Spaces:
Running
on
Zero
Running
on
Zero
File size: 48,429 Bytes
d8b0170 4167ce8 26a5d91 d8b0170 091c633 d8b0170 9e1dbe1 364a3b9 2adaaee 6695bc6 1341aa0 db32f90 631e75c db32f90 d793d7f 952d077 f8d4d9e d4cc1fc f8d4d9e 42081fd 12bfca0 992baec ea6676d e313b15 829dc10 42081fd 8690539 1471520 8690539 d8b0170 14f5ced d8b0170 8c8e7b4 d8b0170 17b8b1d d8b0170 2396c5a d8b0170 1341aa0 4b9e6c5 d95eaa8 d8b0170 37e2aa5 f81797f 13b3516 1341aa0 992baec d8b0170 30ddcbf dc84d2e 30ddcbf 5d26056 ebd18a0 f6ffc29 c955553 992baec c0ef521 a09af35 7a5454a 37e2aa5 703c5e6 37e2aa5 703c5e6 78ad6cc d687be5 4c0b936 a09af35 c0ef521 703c5e6 df4658b f392d56 cc298b6 e6ca355 b94939a e6ca355 51bce82 92b1582 cc298b6 37e2aa5 d8b0170 37e2aa5 d8b0170 807bbb1 631e75c ea0b581 4c0b936 918a13f 58309fe 918a13f df8ddfc 6fbeb7f 37e2aa5 918a13f 631e75c f81797f d005151 db32f90 37e2aa5 966b4a8 d8b0170 2ad75ef 11dc7fe 4167ce8 c2dbc2d 4167ce8 37e2aa5 036bef7 37e2aa5 d8b0170 4e32b83 d8b0170 4179c8f 8c8e7b4 e6ca355 d793d7f e6ca355 8c8e7b4 37e2aa5 690a432 6e68cd9 c32268f 64a33fa 7c71237 be8af01 64a33fa be8af01 37e2aa5 690a432 c32268f 690a432 b4eb9ed 7c71237 423ee98 b4eb9ed bc256b2 221091b 494b48a b0ca3cf 494b48a cea59b2 494b48a b4eb9ed 221091b b0ca3cf 221091b 37e2aa5 690a432 198e86a 423ee98 198e86a 0201132 198e86a 7c71237 198e86a 4d5c246 37e2aa5 3ebfddf 8cd1460 3ebfddf 8cd1460 3ebfddf 8cd1460 3ebfddf 8cd1460 3ebfddf 8cd1460 3ebfddf 4be7938 690a432 2620ec1 494b48a b4eb9ed b0ca3cf 2a603bc 2069f2c 221091b 2a603bc 7c71237 690a432 3fc3bdf 7c71237 3fc3bdf 2620ec1 7c71237 2620ec1 b0ca3cf 221091b ee4f61b cea59b2 221091b 2620ec1 221091b 2620ec1 7c71237 2620ec1 be8af01 3ebfddf 7c71237 198e86a 37e2aa5 67a303b ea0b581 690a432 314d6d0 690a432 f40a3f9 690a432 6fbeb7f 690a432 6886b34 690a432 413bf66 d14d66f 314d6d0 db4489f 314d6d0 db4489f 13b3516 413bf66 690a432 d14d66f 690a432 d14d66f 690a432 db4489f 690a432 13b3516 37e2aa5 a5a0693 9eddcb4 177e0b7 9eddcb4 56daa8c 807bbb1 633ba49 6183ddd 3ebfddf 9eddcb4 7401e4f 390221d be8af01 807bbb1 9eddcb4 198e86a 9e59bb0 b74b8c1 4f48370 04af224 631e75c 42d86ec 3ebfddf 198e86a 73b4de6 b74b8c1 04af224 4f48370 42d86ec 3ebfddf 198e86a 73b4de6 633ba49 b74b8c1 04af224 4f48370 42d86ec 3ebfddf 198e86a c52bbaf 633ba49 b74b8c1 04af224 4f48370 42d86ec 3ebfddf 198e86a d5f0fef 633ba49 b74b8c1 04af224 4f48370 42d86ec 3ebfddf 198e86a d5f0fef 633ba49 1341aa0 d793d7f 1341aa0 2620ec1 7c71237 2620ec1 198e86a 13b3516 d793d7f d005151 db32f90 dd3b213 14771f5 7c71237 e8298f5 198e86a e8298f5 db32f90 dd3b213 d005151 db32f90 1341aa0 3b566ce 807bbb1 633ba49 42d86ec 7401e4f 6183ddd 633ba49 807bbb1 7401e4f 1341aa0 6b7a148 1341aa0 8c8e7b4 1341aa0 37e2aa5 1341aa0 807bbb1 9eddcb4 633ba49 eae1771 807bbb1 d8b0170 f9449cf d8b0170 cff2130 807bbb1 56daa8c 807bbb1 633ba49 6183ddd 3ebfddf 8e1fc92 d8b0170 390221d be8af01 807bbb1 e74e0f4 198e86a 9e59bb0 4921f69 42d86ec 04af224 4921f69 42d86ec 3ebfddf 198e86a 73b4de6 4921f69 04af224 42d86ec 3ebfddf 198e86a 73b4de6 633ba49 4921f69 04af224 42d86ec 3ebfddf 198e86a 633ba49 4921f69 04af224 42d86ec 3ebfddf 198e86a 633ba49 4921f69 04af224 42d86ec 3ebfddf 198e86a 633ba49 1341aa0 d793d7f 1341aa0 2620ec1 7c71237 