File size: 6,621 Bytes
f56cbc6
2957fb3
6742879
fcc4b80
1b3e8da
fcc4b80
1b3e8da
fcc4b80
 
 
 
 
1b3e8da
fcc4b80
 
 
6742879
fcc4b80
 
 
1b3e8da
f56cbc6
1b3e8da
f56cbc6
 
 
 
2957fb3
 
f56cbc6
2957fb3
3a145aa
1b3e8da
2957fb3
 
 
 
 
 
 
 
 
7150020
2957fb3
 
f56cbc6
2957fb3
f56cbc6
2957fb3
fcc4b80
 
 
 
ef91d2c
fcc4b80
 
 
1b3e8da
fcc4b80
ef91d2c
fcc4b80
 
 
1b3e8da
 
 
fcc4b80
 
 
 
 
 
 
1b3e8da
fcc4b80
ef91d2c
fcc4b80
b88653d
abecee2
 
 
2957fb3
0c65dc8
f56cbc6
1b3e8da
2957fb3
 
 
1b3e8da
2957fb3
1b3e8da
 
 
 
 
 
 
2957fb3
 
 
1b3e8da
0c65dc8
1b3e8da
2957fb3
 
1b3e8da
 
2957fb3
1b3e8da
 
 
 
2957fb3
1b3e8da
2957fb3
 
 
1b3e8da
 
 
2957fb3
1b3e8da
2957fb3
 
 
 
 
 
 
1b3e8da
2957fb3
1b3e8da
2957fb3
 
 
1b3e8da
2957fb3
1b3e8da
2957fb3
fcc4b80
 
 
2957fb3
1b3e8da
fcc4b80
 
1b3e8da
fcc4b80
 
 
 
972e5ee
fcc4b80
972e5ee
fcc4b80
 
f56cbc6
1b3e8da
ef91d2c
 
 
a715b2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import logging
from io import BytesIO

from fastapi import FastAPI, HTTPException, Response, Request
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline,
    GenerationConfig
)
import boto3
from huggingface_hub import hf_hub_download
import soundfile as sf
import numpy as np
import torch
import uvicorn
from tqdm import tqdm

logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

class GenerateRequest(BaseModel):
    model_name: str
    input_text: str
    task_type: str
    temperature: float = 1.0
    max_new_tokens: int = 200
    stream: bool = False
    top_p: float = 1.0
    top_k: int = 50
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = True

class S3ModelLoader:
    def __init__(self, bucket_name, s3_client):
        self.bucket_name = bucket_name
        self.s3_client = s3_client

    def _get_s3_uri(self, model_name):
        return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"

    async def load_model_and_tokenizer(self, model_name):
        s3_uri = self._get_s3_uri(model_name)
        try:
            logging.info(f"Trying to load {model_name} from S3...")
            config = AutoConfig.from_pretrained(s3_uri)
            model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config)
            tokenizer = AutoTokenizer.from_pretrained(s3_uri)
            logging.info(f"Loaded {model_name} from S3 successfully.")
            return model, tokenizer
        except EnvironmentError:
            logging.info(f"Model {model_name} not found in S3. Downloading...")
            try:
                with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}") as t:
                    model = AutoModelForCausalLM.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN, _tqdm=t)
                    tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
                logging.info(f"Downloaded {model_name} successfully.")
                logging.info(f"Saving {model_name} to S3...")
                model.save_pretrained(s3_uri)
                tokenizer.save_pretrained(s3_uri)
                logging.info(f"Saved {model_name} to S3 successfully.")
                return model, tokenizer
            except Exception as e:
                logging.error(f"Error downloading/uploading model: {e}")
                raise HTTPException(status_code=500, detail=f"Error loading model: {e}")

app = FastAPI()

s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)

@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
    try:
        model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)

        if body.task_type == "text-to-text":
            generation_config = GenerationConfig(
                temperature=body.temperature,
                max_new_tokens=body.max_new_tokens,
                top_p=body.top_p,
                top_k=body.top_k,
                repetition_penalty=body.repetition_penalty,
                do_sample=body.do_sample,
                num_return_sequences=body.num_return_sequences
            )

            async def stream_text():
                input_text = body.input_text
                max_length = model.config.max_position_embeddings
                generated_text = ""

                while True:
                    inputs = tokenizer(input_text, return_tensors="pt").to(device)
                    input_length = inputs.input_ids.shape[1]
                    remaining_tokens = max_length - input_length
                    if remaining_tokens < body.max_new_tokens:
                        generation_config.max_new_tokens = remaining_tokens
                        if remaining_tokens <= 0:
                            break

                    output = model.generate(**inputs, generation_config=generation_config)
                    chunk = tokenizer.decode(output[0], skip_special_tokens=True)
                    generated_text += chunk
                    yield chunk
                    if len(tokenizer.encode(generated_text)) >= max_length:
                        break
                    input_text = chunk

            if body.stream:
                return StreamingResponse(stream_text(), media_type="text/plain")
            else:
                generated_text = ""
                async for chunk in stream_text():
                    generated_text += chunk
                return {"result": generated_text}

        elif body.task_type == "text-to-image":
            generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
            image = generator(body.input_text)[0]
            image_bytes = image.tobytes()
            return Response(content=image_bytes, media_type="image/png")

        elif body.task_type == "text-to-speech":
            generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
            audio = generator(body.input_text)
            audio_bytesio = BytesIO()
            sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
            audio_bytes = audio_bytesio.getvalue()
            return Response(content=audio_bytes, media_type="audio/wav")

        elif body.task_type == "text-to-video":
            try:
                generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
                video = generator(body.input_text)
                return Response(content=video, media_type="video/mp4")
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")

        else:
            raise HTTPException(status_code=400, detail="Unsupported task type")

    except HTTPException as e:
        raise e
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)