File size: 48,429 Bytes
d8b0170
 
 
 
 
 
4167ce8
26a5d91
d8b0170
 
 
091c633
d8b0170
 
 
 
9e1dbe1
364a3b9
2adaaee
6695bc6
1341aa0
 
db32f90
631e75c
db32f90
d793d7f
 
 
 
 
 
952d077
f8d4d9e
 
d4cc1fc
f8d4d9e
42081fd
12bfca0
992baec
ea6676d
e313b15
 
829dc10
42081fd
8690539
 
1471520
8690539
 
d8b0170
14f5ced
d8b0170
 
 
 
 
 
 
 
 
8c8e7b4
d8b0170
 
17b8b1d
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396c5a
d8b0170
1341aa0
 
 
 
 
 
 
 
 
4b9e6c5
d95eaa8
d8b0170
 
 
 
 
 
 
 
37e2aa5
f81797f
13b3516
1341aa0
992baec
d8b0170
30ddcbf
dc84d2e
30ddcbf
5d26056
ebd18a0
f6ffc29
c955553
992baec
 
c0ef521
a09af35
7a5454a
37e2aa5
703c5e6
 
 
 
 
 
 
 
 
 
 
 
37e2aa5
703c5e6
78ad6cc
d687be5
4c0b936
a09af35
 
c0ef521
 
703c5e6
 
df4658b
 
f392d56
cc298b6
e6ca355
 
b94939a
e6ca355
51bce82
92b1582
cc298b6
37e2aa5
d8b0170
37e2aa5
d8b0170
807bbb1
631e75c
 
ea0b581
 
4c0b936
918a13f
58309fe
918a13f
 
df8ddfc
 
 
6fbeb7f
37e2aa5
918a13f
631e75c
f81797f
d005151
db32f90
37e2aa5
966b4a8
d8b0170
2ad75ef
11dc7fe
4167ce8
 
 
 
 
 
 
 
 
 
 
 
 
c2dbc2d
4167ce8
 
 
 
 
 
37e2aa5
036bef7
 
 
 
 
 
 
 
 
 
 
 
37e2aa5
d8b0170
 
4e32b83
d8b0170
 
4179c8f
8c8e7b4
e6ca355
d793d7f
e6ca355
 
 
 
 
8c8e7b4
37e2aa5
690a432
6e68cd9
c32268f
64a33fa
7c71237
be8af01
 
64a33fa
 
be8af01
37e2aa5
690a432
 
c32268f
690a432
b4eb9ed
7c71237
 
423ee98
 
 
b4eb9ed
bc256b2
221091b
494b48a
 
b0ca3cf
494b48a
cea59b2
 
494b48a
 
 
 
b4eb9ed
221091b
 
 
b0ca3cf
221091b
 
 
 
 
 
 
 
37e2aa5
690a432
198e86a
 
423ee98
198e86a
 
0201132
 
198e86a
 
 
 
 
 
 
 
7c71237
198e86a
4d5c246
37e2aa5
3ebfddf
8cd1460
3ebfddf
8cd1460
3ebfddf
8cd1460
3ebfddf
8cd1460
3ebfddf
8cd1460
3ebfddf
4be7938
690a432
2620ec1
494b48a
b4eb9ed
b0ca3cf
2a603bc
2069f2c
 
 
221091b
 
2a603bc
7c71237
690a432
 
 
3fc3bdf
7c71237
3fc3bdf
2620ec1
7c71237
 
2620ec1
 
b0ca3cf
221091b
ee4f61b
cea59b2
221091b
 
2620ec1
221091b
2620ec1
7c71237
 
2620ec1
be8af01
3ebfddf
7c71237
198e86a
37e2aa5
67a303b
 
ea0b581
690a432
 
 
 
 
 
 
 
 
 
 
314d6d0
690a432
 
f40a3f9
690a432
6fbeb7f
 
690a432
 
 
 
 
 
6886b34
690a432
 
 
 
413bf66
d14d66f
314d6d0
 
 
 
db4489f
314d6d0
db4489f
13b3516
413bf66
 
 
 
690a432
 
 
d14d66f
690a432
 
 
 
 
 
d14d66f
 
690a432
db4489f
 
690a432
 
 
13b3516
37e2aa5
 
a5a0693
9eddcb4
177e0b7
9eddcb4
 
 
 
 
 
 
56daa8c
807bbb1
633ba49
 
 
6183ddd
 
 
 
 
 
 
3ebfddf
 
 
 
 
 
9eddcb4
7401e4f
390221d
 
 
 
 
be8af01
807bbb1
9eddcb4
198e86a
9e59bb0
b74b8c1
4f48370
04af224
631e75c
42d86ec
3ebfddf
198e86a
73b4de6
b74b8c1
04af224
4f48370
42d86ec
3ebfddf
198e86a
73b4de6
 
633ba49
b74b8c1
04af224
4f48370
42d86ec
3ebfddf
198e86a
c52bbaf
633ba49
 
b74b8c1
04af224
4f48370
42d86ec
3ebfddf
198e86a
d5f0fef
633ba49
 
b74b8c1
04af224
4f48370
42d86ec
3ebfddf
198e86a
d5f0fef
633ba49
1341aa0
d793d7f
1341aa0
2620ec1
 
7c71237
2620ec1
 
 
198e86a
13b3516
d793d7f
d005151
 
db32f90
 
 
dd3b213
 
14771f5
7c71237
e8298f5
 
198e86a
e8298f5
 
db32f90
dd3b213
d005151
 
 
db32f90
1341aa0
 
3b566ce
807bbb1
633ba49
 
 
42d86ec
 
 
 
 
 
7401e4f
6183ddd
 
633ba49
 
 
 
 
807bbb1
7401e4f
1341aa0
 
 
 
 
 
6b7a148
1341aa0
 
 
8c8e7b4
1341aa0
37e2aa5
 
1341aa0
 
807bbb1
9eddcb4
633ba49
eae1771
807bbb1
d8b0170
 
f9449cf
d8b0170
 
cff2130
807bbb1
56daa8c
807bbb1
633ba49
 
 
6183ddd
 
 
 
 
 
 
3ebfddf
 
 
 
 
 
8e1fc92
d8b0170
390221d
 
 
 
 
be8af01
807bbb1
e74e0f4
198e86a
9e59bb0
4921f69
42d86ec
04af224
4921f69
42d86ec
3ebfddf
198e86a
73b4de6
4921f69
04af224
42d86ec
 
3ebfddf
198e86a
73b4de6
 
633ba49
4921f69
04af224
42d86ec
 
3ebfddf
198e86a
633ba49
 
 
4921f69
04af224
42d86ec
 
3ebfddf
198e86a
633ba49
 
 
4921f69
04af224
42d86ec
 
3ebfddf
198e86a
633ba49
 
1341aa0
d793d7f
1341aa0
2620ec1
 
7c71237
2620ec1
 
 
198e86a
13b3516
d793d7f
4921f69
 
 
 
 
dd3b213
 
14771f5
7c71237
e8298f5
 
198e86a
e8298f5
 
4921f69
dd3b213
4921f69
 
 
 
1341aa0
 
3b566ce
807bbb1
633ba49
 
 
42d86ec
 
 
 
 
 
7401e4f
6183ddd
 
633ba49
 
 
 
 
807bbb1
7401e4f
1341aa0
 
 
 
 
 
6b7a148
1341aa0
 
 
8c8e7b4
1341aa0
37e2aa5
 
1341aa0
 
807bbb1
a6920aa
633ba49
eae1771
807bbb1
a6920aa
 
f9449cf
a6920aa
 
cff2130
807bbb1
56daa8c
807bbb1
633ba49
 
 
6183ddd
 
 
 
 
 
 
3ebfddf
 
 
 
 
 
 
a6920aa
390221d
 
 
 
 
be8af01
807bbb1
e74e0f4
198e86a
9e59bb0
4921f69
42d86ec
04af224
4921f69
42d86ec
3ebfddf
198e86a
73b4de6
4921f69
04af224
42d86ec
 
3ebfddf
198e86a
73b4de6
 
633ba49
4921f69
04af224
42d86ec
 
3ebfddf
198e86a
633ba49
 
 
4921f69
04af224
42d86ec
 
3ebfddf
198e86a
633ba49
 
 
4921f69
04af224
42d86ec
 
3ebfddf
198e86a
633ba49
 
1341aa0
d793d7f
1341aa0
2620ec1
 
7c71237
2620ec1
 
 
198e86a
13b3516
d793d7f
4921f69
 
 
 
 
dd3b213
 
14771f5
7c71237
e8298f5
 
198e86a
e8298f5
 
4921f69
dd3b213
4921f69
 
 
 
1341aa0
 
3b566ce
807bbb1
633ba49
 
 
42d86ec
 
 
 
 
 
7401e4f
6183ddd
 
633ba49
 
 
 
 
807bbb1
7401e4f
1341aa0
 
 
 
 
 
6b7a148
1341aa0
 
 
8c8e7b4
1341aa0
37e2aa5
 
1341aa0
 
807bbb1
4147862
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
8a296d6
06b376e
 
e364109
06b376e
8a296d6
 
 
 
 
3c35dc3
8a296d6
 
 
3c35dc3
d8b0170
 
 
 
 
 
 
 
 
be666f7
6183ddd
 
 
 
 
 
be666f7
 
 
37e2aa5
be666f7
6183ddd
 
 
 
 
be666f7
 
56daa8c
8b2cdfc
633ba49
6183ddd
633ba49
 
 
6183ddd
633ba49
807bbb1
633ba49
6183ddd
633ba49
 
 
be666f7
633ba49
 
 
6183ddd
633ba49
 
 
6183ddd
633ba49
 
 
6183ddd
633ba49
 
 
6183ddd
633ba49
 
 
6183ddd
633ba49
 
 
6183ddd
633ba49
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad75ef
d8b0170
 
3ebfddf
 
 
 
 
 
fe5ad45
d8b0170
807bbb1
d8b0170
7e95f51
d8b0170
 
 
 
 
 
 
 
172acd9
d8b0170
 
 
 
 
 
172acd9
d8b0170
 
 
 
 
6cca08f
d8b0170
ae9f309
d8b0170
 
 
 
992f3e7
d8b0170
1341aa0
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
37e2aa5
9eddcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341aa0
807bbb1
633ba49
 
 
6183ddd
 
633ba49
 
 
 
 
73b4de6
3ebfddf
 
 
 
 
9eddcb4
807bbb1
9eddcb4
37e2aa5
e0b3ce3
 
 
d8b0170
e0b3ce3
eae1771
d8b0170
 
 
 
 
 
 
 
 
1341aa0
807bbb1
633ba49
 
 
6183ddd
 
633ba49
 
 
 
 
73b4de6
3ebfddf
 
 
 
 
d8b0170
807bbb1
d8b0170
37e2aa5
a6920aa
 
eae1771
a6920aa
e0b3ce3
eae1771
a6920aa
 
 
 
