File size: 29,643 Bytes
d8cf478 8db40cd d8cf478 8db40cd d8cf478 efabdf9 6154c13 d8cf478 355fb10 d8cf478 52d1750 6154c13 dc11fb3 3498a52 f245408 d8cf478 0e538d2 7f9e80f 0e538d2 efabdf9 577dd09 8704528 577dd09 355fb10 52d1750 d8cf478 8db40cd a8cd875 8db40cd a8cd875 8db40cd a8cd875 8db40cd a8cd875 8db40cd 2628969 8db40cd 2628969 8db40cd 2628969 8db40cd 2628969 8db40cd d8cf478 e376aff 8db40cd d8cf478 5f0d39e d8cf478 0e538d2 d8cf478 5b74576 d8cf478 18ab870 3035b84 efabdf9 5b74576 5f0d39e 1c9dfec d8cf478 5b74576 3035b84 5b74576 1c9dfec d8cf478 3035b84 1c9dfec 3035b84 52d1750 1c9dfec 52d1750 e376aff 8db40cd e376aff d8cf478 e376aff 8db40cd e376aff 2628969 355fb10 1c9dfec 355fb10 1c9dfec 18ab870 d8cf478 0b5bfca d8cf478 1ed82ec 0b5bfca efabdf9 e376aff 8db40cd e376aff 652d8f6 1ed82ec 0b5bfca 1ed82ec 652d8f6 3035b84 e376aff 7839697 e376aff 296080f e376aff 7839697 d8cf478 5b74576 d8cf478 8704528 d8cf478 efabdf9 d8cf478 efabdf9 d8cf478 cd2003a d8cf478 5b74576 efabdf9 63c3662 efabdf9 5b74576 efabdf9 3035b84 efabdf9 1ed82ec efabdf9 cd2003a efabdf9 1ed82ec efabdf9 5b74576 efabdf9 5b74576 3035b84 efabdf9 e376aff efabdf9 e376aff efabdf9 e376aff 5b74576 efabdf9 e376aff efabdf9 3035b84 652d8f6 cd2003a 652d8f6 3035b84 652d8f6 cd2003a 652d8f6 3035b84 652d8f6 3035b84 7f9e80f 18ab870 a0ba53d 18ab870 a0ba53d 18ab870 7f9e80f 18ab870 577dd09 18ab870 3035b84 18ab870 5b74576 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f 5b74576 18ab870 7f9e80f 3035b84 7f9e80f 5b74576 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f 5b74576 7f9e80f 3035b84 7f9e80f 18ab870 7f9e80f 3035b84 7f9e80f 5b74576 18ab870 7f9e80f 18ab870 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f 5b74576 18ab870 3035b84 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f 355fb10 3058723 3d497f3 3058723 355fb10 dff5e35 63c3662 e376aff 1c9dfec 3d497f3 63c3662 e376aff 63c3662 e376aff 63c3662 e376aff 63c3662 e376aff 63c3662 e376aff 63c3662 e376aff 63c3662 e376aff 63c3662 e376aff f245408 e376aff f245408 e376aff f245408 e376aff f245408 7f9e80f 8704528 52d1750 dc11fb3 52d1750 12536a4 52d1750 12536a4 dc11fb3 330cbe3 dc11fb3 00d49a3 5f0d39e 00d49a3 e376aff 5f0d39e 00d49a3 5b74576 00d49a3 3498a52 577dd09 00d49a3 577dd09 3035b84 5b74576 577dd09 3498a52 577dd09 00d49a3 577dd09 3035b84 5b74576 577dd09 3035b84 3498a52 8704528 3498a52 e376aff 8704528 5b74576 8704528 5b74576 8704528 3035b84 5b74576 8704528 4a24b3a 5f0d39e 6154c13 7839697 dc11fb3 6154c13 d8cf478 7839697 5b74576 7839697 e376aff 7839697 e376aff d8cf478 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
import gradio as gr
import pandas as pd
import gzip
import shutil
import os
import logging
from huggingface_hub import hf_hub_download
from scripts.metrics import (
compute_weekly_metrics_by_market_creator,
compute_daily_metrics_by_market_creator,
compute_winning_metrics_by_trader,
)
from scripts.retention_metrics import (
prepare_retention_dataset,
calculate_wow_retention_by_type,
calculate_cohort_retention,
)
from tabs.trader_plots import (
plot_trader_metrics_by_market_creator,
default_trader_metric,
trader_metric_choices,
get_metrics_text,
plot_winning_metric_per_trader,
get_interpretation_text,
plot_total_bet_amount,
plot_active_traders,
)
from tabs.daily_graphs import (
get_current_week_data,
plot_daily_metrics,
trader_daily_metric_choices,
default_daily_metric,
)
from scripts.utils import get_traders_family
from tabs.market_plots import (
plot_kl_div_per_market,
plot_total_bet_amount_per_trader_per_market,
)
from tabs.retention_plots import (
plot_wow_retention_by_type,
plot_cohort_retention_heatmap,
)
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def load_all_data():
# all trades profitability
# Download the compressed file
gz_filepath_trades = hf_hub_download(
