from io import BytesIO
from transformers import pipeline
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
app = FastAPI()
SPECIAL_TOKENS = {
"bos_token": "<|startoftext|>",
"eos_token": "<|endoftext|>",
"pad_token": "[PAD]",
"unk_token": "[UNK]",
}
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 10
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.1
num_return_sequences: int = 1
do_sample: bool = True
stop_sequences: list[str] = []
no_repeat_ngram_size: int = 2
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
@field_validator("max_new_tokens")
def max_new_tokens_must_be_within_limit(cls, v):
if v > 500:
raise ValueError("max_new_tokens cannot be greater than 500.")
return v
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
async def load_model_and_tokenizer(self, model_name):
s3_uri = self._get_s3_uri(model_name)
try:
config = AutoConfig.from_pretrained(s3_uri, local_files_only=True)
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True)
tokenizer.add_special_tokens(SPECIAL_TOKENS)
model.resize_token_embeddings(len(tokenizer))
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
return model, tokenizer
except EnvironmentError:
try:
config = AutoConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
tokenizer.add_special_tokens(SPECIAL_TOKENS)
model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
model.resize_token_embeddings(len(tokenizer))
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
model.save_pretrained(s3_uri)
tokenizer.save_pretrained(s3_uri)
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
temperature = request.temperature
max_new_tokens = request.max_new_tokens
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
stop_sequences = request.stop_sequences
no_repeat_ngram_size = request.no_repeat_ngram_size
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
generation_config = GenerationConfig(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
no_repeat_ngram_size=no_repeat_ngram_size,
pad_token_id=tokenizer.pad_token_id
)
generated_text = generate_text(model, tokenizer, input_text, generation_config, stop_sequences, device)
return JSONResponse({"text": generated_text})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
def generate_text(model, tokenizer, input_text, generation_config, stop_sequences, device):
max_model_length = model.config.max_position_embeddings
encoded_input = tokenizer(input_text, return_tensors="pt", max_length=max_model_length, truncation=True).to(device)
stopping_criteria = StoppingCriteriaList()
class CustomStoppingCriteria(StoppingCriteriaList):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
decoded_output = tokenizer.decode(input_ids[0], skip_special_tokens=True)
for stop in stop_sequences:
if decoded_output.endswith(stop):
return True
return False
stopping_criteria.append(CustomStoppingCriteria())
outputs = model.generate(
encoded_input.input_ids,
generation_config=generation_config,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
image_generator = pipeline("text-to-image", model=validated_body.model_name, device=device)
image = image_generator(validated_body.input_text)[0]
img_byte_arr = BytesIO()
image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(img_byte_arr, media_type="image/png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
audio_generator = pipeline("text-to-speech", model=validated_body.model_name, device=device)
audio = audio_generator(validated_body.input_text)[0]
audio_byte_arr = BytesIO()
# It is expected that the audio is saved as wav.
# Saving like this will not always work. Please check how your
# audio_generator model is working.
audio_generator.save_audio(audio_byte_arr, audio)
audio_byte_arr.seek(0)
return StreamingResponse(audio_byte_arr, media_type="audio/wav")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
video_generator = pipeline("text-to-video", model=validated_body.model_name, device=device)
video = video_generator(validated_body.input_text)[0]
video_byte_arr = BytesIO()
# Same as above. Please check how your video model is returning the
# videos and save them accordingly.
# It is expected that the video is saved as MP4
video_generator.save_video(video_byte_arr, video)
video_byte_arr.seek(0)
return StreamingResponse(video_byte_arr, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |