Spaces:
Running
Running
File size: 12,555 Bytes
a6e53ee 21269d7 a6e53ee 16bab0d 21269d7 9aac1ca 21269d7 9aac1ca 21269d7 16bab0d 9aac1ca 16bab0d d02d53b 9aac1ca d02d53b 9aac1ca d02d53b c7ec500 d02d53b 9aac1ca d02d53b 9aac1ca d02d53b 9aac1ca 16bab0d d02d53b 16bab0d f563f80 16bab0d 39e9eae 0ce43f5 16bab0d 21269d7 16bab0d d02d53b 21269d7 16bab0d c7ec500 16bab0d 21269d7 16bab0d 9e48e7a 0ce43f5 16bab0d d02d53b 16bab0d 0ce43f5 16bab0d 9e48e7a 0ce43f5 16bab0d a6e53ee 16bab0d a6e53ee 16bab0d a6e53ee 16bab0d a6e53ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import gradio as gr
import torch
from torch import nn
from huggingface_hub import hf_hub_download
from transformers import BertModel, BertTokenizer, CLIPModel, BertConfig, CLIPConfig, CLIPProcessor
from modeling_unimo import UnimoForMaskedLM
def load_dict_text(path):
with open(path, 'r') as f:
load_data = {}
lines = f.readlines()
for line in lines:
key, value = line.split('\t')
load_data[key] = value.replace('\n', '')
return load_data
def load_text(path):
with open(path, 'r') as f:
lines = f.readlines()
load_data = []
for line in lines:
load_data.append(line.strip().replace('\n', ''))
return load_data
class MKGformerModel(nn.Module):
def __init__(self, text_config, vision_config):
super().__init__()
self.model = UnimoForMaskedLM(text_config, vision_config)
def farword(self, batch):
return self.model(**batch, return_dict=True)
# tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# entity and relation
ent2text = load_dict_text('./dataset/MarKG/entity2text.txt')
rel2text = load_dict_text('./dataset/MarKG/relation2text.txt')
analogy_entities = load_text('./dataset/MARS/analogy_entities.txt')
analogy_relations = load_text('./dataset/MARS/analogy_relations.txt')
ent2description = load_dict_text('./dataset/MarKG/entity2textlong.txt')
text2ent = {text: ent for ent, text in ent2text.items()}
ent2token = {ent: f"[ENTITY_{i}]" for i, ent in enumerate(ent2description)}
rel2token = {rel: f"[RELATION_{i}]" for i, rel in enumerate(rel2text)}
analogy_ent2token = {ent : f"[ENTITY_{i}]" for i, ent in enumerate(ent2description) if ent in analogy_entities}
analogy_rel2token = {rel : f"[RELATION_{i}]" for i, rel in enumerate(rel2text) if rel in analogy_relations}
entity_list = list(ent2token.values())
relation_list = list(rel2token.values())
analogy_ent_list = list(analogy_ent2token.values())
analogy_rel_list = list(analogy_rel2token.values())
num_added_tokens = tokenizer.add_special_tokens({'additional_special_tokens': entity_list})
num_added_tokens = tokenizer.add_special_tokens({'additional_special_tokens': relation_list})
vocab = tokenizer.get_added_vocab() # dict: word: idx
relation_id_st = vocab[relation_list[0]]
relation_id_ed = vocab[relation_list[-1]] + 1
entity_id_st = vocab[entity_list[0]]
entity_id_ed = vocab[entity_list[-1]] + 1
# analogy entities and relations
analogy_entity_ids = [vocab[ent] for ent in analogy_ent_list]
analogy_relation_ids = [vocab[rel] for rel in analogy_rel_list]
num_added_tokens = tokenizer.add_special_tokens({'additional_special_tokens': ["[R]"]})
# model
checkpoint_path = hf_hub_download(repo_id='flow3rdown/mkgformer_mart_ft', filename="mkgformer_mart_ft", repo_type='model')
clip_config = CLIPConfig.from_pretrained('openai/clip-vit-base-patch32').vision_config
clip_config.device = 'cpu'
bert_config = BertConfig.from_pretrained('bert-base-uncased')
mkgformer = MKGformerModel(clip_config, bert_config)
mkgformer.model.resize_token_embeddings(len(tokenizer))
mkgformer.load_state_dict(torch.load(checkpoint_path, map_location='cpu')["state_dict"])
# processor
processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32')
def single_inference_iit(head_img, head_id, tail_img, tail_id, question_txt, question_id):