repo_id="valory/Olas-predict-dataset",
filename="all_trades_profitability.parquet.gz",
repo_type="dataset",
)
parquet_filepath_trades = gz_filepath_trades.replace(".gz", "")
parquet_filepath_trades = parquet_filepath_trades.replace("all", "")
with gzip.open(gz_filepath_trades, "rb") as f_in:
with open(parquet_filepath_trades, "wb") as f_out:
shutil.copyfileobj(f_in, f_out)
# Now read the decompressed parquet file
df1 = pd.read_parquet(parquet_filepath_trades)
# closed_markets_div
closed_markets_df = hf_hub_download(
repo_id="valory/Olas-predict-dataset",
filename="closed_markets_div.parquet",
repo_type="dataset",
)
df2 = pd.read_parquet(closed_markets_df)
# daily_info
daily_info_df = hf_hub_download(
repo_id="valory/Olas-predict-dataset",
filename="daily_info.parquet",
repo_type="dataset",
)
df3 = pd.read_parquet(daily_info_df)
# unknown traders
unknown_df = hf_hub_download(
repo_id="valory/Olas-predict-dataset",
filename="unknown_traders.parquet",
repo_type="dataset",
)
df4 = pd.read_parquet(unknown_df)
# retention activity
gz_file_path_ret = hf_hub_download(
repo_id="valory/Olas-predict-dataset",
filename="retention_activity.parquet.gz",
repo_type="dataset",
)
parquet_file_path_ret = gz_file_path_ret.replace(".gz", "")
with gzip.open(gz_file_path_ret, "rb") as f_in:
with open(parquet_file_path_ret, "wb") as f_out:
shutil.copyfileobj(f_in, f_out)
df5 = pd.read_parquet(parquet_file_path_ret)
# os.remove(parquet_file_path_ret)
# active_traders.parquet
active_traders_df = hf_hub_download(
repo_id="valory/Olas-predict-dataset",
filename="active_traders.parquet",
repo_type="dataset",
)
df6 = pd.read_parquet(active_traders_df)
# weekly_mech_calls.parquet
all_mech_calls_df = hf_hub_download(
repo_id="valory/Olas-predict-dataset",
filename="weekly_mech_calls.parquet",
repo_type="dataset",
)
df7 = pd.read_parquet(all_mech_calls_df)
return df1, df2, df3, df4, df5, df6, df7
def prepare_data():
(
all_trades,
closed_markets,
daily_info,
unknown_traders,
retention_df,
active_traders,
all_mech_calls,
) = load_all_data()
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
# nr-trades variable
volume_trades_per_trader_and_market = (
all_trades.groupby(["trader_address", "title"])["roi"]
.count()
.reset_index(name="nr_trades_per_market")
)
traders_data = pd.merge(
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
)
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
unknown_traders["creation_date"] = unknown_traders["creation_timestamp"].dt.date
# adding the trader family column
traders_data["trader_family"] = traders_data.apply(
lambda x: get_traders_family(x), axis=1
)
# print(traders_data.head())
traders_data = traders_data.sort_values(by="creation_timestamp", ascending=True)
unknown_traders = unknown_traders.sort_values(
by="creation_timestamp", ascending=True
)
traders_data["month_year_week"] = (
traders_data["creation_timestamp"]
.dt.to_period("W")
.dt.start_time.dt.strftime("%b-%d-%Y")
)
unknown_traders["month_year_week"] = (
unknown_traders["creation_timestamp"]
.dt.to_period("W")
.dt.start_time.dt.strftime("%b-%d-%Y")
)
closed_markets["month_year_week"] = (
closed_markets["opening_datetime"]
.dt.to_period("W")
.dt.start_time.dt.strftime("%b-%d-%Y")
)
return (
traders_data,
closed_markets,
daily_info,
unknown_traders,
retention_df,
active_traders,
all_mech_calls,
)
(
traders_data,
closed_markets,
daily_info,
unknown_traders,
raw_retention_df,
active_traders,
all_mech_calls,
) = prepare_data()
retention_df = prepare_retention_dataset(
retention_df=raw_retention_df, unknown_df=unknown_traders
)
print("max date of retention df")
print(max(retention_df.creation_timestamp))
demo = gr.Blocks()