2620ec1 198e86a 13b3516 d793d7f 4921f69 dd3b213 14771f5 7c71237 e8298f5 198e86a e8298f5 4921f69 dd3b213 4921f69 1341aa0 3b566ce 807bbb1 633ba49 42d86ec 7401e4f 6183ddd 633ba49 807bbb1 7401e4f 1341aa0 6b7a148 1341aa0 8c8e7b4 1341aa0 37e2aa5 1341aa0 807bbb1 a6920aa 633ba49 eae1771 807bbb1 a6920aa f9449cf a6920aa cff2130 807bbb1 56daa8c 807bbb1 633ba49 6183ddd 3ebfddf a6920aa 390221d be8af01 807bbb1 e74e0f4 198e86a 9e59bb0 4921f69 42d86ec 04af224 4921f69 42d86ec 3ebfddf 198e86a 73b4de6 4921f69 04af224 42d86ec 3ebfddf 198e86a 73b4de6 633ba49 4921f69 04af224 42d86ec 3ebfddf 198e86a 633ba49 4921f69 04af224 42d86ec 3ebfddf 198e86a 633ba49 4921f69 04af224 42d86ec 3ebfddf 198e86a 633ba49 1341aa0 d793d7f 1341aa0 2620ec1 7c71237 2620ec1 198e86a 13b3516 d793d7f 4921f69 dd3b213 14771f5 7c71237 e8298f5 198e86a e8298f5 4921f69 dd3b213 4921f69 1341aa0 3b566ce 807bbb1 633ba49 42d86ec 7401e4f 6183ddd 633ba49 807bbb1 7401e4f 1341aa0 6b7a148 1341aa0 8c8e7b4 1341aa0 37e2aa5 1341aa0 807bbb1 4147862 d8b0170 8a296d6 06b376e e364109 06b376e 8a296d6 3c35dc3 8a296d6 3c35dc3 d8b0170 be666f7 6183ddd be666f7 37e2aa5 be666f7 6183ddd be666f7 56daa8c 8b2cdfc 633ba49 6183ddd 633ba49 6183ddd 633ba49 807bbb1 633ba49 6183ddd 633ba49 be666f7 633ba49 6183ddd 633ba49 6183ddd 633ba49 6183ddd 633ba49 6183ddd 633ba49 6183ddd 633ba49 6183ddd 633ba49 d8b0170 2ad75ef d8b0170 3ebfddf fe5ad45 d8b0170 807bbb1 d8b0170 7e95f51 d8b0170 172acd9 d8b0170 172acd9 d8b0170 6cca08f d8b0170 ae9f309 d8b0170 992f3e7 d8b0170 1341aa0 d8b0170 37e2aa5 9eddcb4 1341aa0 807bbb1 633ba49 6183ddd 633ba49 73b4de6 3ebfddf 9eddcb4 807bbb1 9eddcb4 37e2aa5 e0b3ce3 d8b0170 e0b3ce3 eae1771 d8b0170 1341aa0 807bbb1 633ba49 6183ddd 633ba49 73b4de6 3ebfddf d8b0170 807bbb1 d8b0170 37e2aa5 a6920aa eae1771 a6920aa e0b3ce3 eae1771 a6920aa 1341aa0 807bbb1 633ba49 6183ddd 633ba49 73b4de6 3ebfddf a6920aa 807bbb1 a6920aa d8b0170 37e2aa5 d8b0170 37e2aa5 d8b0170 992f631 37e2aa5 d8b0170 64a33fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 |
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
import random
import uuid
import re
import gradio as gr
import numpy as np
from PIL import Image
from typing import Tuple
import paramiko
import datetime
from gradio import themes
from image_gen_aux import UpscaleWithModel
from ip_adapter import IPAdapterXL
from huggingface_hub import snapshot_download
import gc
import torch
from diffusers import UNet2DConditionModel, AutoencoderKL, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from transformers import CLIPTextModelWithProjection, CLIPTextModel
#from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from transformers import Phi3ForCausalLM
from transformers import pipeline
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
DESCRIPTIONXX = """
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 IP Adapter Test B ⚡⚡⚡⚡
"""
examples = [
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw",
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
device = torch.device("cuda:0")
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
## load IP Adapter
repo_id = "ford442/SDXL-IP_ADAPTER"
subfolder = "image_encoder"
