File size: 11,626 Bytes
7c21718
 
9de7b93
7c21718
 
 
 
 
718116c
7c21718
 
 
 
 
 
 
277e316
e6982de
6e229a7
e77c20c
40aabaa
e77c20c
7c21718
 
 
 
 
 
 
e77c20c
e6982de
e77c20c
 
e6982de
e77c20c
 
 
7c21718
 
 
 
 
 
 
 
99136f3
7c21718
 
99136f3
7c21718
 
 
 
 
 
 
 
 
 
 
 
 
e6982de
 
7c21718
 
 
 
b7a38a6
 
7c21718
 
 
 
 
 
e77c20c
e6982de
7c21718
 
b7a38a6
 
 
 
 
e6982de
564b6ea
e6982de
e77c20c
718116c
564b6ea
e6982de
e77c20c
e6982de
99136f3
e6982de
 
99136f3
 
 
 
 
 
b7a38a6
7c21718
3ed39a1
 
 
e6982de
99136f3
e6982de
e77c20c
718116c
5d4a408
e6982de
 
99136f3
 
 
 
 
e77c20c
 
7c21718
 
e77c20c
 
 
 
 
 
 
 
 
 
 
99136f3
e77c20c
99136f3
 
7c21718
e6982de
 
 
 
7c21718
 
 
 
 
 
 
 
 
c8741b0
7c21718
 
 
 
 
 
 
 
99136f3
7c21718
 
e77c20c
c17efbf
 
 
c8741b0
c17efbf
 
 
 
 
 
7c21718
c17efbf
e77c20c
 
99136f3
e77c20c
c17efbf
 
e77c20c
e6982de
7c21718
e6982de
 
 
b5fcdec
6e7eb77
e77c20c
 
99136f3
b7a38a6
e6982de
e77c20c
99136f3
e6982de
40aabaa
 
 
b5fcdec
 
40aabaa
 
 
 
 
 
 
 
b5fcdec
c8741b0
40aabaa
7c21718
b5fcdec
 
6e7eb77
 
 
 
 
 
 
 
 
 
b5fcdec
e6982de
 
 
e77c20c
e6982de
c8741b0
b5fcdec
e6982de
b5fcdec
e6982de
b5fcdec
6e7eb77
b7a38a6
 
 
277e316
b5fcdec
6e7eb77
b7a38a6
 
c8741b0
b7a38a6
 
 
277e316
b5fcdec
99136f3
b7a38a6
99136f3
 
b7a38a6
 
 
 
99136f3
7c21718
 
 
 
 
b7a38a6
 
 
 
 
 
 
 
 
 
 
e77c20c
 
 
 
e6982de
7c21718
e6982de
e77c20c
 
e6982de
 
 
7c21718
 
 
 
 
e6982de
b7a38a6
 
 
 
 
 
 
 
 
6e229a7
78f7e86
e77c20c
 
 
 
 
 
7c21718
 
e6982de
e77c20c
 
e6982de
 
7c21718
 
 
 
 
 
b7a38a6
 
e77c20c
 
e6982de
b7a38a6
 
 
 
6e229a7
e77c20c
 
 
 
 
e6982de
7c21718
e6982de
e77c20c
 
e6982de
7c21718
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, field_validator
from transformers import (
    AutoConfig,
    pipeline,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
)
import boto3
import uvicorn
import asyncio
from transformers import pipeline
import json
from huggingface_hub import login
import base64
from botocore.exceptions import NoCredentialsError
import re


AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")


if HUGGINGFACE_HUB_TOKEN:
    login(token=HUGGINGFACE_HUB_TOKEN,
          add_to_git_credential=False)

s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,
                         aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
                         region_name=AWS_REGION)

app = FastAPI()

class GenerateRequest(BaseModel):
    model_name: str
    input_text: str = ""
    task_type: str
    temperature: float = 1.0
    max_new_tokens: int = 3
    stream: bool = True
    top_p: float = 1.0
    top_k: int = 50    
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = True
    stop_sequences: list[str] = []

    @field_validator("model_name")
    def model_name_cannot_be_empty(cls, v):
        if not v:
            raise ValueError("model_name cannot be empty.")
        return v

    @field_validator("task_type")
    def task_type_must_be_valid(cls, v):
        valid_types = ["text-to-text", "text-to-image",
                       "text-to-speech", "text-to-video"]
        if v not in valid_types:
            raise ValueError(f"task_type must be one of: {valid_types}")
        return v

model_cache = {}

class S3ModelLoader:
    def __init__(self, bucket_name, s3_client):
        self.bucket_name = bucket_name
        self.s3_client = s3_client

    def _get_s3_uri(self, model_name):
         return f"s3://{self.bucket_name}/" \
               f"{model_name.replace('/', '-')}"

    async def load_model_and_tokenizer(self, model_name):
       if model_name in model_cache:
          return model_cache[model_name]
       
       s3_uri = self._get_s3_uri(model_name)
       try:
            config = AutoConfig.from_pretrained(
                s3_uri, local_files_only=False
            )
            
            model = AutoModelForCausalLM.from_pretrained(
                s3_uri, config=config, local_files_only=False
            )
                
            tokenizer = AutoTokenizer.from_pretrained(
                s3_uri, config=config, local_files_only=False
            )

            if tokenizer.eos_token_id is not None and \
               tokenizer.pad_token_id is None:
                tokenizer.pad_token_id = config.pad_token_id \
                                        or tokenizer.eos_token_id
            model_cache[model_name] = (model, tokenizer)
            return model, tokenizer
       except (EnvironmentError, NoCredentialsError):
            try:
                config = AutoConfig.from_pretrained(
                    model_name, token=HUGGINGFACE_HUB_TOKEN
                )
                tokenizer = AutoTokenizer.from_pretrained(
                    model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
                )
                
                model = AutoModelForCausalLM.from_pretrained(
                    model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
                )


                if tokenizer.eos_token_id is not None and \
                   tokenizer.pad_token_id is None:
                    tokenizer.pad_token_id = config.pad_token_id \
                                            or tokenizer.eos_token_id

