File size: 8,416 Bytes
014edf2
eda5cd9
 
5d00129
14bbbee
5d00129
 
 
d9e405b
05818b6
 
5d00129
eda5cd9
05818b6
37276c2
944ca71
1836b57
014edf2
37276c2
014edf2
 
 
 
1949d3a
014edf2
37276c2
 
 
05818b6
eda5cd9
 
37276c2
1949d3a
 
14bbbee
1949d3a
5d00129
 
eda5cd9
5d00129
 
 
 
 
 
d9e405b
 
37276c2
5d00129
05818b6
014edf2
05818b6
 
 
 
 
 
014edf2
5d00129
84aad02
14bbbee
05818b6
14bbbee
 
 
5d00129
014edf2
1836b57
 
 
 
 
 
48f9783
 
 
 
 
 
1836b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
944ca71
14bbbee
05818b6
 
14bbbee
 
5d00129
37276c2
05818b6
eda5cd9
37276c2
eda5cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37276c2
eda5cd9
 
 
 
 
37276c2
05818b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37276c2
05818b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda5cd9
 
05818b6
 
 
37276c2
eda5cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836b57
014edf2
14bbbee
05818b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    StoppingCriteriaList,
    pipeline
)
from io import BytesIO
import boto3
from botocore.exceptions import NoCredentialsError
from huggingface_hub import snapshot_download
import shutil

# Configuraci贸n global
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

# Diccionario global de tokens y configuraciones
token_dict = {}

# Inicializaci贸n de la aplicaci贸n FastAPI
app = FastAPI()

# Modelo de solicitud
class GenerateRequest(BaseModel):
    model_name: str
    input_text: str
    task_type: str
    temperature: float = 1.0
    max_new_tokens: int = 200
    stream: bool = True
    top_p: float = 1.0
    top_k: int = 50
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = True
    chunk_delay: float = 0.0
    stop_sequences: list[str] = []

# Clase para cargar y gestionar los modelos desde S3
class S3ModelLoader:
    def __init__(self, bucket_name, aws_access_key_id=None, aws_secret_access_key=None, aws_region=None):
        self.bucket_name = bucket_name
        self.s3_client = boto3.client(
            's3',
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            region_name=aws_region
        )

    def _get_s3_uri(self, model_name):
        return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
    
    def load_model_and_tokenizer(self, model_name):
        if model_name in token_dict:
            return token_dict[model_name]
        
        s3_uri = self._get_s3_uri(model_name)
        try:
            # Verificar si el modelo ya est谩 en S3
            try:
                self.s3_client.head_object(Bucket=self.bucket_name, Key=f'{model_name}/model')
                print(f"Modelo {model_name} ya existe en S3.")
            except self.s3_client.exceptions.ClientError:
                print(f"Modelo {model_name} no existe en S3. Descargando desde Hugging Face...")

                # Eliminar cach茅 local de Hugging Face (si existe)
                local_cache_dir = os.path.join(os.getenv("HOME"), ".cache/huggingface/hub/models--")
                if os.path.exists(local_cache_dir):
                    shutil.rmtree(local_cache_dir)

                model_path = snapshot_download(model_name, token=HUGGINGFACE_HUB_TOKEN)

                # Cargar el modelo y tokenizer
                model = AutoModelForCausalLM.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_path)

                # Asignar EOS y PAD token si no est谩n definidos
                if tokenizer.eos_token_id is None:
                    tokenizer.eos_token_id = tokenizer.pad_token_id

                # Guardar el modelo y el tokenizer en el diccionario
                token_dict[model_name] = {
                    "model": model,
                    "tokenizer": tokenizer,
                    "pad_token_id": tokenizer.pad_token_id,
                    "eos_token_id": tokenizer.eos_token_id
                }

                # Subir los archivos del modelo y tokenizer a S3
                self.s3_client.upload_file(model_path, self.bucket_name, f'{model_name}/model')
                self.s3_client.upload_file(f'{model_path}/tokenizer', self.bucket_name, f'{model_name}/tokenizer')

                # Eliminar los archivos locales despu茅s de haber subido a S3
                shutil.rmtree(model_path)

            return token_dict[model_name]
        except NoCredentialsError:
            raise HTTPException(status_code=500, detail="AWS credentials not found.")
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error loading model: {e}")

# Instanciaci贸n del cargador de modelos
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)

# Funci贸n de generaci贸n de texto con streaming
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048):
    encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
    input_length = encoded_input["input_ids"].shape[1]
    remaining_tokens = max_length - input_length

    if remaining_tokens <= 0:
        yield ""

    generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens)

    def stop_criteria(input_ids, scores):
        decoded_output = tokenizer.decode(int(input_ids[0][-1]), skip_special_tokens=True)
        return decoded_output in stop_sequences

    stopping_criteria = StoppingCriteriaList([stop_criteria])

    output_text = ""
    outputs = model.generate(
        **encoded_input,
        do_sample=generation_config.do_sample,
        max_new_tokens=generation_config.max_new_tokens,
        temperature=generation_config.temperature,
        top_p=generation_config.top_p,
        top_k=generation_config.top_k,
        repetition_penalty=generation_config.repetition_penalty,
        num_return_sequences=generation_config.num_return_sequences,
        stopping_criteria=stopping_criteria,
        output_scores=True,
        return_dict_in_generate=True
    )

    for output in outputs.sequences:
        for token_id in output:
            token = tokenizer.decode(token_id, skip_special_tokens=True)
            yield token
            await asyncio.sleep(chunk_delay)

        if stop_sequences and any(stop in output_text for stop in stop_sequences):
            yield output_text
            return

# Endpoint para generar texto
@app.post("/generate")
async def generate(request: GenerateRequest):
    try:
        model_name = request.model_name
        input_text = request.input_text
        temperature = request.temperature
        max_new_tokens = request.max_new_tokens
        stream = request.stream
        top_p = request.top_p
        top_k = request.top_k
        repetition_penalty = request.repetition_penalty
        num_return_sequences = request.num_return_sequences
        do_sample = request.do_sample
        chunk_delay = request.chunk_delay
        stop_sequences = request.stop_sequences

        # Cargar el modelo y tokenizer desde S3 si no existe
        model_data = model_loader.load_model_and_tokenizer(model_name)
        model = model_data["model"]
        tokenizer = model_data["tokenizer"]
        pad_token_id = model_data["pad_token_id"]
        eos_token_id = model_data["eos_token_id"]

        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)

        generation_config = GenerationConfig(
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            do_sample=do_sample,
            num_return_sequences=num_return_sequences,
        )

        return StreamingResponse(
            stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay),
            media_type="text/plain"
        )

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

# Endpoint para generar im谩genes
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        image_generator = pipeline("text-to-image", model=validated_body.model_name, device=device)
        image = image_generator(validated_body.input_text)[0]

        img_byte_arr = BytesIO()
        image.save(img_byte_arr, format="PNG")
        img_byte_arr.seek(0)

        return StreamingResponse(img_byte_arr, media_type="image/png")

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

# Ejecutar el servidor FastAPI con Uvicorn
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)