subfolder2 = "ip_adapter"
local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model")
local_folder = os.path.join(local_repo_path, subfolder)
local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir
ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='unet', low_cpu_mem_usage=False, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
def load_and_prepare_model():
vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
pipe = StableDiffusionXLPipeline.from_pretrained(
'ford442/RealVisXL_V5.0_BF16',
# 'SG161222/RealVisXL_V5.0',
#'John6666/uber-realistic-porn-merge-xl-urpmxl-v3-sdxl',
#torch_dtype=torch.bfloat16,
add_watermarker=False,
#use_safetensors=True,
token=HF_TOKEN,
text_encoder=None,
text_encoder_2=None,
vae=None,
# unet=None,
)
'''
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
'''
#pipe.vae=vaeX
pipe.vae=vaeX.to(device)
pipe.to(device=device, dtype=torch.bfloat16)
# pipe.vae.enable_tiling()
# pipe.vae.fuse_qkv_projections()
#pipe.vae.to(device=device, dtype=torch.bfloat16)
#pipe.vae.do_resize=False
#pipe.vae.do_rescale=False
#pipe.vae.do_convert_rgb=True
#pipe.vae.vae_scale_factor=8
#pipe.unet.set_default_attn_processor()
# pipe.vae.set_default_attn_processor()
print(f'Pipeline: ')
#print(f'_optional_components: {pipe._optional_components}')
#print(f'watermark: {pipe.watermark}')
print(f'image_processor: {pipe.image_processor}')
#print(f'feature_extractor: {pipe.feature_extractor}')
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
#print(f'UNET: {pipe.unet}')
pipe.watermark=None
pipe.safety_checker=None
return pipe
# Preload and compile both models
pipe = load_and_prepare_model()
# text models
#checkpoint = "microsoft/Phi-3.5-mini-instruct"
checkpoint = "ford442/Phi-3.5-mini-instruct-bf16"
#captioner = pipeline(model="ydshieh/vit-gpt2-coco-en",device='cuda:0', task="image-to-text")
#captioner_2 = pipeline(model="Salesforce/blip-image-captioning-base",device='cuda', task="image-to-text")
#captioner_2 = pipeline(model="ford442/blip-image-to-text-large-bf16",device='cuda', task="image-to-text")
#model5 = Blip2ForConditionalGeneration.from_pretrained("ford442/blip2-image-to-text-bf16").to('cuda')
#processor5 = Blip2Processor.from_pretrained("ford442/blip2-image-to-text-bf16", device_map='cuda')
#txt_tokenizer = AutoTokenizer.from_pretrained(checkpoint, device_map='cuda', add_prefix_space=False)
#txt_tokenizer.tokenizer_legacy=False
#model = Phi3ForCausalLM.from_pretrained(checkpoint).to('cuda:0')
#model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='cuda') #.to('cuda')
model5 = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b").to('cuda',torch.bfloat16)
processor5 = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
text_encoder_1=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder',token=True) #.to(device=device, dtype=torch.bfloat16)
text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder_2',token=True) #.to(device=device, dtype=torch.bfloat16)
MAX_SEED = np.iinfo(np.int32).max
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
def filter_text(text,phraseC):
"""Filters out the text up to and including 'Rewritten Prompt:'."""
