Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,689 Bytes
55ac26c 28da247 55ac26c 19217bc 28da247 d542641 9c84c70 6922ee3 8265d02 55ac26c d542641 55ac26c 9c84c70 d542641 55ac26c e003b4c 55ac26c bd5d002 55ac26c 033fb37 55ac26c 28da247 55ac26c 9c84c70 55ac26c 19217bc 55ac26c 9c84c70 239b735 864aa62 55ac26c 45b851e d542641 55ac26c 9c84c70 ec38b07 e003b4c 46294a9 55ac26c d542641 55ac26c d542641 28da247 d542641 033fb37 28da247 d542641 45b851e 6916b74 45b851e d542641 9c84c70 d542641 bddb8a1 d542641 28da247 55ac26c 28da247 19217bc 55ac26c 9c84c70 4423b71 55ac26c 28da247 19217bc 55ac26c 28da247 9c84c70 28da247 9c84c70 2d7c3b2 28da247 55ac26c 19217bc 55ac26c ec38b07 28da247 55ac26c 2d7c3b2 6d6b641 55ac26c 19217bc 55ac26c ec38b07 28da247 55ac26c 19217bc 55ac26c d542641 7d955cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import gc
import torch
import cv2
import gradio as gr
import numpy as np
import matplotlib.cm as cm
import matplotlib # New import for the updated colormap API
import subprocess
import sys
import spaces
from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import read_video_frames, save_video
from huggingface_hub import hf_hub_download
# Examples for the Gradio Demo.
# Each example now contains 8 parameters:
# [video_path, max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur]
examples = [
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/gorilla_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/obj_1.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, True, True, True, 0.3],
]
# Use GPU if available; otherwise, use CPU.
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Model configuration for different encoder variants.
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
'vits': 'Small',
'vitl': 'Large',
}
encoder = 'vitl'
model_name = encoder2name[encoder]
# Initialize the model.
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(
repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
filename=f"video_depth_anything_{encoder}.pth",
repo_type="model"
)
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()
title = "# Video Depth Anything + RGBD sbs output"
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
@spaces.GPU(enable_queue=True)
def infer_video_depth(
input_video: str,
max_len: int = -1,
target_fps: int = -1,
max_res: int = 1280,
stitch: bool = True,
grayscale: bool = True,
convert_from_color: bool = True,
blur: float = 0.3,
output_dir: str = './outputs',
input_size: int = 518,
):
# 1. Read input video frames for inference (downscaled to max_res).
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
# 2. Perform depth inference using the model.
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
video_name = os.path.basename(input_video)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Save the preprocessed (RGB) video and the generated depth visualization.
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
save_video(frames, processed_video_path, fps=fps)
save_video(depths, depth_vis_path, fps=fps, is_depths=True)
stitched_video_path = None
if stitch:
# For stitching: read the original video in full resolution (without downscaling).
full_frames, _ = read_video_frames(input_video, max_len, target_fps, max_res=-1)
# For each frame, create a visual depth image from the inferenced depths.
d_min, d_max = depths.min(), depths.max()
stitched_frames = []
for i in range(min(len(full_frames), len(depths))):
rgb_full = full_frames[i] # Full-resolution RGB frame.
depth_frame = depths[i]
# Normalize the depth frame to the range [0, 255].
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
# Generate depth visualization:
if grayscale:
if convert_from_color:
# First, generate a color depth image using the inferno colormap,
# then convert that color image to grayscale.
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
depth_vis = np.stack([depth_gray] * 3, axis=-1)
else:
# Directly generate a grayscale image from the normalized depth values.
depth_vis = np.stack([depth_norm] * 3, axis=-1)
else:
# Generate a color depth image using the inferno colormap.
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
# Apply Gaussian blur if requested.
if blur > 0:
kernel_size = int(blur * 20) * 2 + 1 # Ensures an odd kernel size.
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
# Resize the depth visualization to match the full-resolution RGB frame.
H_full, W_full = rgb_full.shape[:2]
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
# Concatenate the full-resolution RGB frame (left) and the resized depth visualization (right).
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
stitched_frames.append(stitched)
stitched_frames = np.array(stitched_frames)
# Use only the first 20 characters of the base name for the output filename and append '_RGBD.mp4'
base_name = os.path.splitext(video_name)[0]
short_name = base_name[:20]
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
save_video(stitched_frames, stitched_video_path, fps=fps)
# Merge audio from the input video into the stitched video using ffmpeg.
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
cmd = [
"ffmpeg",
"-y",
"-i", stitched_video_path,
"-i", input_video,
"-c:v", "copy",
"-c:a", "aac",
"-map", "0:v:0",
"-map", "1:a:0?",
"-shortest",
temp_audio_path
]
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
os.replace(temp_audio_path, stitched_video_path)
gc.collect()
torch.cuda.empty_cache()
# Return the preprocessed RGB video, depth visualization, and (if created) the stitched video.
return [processed_video_path, depth_vis_path, stitched_video_path]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Video input component for file upload.
input_video = gr.Video(label="Input Video")
with gr.Column(scale=2):
with gr.Row(equal_height=True):
processed_video = gr.Video(label="Preprocessed Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=-1, step=1)
max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts on display)", value=0.3)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
fn=infer_video_depth,
cache_examples=False,
cache_mode="lazy",
)
generate_btn.click(
fn=infer_video_depth,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
)
return demo
if __name__ == "__main__":
demo = construct_demo()
#demo.queue() # Enable asynchronous processing.
#demo.launch(share=True)
demo.queue(max_size=2).launch() |