 
 
 
 
 
1341aa0
807bbb1
633ba49
 
 
6183ddd
 
633ba49
 
 
 
 
73b4de6
3ebfddf
 
 
 
 
a6920aa
807bbb1
a6920aa
 
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e2aa5
d8b0170
 
 
 
 
 
 
 
 
37e2aa5
d8b0170
 
992f631
 
37e2aa5
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a33fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is

import spaces
import os
import random
import uuid
import re
import gradio as gr
import numpy as np
from PIL import Image
from typing import Tuple
import paramiko
import datetime
from gradio import themes
from image_gen_aux import UpscaleWithModel
from ip_adapter import IPAdapterXL
from huggingface_hub import snapshot_download
import gc
import torch
from diffusers import UNet2DConditionModel, AutoencoderKL, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from transformers import CLIPTextModelWithProjection, CLIPTextModel
#from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from transformers import Phi3ForCausalLM
from transformers import pipeline

from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"

torch.set_float32_matmul_precision("highest")
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")

FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = "1ink.us/stable_diff/"  # Remote directory on FTP server

DESCRIPTIONXX = """
    ## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 IP Adapter Test B ⚡⚡⚡⚡
"""

examples = [

    "Many apples splashed with drops of water within a fancy bowl 4k, hdr  --v 6.0 --style raw",
    "A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]

MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))

BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

device = torch.device("cuda:0")

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")

## load IP Adapter
repo_id = "ford442/SDXL-IP_ADAPTER"
subfolder = "image_encoder"
subfolder2 = "ip_adapter"
local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model")
local_folder = os.path.join(local_repo_path, subfolder)
local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir
ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path

upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='unet', low_cpu_mem_usage=False, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)

def load_and_prepare_model():
    vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
    pipe = StableDiffusionXLPipeline.from_pretrained(
        'ford442/RealVisXL_V5.0_BF16',
      #   'SG161222/RealVisXL_V5.0',
        #'John6666/uber-realistic-porn-merge-xl-urpmxl-v3-sdxl',
        #torch_dtype=torch.bfloat16,
        add_watermarker=False,
        #use_safetensors=True,
        token=HF_TOKEN,
        text_encoder=None,
        text_encoder_2=None,
        vae=None,
       # unet=None,
    )

    '''
    scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without loosing too much precision in which case
            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix

    '''
    #pipe.vae=vaeX
    pipe.vae=vaeX.to(device)
    pipe.to(device=device, dtype=torch.bfloat16)
   # pipe.vae.enable_tiling()
   # pipe.vae.fuse_qkv_projections()
    #pipe.vae.to(device=device, dtype=torch.bfloat16)
    #pipe.vae.do_resize=False
    #pipe.vae.do_rescale=False
    #pipe.vae.do_convert_rgb=True
    #pipe.vae.vae_scale_factor=8
    #pipe.unet.set_default_attn_processor()
    #  pipe.vae.set_default_attn_processor()
    print(f'Pipeline: ')
    #print(f'_optional_components: {pipe._optional_components}')
    #print(f'watermark: {pipe.watermark}')
    print(f'image_processor: {pipe.image_processor}')
    #print(f'feature_extractor: {pipe.feature_extractor}')
    print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
    #print(f'UNET: {pipe.unet}')
    pipe.watermark=None
    pipe.safety_checker=None
    return pipe

# Preload and compile both models
pipe = load_and_prepare_model()

# text models
#checkpoint = "microsoft/Phi-3.5-mini-instruct"
checkpoint = "ford442/Phi-3.5-mini-instruct-bf16"
#captioner = pipeline(model="ydshieh/vit-gpt2-coco-en",device='cuda:0', task="image-to-text")
#captioner_2 = pipeline(model="Salesforce/blip-image-captioning-base",device='cuda', task="image-to-text")
#captioner_2 = pipeline(model="ford442/blip-image-to-text-large-bf16",device='cuda', task="image-to-text")
#model5 = Blip2ForConditionalGeneration.from_pretrained("ford442/blip2-image-to-text-bf16").to('cuda')
#processor5 = Blip2Processor.from_pretrained("ford442/blip2-image-to-text-bf16", device_map='cuda')
#txt_tokenizer = AutoTokenizer.from_pretrained(checkpoint, device_map='cuda', add_prefix_space=False)
#txt_tokenizer.tokenizer_legacy=False
#model = Phi3ForCausalLM.from_pretrained(checkpoint).to('cuda:0')
#model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='cuda') #.to('cuda')
model5 = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b").to('cuda',torch.bfloat16)
processor5 = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")

ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
text_encoder_1=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder',token=True) #.to(device=device, dtype=torch.bfloat16)
text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder_2',token=True) #.to(device=device, dtype=torch.bfloat16)

MAX_SEED = np.iinfo(np.int32).max

neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "

def filter_text(text,phraseC):
  """Filters out the text up to and including 'Rewritten Prompt:'."""
  phrase = "Rewritten Prompt:"
  phraseB = "rewritten text:"
  pattern = f"(.*?){re.escape(phrase)}(.*)"
  patternB = f"(.*?){re.escape(phraseB)}(.*)"
  #  matchB = re.search(patternB, text)
  matchB = re.search(patternB, text, flags=re.DOTALL)
  if matchB:
        filtered_text = matchB.group(2)
        match = re.search(pattern, filtered_text, flags=re.DOTALL)
        if match:
          filtered_text = match.group(2)
          filtered_text = re.sub(phraseC, "", filtered_text, flags=re.DOTALL)
          return filtered_text
        else:
          return filtered_text
  else:
        # Handle the case where no match is found
        return text