phrase = "Rewritten Prompt:"
phraseB = "rewritten text:"
pattern = f"(.*?){re.escape(phrase)}(.*)"
patternB = f"(.*?){re.escape(phraseB)}(.*)"
# matchB = re.search(patternB, text)
matchB = re.search(patternB, text, flags=re.DOTALL)
if matchB:
filtered_text = matchB.group(2)
match = re.search(pattern, filtered_text, flags=re.DOTALL)
if match:
filtered_text = match.group(2)
filtered_text = re.sub(phraseC, "", filtered_text, flags=re.DOTALL)
return filtered_text
else:
return filtered_text
else:
# Handle the case where no match is found
return text
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name,optimize=False,compress_level=0)
return unique_name
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
filename= f'IP_{timestamp}.txt'
with open(filename, "w") as f:
f.write(f"Realvis 5.0 IP Adapter Test B\n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
f.write(f"SPACE SETUP: \n")
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
upload_to_ftp(filename)
def captioning(img, prompt_1,prompt_2,prompt_3,prompt_4,prompt_5):
'''prompts_array = [
"Adjectives describing this scene are:",
# "The color scheme of this image is",
# "This scene could be described in detail as",
# "The characters in this scene are",
# "The larger details in this scene include",
# "The smaller details in this scene include",
# "The feeling this scene seems like",
"The setting of this scene must be located",
# Add more prompts here
]
'''
output_prompt=[]
cap_prompt = (
"Describe this image with a caption to be used for image generation."
)
cap_prompt2 = (
"Describe this image."
)
inputsa = processor5(images=img, text=cap_prompt, return_tensors="pt").to('cuda')
inputsb = processor5(images=img, text=cap_prompt2, return_tensors="pt").to('cuda')
'''
generated_ids = model5.generate(
**inputsa,
do_sample=True,
num_beams=5,
max_length=128,
min_length=64,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
temperature=1,
)
'''
generated_ids = model5.generate(
**inputsa,
do_sample=True,
num_beams=1,
max_length=128,
min_length=64,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=2.0,
temperature=0.5,
)
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
generated_idsb = model5.generate(
**inputsb,
do_sample=True,
num_beams=1,
max_length=42,
min_length=40,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=2.0,
temperature=0.5,
)
generated_textb = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
generated_text = generated_text.replace(cap_prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
generated_textb = generated_textb.replace(cap_prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
output_prompt.append(generated_text)
print(generated_text)
prompt_array=[]
if prompt_1 is not None:
prompt_array.append(prompt_1)
if prompt_2 is not None:
prompt_array.append(prompt_2)
if prompt_3 is not None:
prompt_array.append(prompt_3)
if prompt_4 is not None:
prompt_array.append(prompt_4)
if prompt_5 is not None:
prompt_array.append(prompt_5)
for prompt in prompt_array:
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
#with torch.no_grad():
generated_ids = model5.generate(
**inputs,
do_sample=True,
num_beams=5,
max_length=256,
min_length=42,
top_p=0.2,
repetition_penalty=1.0,
length_penalty=2.0,
temperature=0.55,
)
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
response_text = generated_text.replace(prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
output_prompt.append(response_text)
print(f"{response_text}\n")
inputf = processor5(
images=img,
text=generated_text + ' So therefore, ',
return_tensors="pt"
).to('cuda')
generated_ids = model5.generate(
**inputf,
do_sample=True,
num_beams=1,
max_length=384,
min_length=64,
top_p=0.1,
repetition_penalty=1.0,
length_penalty=1.0,
temperature=0.5,
)
generated_texta = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
response_text = generated_texta.replace(generated_text, "").strip()
print(f"{response_text}\n")
output_prompt.append(response_text)
output_prompt = " ".join(output_prompt)
return output_prompt, generated_textb
def flatten_and_stringify(data):
return [str(item) for sublist in data if isinstance(sublist, list) for item in flatten_and_stringify(sublist) ] + [str(item) for item in data if not isinstance(item, list)]
def expand_prompt(prompt):
system_prompt_rewrite = (
"You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
)
user_prompt_rewrite = (
"Rewrite this prompt to be more descriptive and detailed and only return the rewritten text: "
)
user_prompt_rewrite_2 = (
"Rephrase this scene to have more elaborate details: "
)
input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
print("-- got prompt --")
# Encode the input text and include the attention mask
encoded_inputs = txt_tokenizer(input_text, return_tensors="pt", return_attention_mask=True).to("cuda:0")
