Spaces:
Sleeping
Sleeping
File size: 6,621 Bytes
f56cbc6 2957fb3 6742879 fcc4b80 1b3e8da fcc4b80 1b3e8da fcc4b80 1b3e8da fcc4b80 6742879 fcc4b80 1b3e8da f56cbc6 1b3e8da f56cbc6 2957fb3 f56cbc6 2957fb3 3a145aa 1b3e8da 2957fb3 7150020 2957fb3 f56cbc6 2957fb3 f56cbc6 2957fb3 fcc4b80 ef91d2c fcc4b80 1b3e8da fcc4b80 ef91d2c fcc4b80 1b3e8da fcc4b80 1b3e8da fcc4b80 ef91d2c fcc4b80 b88653d abecee2 2957fb3 0c65dc8 f56cbc6 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 0c65dc8 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 2957fb3 1b3e8da 2957fb3 fcc4b80 2957fb3 1b3e8da fcc4b80 1b3e8da fcc4b80 972e5ee fcc4b80 972e5ee fcc4b80 f56cbc6 1b3e8da ef91d2c a715b2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
import logging
from io import BytesIO
from fastapi import FastAPI, HTTPException, Response, Request
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
GenerationConfig
)
import boto3
from huggingface_hub import hf_hub_download
import soundfile as sf
import numpy as np
import torch
import uvicorn
from tqdm import tqdm
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = False
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
async def load_model_and_tokenizer(self, model_name):
s3_uri = self._get_s3_uri(model_name)
try:
logging.info(f"Trying to load {model_name} from S3...")
config = AutoConfig.from_pretrained(s3_uri)
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config)
tokenizer = AutoTokenizer.from_pretrained(s3_uri)
logging.info(f"Loaded {model_name} from S3 successfully.")
return model, tokenizer
except EnvironmentError:
logging.info(f"Model {model_name} not found in S3. Downloading...")
try:
with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}") as t:
model = AutoModelForCausalLM.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN, _tqdm=t)
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
logging.info(f"Downloaded {model_name} successfully.")
logging.info(f"Saving {model_name} to S3...")
model.save_pretrained(s3_uri)
tokenizer.save_pretrained(s3_uri)
logging.info(f"Saved {model_name} to S3 successfully.")
return model, tokenizer
except Exception as e:
logging.error(f"Error downloading/uploading model: {e}")
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
app = FastAPI()
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
try:
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if body.task_type == "text-to-text":
generation_config = GenerationConfig(
temperature=body.temperature,
max_new_tokens=body.max_new_tokens,
top_p=body.top_p,
top_k=body.top_k,
repetition_penalty=body.repetition_penalty,
do_sample=body.do_sample,
num_return_sequences=body.num_return_sequences
)
async def stream_text():
input_text = body.input_text
max_length = model.config.max_position_embeddings
generated_text = ""
while True:
inputs = tokenizer(input_text, return_tensors="pt").to(device)
input_length = inputs.input_ids.shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens < body.max_new_tokens:
generation_config.max_new_tokens = remaining_tokens
if remaining_tokens <= 0:
break
output = model.generate(**inputs, generation_config=generation_config)
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text += chunk
yield chunk
if len(tokenizer.encode(generated_text)) >= max_length:
break
input_text = chunk
if body.stream:
return StreamingResponse(stream_text(), media_type="text/plain")
else:
generated_text = ""
async for chunk in stream_text():
generated_text += chunk
return {"result": generated_text}
elif body.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
image = generator(body.input_text)[0]
image_bytes = image.tobytes()
return Response(content=image_bytes, media_type="image/png")
elif body.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
audio = generator(body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
audio_bytes = audio_bytesio.getvalue()
return Response(content=audio_bytes, media_type="audio/wav")
elif body.task_type == "text-to-video":
try:
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
video = generator(body.input_text)
return Response(content=video, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
else:
raise HTTPException(status_code=400, detail="Unsupported task type")
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|