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name,optimize=False,compress_level=0)
    return unique_name

def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
    filename= f'IP_{timestamp}.txt'
    with open(filename, "w") as f:
        f.write(f"Realvis 5.0 IP Adapter Test B\n")
        f.write(f"Date/time: {timestamp} \n")
        f.write(f"Prompt: {prompt} \n")
        f.write(f"Steps: {num_inference_steps} \n")
        f.write(f"Guidance Scale: {guidance_scale} \n")
        f.write(f"SPACE SETUP: \n")
        f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
    upload_to_ftp(filename)

def captioning(img, prompt_1,prompt_2,prompt_3,prompt_4,prompt_5):
    '''prompts_array = [
        "Adjectives describing this scene are:",
      #  "The color scheme of this image is",
      #  "This scene could be described in detail as",
      #  "The characters in this scene are",
     #   "The larger details in this scene include",
      #  "The smaller details in this scene include",
     #   "The feeling this scene seems like",
        "The setting of this scene must be located",
    # Add more prompts here
    ]
    '''
    output_prompt=[]
    cap_prompt = (
            "Describe this image with a caption to be used for image generation."
    )
    cap_prompt2 = (
            "Describe this image."
    )
    inputsa = processor5(images=img, text=cap_prompt, return_tensors="pt").to('cuda')
    inputsb = processor5(images=img, text=cap_prompt2, return_tensors="pt").to('cuda')
    '''
    generated_ids = model5.generate(
        **inputsa,
        do_sample=True,
        num_beams=5,
        max_length=128,
        min_length=64,
        top_p=0.9,
        repetition_penalty=1.5,
        length_penalty=1.0,
        temperature=1,
    )
    '''
    generated_ids = model5.generate(
        **inputsa,
        do_sample=True,
        num_beams=1,
        max_length=128,
        min_length=64,
        top_p=0.9,
        repetition_penalty=1.0,
        length_penalty=2.0,
        temperature=0.5,
    )

    generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()

    generated_idsb = model5.generate(
        **inputsb,
        do_sample=True,
        num_beams=1,
        max_length=42,
        min_length=40,
        top_p=0.9,
        repetition_penalty=1.0,
        length_penalty=2.0,
        temperature=0.5,
    )

    generated_textb = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()

    generated_text = generated_text.replace(cap_prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
    generated_textb = generated_textb.replace(cap_prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
    output_prompt.append(generated_text)
    print(generated_text)
    prompt_array=[]
    if prompt_1 is not None:
            prompt_array.append(prompt_1)
    if prompt_2 is not None:
            prompt_array.append(prompt_2)
    if prompt_3 is not None:
            prompt_array.append(prompt_3)
    if prompt_4 is not None:
            prompt_array.append(prompt_4)
    if prompt_5 is not None:
            prompt_array.append(prompt_5)
    for prompt in prompt_array:
        inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
        #with torch.no_grad():
        generated_ids = model5.generate(
            **inputs,
            do_sample=True,
            num_beams=5,
            max_length=256,
            min_length=42,
            top_p=0.2,
            repetition_penalty=1.0,
            length_penalty=2.0,
            temperature=0.55,
        )
        generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
        response_text = generated_text.replace(prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
        output_prompt.append(response_text)
        print(f"{response_text}\n")
    inputf = processor5(
        images=img,
        text=generated_text + ' So therefore, ',
        return_tensors="pt"
    ).to('cuda')
    generated_ids = model5.generate(
            **inputf,
            do_sample=True,
            num_beams=1,
            max_length=384,
            min_length=64,
            top_p=0.1,
            repetition_penalty=1.0,
            length_penalty=1.0,
            temperature=0.5,
    )
    generated_texta = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
    response_text = generated_texta.replace(generated_text, "").strip()
    print(f"{response_text}\n")
    output_prompt.append(response_text)

    output_prompt = " ".join(output_prompt)
    return output_prompt, generated_textb

def flatten_and_stringify(data):
    return [str(item) for sublist in data if isinstance(sublist, list) for item in flatten_and_stringify(sublist) ] + [str(item) for item in data if not isinstance(item, list)]

def expand_prompt(prompt):
        system_prompt_rewrite = (
            "You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
        )
        user_prompt_rewrite = (
            "Rewrite this prompt to be more descriptive and detailed and only return the rewritten text: "
        )
        user_prompt_rewrite_2 = (
            "Rephrase this scene to have more elaborate details: "
        )
        input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
        