# Ensure all values are on the correct device
input_ids = encoded_inputs["input_ids"].to("cuda:0")
attention_mask = encoded_inputs["attention_mask"].to("cuda:0")
print("-- tokenize prompt --")
# Google T5
#input_ids = txt_tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=1024,
temperature=0.2,
top_p=0.9,
do_sample=True,
)
enhanced_prompt = txt_tokenizer.decode(outputs[0], skip_special_tokens=True)
print('-- generated prompt 1 --')
#print(enhanced_prompt)
#enhanced_prompt = filter_text(enhanced_prompt,prompt)
#enhanced_prompt = filter_text(enhanced_prompt,user_prompt_rewrite)
#enhanced_prompt = filter_text(enhanced_prompt,system_prompt_rewrite)
print('-- filtered prompt --')
enhanced_prompt = enhanced_prompt[len(input_text):]
print(enhanced_prompt)
'''
input_text_2 = f"{system_prompt_rewrite} {user_prompt_rewrite_2} {enhanced_prompt}"
encoded_inputs_2 = txt_tokenizer(input_text_2, return_tensors="pt", return_attention_mask=True).to("cuda:0")
input_ids_2 = encoded_inputs_2["input_ids"].to("cuda:0")
attention_mask_2 = encoded_inputs_2["attention_mask"].to("cuda:0")
outputs_2 = model.generate(
input_ids=input_ids_2,
attention_mask=attention_mask_2,
max_new_tokens=256,
temperature=0.2,
top_p=0.9,
do_sample=True,
)
# Use the encoded tensor 'text_inputs' here
enhanced_prompt_2 = txt_tokenizer.decode(outputs_2[0], skip_special_tokens=True)
print('-- generated prompt 2 --')
print(enhanced_prompt_2)
enhanced_prompt_2 = filter_text(enhanced_prompt_2,prompt)
enhanced_prompt_2 = filter_text(enhanced_prompt_2,user_prompt_rewrite_2)
enhanced_prompt_2 = filter_text(enhanced_prompt_2,system_prompt_rewrite)
print('-- filtered prompt 2 --')
print(enhanced_prompt_2)
enh_prompt=[enhanced_prompt,enhanced_prompt_2]
'''
return enhanced_prompt
@spaces.GPU(duration=40)
def generate_30(
prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
latent_file = gr.File(), # Add latents file input
latent_file_2 = gr.File(), # Add latents file input
latent_file_3 = gr.File(), # Add latents file input
latent_file_4 = gr.File(), # Add latents file input
latent_file_5 = gr.File(), # Add latents file input
text_scale: float = 1.0,
ip_scale: float = 1.0,
latent_file_1_scale: float = 1.0,
latent_file_2_scale: float = 1.0,
latent_file_3_scale: float = 1.0,
latent_file_4_scale: float = 1.0,
latent_file_5_scale: float = 1.0,
samples=1,
prompt_1: str = "",
prompt_2: str = "",
prompt_3: str = "",
prompt_4: str = "",
prompt_5: str = "",
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
prompt1=None
prompt2=None
prompt3=None
prompt4=None
prompt5=None
image_paths=[]
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
capt=[]
if latent_file is not None: # Check if a latent file is provided
sd_image_a = Image.open(latent_file.name).convert('RGB')
sd_image_a.resize((768,768), Image.LANCZOS)
#sd_image_a.resize((height,width), Image.LANCZOS)
caption=[]
#caption.append(captioning(sd_image_a))
prompt1, cap=captioning(sd_image_a,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
if latent_file_2 is not None: # Check if a latent file is provided
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
#sd_image_b.resize((height,width), Image.LANCZOS)
sd_image_b.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_b))
prompt2, cap=captioning(sd_image_b,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_b = None
if latent_file_3 is not None: # Check if a latent file is provided
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
#sd_image_c.resize((height,width), Image.LANCZOS)
sd_image_c.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_c))
prompt3, cap=captioning(sd_image_c,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_c = None
if latent_file_4 is not None: # Check if a latent file is provided
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
#sd_image_d.resize((height,width), Image.LANCZOS)
sd_image_d.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_d))
prompt4, cap=captioning(sd_image_d,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_d = None
if latent_file_5 is not None: # Check if a latent file is provided
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
#sd_image_e.resize((height,width), Image.LANCZOS)
sd_image_e.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_e))
prompt5, cap=captioning(sd_image_e,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_e = None
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename= f'rv_IPb_{timestamp}.png'
print("-- using image file --")
print("-- CURRENT PROMPT --")
print(prompt)
prompt = " ".join(prompt)
print("-- CURRENT PROMPT AFTER .join --")
print(prompt)
captions = " ".join(caption)
capt = " ".join(capt)
print(captions)
print("-- not generating further caption --")
global model5
global processor5
del model5
del processor5
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
#expanded = expand_prompt(captions)
