|
--- |
|
license: other |
|
--- |
|
# Hugging Face Model - Bengali Finetuned |
|
|
|
This repository contains a Hugging Face model that has been fine-tuned on a Bengali dataset. The model uses the `peft` library for generating responses. |
|
|
|
## Usage |
|
|
|
To use the model, first import the necessary libraries: |
|
|
|
```python |
|
from peft import PeftModel |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
``` |
|
|
|
Next, load the tokenizer and model: |
|
|
|
```python |
|
tokenizer = LlamaTokenizer.from_pretrained("yahma/llama-7b-hf") |
|
model = LlamaForCausalLM.from_pretrained( |
|
"yahma/llama-7b-hf", |
|
load_in_8bit=True, |
|
device_map="auto", |
|
) |
|
``` |
|
|
|
Then, load the `PeftModel` with the specified pre-trained model and path to the peft model: |
|
|
|
```python |
|
model = PeftModel.from_pretrained(model, "./bengali-dolly-alpaca-lora-7b") |
|
``` |
|
|
|
Next, define a function to generate a prompt: |
|
|
|
```python |
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Input: |
|
{input} |
|
|
|
### Response:""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Response:""" |
|
``` |
|
|
|
Finally, define a function to evaluate the model: |
|
|
|
```python |
|
generation_config = GenerationConfig( |
|
temperature=0.1, |
|
top_p=0.75, |
|
num_beams=4, |
|
) |
|
|
|
def evaluate(model, instruction, input=None): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].cuda() |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=256 |
|
) |
|
for s in generation_output.sequences: |
|
output = tokenizer.decode(s) |
|
print("Response:", output.split("### Response:")[1].strip()) |
|
|
|
instruct =input("Instruction: ") |
|
evaluate(model, instruct) |
|
``` |
|
|
|
To generate a response, simply run the `evaluate` function with an instruction and optional input: |
|
|
|
```python |
|
instruct = "Write a response that appropriately completes the request." |
|
input = "This is a sample input." |
|
evaluate(model, instruct, input) |
|
``` |
|
|
|
This will output a response that completes the request. |
|
|