Spaces:
Sleeping
Sleeping
File size: 7,601 Bytes
4547396 7488952 4547396 9947cd9 d7b1ed3 9947cd9 d7b1ed3 4547396 d7b1ed3 4547396 309800b 4547396 309800b 16ff37d 4547396 d7b1ed3 4547396 d7b1ed3 a045f2c 16ff37d d7b1ed3 4547396 7488952 f6ceff9 7488952 d7b1ed3 7488952 d7b1ed3 7488952 309800b 7488952 d7b1ed3 7488952 d7b1ed3 7488952 d7b1ed3 a045f2c 16ff37d d7b1ed3 309800b 16ff37d d7b1ed3 7488952 f6ceff9 4547396 7488952 4547396 7488952 4547396 229eff2 7488952 229eff2 7488952 4547396 9947cd9 4547396 9947cd9 7488952 9947cd9 4547396 229eff2 7488952 9947cd9 7488952 9947cd9 229eff2 7488952 9947cd9 7488952 229eff2 4547396 7488952 4547396 7488952 4547396 4c6501c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import numpy as np
import pandas as pd
import pickle
import xgboost as xgb
from catboost import CatBoostRegressor
def predict(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits):
data = [team, opp_team, inning, venue, hits, opp_hits, errors, runs, opp_runs, lob]
df_main = pd.read_csv("Score_prediction_dataset_11th_July.csv")
df_main = df_main.drop(columns=['Final_Score', 'Opp_LOB'])
df_main = pd.get_dummies(df_main, columns=['Team_Name', 'Opposition_Team'])
df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
df = pd.get_dummies(df, columns=['Team_Name', 'Opposition_Team'])
df = df.reindex(columns=df_main.columns, fill_value=0)
# print(df.columns)
# print(len(df.columns))
xgb_model = xgb.XGBRegressor()
xgb_model.load_model('xgbr1_exp10_model.json')
with open('pca_model7.pkl', 'rb') as f:
pca = pickle.load(f)
# with open('label_encoder_teams_xgbr1_exp3.pkl', 'rb') as f:
# label_encoder = pickle.load(f)
home_away_status = {'Home': 0, 'Away': 1}
df['Home/Away'] = df['Home/Away'].map(home_away_status)
df = df.astype(int)
df = pca.transform(df)
score = xgb_model.predict(df)
if score[0] < 0:
score = np.clip(score[0], a_min=0, a_max=None)
return np.round(score,1)
if score[0] < runs:
score = runs
return score
return np.round(score[0],1)
def predict_2(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits):
data = [team, opp_team, inning, venue, hits, opp_hits, errors, runs, opp_runs, lob]
df_main = pd.read_csv("Score_prediction_dataset_11th_July.csv")
df_main = df_main.drop(columns=['Final_Score', 'Opp_LOB'])
df_main = pd.get_dummies(df_main, columns=['Team_Name', 'Opposition_Team'])
df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
df = pd.get_dummies(df, columns=['Team_Name', 'Opposition_Team'])
df = df.reindex(columns=df_main.columns, fill_value=0)
cat_model = CatBoostRegressor()
cat_model.load_model('catbr1_exp11_model.json')
# with open('label_encoder_teams_catbr1_exp1.pkl', 'rb') as f:
# label_encoder = pickle.load(f)
# df['Team_Name'] = label_encoder.transform(df['Team_Name'])
# df['Opposition_Team'] = label_encoder.transform(df['Opposition_Team'])
home_away_status = {'Home': 0, 'Away': 1}
df['Home/Away'] = df['Home/Away'].map(home_away_status)
df = df.astype(int)
# print(df)
with open('pca_model7.pkl', 'rb') as f:
pca = pickle.load(f)
df = pca.transform(df)
score = cat_model.predict(df)
if score[0] < 0:
score = np.clip(score[0], a_min=0, a_max=None)
return np.round(score,1)
if score[0] < runs:
score = runs
return score
return np.round(score[0],1)
team_names = ["Arizona Diamondbacks",
"Atlanta Braves",
"Baltimore Orioles",
"Boston Red Sox",
"Chicago Cubs",
"Chicago White Sox",
"Cincinnati Reds",
"Cleveland Guardians",
"Colorado Rockies",
"Detroit Tigers",
"Houston Astros",
"Kansas City Royals",
"Los Angeles Angels",
