File size: 9,377 Bytes
f56cbc6
2957fb3
c11082c
800f3c5
ca9b40d
 
e619e74
0c65dc8
800f3c5
16cb5fc
7f05389
 
16cb5fc
f56cbc6
0c65dc8
f56cbc6
86535fc
 
f56cbc6
 
 
2957fb3
 
f56cbc6
2957fb3
3a145aa
0c65dc8
2957fb3
 
 
 
 
 
 
 
 
0c65dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7150020
2957fb3
 
f56cbc6
2957fb3
f56cbc6
2957fb3
d594fbc
c11082c
0c65dc8
f56cbc6
0c65dc8
d594fbc
0c65dc8
 
ca61f16
16cb5fc
 
 
0c65dc8
 
 
2957fb3
c11082c
 
16cb5fc
 
 
 
 
0c65dc8
16cb5fc
c11082c
 
0c65dc8
c11082c
2957fb3
0c65dc8
c11082c
0c65dc8
ca9b40d
d594fbc
0c65dc8
c11082c
0c65dc8
c11082c
0c65dc8
 
c11082c
0c65dc8
 
 
 
 
 
 
 
 
c11082c
0c65dc8
 
 
 
 
 
 
 
 
b88653d
16cb5fc
abecee2
 
 
2957fb3
0c65dc8
f56cbc6
0c65dc8
 
2957fb3
 
 
0c65dc8
2957fb3
0c65dc8
 
 
 
 
 
 
2957fb3
 
 
0c65dc8
c11082c
0c65dc8
2957fb3
 
0c65dc8
 
2957fb3
 
0c65dc8
 
 
 
 
 
 
 
 
 
2957fb3
 
 
0c65dc8
 
2957fb3
0c65dc8
2957fb3
 
 
 
 
 
 
0c65dc8
2957fb3
0c65dc8
2957fb3
 
 
0c65dc8
2957fb3
0c65dc8
2957fb3
 
 
 
 
0c65dc8
2957fb3
 
0c65dc8
2957fb3
 
16cb5fc
f6a64dd
972e5ee
16cb5fc
972e5ee
f56cbc6
16cb5fc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import logging
import threading
import boto3
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, StoppingCriteriaList, AutoConfig
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, field_validator
from huggingface_hub import hf_hub_download
import requests
import time
import asyncio
from fastapi.responses import StreamingResponse, Response
import torch

logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")

app = FastAPI()

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

class GenerateRequest(BaseModel):
    model_name: str
    input_text: str = ""
    task_type: str
    temperature: float = 1.0
    max_new_tokens: int = 200
    stream: bool = False
    top_p: float = 1.0
    top_k: int = 50
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = True
    chunk_delay: float = 0.0
    stop_sequences: list[str] = []

    @field_validator("model_name")
    def model_name_cannot_be_empty(cls, v):
        if not v:
            raise ValueError("model_name cannot be empty.")
        return v

    @field_validator("task_type")
    def task_type_must_be_valid(cls, v):
        valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
        if v not in valid_types:
            raise ValueError(f"task_type must be one of: {valid_types}")
        return v

class S3ModelLoader:
    def __init__(self, bucket_name, s3_client):
        self.bucket_name = bucket_name
        self.s3_client = s3_client

    def _get_s3_uri(self, model_name):
        return f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
    
    def _download_from_s3(self, model_name):
        try:
            logging.info(f"Attempting to load model {model_name} from S3...")
            model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"lilmeaty_garca/{model_name}")
            if "Contents" not in model_files:
                raise FileNotFoundError(f"Model files not found in S3 for {model_name}")

            s3_model_path = f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
            logging.info(f"Model {model_name} found on S3 at {s3_model_path}")
            return s3_model_path
        except Exception as e:
            logging.error(f"Error downloading from S3: {e}")
            raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}")

