roberta-stance / README.md
BayanDuygu's picture
Model save
fe959a2 verified
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: roberta-stance
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-stance
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1034
- Accuracy: 0.6232
- Precision: 0.6077
- Recall: 0.6301
- F1: 0.6127
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 46 | 1.0695 | 0.5184 | 0.1728 | 0.3333 | 0.2276 |
| No log | 2.0 | 92 | 1.0372 | 0.5184 | 0.1728 | 0.3333 | 0.2276 |
| No log | 3.0 | 138 | 0.9757 | 0.5746 | 0.4121 | 0.4214 | 0.3711 |
| No log | 4.0 | 184 | 0.8826 | 0.6063 | 0.5820 | 0.5298 | 0.5423 |
| No log | 5.0 | 230 | 0.8429 | 0.6166 | 0.6159 | 0.6011 | 0.5824 |
| No log | 6.0 | 276 | 0.8153 | 0.6472 | 0.6257 | 0.6376 | 0.6294 |
| No log | 7.0 | 322 | 0.8600 | 0.6559 | 0.6492 | 0.6427 | 0.6315 |
| No log | 8.0 | 368 | 0.8912 | 0.6299 | 0.6138 | 0.6159 | 0.6108 |
| No log | 9.0 | 414 | 1.0091 | 0.6161 | 0.6048 | 0.6345 | 0.6084 |
| No log | 10.0 | 460 | 1.1034 | 0.6232 | 0.6077 | 0.6301 | 0.6127 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0