new_prompt = prompt + ' ' + captions
print("-- ------------ --")
print("-- FINAL PROMPT --")
print(capt)
print("-- FINAL PROMPT --")
print("-- ------------ --")
gc.collect()
torch.cuda.empty_cache()
global text_encoder_1
global text_encoder_2
pipe.text_encoder=text_encoder_1.to(device=device, dtype=torch.bfloat16)
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
print('-- generating image --')
sd_image = ip_model.generate(
pil_image_1=sd_image_a,
pil_image_2=sd_image_b,
pil_image_3=sd_image_c,
pil_image_4=sd_image_d,
pil_image_5=sd_image_e,
prompt=prompt,
prompt1=prompt1,
prompt2=prompt2,
prompt3=prompt3,
prompt4=prompt4,
prompt5=prompt5,
negative_prompt=negative_prompt,
text_scale=text_scale,
ip_scale=ip_scale,
scale_1=latent_file_1_scale,
scale_2=latent_file_2_scale,
scale_3=latent_file_3_scale,
scale_4=latent_file_4_scale,
scale_5=latent_file_5_scale,
num_samples=samples,
seed=seed,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
)
sd_image[0].save(filename,optimize=False,compress_level=0)
upload_to_ftp(filename)
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rvIP_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
upload_to_ftp(downscale_path)
image_paths = [save_image(downscale1)]
else:
print('-- IMAGE REQUIRED --')
return image_paths
@spaces.GPU(duration=70)
def generate_60(
prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
latent_file = gr.File(), # Add latents file input
latent_file_2 = gr.File(), # Add latents file input
latent_file_3 = gr.File(), # Add latents file input
latent_file_4 = gr.File(), # Add latents file input
latent_file_5 = gr.File(), # Add latents file input
text_scale: float = 1.0,
ip_scale: float = 1.0,
latent_file_1_scale: float = 1.0,
latent_file_2_scale: float = 1.0,
latent_file_3_scale: float = 1.0,
latent_file_4_scale: float = 1.0,
latent_file_5_scale: float = 1.0,
samples=1,
prompt_1: str = "",
prompt_2: str = "",
prompt_3: str = "",
prompt_4: str = "",
prompt_5: str = "",
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
prompt1=None
prompt2=None
prompt3=None
prompt4=None
prompt5=None
image_paths=[]
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
capt=[]
if latent_file is not None: # Check if a latent file is provided
sd_image_a = Image.open(latent_file.name).convert('RGB')
sd_image_a.resize((768,768), Image.LANCZOS)
#sd_image_a.resize((height,width), Image.LANCZOS)
caption=[]
#caption.append(captioning(sd_image_a))
prompt1, cap=captioning(sd_image_a,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
if latent_file_2 is not None: # Check if a latent file is provided
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
#sd_image_b.resize((height,width), Image.LANCZOS)
sd_image_b.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_b))
prompt2, cap=captioning(sd_image_b,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_b = None
if latent_file_3 is not None: # Check if a latent file is provided
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
#sd_image_c.resize((height,width), Image.LANCZOS)
sd_image_c.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_c))
prompt3, cap=captioning(sd_image_c,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_c = None
if latent_file_4 is not None: # Check if a latent file is provided
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
#sd_image_d.resize((height,width), Image.LANCZOS)
sd_image_d.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_d))
prompt4, cap=captioning(sd_image_d,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_d = None
if latent_file_5 is not None: # Check if a latent file is provided
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
#sd_image_e.resize((height,width), Image.LANCZOS)
sd_image_e.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_e))
prompt5, cap=captioning(sd_image_e,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_e = None
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename= f'rv_IPb_{timestamp}.png'
print("-- using image file --")
print("-- CURRENT PROMPT --")
print(prompt)
prompt = " ".join(prompt)
print("-- CURRENT PROMPT AFTER .join --")
print(prompt)
captions = " ".join(caption)
capt = " ".join(capt)
print(captions)
print("-- not generating further caption --")
global model5
global processor5
del model5
del processor5
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
#expanded = expand_prompt(captions)
new_prompt = prompt + ' ' + captions
print("-- ------------ --")
print("-- FINAL PROMPT --")
print(capt)
print("-- FINAL PROMPT --")
print("-- ------------ --")
gc.collect()
torch.cuda.empty_cache()
global text_encoder_1
global text_encoder_2
pipe.text_encoder=text_encoder_1.to(device=device, dtype=torch.bfloat16)
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
print('-- generating image --')
sd_image = ip_model.generate(