# (I, I) -> (T, ?)
ques_ent_text = ent2description[question_id]
inputs = tokenizer(
tokenizer.sep_token.join([analogy_ent2token[head_id] + " ", "[R] ", analogy_ent2token[tail_id] + " "]),
tokenizer.sep_token.join([analogy_ent2token[question_id] + " " + ques_ent_text, "[R] ", "[MASK]"]),
truncation="longest_first", max_length=128, padding="longest", return_tensors='pt', add_special_tokens=True)
sep_idx = [[i for i, ids in enumerate(input_ids) if ids == tokenizer.sep_token_id] for input_ids in inputs['input_ids']]
inputs['sep_idx'] = torch.tensor(sep_idx)
inputs['attention_mask'] = inputs['attention_mask'].unsqueeze(1).expand([inputs['input_ids'].size(0), inputs['input_ids'].size(1), inputs['input_ids'].size(1)]).clone()
for i, idx in enumerate(sep_idx):
inputs['attention_mask'][i, :idx[2], idx[2]:] = 0
# image
pixel_values = processor(images=[head_img, tail_img], return_tensors='pt')['pixel_values'].squeeze()
inputs['pixel_values'] = pixel_values.unsqueeze(0)
input_ids = inputs['input_ids']
model_output = mkgformer.model(**inputs, return_dict=True)
logits = model_output[0].logits
bsz = input_ids.shape[0]
_, mask_idx = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True) # bsz
mask_logits = logits[torch.arange(bsz), mask_idx][:, analogy_entity_ids] # bsz, 1, entity
answer = ent2text[list(analogy_ent2token.keys())[mask_logits.argmax().item()]]
return answer
def single_inference_tti(head_txt, head_id, tail_txt, tail_id, question_img, question_id):
# (T, T) -> (I, ?)
head_ent_text, tail_ent_text = ent2description[head_id], ent2description[tail_id]
inputs = tokenizer(
tokenizer.sep_token.join([analogy_ent2token[head_id] + " " + head_ent_text, "[R] ", analogy_ent2token[tail_id] + " " + tail_ent_text]),
tokenizer.sep_token.join([analogy_ent2token[question_id] + " ", "[R] ", "[MASK]"]),
truncation="longest_first", max_length=128, padding="longest", return_tensors='pt', add_special_tokens=True)
sep_idx = [[i for i, ids in enumerate(input_ids) if ids == tokenizer.sep_token_id] for input_ids in inputs['input_ids']]
inputs['sep_idx'] = torch.tensor(sep_idx)
inputs['attention_mask'] = inputs['attention_mask'].unsqueeze(1).expand([inputs['input_ids'].size(0), inputs['input_ids'].size(1), inputs['input_ids'].size(1)]).clone()
for i, idx in enumerate(sep_idx):
inputs['attention_mask'][i, :idx[2], idx[2]:] = 0
# image
pixel_values = processor(images=question_img, return_tensors='pt')['pixel_values'].unsqueeze(1)
pixel_values = torch.cat((pixel_values, torch.zeros_like(pixel_values)), dim=1)
inputs['pixel_values'] = pixel_values
input_ids = inputs['input_ids']
model_output = mkgformer.model(**inputs, return_dict=True)
logits = model_output[0].logits
bsz = input_ids.shape[0]
_, mask_idx = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True) # bsz
mask_logits = logits[torch.arange(bsz), mask_idx][:, analogy_entity_ids] # bsz, 1, entity
answer = ent2text[list(analogy_ent2token.keys())[mask_logits.argmax().item()]]
return answer
def blended_inference_iti(head_img, head_id, tail_txt, tail_id, question_img, question_id):