# get weekly metrics by market creator: qs, pearl or all.
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
traders_data=traders_data, all_mech_calls=all_mech_calls
)
weekly_o_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
traders_data=traders_data, all_mech_calls=all_mech_calls, trader_filter="Olas"
)
weekly_non_olas_metrics_by_market_creator = pd.DataFrame()
if len(traders_data.loc[traders_data["staking"] == "non_Olas"]) > 0:
weekly_non_olas_metrics_by_market_creator = (
compute_weekly_metrics_by_market_creator(
traders_data, all_mech_calls, trader_filter="non_Olas"
)
)
weekly_unknown_trader_metrics_by_market_creator = None
if len(unknown_traders) > 0:
weekly_unknown_trader_metrics_by_market_creator = (
compute_weekly_metrics_by_market_creator(
traders_data=unknown_traders,
all_mech_calls=None,
trader_filter=None,
unknown_trader=True,
)
)
# just for all traders
weekly_winning_metrics = compute_winning_metrics_by_trader(
traders_data=traders_data, unknown_info=unknown_traders
)
weekly_winning_metrics_olas = compute_winning_metrics_by_trader(
traders_data=traders_data, unknown_info=unknown_traders, trader_filter="Olas"
)
weekly_non_olas_winning_metrics = pd.DataFrame()
if len(traders_data.loc[traders_data["staking"] == "non_Olas"]) > 0:
weekly_non_olas_winning_metrics = compute_winning_metrics_by_trader(
traders_data=traders_data,
unknown_info=unknown_traders,
trader_filter="non_Olas",
)
with demo:
gr.HTML("<h1>Traders monitoring dashboard </h1>")
gr.Markdown("This app shows the weekly performance of the traders in Olas Predict.")
with gr.Tabs():
with gr.TabItem("🔥 Weekly metrics"):
with gr.Row():
gr.Markdown("# Weekly metrics of all traders")
with gr.Row():
trader_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(trader_type=None)
def update_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_metrics_by_market_creator,
)
trader_details_selector.change(
update_trader_details,
inputs=trader_details_selector,
outputs=trader_markets_plot,
)
with gr.Row():
gr.Markdown("# Weekly metrics of 🌊 Olas traders")
with gr.Row():
trader_o_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
o_trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_o_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(trader_type="Olas")
def update_a_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_o_metrics_by_market_creator,
)
trader_o_details_selector.change(
update_a_trader_details,
inputs=trader_o_details_selector,
outputs=o_trader_markets_plot,
)
if len(weekly_non_olas_metrics_by_market_creator) > 0:
# Non-Olas traders graph
with gr.Row():
gr.Markdown("# Weekly metrics of Non-Olas traders")
with gr.Row():
trader_no_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_no_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_non_olas_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(trader_type="non_Olas")
def update_no_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_non_olas_metrics_by_market_creator,
)
trader_no_details_selector.change(
update_no_trader_details,
inputs=trader_no_details_selector,
outputs=trader_no_markets_plot,
)
# Unknown traders graph
if weekly_unknown_trader_metrics_by_market_creator is not None:
with gr.Row():
gr.Markdown("# Weekly metrics of Unclassified traders")
with gr.Row():
trader_u_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_u_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_unknown_trader_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(
trader_type="unclassified"
)
def update_u_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_unknown_trader_metrics_by_market_creator,
)
trader_u_details_selector.change(
update_u_trader_details,
inputs=trader_u_details_selector,
outputs=trader_u_markets_plot,
)
with gr.TabItem("📅 Daily metrics"):
live_trades_current_week = get_current_week_data(trades_df=daily_info)
if len(live_trades_current_week) > 0:
live_metrics_by_market_creator = (
compute_daily_metrics_by_market_creator(
live_trades_current_week, trader_filter=None, live_metrics=True
)
)
else:
live_metrics_by_market_creator = pd.DataFrame()
with gr.Row():
gr.Markdown("# Daily live metrics for all trades")
with gr.Row():
trade_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_trade_live_details(trade_detail, trade_live_details_plot):
new_a_plot = plot_daily_metrics(
metric_name=trade_detail, trades_df=live_metrics_by_market_creator
)
return new_a_plot