        print("-- got prompt --")
        # Encode the input text and include the attention mask
        encoded_inputs = txt_tokenizer(input_text, return_tensors="pt", return_attention_mask=True).to("cuda:0")
        # Ensure all values are on the correct device
        input_ids = encoded_inputs["input_ids"].to("cuda:0")
        attention_mask = encoded_inputs["attention_mask"].to("cuda:0")
        print("-- tokenize prompt --")
          # Google T5
        #input_ids = txt_tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            max_new_tokens=1024,
            temperature=0.2,
            top_p=0.9,
            do_sample=True,
        )
        enhanced_prompt = txt_tokenizer.decode(outputs[0], skip_special_tokens=True)
        print('-- generated prompt 1 --')
        #print(enhanced_prompt)
        #enhanced_prompt = filter_text(enhanced_prompt,prompt)
        #enhanced_prompt = filter_text(enhanced_prompt,user_prompt_rewrite)
        #enhanced_prompt = filter_text(enhanced_prompt,system_prompt_rewrite)
        print('-- filtered prompt --')
        enhanced_prompt = enhanced_prompt[len(input_text):]
        print(enhanced_prompt)
        '''
        input_text_2 = f"{system_prompt_rewrite} {user_prompt_rewrite_2} {enhanced_prompt}"
        encoded_inputs_2 = txt_tokenizer(input_text_2, return_tensors="pt", return_attention_mask=True).to("cuda:0")
        input_ids_2 = encoded_inputs_2["input_ids"].to("cuda:0")
        attention_mask_2 = encoded_inputs_2["attention_mask"].to("cuda:0")
        outputs_2 = model.generate(
            input_ids=input_ids_2,
            attention_mask=attention_mask_2,
            max_new_tokens=256,
            temperature=0.2,
            top_p=0.9,
            do_sample=True,
        )
        # Use the encoded tensor 'text_inputs' here
        enhanced_prompt_2 = txt_tokenizer.decode(outputs_2[0], skip_special_tokens=True)
        print('-- generated prompt 2 --')
        print(enhanced_prompt_2)
        enhanced_prompt_2 = filter_text(enhanced_prompt_2,prompt)
        enhanced_prompt_2 = filter_text(enhanced_prompt_2,user_prompt_rewrite_2)
        enhanced_prompt_2 = filter_text(enhanced_prompt_2,system_prompt_rewrite)
        print('-- filtered prompt 2 --')
        print(enhanced_prompt_2)
        enh_prompt=[enhanced_prompt,enhanced_prompt_2]
        '''
        return enhanced_prompt

@spaces.GPU(duration=40)
def generate_30(
    prompt: str = "",
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    latent_file = gr.File(),  # Add latents file input
    latent_file_2 = gr.File(),  # Add latents file input
    latent_file_3 = gr.File(),  # Add latents file input
    latent_file_4 = gr.File(),  # Add latents file input
    latent_file_5 = gr.File(),  # Add latents file input
    text_scale: float = 1.0,
    ip_scale: float = 1.0,
    latent_file_1_scale: float = 1.0,
    latent_file_2_scale: float = 1.0,
    latent_file_3_scale: float = 1.0,
    latent_file_4_scale: float = 1.0,
    latent_file_5_scale: float = 1.0,
    samples=1,
    prompt_1: str = "",
    prompt_2: str = "",
    prompt_3: str = "",
    prompt_4: str = "",
    prompt_5: str = "",
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    prompt1=None
    prompt2=None
    prompt3=None
    prompt4=None
    prompt5=None
    image_paths=[]
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    capt=[]
    if latent_file is not None:  # Check if a latent file is provided
        sd_image_a = Image.open(latent_file.name).convert('RGB')
        sd_image_a.resize((768,768), Image.LANCZOS)
        #sd_image_a.resize((height,width), Image.LANCZOS)
        caption=[]
        #caption.append(captioning(sd_image_a))
        prompt1, cap=captioning(sd_image_a,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
        capt.append(cap)
        if latent_file_2 is not None:  # Check if a latent file is provided
            sd_image_b = Image.open(latent_file_2.name).convert('RGB')
            #sd_image_b.resize((height,width), Image.LANCZOS)
            sd_image_b.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_b))
            prompt2, cap=captioning(sd_image_b,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_b = None
        if latent_file_3 is not None:  # Check if a latent file is provided
            sd_image_c = Image.open(latent_file_3.name).convert('RGB')
            #sd_image_c.resize((height,width), Image.LANCZOS)
            sd_image_c.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_c))
            prompt3, cap=captioning(sd_image_c,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_c = None
        if latent_file_4 is not None:  # Check if a latent file is provided
            sd_image_d = Image.open(latent_file_4.name).convert('RGB')
            #sd_image_d.resize((height,width), Image.LANCZOS)
            sd_image_d.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_d))
            prompt4, cap=captioning(sd_image_d,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_d = None
        if latent_file_5 is not None:  # Check if a latent file is provided
            sd_image_e = Image.open(latent_file_5.name).convert('RGB')
            #sd_image_e.resize((height,width), Image.LANCZOS)
            sd_image_e.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_e))
            prompt5, cap=captioning(sd_image_e,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_e = None
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        filename= f'rv_IPb_{timestamp}.png'
        print("-- using image file --")
        print("-- CURRENT PROMPT --")
        print(prompt)
        prompt = " ".join(prompt)
        print("-- CURRENT PROMPT AFTER .join --")
        print(prompt)
        captions = " ".join(caption)
        capt = " ".join(capt)
        print(captions)
        print("-- not generating further caption --")
        global model5
        global processor5
        del model5
        del processor5
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
        #expanded = expand_prompt(captions)
        new_prompt = prompt + ' ' + captions
        print("-- ------------ --")
        print("-- FINAL PROMPT --")
        print(capt)
        print("-- FINAL PROMPT --")
        print("-- ------------ --")
        gc.collect()
        torch.cuda.empty_cache()
        global text_encoder_1
        global text_encoder_2
        pipe.text_encoder=text_encoder_1.to(device=device, dtype=torch.bfloat16)
        pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
        print('-- generating image --')
        sd_image = ip_model.generate(
                pil_image_1=sd_image_a,
                pil_image_2=sd_image_b,
                pil_image_3=sd_image_c,
                pil_image_4=sd_image_d,
                pil_image_5=sd_image_e,
                prompt=prompt,
                prompt1=prompt1,
                prompt2=prompt2,
                prompt3=prompt3,
                prompt4=prompt4,
                prompt5=prompt5,
                negative_prompt=negative_prompt,
                text_scale=text_scale,
                ip_scale=ip_scale,
                scale_1=latent_file_1_scale,
                scale_2=latent_file_2_scale,
                scale_3=latent_file_3_scale,
                scale_4=latent_file_4_scale,
                scale_5=latent_file_5_scale,
                num_samples=samples,
                seed=seed,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
        )
        sd_image[0].save(filename,optimize=False,compress_level=0)
        upload_to_ftp(filename)
        uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
        torch.set_float32_matmul_precision("medium")
        with torch.no_grad():
            upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
        downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
        downscale_path = f"rvIP_upscale_{timestamp}.png"
        downscale1.save(downscale_path,optimize=False,compress_level=0)
        upload_to_ftp(downscale_path)
        image_paths = [save_image(downscale1)]
    else:
        print('-- IMAGE REQUIRED --')
    return image_paths