pil_image_1=sd_image_a,
pil_image_2=sd_image_b,
pil_image_3=sd_image_c,
pil_image_4=sd_image_d,
pil_image_5=sd_image_e,
prompt=prompt,
prompt1=prompt1,
prompt2=prompt2,
prompt3=prompt3,
prompt4=prompt4,
prompt5=prompt5,
negative_prompt=negative_prompt,
text_scale=text_scale,
ip_scale=ip_scale,
scale_1=latent_file_1_scale,
scale_2=latent_file_2_scale,
scale_3=latent_file_3_scale,
scale_4=latent_file_4_scale,
scale_5=latent_file_5_scale,
num_samples=samples,
seed=seed,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
)
sd_image[0].save(filename,optimize=False,compress_level=0)
upload_to_ftp(filename)
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rvIP_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
upload_to_ftp(downscale_path)
image_paths = [save_image(downscale1)]
else:
print('-- IMAGE REQUIRED --')
return image_paths
@spaces.GPU(duration=100)
def generate_90(
prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
latent_file = gr.File(), # Add latents file input
latent_file_2 = gr.File(), # Add latents file input
latent_file_3 = gr.File(), # Add latents file input
latent_file_4 = gr.File(), # Add latents file input
latent_file_5 = gr.File(), # Add latents file input
text_scale: float = 1.0,
ip_scale: float = 1.0,
latent_file_1_scale: float = 1.0,
latent_file_2_scale: float = 1.0,
latent_file_3_scale: float = 1.0,
latent_file_4_scale: float = 1.0,
latent_file_5_scale: float = 1.0,
samples=1,
prompt_1: str = "",
prompt_2: str = "",
prompt_3: str = "",
prompt_4: str = "",
prompt_5: str = "",
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
prompt1=None
prompt2=None
prompt3=None
prompt4=None
prompt5=None
image_paths=[]
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
capt=[]
if latent_file is not None: # Check if a latent file is provided
sd_image_a = Image.open(latent_file.name).convert('RGB')
sd_image_a.resize((768,768), Image.LANCZOS)
#sd_image_a.resize((height,width), Image.LANCZOS)
caption=[]
#caption.append(captioning(sd_image_a))
prompt1, cap=captioning(sd_image_a,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
if latent_file_2 is not None: # Check if a latent file is provided
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
#sd_image_b.resize((height,width), Image.LANCZOS)
sd_image_b.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_b))
prompt2, cap=captioning(sd_image_b,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_b = None
if latent_file_3 is not None: # Check if a latent file is provided
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
#sd_image_c.resize((height,width), Image.LANCZOS)
sd_image_c.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_c))
prompt3, cap=captioning(sd_image_c,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_c = None
if latent_file_4 is not None: # Check if a latent file is provided
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
#sd_image_d.resize((height,width), Image.LANCZOS)
sd_image_d.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_d))
prompt4, cap=captioning(sd_image_d,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_d = None
if latent_file_5 is not None: # Check if a latent file is provided
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
#sd_image_e.resize((height,width), Image.LANCZOS)
sd_image_e.resize((768,768), Image.LANCZOS)
#caption.append(captioning(sd_image_e))
prompt5, cap=captioning(sd_image_e,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
capt.append(cap)
else:
sd_image_e = None
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename= f'rv_IPb_{timestamp}.png'
print("-- using image file --")
print("-- CURRENT PROMPT --")
print(prompt)
prompt = " ".join(prompt)
print("-- CURRENT PROMPT AFTER .join --")
print(prompt)
captions = " ".join(caption)
capt = " ".join(capt)
print(captions)
print("-- not generating further caption --")
global model5
global processor5
del model5
del processor5
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
#expanded = expand_prompt(captions)
new_prompt = prompt + ' ' + captions
print("-- ------------ --")
print("-- FINAL PROMPT --")
print(capt)
print("-- FINAL PROMPT --")
print("-- ------------ --")
gc.collect()
torch.cuda.empty_cache()
global text_encoder_1
global text_encoder_2
pipe.text_encoder=text_encoder_1.to(device=device, dtype=torch.bfloat16)
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
print('-- generating image --')
sd_image = ip_model.generate(
pil_image_1=sd_image_a,
pil_image_2=sd_image_b,
pil_image_3=sd_image_c,
pil_image_4=sd_image_d,
pil_image_5=sd_image_e,
prompt=prompt,
prompt1=prompt1,
prompt2=prompt2,
prompt3=prompt3,
prompt4=prompt4,
prompt5=prompt5,
negative_prompt=negative_prompt,
text_scale=text_scale,
ip_scale=ip_scale,
scale_1=latent_file_1_scale,
scale_2=latent_file_2_scale,
scale_3=latent_file_3_scale,
scale_4=latent_file_4_scale,