trade_live_details_selector.change(
update_trade_live_details,
inputs=[trade_live_details_selector, trade_live_details_plot],
outputs=[trade_live_details_plot],
)
# Olas traders
with gr.Row():
gr.Markdown("# Daily live metrics for 🌊 Olas traders")
with gr.Row():
o_trader_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
o_trader_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
trader_filter="Olas",
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot):
o_trader_plot = plot_daily_metrics(
metric_name=trade_detail,
trades_df=live_metrics_by_market_creator,
trader_filter="Olas",
)
return o_trader_plot
o_trader_live_details_selector.change(
update_a_trader_live_details,
inputs=[o_trader_live_details_selector, o_trader_live_details_plot],
outputs=[o_trader_live_details_plot],
)
with gr.Row():
gr.Markdown("# Daily live metrics for Non-Olas traders")
with gr.Row():
no_trader_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
no_trader_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
trader_filter="non_Olas",
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_na_trader_live_details(
trade_detail, no_trader_live_details_plot
):
no_trader_plot = plot_daily_metrics(
metric_name=trade_detail,
trades_df=live_metrics_by_market_creator,
trader_filter="non_Olas",
)
return no_trader_plot
no_trader_live_details_selector.change(
update_na_trader_live_details,
inputs=[no_trader_live_details_selector, no_trader_live_details_plot],
outputs=[no_trader_live_details_plot],
)
with gr.TabItem("🪝 Retention metrics (WIP)"):
with gr.Row():
gr.Markdown("# Wow retention by trader type")
with gr.Row():
gr.Markdown(
"""
Activity based on mech interactions for Olas and non_Olas traders and based on trading acitivity for the unclassified ones.
- Olas trader: agent using Mech, with a service ID and the corresponding safe in the registry
- Non-Olas trader: agent using Mech, with no service ID
- Unclassified trader: agent (safe/EOAs) not using Mechs
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Wow retention in Pearl markets")
wow_retention = calculate_wow_retention_by_type(
retention_df, market_creator="pearl"
)
wow_retention_plot = plot_wow_retention_by_type(
wow_retention=wow_retention
)
with gr.Column(scale=1):
gr.Markdown("## Wow retention in Quickstart markets")
wow_retention = calculate_wow_retention_by_type(
retention_df, market_creator="quickstart"
)
wow_retention_plot = plot_wow_retention_by_type(
wow_retention=wow_retention
)
with gr.Row():
gr.Markdown("# Cohort retention graphs")
with gr.Row():
gr.Markdown(
"The Cohort groups are organized by cohort weeks. A trader is part of a cohort group/week where it was detected the FIRST activity ever of that trader."
)
with gr.Row():
gr.Markdown(
"""
Week 0 for a cohort group is the same cohort week of the FIRST detected activity ever of that trader.
Only two values are possible for this Week 0:
1. 100% if the cohort size is > 0, meaning all traders active that first cohort week
2. 0% if the cohort size = 0, meaning no totally new traders started activity that cohort week.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Cohort retention of pearl traders")
gr.Markdown("### Cohort retention of 🌊 Olas traders")
cohort_retention_olas_pearl = calculate_cohort_retention(
df=retention_df, market_creator="pearl", trader_type="Olas"
)
cohort_retention_plot1 = plot_cohort_retention_heatmap(
retention_matrix=cohort_retention_olas_pearl, cmap="Purples"
)
with gr.Column(scale=1):
gr.Markdown("## Cohort retention of quickstart traders")
gr.Markdown("### Cohort retention of 🌊 Olas traders")
cohort_retention_olas_qs = calculate_cohort_retention(
df=retention_df, market_creator="quickstart", trader_type="Olas"
)
cohort_retention_plot4 = plot_cohort_retention_heatmap(
retention_matrix=cohort_retention_olas_qs,
cmap="Purples",
)
# # non_Olas
# cohort_retention_non_olas_pearl = calculate_cohort_retention(
# df=retention_df, market_creator="pearl", trader_type="non_Olas"
# )
# if len(cohort_retention_non_olas_pearl) > 0:
# gr.Markdown("## Cohort retention of Non-Olas traders")
# cohort_retention_plot2 = plot_cohort_retention_heatmap(
# retention_matrix=cohort_retention_non_olas_pearl,
# cmap=sns.color_palette("light:goldenrod", as_cmap=True),
# )
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Cohort retention of pearl traders")
cohort_retention_unclassified_pearl = calculate_cohort_retention(