@spaces.GPU(duration=70)
def generate_60(
    prompt: str = "",
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    latent_file = gr.File(),  # Add latents file input
    latent_file_2 = gr.File(),  # Add latents file input
    latent_file_3 = gr.File(),  # Add latents file input
    latent_file_4 = gr.File(),  # Add latents file input
    latent_file_5 = gr.File(),  # Add latents file input
    text_scale: float = 1.0,
    ip_scale: float = 1.0,
    latent_file_1_scale: float = 1.0,
    latent_file_2_scale: float = 1.0,
    latent_file_3_scale: float = 1.0,
    latent_file_4_scale: float = 1.0,
    latent_file_5_scale: float = 1.0,
    samples=1,
    prompt_1: str = "",
    prompt_2: str = "",
    prompt_3: str = "",
    prompt_4: str = "",
    prompt_5: str = "",
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    prompt1=None
    prompt2=None
    prompt3=None
    prompt4=None
    prompt5=None
    image_paths=[]
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    capt=[]
    if latent_file is not None:  # Check if a latent file is provided
        sd_image_a = Image.open(latent_file.name).convert('RGB')
        sd_image_a.resize((768,768), Image.LANCZOS)
        #sd_image_a.resize((height,width), Image.LANCZOS)
        caption=[]
        #caption.append(captioning(sd_image_a))
        prompt1, cap=captioning(sd_image_a,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
        capt.append(cap)
        if latent_file_2 is not None:  # Check if a latent file is provided
            sd_image_b = Image.open(latent_file_2.name).convert('RGB')
            #sd_image_b.resize((height,width), Image.LANCZOS)
            sd_image_b.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_b))
            prompt2, cap=captioning(sd_image_b,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_b = None
        if latent_file_3 is not None:  # Check if a latent file is provided
            sd_image_c = Image.open(latent_file_3.name).convert('RGB')
            #sd_image_c.resize((height,width), Image.LANCZOS)
            sd_image_c.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_c))
            prompt3, cap=captioning(sd_image_c,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_c = None
        if latent_file_4 is not None:  # Check if a latent file is provided
            sd_image_d = Image.open(latent_file_4.name).convert('RGB')
            #sd_image_d.resize((height,width), Image.LANCZOS)
            sd_image_d.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_d))
            prompt4, cap=captioning(sd_image_d,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_d = None
        if latent_file_5 is not None:  # Check if a latent file is provided
            sd_image_e = Image.open(latent_file_5.name).convert('RGB')
            #sd_image_e.resize((height,width), Image.LANCZOS)
            sd_image_e.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_e))
            prompt5, cap=captioning(sd_image_e,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_e = None
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        filename= f'rv_IPb_{timestamp}.png'
        print("-- using image file --")
        print("-- CURRENT PROMPT --")
        print(prompt)
        prompt = " ".join(prompt)
        print("-- CURRENT PROMPT AFTER .join --")
        print(prompt)
        captions = " ".join(caption)
        capt = " ".join(capt)
        print(captions)
        print("-- not generating further caption --")
        global model5
        global processor5
        del model5
        del processor5
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
        #expanded = expand_prompt(captions)
        new_prompt = prompt + ' ' + captions
        print("-- ------------ --")
        print("-- FINAL PROMPT --")
        print(capt)
        print("-- FINAL PROMPT --")
        print("-- ------------ --")
        gc.collect()
        torch.cuda.empty_cache()
        global text_encoder_1
        global text_encoder_2
        pipe.text_encoder=text_encoder_1.to(device=device, dtype=torch.bfloat16)
        pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
        print('-- generating image --')
        sd_image = ip_model.generate(
                pil_image_1=sd_image_a,
                pil_image_2=sd_image_b,
                pil_image_3=sd_image_c,
                pil_image_4=sd_image_d,
                pil_image_5=sd_image_e,
                prompt=prompt,
                prompt1=prompt1,
                prompt2=prompt2,
                prompt3=prompt3,
                prompt4=prompt4,
                prompt5=prompt5,
                negative_prompt=negative_prompt,
                text_scale=text_scale,
                ip_scale=ip_scale,
                scale_1=latent_file_1_scale,
                scale_2=latent_file_2_scale,
                scale_3=latent_file_3_scale,
                scale_4=latent_file_4_scale,
                scale_5=latent_file_5_scale,
                num_samples=samples,
                seed=seed,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
        )
        sd_image[0].save(filename,optimize=False,compress_level=0)
        upload_to_ftp(filename)
        uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
        torch.set_float32_matmul_precision("medium")
        with torch.no_grad():
            upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
        downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
        downscale_path = f"rvIP_upscale_{timestamp}.png"
        downscale1.save(downscale_path,optimize=False,compress_level=0)
        upload_to_ftp(downscale_path)
        image_paths = [save_image(downscale1)]
    else:
        print('-- IMAGE REQUIRED --')
    return image_paths

