File size: 8,726 Bytes
f56cbc6
7f43658
 
ecffbb4
7f43658
de3c0e2
fcc4b80
 
7f43658
 
f56cbc6
 
 
 
2957fb3
 
f56cbc6
7f43658
 
 
 
de3c0e2
 
 
 
 
 
 
2957fb3
3a145aa
e416837
2957fb3
 
587b403
2957fb3
 
de3c0e2
2957fb3
 
e416837
de3c0e2
e416837
 
 
 
 
 
 
 
 
 
 
 
 
7150020
f2dfe81
 
ecffbb4
 
f2dfe81
 
2957fb3
ecffbb4
f56cbc6
2957fb3
f56cbc6
ecffbb4
fcc4b80
 
 
 
ef91d2c
7f43658
 
 
de3c0e2
 
 
 
ef91d2c
fcc4b80
 
e416837
 
de3c0e2
7f43658
de3c0e2
 
 
fcc4b80
 
 
 
 
ef91d2c
abecee2
 
2957fb3
7f43658
f56cbc6
7f43658
 
 
 
 
 
 
 
 
 
 
c9fd992
7f43658
 
2957fb3
 
 
7f43658
 
 
 
 
 
 
 
de3c0e2
 
7f43658
 
de3c0e2
 
fcc4b80
7f43658
 
 
de3c0e2
116d7b7
 
7f43658
de3c0e2
7f43658
de3c0e2
 
 
 
 
 
 
7f43658
de3c0e2
 
 
 
 
 
 
 
 
 
 
7f43658
 
 
 
 
 
282a362
7f43658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282a362
7f43658
 
 
 
ecffbb4
 
 
 
7f43658
 
 
972e5ee
f56cbc6
7f43658
ef91d2c
7f43658
 
 
 
 
 
 
 
 
ecffbb4
 
 
 
7f43658
 
 
 
 
 
ef91d2c
 
7f43658
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, field_validator
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StoppingCriteriaList
import boto3
import uvicorn
from io import BytesIO
from transformers import pipeline

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)

app = FastAPI()

SPECIAL_TOKENS = {
    "bos_token": "<|startoftext|>",
    "eos_token": "<|endoftext|>",
    "pad_token": "[PAD]",
    "unk_token": "[UNK]",
}

class GenerateRequest(BaseModel):
    model_name: str
    input_text: str = ""
    task_type: str
    temperature: float = 1.0
    max_new_tokens: int = 10
    top_p: float = 1.0
    top_k: int = 50
    repetition_penalty: float = 1.1
    num_return_sequences: int = 1
    do_sample: bool = True
    stop_sequences: list[str] = []
    no_repeat_ngram_size: int = 2

    @field_validator("model_name")
    def model_name_cannot_be_empty(cls, v):
        if not v:
            raise ValueError("model_name cannot be empty.")
        return v

    @field_validator("task_type")
    def task_type_must_be_valid(cls, v):
        valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
        if v not in valid_types:
            raise ValueError(f"task_type must be one of: {valid_types}")
        return v

    @field_validator("max_new_tokens")
    def max_new_tokens_must_be_within_limit(cls, v):
        if v > 500:
            raise ValueError("max_new_tokens cannot be greater than 500.")
        return v

class S3ModelLoader:
    def __init__(self, bucket_name, s3_client):
        self.bucket_name = bucket_name
        self.s3_client = s3_client

    def _get_s3_uri(self, model_name):
        return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"

    async def load_model_and_tokenizer(self, model_name):
        s3_uri = self._get_s3_uri(model_name)
        try:
            config = AutoConfig.from_pretrained(s3_uri, local_files_only=True)
            model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=True)
            tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True)
            tokenizer.add_special_tokens(SPECIAL_TOKENS)
            model.resize_token_embeddings(len(tokenizer))
            if tokenizer.pad_token_id is None:
                tokenizer.pad_token_id = tokenizer.eos_token_id
            return model, tokenizer
        except EnvironmentError:
            try:
                config = AutoConfig.from_pretrained(model_name)
                tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
                tokenizer.add_special_tokens(SPECIAL_TOKENS)
                model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
                model.resize_token_embeddings(len(tokenizer))
                if tokenizer.pad_token_id is None:
                    tokenizer.pad_token_id = tokenizer.eos_token_id
                model.save_pretrained(s3_uri)
                tokenizer.save_pretrained(s3_uri)
                return model, tokenizer
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error loading model: {e}")

model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)

@app.post("/generate")
async def generate(request: GenerateRequest):
    try:
        model_name = request.model_name
        input_text = request.input_text
        task_type = request.task_type
        temperature = request.temperature
        max_new_tokens = request.max_new_tokens
        top_p = request.top_p
        top_k = request.top_k
        repetition_penalty = request.repetition_penalty
        num_return_sequences = request.num_return_sequences
        do_sample = request.do_sample
        stop_sequences = request.stop_sequences
        no_repeat_ngram_size = request.no_repeat_ngram_size

        model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)

        generation_config = GenerationConfig(
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            do_sample=do_sample,
            num_return_sequences=num_return_sequences,
            no_repeat_ngram_size=no_repeat_ngram_size,
            pad_token_id=tokenizer.pad_token_id
        )

        generated_text = generate_text(model, tokenizer, input_text, generation_config, stop_sequences, device)
        return JSONResponse({"text": generated_text})

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

def generate_text(model, tokenizer, input_text, generation_config, stop_sequences, device):
    max_model_length = model.config.max_position_embeddings
    encoded_input = tokenizer(input_text, return_tensors="pt", max_length=max_model_length, truncation=True).to(device)

    stopping_criteria = StoppingCriteriaList()

    class CustomStoppingCriteria(StoppingCriteriaList):
        def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
            decoded_output = tokenizer.decode(input_ids[0], skip_special_tokens=True)
            for stop in stop_sequences:
                if decoded_output.endswith(stop):
                    return True
            return False

    stopping_criteria.append(CustomStoppingCriteria())

    outputs = model.generate(
        encoded_input.input_ids,
        generation_config=generation_config,
        stopping_criteria=stopping_criteria,
        pad_token_id=generation_config.pad_token_id
    )

    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"

        image_generator = pipeline("text-to-image", model=validated_body.model_name, device=device)
        image = image_generator(validated_body.input_text)[0]

        img_byte_arr = BytesIO()
        image.save(img_byte_arr, format="PNG")
        img_byte_arr.seek(0)

        return StreamingResponse(img_byte_arr, media_type="image/png")

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"

        audio_generator = pipeline("text-to-speech", model=validated_body.model_name, device=device)
        audio = audio_generator(validated_body.input_text)[0]

        audio_byte_arr = BytesIO()
        # It is expected that the audio is saved as wav.
        # Saving like this will not always work. Please check how your
        # audio_generator model is working.
        audio_generator.save_audio(audio_byte_arr, audio)
        audio_byte_arr.seek(0)

        return StreamingResponse(audio_byte_arr, media_type="audio/wav")

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"
        video_generator = pipeline("text-to-video", model=validated_body.model_name, device=device)
        video = video_generator(validated_body.input_text)[0]

        video_byte_arr = BytesIO()
        # Same as above. Please check how your video model is returning the
        # videos and save them accordingly.
        # It is expected that the video is saved as MP4
        video_generator.save_video(video_byte_arr, video)
        video_byte_arr.seek(0)

        return StreamingResponse(video_byte_arr, media_type="video/mp4")

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)