df=retention_df,
market_creator="pearl",
trader_type="unclassified",
)
if len(cohort_retention_unclassified_pearl) > 0:
gr.Markdown("### Cohort retention of unclassified traders")
cohort_retention_plot3 = plot_cohort_retention_heatmap(
retention_matrix=cohort_retention_unclassified_pearl,
cmap="Greens",
)
with gr.Column(scale=1):
gr.Markdown("## Cohort retention in quickstart traders")
cohort_retention_unclassified_qs = calculate_cohort_retention(
df=retention_df,
market_creator="quickstart",
trader_type="unclassified",
)
if len(cohort_retention_unclassified_qs) > 0:
gr.Markdown("### Cohort retention of unclassified traders")
cohort_retention_plot6 = plot_cohort_retention_heatmap(
retention_matrix=cohort_retention_unclassified_qs,
cmap="Greens",
)
# # non_Olas
# cohort_retention_non_olas_qs = calculate_cohort_retention(
# df=retention_df,
# market_creator="quickstart",
# trader_type="non_Olas",
# )
# if len(cohort_retention_non_olas_qs) > 0:
# gr.Markdown("## Cohort retention of Non-Olas traders")
# cohort_retention_plot5 = plot_cohort_retention_heatmap(
# retention_matrix=cohort_retention_non_olas_qs,
# cmap=sns.color_palette("light:goldenrod", as_cmap=True),
# )
with gr.TabItem("⚙️ Active traders"):
with gr.Row():
gr.Markdown("# Active traders for all markets by trader categories")
with gr.Row():
active_traders_plot = plot_active_traders(active_traders)
with gr.Row():
gr.Markdown("# Active traders for Pearl markets by trader categories")
with gr.Row():
active_traders_plot_pearl = plot_active_traders(
active_traders, market_creator="pearl"
)
with gr.Row():
gr.Markdown(
"# Active traders for Quickstart markets by trader categories"
)
with gr.Row():
active_traders_plot_qs = plot_active_traders(
active_traders, market_creator="quickstart"
)
with gr.TabItem("📉 Markets Kullback–Leibler divergence"):
with gr.Row():
gr.Markdown(
"# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)"
)
with gr.Row():
gr.Markdown(
"Aka, how much off is the market prediction’s accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome."
)
with gr.Row():
trade_details_text = get_metrics_text()
with gr.Row():
with gr.Column(scale=3):
kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
with gr.Column(scale=1):
interpretation = get_interpretation_text()
with gr.TabItem("💰 Money invested per trader type"):
with gr.Row():
gr.Markdown("# Weekly total bet amount per trader type for all markets")
gr.Markdown("## Computed only for trader agents using the mech service")
with gr.Row():
total_bet_amount = plot_total_bet_amount(
traders_data, market_filter="all"
)
with gr.Row():
gr.Markdown(
"# Weekly total bet amount per trader type for Pearl markets"
)
with gr.Row():
o_trader_total_bet_amount = plot_total_bet_amount(
traders_data, market_filter="pearl"
)
with gr.Row():
gr.Markdown(
"# Weekly total bet amount per trader type for Quickstart markets"
)
with gr.Row():
no_trader_total_bet_amount = plot_total_bet_amount(
traders_data, market_filter="quickstart"
)
with gr.TabItem("💰 Money invested per market"):
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for all traders")
gr.Markdown("## Computed only for trader agents using the mech service")
with gr.Row():
bet_amounts = plot_total_bet_amount_per_trader_per_market(traders_data)
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for 🌊 Olas traders")
with gr.Row():
o_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
traders_data, trader_filter="Olas"
)
# with gr.Row():
# gr.Markdown("# Weekly bet amounts per market for Non-Olas traders")
# with gr.Row():
# no_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
# traders_data, trader_filter="non_Olas"
# )
with gr.TabItem("🎖️Weekly winning trades % per trader"):
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from all traders")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from 🌊 Olas traders")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric_olas = plot_winning_metric_per_trader(
weekly_winning_metrics_olas
)
# # non_Olas traders
# if len(weekly_non_olas_winning_metrics) > 0:
# with gr.Row():
# gr.Markdown(
# "# Weekly winning trades percentage from Non-Olas traders"
# )
# with gr.Row():
# metrics_text = get_metrics_text()
# with gr.Row():
# winning_metric = plot_winning_metric_per_trader(
# weekly_non_olas_winning_metrics
# )
demo.queue(default_concurrency_limit=40).launch()
|