@spaces.GPU(duration=100)
def generate_90(
    prompt: str = "",
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    latent_file = gr.File(),  # Add latents file input
    latent_file_2 = gr.File(),  # Add latents file input
    latent_file_3 = gr.File(),  # Add latents file input
    latent_file_4 = gr.File(),  # Add latents file input
    latent_file_5 = gr.File(),  # Add latents file input
    text_scale: float = 1.0,
    ip_scale: float = 1.0,
    latent_file_1_scale: float = 1.0,
    latent_file_2_scale: float = 1.0,
    latent_file_3_scale: float = 1.0,
    latent_file_4_scale: float = 1.0,
    latent_file_5_scale: float = 1.0,
    samples=1,
    prompt_1: str = "",
    prompt_2: str = "",
    prompt_3: str = "",
    prompt_4: str = "",
    prompt_5: str = "",
    progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
    prompt1=None
    prompt2=None
    prompt3=None
    prompt4=None
    prompt5=None
    image_paths=[]
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    capt=[]
    if latent_file is not None:  # Check if a latent file is provided
        sd_image_a = Image.open(latent_file.name).convert('RGB')
        sd_image_a.resize((768,768), Image.LANCZOS)
        #sd_image_a.resize((height,width), Image.LANCZOS)
        caption=[]
        #caption.append(captioning(sd_image_a))
        prompt1, cap=captioning(sd_image_a,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
        capt.append(cap)
        if latent_file_2 is not None:  # Check if a latent file is provided
            sd_image_b = Image.open(latent_file_2.name).convert('RGB')
            #sd_image_b.resize((height,width), Image.LANCZOS)
            sd_image_b.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_b))
            prompt2, cap=captioning(sd_image_b,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_b = None
        if latent_file_3 is not None:  # Check if a latent file is provided
            sd_image_c = Image.open(latent_file_3.name).convert('RGB')
            #sd_image_c.resize((height,width), Image.LANCZOS)
            sd_image_c.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_c))
            prompt3, cap=captioning(sd_image_c,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_c = None
        if latent_file_4 is not None:  # Check if a latent file is provided
            sd_image_d = Image.open(latent_file_4.name).convert('RGB')
            #sd_image_d.resize((height,width), Image.LANCZOS)
            sd_image_d.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_d))
            prompt4, cap=captioning(sd_image_d,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_d = None
        if latent_file_5 is not None:  # Check if a latent file is provided
            sd_image_e = Image.open(latent_file_5.name).convert('RGB')
            #sd_image_e.resize((height,width), Image.LANCZOS)
            sd_image_e.resize((768,768), Image.LANCZOS)
            #caption.append(captioning(sd_image_e))
            prompt5, cap=captioning(sd_image_e,prompt_1,prompt_2,prompt_3,prompt_4,prompt_5)
            capt.append(cap)
        else:
            sd_image_e = None
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        filename= f'rv_IPb_{timestamp}.png'
        print("-- using image file --")
        print("-- CURRENT PROMPT --")
        print(prompt)
        prompt = " ".join(prompt)
        print("-- CURRENT PROMPT AFTER .join --")
        print(prompt)
        captions = " ".join(caption)
        capt = " ".join(capt)
        print(captions)
        print("-- not generating further caption --")
        global model5
        global processor5
        del model5
        del processor5
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
        #expanded = expand_prompt(captions)
        new_prompt = prompt + ' ' + captions
        print("-- ------------ --")
        print("-- FINAL PROMPT --")
        print(capt)
        print("-- FINAL PROMPT --")
        print("-- ------------ --")
        gc.collect()
        torch.cuda.empty_cache()
        global text_encoder_1
        global text_encoder_2
        pipe.text_encoder=text_encoder_1.to(device=device, dtype=torch.bfloat16)
        pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
        print('-- generating image --')
        sd_image = ip_model.generate(
                pil_image_1=sd_image_a,
                pil_image_2=sd_image_b,
                pil_image_3=sd_image_c,
                pil_image_4=sd_image_d,
                pil_image_5=sd_image_e,
                prompt=prompt,
                prompt1=prompt1,
                prompt2=prompt2,
                prompt3=prompt3,
                prompt4=prompt4,
                prompt5=prompt5,
                negative_prompt=negative_prompt,
                text_scale=text_scale,
                ip_scale=ip_scale,
                scale_1=latent_file_1_scale,
                scale_2=latent_file_2_scale,
                scale_3=latent_file_3_scale,
                scale_4=latent_file_4_scale,
                scale_5=latent_file_5_scale,
                num_samples=samples,
                seed=seed,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
        )
        sd_image[0].save(filename,optimize=False,compress_level=0)
        upload_to_ftp(filename)
        uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
        torch.set_float32_matmul_precision("medium")
        with torch.no_grad():
            upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
        downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
        downscale_path = f"rvIP_upscale_{timestamp}.png"
        downscale1.save(downscale_path,optimize=False,compress_level=0)
        upload_to_ftp(downscale_path)
        image_paths = [save_image(downscale1)]
    else:
        print('-- IMAGE REQUIRED --')
    return image_paths

def load_predefined_images1():
    predefined_images1 = [
        "assets/7.png",
        "assets/8.png",
        "assets/9.png",
        "assets/1.png",
        "assets/2.png",
        "assets/3.png",
        "assets/4.png",
        "assets/5.png",
        "assets/6.png",
    ]
    return predefined_images1