    async def load_model_and_tokenizer(self, model_name):
        try:
            s3_model_path = await asyncio.to_thread(self._download_from_s3, model_name)
            # Load from S3 directly (no local storage)
            config = AutoConfig.from_pretrained(s3_model_path)
            tokenizer = AutoTokenizer.from_pretrained(s3_model_path, config=config)
            model = AutoModelForCausalLM.from_pretrained(s3_model_path, config=config)

            logging.info(f"Model {model_name} loaded successfully from S3.")
            return model, tokenizer
        except Exception as e:
            logging.exception(f"Error loading model: {e}")
            raise HTTPException(status_code=500, detail=f"Error loading model: {e}")

    def download_model_from_huggingface(self, model_name):
        try:
            logging.info(f"Downloading model {model_name} from Hugging Face...")
            model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN, filename=model_name.split("/")[-1])
            self.s3_client.upload_file(model_dir, self.bucket_name, f"lilmeaty_garca/{model_name}")
            logging.info(f"Model {model_name} saved to S3 successfully.")
        except Exception as e:
            logging.error(f"Error downloading model {model_name} from Hugging Face: {e}")

    def download_all_models_in_background(self):
        models_url = "https://huggingface.co/api/models"
        try:
            response = requests.get(models_url)
            if response.status_code != 200:
                logging.error("Error getting Hugging Face model list.")
                raise HTTPException(status_code=500, detail="Error getting model list.")

            models = response.json()
            for model in models:
                model_name = model["id"]
                self.download_model_from_huggingface(model_name)
        except Exception as e:
            logging.error(f"Error downloading models in the background: {e}")
            raise HTTPException(status_code=500, detail="Error downloading models in the background.")

    def run_in_background(self):
        threading.Thread(target=self.download_all_models_in_background, daemon=True).start()

@app.on_event("startup")
async def startup_event():
    model_loader.run_in_background()

# Initialize S3 client with boto3
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)

@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
    try:
        validated_body = GenerateRequest(**body.model_dump())
        model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)

        if validated_body.task_type == "text-to-text":
            generation_config = GenerationConfig(
                temperature=validated_body.temperature,
                max_new_tokens=validated_body.max_new_tokens,
                top_p=validated_body.top_p,
                top_k=validated_body.top_k,
                repetition_penalty=validated_body.repetition_penalty,
                do_sample=validated_body.do_sample,
                num_return_sequences=validated_body.num_return_sequences
            )

            async def stream_text():
                input_text = validated_body.input_text
                generated_text = ""
                max_length = model.config.max_position_embeddings

                while True:
                    encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
                    input_length = encoded_input["input_ids"].shape[1]
                    remaining_tokens = max_length - input_length

                    if remaining_tokens <= 0:
                        break

                    generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)

                    stopping_criteria = StoppingCriteriaList(
                        [lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
                    )

                    output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
                    chunk = tokenizer.decode(output[0], skip_special_tokens=True)
                    generated_text += chunk
                    yield chunk
                    time.sleep(validated_body.chunk_delay)
                    input_text = generated_text

            if validated_body.stream:
                return StreamingResponse(stream_text(), media_type="text/plain")
            else:
                generated_text = ""
                async for chunk in stream_text():
                    generated_text += chunk
                return {"result": generated_text}

        elif validated_body.task_type == "text-to-image":
            generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
            image = generator(validated_body.input_text)[0]
            image_bytes = image.tobytes()
            return Response(content=image_bytes, media_type="image/png")

        elif validated_body.task_type == "text-to-speech":
            generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
            audio = generator(validated_body.input_text)
            audio_bytesio = BytesIO()
            sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
            audio_bytes = audio_bytesio.getvalue()
            return Response(content=audio_bytes, media_type="audio/wav")

        elif validated_body.task_type == "text-to-video":
            try:
                generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
                video = generator(validated_body.input_text)
                return Response(content=video, media_type="video/mp4")
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error generating video: {str(e)}")

        else:
            raise HTTPException(status_code=400, detail="Invalid task type.")

    except Exception as e:
        logging.error(f"Error processing request: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)