scale_5=latent_file_5_scale,
num_samples=samples,
seed=seed,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
)
sd_image[0].save(filename,optimize=False,compress_level=0)
upload_to_ftp(filename)
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rvIP_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
upload_to_ftp(downscale_path)
image_paths = [save_image(downscale1)]
else:
print('-- IMAGE REQUIRED --')
return image_paths
def load_predefined_images1():
predefined_images1 = [
"assets/7.png",
"assets/8.png",
"assets/9.png",
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
]
return predefined_images1
css = '''
#col-container {
margin: 0 auto;
max-width: 640px;
}
h1{text-align:center}
footer {
visibility: hidden
}
body {
background-color: green;
}
'''
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
text_strength = gr.Slider(
label="Text Strength",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
ip_strength = gr.Slider(
label="Image Strength",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
with gr.Row():
latent_file = gr.File(label="Image Prompt (Required)")
image_1_text = gr.Textbox(label="Image 1 Text", lines=5) # Add this line
file_1_strength = gr.Slider(
label="Img 1 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
latent_file_2 = gr.File(label="Image Prompt 2 (Optional)")
file_2_strength = gr.Slider(
label="Img 2 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
latent_file_3 = gr.File(label="Image Prompt 3 (Optional)")
file_3_strength = gr.Slider(
label="Img 3 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
latent_file_4 = gr.File(label="Image Prompt 4 (Optional)")
file_4_strength = gr.Slider(
label="Img 4 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
latent_file_5 = gr.File(label="Image Prompt 5 (Optional)")
file_5_strength = gr.Slider(
label="Img 5 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
visible=True,
)
prompt_1 = gr.Textbox(label="Custom Prompt 1", lines=2, placeholder="Enter custom prompt 1")
prompt_2 = gr.Textbox(label="Custom Prompt 2", lines=2, placeholder="Enter custom prompt 2")
prompt_3 = gr.Textbox(label="Custom Prompt 3", lines=2, placeholder="Enter custom prompt 3")
prompt_4 = gr.Textbox(label="Custom Prompt 4", lines=2, placeholder="Enter custom prompt 4")
prompt_5 = gr.Textbox(label="Custom Prompt 5", lines=2, placeholder="Enter custom prompt 5")
samples = gr.Slider(
label="Samples",
minimum=0,
maximum=20,
step=1,
value=1,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30,
step=0.1,
value=3.8,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=1000,
step=10,
value=170,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
run_button_30.click,
],
# api_name="generate", # Add this line
fn=generate_30,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
latent_file,
latent_file_2,
latent_file_3,
latent_file_4,
latent_file_5,
text_strength,
ip_strength,
file_1_strength,
file_2_strength,
file_3_strength,
file_4_strength,
file_5_strength,
samples,
prompt_1,
prompt_2,
prompt_3,
prompt_4,
prompt_5,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_60.click,
],
# api_name="generate", # Add this line
fn=generate_60,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
latent_file,
latent_file_2,
latent_file_3,
latent_file_4,
latent_file_5,
text_strength,
ip_strength,
file_1_strength,
file_2_strength,
file_3_strength,
file_4_strength,
file_5_strength,
samples,
prompt_1,
prompt_2,
prompt_3,
prompt_4,
prompt_5,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_90.click,
],
# api_name="generate", # Add this line
fn=generate_90,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
latent_file,
latent_file_2,
latent_file_3,
latent_file_4,
latent_file_5,
text_strength,
ip_strength,
file_1_strength,
file_2_strength,
file_3_strength,
file_4_strength,
file_5_strength,
samples,
prompt_1,
prompt_2,
prompt_3,
prompt_4,
prompt_5,
],
outputs=[result],
)
gr.Markdown("### REALVISXL V5.0")
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
#gr.Markdown("### LIGHTNING V5.0")
#predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())
gr.Markdown(
"""
<div style="text-align: justify;">
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
</div>
""")
def text_generation(input_text, seed):
full_prompt = "Text Generator Application by ecarbo"
return full_prompt
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"
if __name__ == "__main__":
demo_interface = demo.queue(max_size=50) # Remove .launch() here
text_gen_interface = gr.Interface(
fn=text_generation,
inputs=[
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
gr.Number(value=10, label="Enter seed number")
],
outputs=gr.Textbox(label="Text Generated"),
title=title,
description=description,
)
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
combined_interface.launch(show_api=False) |