                
                model.save_pretrained(s3_uri)
                tokenizer.save_pretrained(s3_uri)
                
                
                config = AutoConfig.from_pretrained(
                    s3_uri, local_files_only=False
                )
                
                model = AutoModelForCausalLM.from_pretrained(
                    s3_uri, config=config, local_files_only=False
                )
                
                tokenizer = AutoTokenizer.from_pretrained(
                    s3_uri, config=config, local_files_only=False
                )
                model_cache[model_name] = (model, tokenizer)
                return model, tokenizer
            except Exception as e:
                raise HTTPException(
                    status_code=500, detail=f"Error loading model: {e}"
                )

model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)

@app.post("/generate")
async def generate(request: GenerateRequest):
    try:
        model_name = request.model_name
        input_text = request.input_text
        task_type = request.task_type
        temperature = request.temperature
        max_new_tokens = request.max_new_tokens
        stream = request.stream
        top_p = request.top_p
        top_k = request.top_k
        repetition_penalty = request.repetition_penalty
        num_return_sequences = request.num_return_sequences
        do_sample = request.do_sample
        stop_sequences = request.stop_sequences

        model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)
        
        if "text-to-text" == task_type:
            generation_config = GenerationConfig(
                temperature=temperature,
                max_new_tokens=max_new_tokens,
                top_p=top_p,
                top_k=top_k,
                repetition_penalty=repetition_penalty,
                do_sample=do_sample,
                num_return_sequences=num_return_sequences,
            )

            return StreamingResponse(
                stream_text(model, tokenizer, input_text,
                             generation_config, stop_sequences,
                             device),
                media_type="text/plain"
            )
        else:
            return HTTPException(status_code=400, detail="Task type not text-to-text")

    except Exception as e:
        raise HTTPException(
            status_code=500, detail=f"Internal server error: {str(e)}"
        )


async def stream_text(model, tokenizer, input_text,
                        generation_config, stop_sequences,
                        device):

    encoded_input = tokenizer(
        input_text, return_tensors="pt",
        truncation=True
    ).to(device)
    
    stop_regex = re.compile(r'[\.\?\!\n]+')
    
    def find_stop(output_text, stop_sequences):
        for seq in stop_sequences:
           if seq in output_text:
              last_index = output_text.rfind(seq)
              return last_index + len(seq)
        
        match = stop_regex.search(output_text)
        if match:
           return match.end()
        
        return -1
    
    
    output_text = ""
    while True:
        outputs = model.generate(
            **encoded_input,
            do_sample=generation_config.do_sample,
            max_new_tokens=generation_config.max_new_tokens,
            temperature=generation_config.temperature,
            top_p=generation_config.top_p,
            top_k=generation_config.top_k,
            repetition_penalty=generation_config.repetition_penalty,
            num_return_sequences=generation_config.num_return_sequences,
            output_scores=True,
            return_dict_in_generate=True,
        )

        new_text = tokenizer.decode(
            outputs.sequences[0][len(encoded_input["input_ids"][0]):],
            skip_special_tokens=True
        )
        
        output_text += new_text

        stop_index = find_stop(output_text, stop_sequences)

        if stop_index != -1:
            final_output = output_text[:stop_index]
            
            for text in final_output.split():
                 yield json.dumps({"text": text, "is_end": False}) + "\n"
            yield json.dumps({"text": "", "is_end": True}) + "\n"
            break
        else:
            for text in new_text.split():
              yield json.dumps({"text": text, "is_end": False}) + "\n"
        
        if len(new_text) == 0:
            for text in output_text.split():
                 yield json.dumps({"text": text, "is_end": False}) + "\n"
            yield json.dumps({"text": "", "is_end": True}) + "\n"
            break

        encoded_input = tokenizer(
            output_text, return_tensors="pt",
            truncation=True
        ).to(device)
        output_text = ""



@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        if validated_body.model_name not in model_cache:
            model = pipeline(
                "text-to-image", model=validated_body.model_name,
                device=device
            )
            model_cache[validated_body.model_name] = model
        else:
            model = model_cache[validated_body.model_name]
        
        image = model(validated_body.input_text)[0]
        
        image_data = list(image.getdata())
        
        return json.dumps({"image_data": image_data, "is_end": True})

    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=f"Internal server error: {str(e)}"
        )


@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"

        if validated_body.model_name not in model_cache:
            audio_generator = pipeline(
                "text-to-speech", model=validated_body.model_name,
                device=device
            )
            model_cache[validated_body.model_name] = audio_generator
        else:
            audio_generator = model_cache[validated_body.model_name]

        audio = audio_generator(validated_body.input_text)

        
        audio_bytes = audio["audio"]
        
        audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
        
        return json.dumps({"audio": audio_base64, "is_end": True})

    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=f"Internal server error: {str(e)}"
        )


@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"
        if validated_body.model_name not in model_cache:
            video_generator = pipeline(
            "text-to-video", model=validated_body.model_name,
            device=device
        )
            model_cache[validated_body.model_name] = video_generator
        else:
            video_generator = model_cache[validated_body.model_name]

        video = video_generator(validated_body.input_text)
        
        
        video_base64 = base64.b64encode(video).decode('utf-8')
        
        return json.dumps({"video": video_base64, "is_end": True})

    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=f"Internal server error: {str(e)}"
        )

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)