css = '''
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
h1{text-align:center}
footer {
    visibility: hidden
}
body {
  background-color: green;
}
'''

with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
    gr.Markdown(DESCRIPTIONXX)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        text_strength =  gr.Slider(
            label="Text Strength",
            minimum=0.0,
            maximum=16.0,
            step=0.01,
            value=1.0,
        )
        run_button_30 = gr.Button("Run 30 Seconds", scale=0)
        run_button_60 = gr.Button("Run 60 Seconds", scale=0)
        run_button_90 = gr.Button("Run 90 Seconds", scale=0)
    result = gr.Gallery(label="Result", columns=1, show_label=False)
    ip_strength =  gr.Slider(
            label="Image Strength",
            minimum=0.0,
            maximum=16.0,
            step=0.01,
            value=1.0,
    )
    with gr.Row():
        latent_file = gr.File(label="Image Prompt (Required)")
        image_1_text = gr.Textbox(label="Image 1 Text", lines=5)  # Add this line
        file_1_strength =  gr.Slider(
            label="Img 1 %",
            minimum=0.0,
            maximum=16.0,
            step=0.01,
            value=1.0,
        )
        latent_file_2 = gr.File(label="Image Prompt 2 (Optional)")
        file_2_strength =  gr.Slider(
            label="Img 2 %",
            minimum=0.0,
            maximum=16.0,
            step=0.01,
            value=1.0,
        )
        latent_file_3 = gr.File(label="Image Prompt 3 (Optional)")
        file_3_strength =  gr.Slider(
            label="Img 3 %",
            minimum=0.0,
            maximum=16.0,
            step=0.01,
            value=1.0,
        )
        latent_file_4 = gr.File(label="Image Prompt 4 (Optional)")
        file_4_strength =  gr.Slider(
            label="Img 4 %",
            minimum=0.0,
            maximum=16.0,
            step=0.01,
            value=1.0,
        )
        latent_file_5 = gr.File(label="Image Prompt 5 (Optional)")
        file_5_strength =  gr.Slider(
            label="Img 5 %",
            minimum=0.0,
            maximum=16.0,
            step=0.01,
            value=1.0,
        )
        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Quality Style",
        )
        with gr.Row():
            with gr.Column(scale=1):
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=5,
                    lines=4,
                    placeholder="Enter a negative prompt",
                    value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner',  'distorted face','amateur'",
                    visible=True,
                )
            prompt_1 = gr.Textbox(label="Custom Prompt 1", lines=2, placeholder="Enter custom prompt 1")
            prompt_2 = gr.Textbox(label="Custom Prompt 2", lines=2, placeholder="Enter custom prompt 2")
            prompt_3 = gr.Textbox(label="Custom Prompt 3", lines=2, placeholder="Enter custom prompt 3")
            prompt_4 = gr.Textbox(label="Custom Prompt 4", lines=2, placeholder="Enter custom prompt 4")
            prompt_5 = gr.Textbox(label="Custom Prompt 5", lines=2, placeholder="Enter custom prompt 5")
            samples = gr.Slider(
            label="Samples",
            minimum=0,
            maximum=20,
            step=1,
            value=1,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
            height = gr.Slider(
                label="Height",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=30,
                step=0.1,
                value=3.8,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=10,
                maximum=1000,
                step=10,
                value=170,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            run_button_30.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_30,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            latent_file,
            latent_file_2,
            latent_file_3,
            latent_file_4,
            latent_file_5,
            text_strength,
            ip_strength,
            file_1_strength,
            file_2_strength,
            file_3_strength,
            file_4_strength,
            file_5_strength,
            samples,
            prompt_1,
            prompt_2,
            prompt_3,
            prompt_4,
            prompt_5,
        ],
        outputs=[result],
    )

    gr.on(
        triggers=[
            run_button_60.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_60,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            latent_file,
            latent_file_2,
            latent_file_3,
            latent_file_4,
            latent_file_5,
            text_strength,
            ip_strength,
            file_1_strength,
            file_2_strength,
            file_3_strength,
            file_4_strength,
            file_5_strength,
            samples,
            prompt_1,
            prompt_2,
            prompt_3,
            prompt_4,
            prompt_5,
        ],
        outputs=[result],
    )

    gr.on(
        triggers=[
            run_button_90.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_90,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            latent_file,
            latent_file_2,
            latent_file_3,
            latent_file_4,
            latent_file_5,
            text_strength,
            ip_strength,
            file_1_strength,
            file_2_strength,
            file_3_strength,
            file_4_strength,
            file_5_strength,
            samples,
            prompt_1,
            prompt_2,
            prompt_3,
            prompt_4,
            prompt_5,
        ],
        outputs=[result],
    )

    gr.Markdown("### REALVISXL V5.0")
    predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())

    #gr.Markdown("### LIGHTNING V5.0")
    #predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
    <a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
    </div>
    """)

def text_generation(input_text, seed):
    full_prompt = "Text Generator Application by ecarbo"
    return full_prompt

title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"

if __name__ == "__main__":
    demo_interface = demo.queue(max_size=50)  # Remove .launch() here
    text_gen_interface = gr.Interface(
        fn=text_generation,
        inputs=[
            gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
            gr.Number(value=10, label="Enter seed number")
        ],
        outputs=gr.Textbox(label="Text Generated"),
        title=title,
        description=description,
    )
    combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
    combined_interface.launch(show_api=False)