# (I, T) -> (I, ?)
head_ent_text, tail_ent_text = ent2description[head_id], ent2description[tail_id]
inputs = tokenizer(
tokenizer.sep_token.join([analogy_ent2token[head_id], "[R] ", analogy_ent2token[tail_id] + " " + tail_ent_text]),
tokenizer.sep_token.join([analogy_ent2token[question_id] + " ", "[R] ", "[MASK]"]),
truncation="longest_first", max_length=128, padding="longest", return_tensors='pt', add_special_tokens=True)
sep_idx = [[i for i, ids in enumerate(input_ids) if ids == tokenizer.sep_token_id] for input_ids in inputs['input_ids']]
inputs['sep_idx'] = torch.tensor(sep_idx)
inputs['attention_mask'] = inputs['attention_mask'].unsqueeze(1).expand([inputs['input_ids'].size(0), inputs['input_ids'].size(1), inputs['input_ids'].size(1)]).clone()
for i, idx in enumerate(sep_idx):
inputs['attention_mask'][i, :idx[2], idx[2]:] = 0
# image
pixel_values = processor(images=[head_img, question_img], return_tensors='pt')['pixel_values'].squeeze()
inputs['pixel_values'] = pixel_values.unsqueeze(0)
input_ids = inputs['input_ids']
model_output = mkgformer.model(**inputs, return_dict=True)
logits = model_output[0].logits
bsz = input_ids.shape[0]
_, mask_idx = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True) # bsz
mask_logits = logits[torch.arange(bsz), mask_idx][:, analogy_entity_ids] # bsz, 1, entity
answer = ent2text[list(analogy_ent2token.keys())[mask_logits.argmax().item()]]
return answer
def single_tab_iit():
with gr.Column():
gr.Markdown(""" $(I_h, I_t) : (T_q, ?)$
""")
with gr.Row():
with gr.Column():
head_image = gr.Image(type='pil', label="Head Image")
head_ent = gr.Textbox(lines=1, label="Head Entity")
with gr.Column():
tail_image = gr.Image(type='pil', label="Tail Image")
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
with gr.Column():
question_text = gr.Textbox(lines=1, label="Question Name")
question_ent = gr.Textbox(lines=1, label="Question Entity")
submit_btn = gr.Button("Submit")
output_text = gr.Textbox(label="Output")
submit_btn.click(fn=single_inference_iit,
inputs=[head_image, head_ent, tail_image, tail_ent, question_text, question_ent],
outputs=[output_text])
examples=[['examples/tree.jpg', 'Q10884', 'examples/forest.jpg', 'Q4421', "Anhui", 'Q40956']]
ex = gr.Examples(
examples=examples,
fn=single_inference_iit,
inputs=[head_image, head_ent, tail_image, tail_ent, question_text, question_ent],
outputs=[output_text],
cache_examples=False,
run_on_click=False
)
def single_tab_tti():
with gr.Column():
gr.Markdown(""" $(T_h, T_t) : (I_q, ?)$
""")
with gr.Row():
with gr.Column():
head_text = gr.Textbox(lines=1, label="Head Name")
head_ent = gr.Textbox(lines=1, label="Head Entity")
with gr.Column():
tail_text = gr.Textbox(lines=1, label="Tail Name")
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
with gr.Column():
question_image = gr.Image(type='pil', label="Question Image")
question_ent = gr.Textbox(lines=1, label="Question Entity")
submit_btn = gr.Button("Submit")
output_text = gr.Textbox(label="Output")
submit_btn.click(fn=single_inference_tti,
inputs=[head_text, head_ent, tail_text, tail_ent, question_image, question_ent],
outputs=[output_text])
examples=[['scrap', 'Q3217573', 'watch', 'Q178794', 'examples/root.jpg', 'Q111029']]
ex = gr.Examples(
examples=examples,
fn=single_inference_iit,
inputs=[head_text, head_ent, tail_text, tail_ent, question_image, question_ent],
outputs=[output_text],
cache_examples=False,
run_on_click=False
)
def blended_tab_iti():
with gr.Column():
gr.Markdown(""" $(I_h, T_t) : (I_q, ?)$
""")
with gr.Row():
with gr.Column():
head_image = gr.Image(type='pil', label="Head Image")
head_ent = gr.Textbox(lines=1, label="Head Entity")
with gr.Column():
tail_txt = gr.Textbox(lines=1, label="Tail Name")
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
with gr.Column():
question_image = gr.Image(type='pil', label="Question Image")
question_ent = gr.Textbox(lines=1, label="Question Entity")
submit_btn = gr.Button("Submit")
output_text = gr.Textbox(label="Output")
submit_btn.click(fn=blended_inference_iti,
inputs=[head_image, head_ent, tail_txt, tail_ent, question_image, question_ent],
outputs=[output_text])
examples=[['examples/watermelon.jpg', 'Q38645', 'fruit', 'Q3314483', 'examples/coffee.jpeg', 'Q8486']]
ex = gr.Examples(
examples=examples,
fn=single_inference_iit,
inputs=[head_image, head_ent, tail_txt, tail_ent, question_image, question_ent],
outputs=[output_text],
cache_examples=False,
run_on_click=False
)
TITLE = """MKG Analogy"""
with gr.Blocks() as block:
with gr.Column(elem_id="col-container"):
gr.HTML(TITLE)
with gr.Tab("Single Analogical Reasoning"):
single_tab_iit()
single_tab_tti()
with gr.Tab("Blended Analogical Reasoning"):
blended_tab_iti()
# gr.HTML(ARTICLE)
block.queue(max_size=64).launch(enable_queue=True) |