"Los Angeles Dodgers",
"Miami Marlins",
"Milwaukee Brewers",
"Minnesota Twins",
"New York Mets",
"New York Yankees",
"Oakland Athletics",
"Philadelphia Phillies",
"Pittsburgh Pirates",
"San Diego Padres",
"San Francisco Giants",
"Seattle Mariners",
"St. Louis Cardinals",
"Tampa Bay Rays",
"Texas Rangers",
"Toronto Blue Jays",
"Washington Nationals"]
with gr.Blocks() as demo:
# gr.Image("../Documentation/Context Diagram.png", scale=2)
# gr(title="Your Interface Title")
gr.Markdown("""
<center>
<span style='font-size: 50px; font-weight: Bold; font-family: "Graduate", serif'>
MLB Score Predictor
</span>
</center>
""")
# gr.Markdown("""
# <center>
# <span style='font-size: 30px; line-height: 0.1; font-weight: Bold; font-family: "Graduate", serif'>
# Admin Dashboard
# </span>
# </center>
# """)
with gr.Row():
inning = gr.Number(None, label="Inning", minimum = 1, maximum = 8, scale=1)
with gr.Row():
with gr.Column():
venue = gr.Dropdown(choices = ["Home", "Away"], value="Away", max_choices = 1, label="Home/Away Status", scale=1)
with gr.Column():
opp_venue = gr.Dropdown(choices = ["Home", "Away"], value="Home", max_choices = 1, label="Opposition Home/Away Status", scale=1)
with gr.Row():
with gr.Column():
team = gr.Dropdown(choices = team_names, max_choices = 1, label="Team", scale=1)
with gr.Column():
opp_team = gr.Dropdown(choices = team_names, max_choices = 1, label="Opposition Team", scale=1)
with gr.Row():
with gr.Column():
hits = gr.Number(None, minimum=0, label="Hits - (H)", scale=1)
with gr.Column():
opp_hits = gr.Number(None, minimum=0, label="Opposition Hits - (H)", scale=1)
# summarize_btn = gr.Button(value="Summarize Text", size = 'sm')
with gr.Row():
with gr.Column():
errors = gr.Number(None, minimum=0, label="Errors - (E)", scale=2)
with gr.Column():
opp_errors = gr.Number(None, minimum=0, label="Opposition Errors - (E)", scale=2)
# runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)
with gr.Row():
with gr.Column():
lob = gr.Number(None, minimum=0, label="Left on Base - (LOB)", scale=1)
with gr.Column():
opp_lob = gr.Number(None, minimum=0, label="Opposition Left on Base - (LOB)", scale=1)
with gr.Row():
with gr.Column():
runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)
with gr.Column():
opp_runs = gr.Number(None, minimum=0, label="Opposition Runs - (R)", scale=1)
with gr.Row():
predict_btn = gr.Button(value="Predict", size = 'sm')
with gr.Row():
with gr.Column():
final_score_away1 = gr.Textbox(label="Predicted Score Model XGB", scale=1)
with gr.Column():
final_score_home1 = gr.Textbox(label="Opposition Predicted Score Model XGB", scale=1)
with gr.Row():
with gr.Column():
final_score_away2 = gr.Textbox(label="Predicted Score Model CATB", scale=1)
with gr.Column():
final_score_home2 = gr.Textbox(label="Opposition Predicted Score Model CATB", scale=1)
# patent_doc.upload(document_to_text, inputs = [patent_doc, slider, select_model], outputs=summary_doc)
predict_btn.click(predict, inputs=[team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits], outputs=final_score_away1)
predict_btn.click(predict, inputs=[opp_team, inning, opp_venue, opp_hits, opp_errors, opp_lob, opp_runs, team, runs, hits], outputs=final_score_home1)
predict_btn.click(predict_2, inputs=[team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits], outputs=final_score_away2)
predict_btn.click(predict_2, inputs=[opp_team, inning, opp_venue, opp_hits, opp_errors, opp_lob, opp_runs, team, runs, hits], outputs=final_score_home2)
demo.launch(inline=False) |