File size: 10,689 Bytes
55ac26c
28da247
55ac26c
19217bc
28da247
 
 
d542641
9c84c70
6922ee3
8265d02
55ac26c
 
d542641
55ac26c
 
9c84c70
d542641
 
55ac26c
e003b4c
 
 
 
 
 
 
 
 
 
 
 
 
55ac26c
 
bd5d002
 
55ac26c
033fb37
55ac26c
 
 
 
 
 
 
 
28da247
55ac26c
 
9c84c70
55ac26c
19217bc
 
 
 
 
55ac26c
 
 
9c84c70
239b735
864aa62
55ac26c
45b851e
d542641
55ac26c
 
 
 
 
9c84c70
 
ec38b07
e003b4c
46294a9
 
55ac26c
d542641
 
 
 
 
 
55ac26c
 
d542641
 
28da247
 
d542641
 
 
033fb37
28da247
d542641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b851e
 
 
6916b74
45b851e
d542641
9c84c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d542641
bddb8a1
 
d542641
 
28da247
55ac26c
 
 
 
 
28da247
19217bc
55ac26c
 
9c84c70
4423b71
55ac26c
 
28da247
 
 
19217bc
55ac26c
 
28da247
9c84c70
 
28da247
9c84c70
 
 
2d7c3b2
28da247
55ac26c
 
19217bc
55ac26c
 
ec38b07
28da247
55ac26c
2d7c3b2
6d6b641
55ac26c
19217bc
55ac26c
 
ec38b07
28da247
55ac26c
19217bc
55ac26c
 
 
 
d542641
 
7d955cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import gc
import torch
import cv2
import gradio as gr
import numpy as np
import matplotlib.cm as cm
import matplotlib  # New import for the updated colormap API
import subprocess
import sys
import spaces

from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import read_video_frames, save_video
from huggingface_hub import hf_hub_download

# Examples for the Gradio Demo.
# Each example now contains 8 parameters:
# [video_path, max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur]
examples = [
    ['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/gorilla_01.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/davis_burnout.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/obj_1.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, True, True, True, 0.3],
]

# Use GPU if available; otherwise, use CPU.
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

# Model configuration for different encoder variants.
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
    'vits': 'Small',
    'vitl': 'Large',
}
encoder = 'vitl'
model_name = encoder2name[encoder]

# Initialize the model.
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(
    repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
    filename=f"video_depth_anything_{encoder}.pth",
    repo_type="model"
)
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()

title = "# Video Depth Anything + RGBD sbs output"
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""

@spaces.GPU(enable_queue=True)

def infer_video_depth(
    input_video: str,
    max_len: int = -1,
    target_fps: int = -1,
    max_res: int = 1280,
    stitch: bool = True,
    grayscale: bool = True,
    convert_from_color: bool = True,
    blur: float = 0.3,
    output_dir: str = './outputs',
    input_size: int = 518,
):
    # 1. Read input video frames for inference (downscaled to max_res).
    frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
    # 2. Perform depth inference using the model.
    depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)

    video_name = os.path.basename(input_video)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Save the preprocessed (RGB) video and the generated depth visualization.
    processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
    depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
    save_video(frames, processed_video_path, fps=fps)
    save_video(depths, depth_vis_path, fps=fps, is_depths=True)

    stitched_video_path = None
    if stitch:
        # For stitching: read the original video in full resolution (without downscaling).
        full_frames, _ = read_video_frames(input_video, max_len, target_fps, max_res=-1)
        # For each frame, create a visual depth image from the inferenced depths.
        d_min, d_max = depths.min(), depths.max()
        stitched_frames = []
        for i in range(min(len(full_frames), len(depths))):
            rgb_full = full_frames[i]  # Full-resolution RGB frame.
            depth_frame = depths[i]
            # Normalize the depth frame to the range [0, 255].
            depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
            # Generate depth visualization:
            if grayscale:
                if convert_from_color:
                    # First, generate a color depth image using the inferno colormap,
                    # then convert that color image to grayscale.
                    cmap = matplotlib.colormaps.get_cmap("inferno")
                    depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
                    depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
                    depth_vis = np.stack([depth_gray] * 3, axis=-1)
                else:
                    # Directly generate a grayscale image from the normalized depth values.
                    depth_vis = np.stack([depth_norm] * 3, axis=-1)
            else:
                # Generate a color depth image using the inferno colormap.
                cmap = matplotlib.colormaps.get_cmap("inferno")
                depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
            # Apply Gaussian blur if requested.
            if blur > 0:
                kernel_size = int(blur * 20) * 2 + 1  # Ensures an odd kernel size.
                depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
            # Resize the depth visualization to match the full-resolution RGB frame.
            H_full, W_full = rgb_full.shape[:2]
            depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
            # Concatenate the full-resolution RGB frame (left) and the resized depth visualization (right).
            stitched = cv2.hconcat([rgb_full, depth_vis_resized])
            stitched_frames.append(stitched)
        stitched_frames = np.array(stitched_frames)
        # Use only the first 20 characters of the base name for the output filename and append '_RGBD.mp4'
        base_name = os.path.splitext(video_name)[0]
        short_name = base_name[:20]
        stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
        save_video(stitched_frames, stitched_video_path, fps=fps)
        
        # Merge audio from the input video into the stitched video using ffmpeg.
        temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
        cmd = [
            "ffmpeg",
            "-y",
            "-i", stitched_video_path,
            "-i", input_video,
            "-c:v", "copy",
            "-c:a", "aac",
            "-map", "0:v:0",
            "-map", "1:a:0?",
            "-shortest",
            temp_audio_path
        ]
        subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        os.replace(temp_audio_path, stitched_video_path)

    gc.collect()
    torch.cuda.empty_cache()

    # Return the preprocessed RGB video, depth visualization, and (if created) the stitched video.
    return [processed_video_path, depth_vis_path, stitched_video_path]

def construct_demo():
    with gr.Blocks(analytics_enabled=False) as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                # Video input component for file upload.
                input_video = gr.Video(label="Input Video")
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):
                    processed_video = gr.Video(label="Preprocessed Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
                    depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
                    stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
                    
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Accordion("Advanced Settings", open=False):
                    max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
                    target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=-1, step=1)
                    max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
                    stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
                    grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
                    convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
                    blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts on display)", value=0.3)
                generate_btn = gr.Button("Generate")
            with gr.Column(scale=2):
                pass
        
        gr.Examples(
            examples=examples,
            inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
            outputs=[processed_video, depth_vis_video, stitched_video],
            fn=infer_video_depth,
            cache_examples=False,
            cache_mode="lazy",
        )
        
        generate_btn.click(
            fn=infer_video_depth,
            inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
            outputs=[processed_video, depth_vis_video, stitched_video],
        )
    
    return demo

if __name__ == "__main__":
    demo = construct_demo()
    #demo.queue()  # Enable asynchronous processing.
    #demo.launch(share=True)
    demo.queue(max_size=2).launch()