File size: 6,917 Bytes
53b4105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f300490
53b4105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
decc7cb
53b4105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
decc7cb
53b4105
 
decc7cb
53b4105
 
decc7cb
53b4105
 
 
 
 
 
 
1b28850
53b4105
 
 
decc7cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import chromadb
from llama_index.core.base.embeddings.base import similarity
#from llama_index.llms.ollama import Ollama
from llama_index.llms.groq import Groq
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, DocumentSummaryIndex
from llama_index.core import StorageContext, get_response_synthesizer
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import load_index_from_storage
import os
from dotenv import load_dotenv
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler, CBEventType
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.postprocessor import SimilarityPostprocessor
import time
import gradio as gr
from llama_index.core.memory import ChatMemoryBuffer
from llama_parse import LlamaParse
from llama_index.core import PromptTemplate
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.chat_engine import CondenseQuestionChatEngine


# load env file
load_dotenv()
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
LLAMAINDEX_API_KEY = os.getenv('LLAMAINDEX_API_KEY')

# set up callback manager
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([llama_debug])
Settings.callback_manager = callback_manager

# set up LLM
llm = Groq(model="llama3-70b-8192")#"llama3-8b-8192")
Settings.llm = llm

# set up embedding model
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
Settings.embed_model = embed_model

# create splitter
splitter = SentenceSplitter(chunk_size=2048, chunk_overlap=50)
Settings.transformations = [splitter]

# create parser
parser = LlamaParse(
    api_key=LLAMAINDEX_API_KEY, 
    result_type="markdown",  # "markdown" and "text" are available
    verbose=True,
)

#create index
if os.path.exists("./vectordb"):
    print("Index Exists!")
    storage_context = StorageContext.from_defaults(persist_dir="./vectordb")
    index = load_index_from_storage(storage_context)
else:
    filename_fn = lambda filename: {"file_name": filename}
    required_exts = [".pdf",".docx"]
    file_extractor = {".pdf": parser}
    reader = SimpleDirectoryReader(
        input_dir="./data",
        file_extractor=file_extractor,
        required_exts=required_exts,
        recursive=True,
        file_metadata=filename_fn
    )
    documents = reader.load_data()
    print("index creating with `%d` documents", len(documents))
    index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, transformations=[splitter])
    index.storage_context.persist(persist_dir="./vectordb")

"""
#create document summary index
if os.path.exists("./docsummarydb"):
    print("Index Exists!")
    storage_context = StorageContext.from_defaults(persist_dir="./docsummarydb")
    doc_index = load_index_from_storage(storage_context)
else:
    filename_fn = lambda filename: {"file_name": filename}
    required_exts = [".pdf",".docx"]
    reader = SimpleDirectoryReader(
        input_dir="./data",
        required_exts=required_exts,
        recursive=True,
        file_metadata=filename_fn
    )
    documents = reader.load_data()
    print("index creating with `%d` documents", len(documents))
    
    response_synthesizer = get_response_synthesizer(
        response_mode="tree_summarize", use_async=True
    )
    doc_index = DocumentSummaryIndex.from_documents(
        documents,
        llm = llm,
        transformations = [splitter],
        response_synthesizer = response_synthesizer,
        show_progress = True
    )
    doc_index.storage_context.persist(persist_dir="./docsummarydb")
"""
"""
retriever = DocumentSummaryIndexEmbeddingRetriever(
    doc_index,
    similarity_top_k=5,
)
"""

# set up retriever
retriever = VectorIndexRetriever(
    index = index,
    similarity_top_k = 10,
    #vector_store_query_mode="mmr",
    #vector_store_kwargs={"mmr_threshold": 0.4}
)

# set up response synthesizer
response_synthesizer = get_response_synthesizer()

### customising prompts worsened the result###
"""
# set up prompt template
qa_prompt_tmpl = (
    "Context information from multiple sources is below.\n"
    "---------------------\n"
    "{context_str}\n"
    "---------------------\n"
    "Given the information from multiple sources and not prior knowledge, "
    "answer the query.\n"
    "Query: {query_str}\n"
    "Answer: "
)
qa_prompt = PromptTemplate(qa_prompt_tmpl)
"""
# setting up query engine
query_engine = RetrieverQueryEngine(
    retriever = retriever,
    node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.53)],
    response_synthesizer=get_response_synthesizer(response_mode="tree_summarize",verbose=True) 
)
print(query_engine.get_prompts())

#response = query_engine.query("What happens if the distributor wants its own warehouse for pizzahood?")
#print(response)


memory = ChatMemoryBuffer.from_defaults(token_limit=10000)

custom_prompt = PromptTemplate(
    """\
    Given a conversation (between Human and Assistant) and a follow up message from Human, \
    rewrite the message to be a standalone question that captures all relevant context \
    from the conversation. If you are unsure, ask for more information.

    <Chat History>
    {chat_history}

    <Follow Up Message>
    {question}

    <Standalone question>
    """
)

# list of `ChatMessage` objects
custom_chat_history = [
    ChatMessage(
        role=MessageRole.USER,
        content="Hello assistant.",
    ),
    ChatMessage(role=MessageRole.ASSISTANT, content="Hello user."),
]

chat_engine = CondenseQuestionChatEngine.from_defaults(
    query_engine=query_engine,
    condense_question_prompt=custom_prompt,
    chat_history=custom_chat_history,
    verbose=True,
    memory=memory
)


# gradio with streaming support
with gr.Blocks() as demo:
    chat_engine = chat_engine
    chatbot = gr.Chatbot()
    msg = gr.Textbox(label="⏎ for sending",
            placeholder="Ask me something",)
    clear = gr.Button("Delete")

    def user(user_message, history):
        return "", history + [[user_message, None]]

    def bot(history):
        user_message = history[-1][0]
        #bot_message = chat_engine.chat(user_message)
        bot_message = query_engine.query(user_message + "Let's think step by step to get the correct answer. If you cannot provide an answer, say you don't know.")
        history[-1][1] = ""
        for character in bot_message.response:
            history[-1][1] += character
            time.sleep(0.01)
            yield history

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot, chatbot, chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)
# demo.queue()
demo.launch(share=False)