|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: roberta-stance |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-stance |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1034 |
|
- Accuracy: 0.6232 |
|
- Precision: 0.6077 |
|
- Recall: 0.6301 |
|
- F1: 0.6127 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 46 | 1.0695 | 0.5184 | 0.1728 | 0.3333 | 0.2276 | |
|
| No log | 2.0 | 92 | 1.0372 | 0.5184 | 0.1728 | 0.3333 | 0.2276 | |
|
| No log | 3.0 | 138 | 0.9757 | 0.5746 | 0.4121 | 0.4214 | 0.3711 | |
|
| No log | 4.0 | 184 | 0.8826 | 0.6063 | 0.5820 | 0.5298 | 0.5423 | |
|
| No log | 5.0 | 230 | 0.8429 | 0.6166 | 0.6159 | 0.6011 | 0.5824 | |
|
| No log | 6.0 | 276 | 0.8153 | 0.6472 | 0.6257 | 0.6376 | 0.6294 | |
|
| No log | 7.0 | 322 | 0.8600 | 0.6559 | 0.6492 | 0.6427 | 0.6315 | |
|
| No log | 8.0 | 368 | 0.8912 | 0.6299 | 0.6138 | 0.6159 | 0.6108 | |
|
| No log | 9.0 | 414 | 1.0091 | 0.6161 | 0.6048 | 0.6345 | 0.6084 | |
|
| No log | 10.0 | 460 | 1.1034 | 0.6232 | 0.6077 | 0.6301 | 0.6127 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|